| /* Extended regular expression matching and search library. | 
 |    Copyright (C) 2002-2016 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |    Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <stdint.h> | 
 |  | 
 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | 
 | 				     int n) internal_function; | 
 | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | 
 | static void match_ctx_free (re_match_context_t *cache) internal_function; | 
 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node, | 
 | 					  int str_idx, int from, int to) | 
 |      internal_function; | 
 | static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) | 
 |      internal_function; | 
 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node, | 
 | 					   int str_idx) internal_function; | 
 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | 
 | 						   int node, int str_idx) | 
 |      internal_function; | 
 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | 
 | 			   re_dfastate_t **limited_sts, int last_node, | 
 | 			   int last_str_idx) | 
 |      internal_function; | 
 | static reg_errcode_t re_search_internal (const regex_t *preg, | 
 | 					 const char *string, int length, | 
 | 					 int start, int range, int stop, | 
 | 					 size_t nmatch, regmatch_t pmatch[], | 
 | 					 int eflags) internal_function; | 
 | static int re_search_2_stub (struct re_pattern_buffer *bufp, | 
 | 			     const char *string1, int length1, | 
 | 			     const char *string2, int length2, | 
 | 			     int start, int range, struct re_registers *regs, | 
 | 			     int stop, int ret_len) internal_function; | 
 | static int re_search_stub (struct re_pattern_buffer *bufp, | 
 | 			   const char *string, int length, int start, | 
 | 			   int range, int stop, struct re_registers *regs, | 
 | 			   int ret_len) internal_function; | 
 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | 
 | 			      int nregs, int regs_allocated) internal_function; | 
 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx) | 
 |      internal_function; | 
 | static int check_matching (re_match_context_t *mctx, int fl_longest_match, | 
 | 			   int *p_match_first) internal_function; | 
 | static int check_halt_state_context (const re_match_context_t *mctx, | 
 | 				     const re_dfastate_t *state, int idx) | 
 |      internal_function; | 
 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | 
 | 			 regmatch_t *prev_idx_match, int cur_node, | 
 | 			 int cur_idx, int nmatch) internal_function; | 
 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | 
 | 				      int str_idx, int dest_node, int nregs, | 
 | 				      regmatch_t *regs, | 
 | 				      re_node_set *eps_via_nodes) | 
 |      internal_function; | 
 | static reg_errcode_t set_regs (const regex_t *preg, | 
 | 			       const re_match_context_t *mctx, | 
 | 			       size_t nmatch, regmatch_t *pmatch, | 
 | 			       int fl_backtrack) internal_function; | 
 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) | 
 |      internal_function; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | static int sift_states_iter_mb (const re_match_context_t *mctx, | 
 | 				re_sift_context_t *sctx, | 
 | 				int node_idx, int str_idx, int max_str_idx) | 
 |      internal_function; | 
 | #endif /* RE_ENABLE_I18N */ | 
 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, | 
 | 					   re_sift_context_t *sctx) | 
 |      internal_function; | 
 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, | 
 | 					  re_sift_context_t *sctx, int str_idx, | 
 | 					  re_node_set *cur_dest) | 
 |      internal_function; | 
 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, | 
 | 					      re_sift_context_t *sctx, | 
 | 					      int str_idx, | 
 | 					      re_node_set *dest_nodes) | 
 |      internal_function; | 
 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, | 
 | 					    re_node_set *dest_nodes, | 
 | 					    const re_node_set *candidates) | 
 |      internal_function; | 
 | static int check_dst_limits (const re_match_context_t *mctx, | 
 | 			     re_node_set *limits, | 
 | 			     int dst_node, int dst_idx, int src_node, | 
 | 			     int src_idx) internal_function; | 
 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | 
 | 					int boundaries, int subexp_idx, | 
 | 					int from_node, int bkref_idx) | 
 |      internal_function; | 
 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | 
 | 				      int limit, int subexp_idx, | 
 | 				      int node, int str_idx, | 
 | 				      int bkref_idx) internal_function; | 
 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, | 
 | 					  re_node_set *dest_nodes, | 
 | 					  const re_node_set *candidates, | 
 | 					  re_node_set *limits, | 
 | 					  struct re_backref_cache_entry *bkref_ents, | 
 | 					  int str_idx) internal_function; | 
 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, | 
 | 					re_sift_context_t *sctx, | 
 | 					int str_idx, const re_node_set *candidates) | 
 |      internal_function; | 
 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, | 
 | 					re_dfastate_t **dst, | 
 | 					re_dfastate_t **src, int num) | 
 |      internal_function; | 
 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | 
 | 					 re_match_context_t *mctx) internal_function; | 
 | static re_dfastate_t *transit_state (reg_errcode_t *err, | 
 | 				     re_match_context_t *mctx, | 
 | 				     re_dfastate_t *state) internal_function; | 
 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | 
 | 					    re_match_context_t *mctx, | 
 | 					    re_dfastate_t *next_state) | 
 |      internal_function; | 
 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | 
 | 						re_node_set *cur_nodes, | 
 | 						int str_idx) internal_function; | 
 | #if 0 | 
 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | 
 | 					re_match_context_t *mctx, | 
 | 					re_dfastate_t *pstate) | 
 |      internal_function; | 
 | #endif | 
 | #ifdef RE_ENABLE_I18N | 
 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | 
 | 				       re_dfastate_t *pstate) | 
 |      internal_function; | 
 | #endif /* RE_ENABLE_I18N */ | 
 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | 
 | 					  const re_node_set *nodes) | 
 |      internal_function; | 
 | static reg_errcode_t get_subexp (re_match_context_t *mctx, | 
 | 				 int bkref_node, int bkref_str_idx) | 
 |      internal_function; | 
 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | 
 | 				     const re_sub_match_top_t *sub_top, | 
 | 				     re_sub_match_last_t *sub_last, | 
 | 				     int bkref_node, int bkref_str) | 
 |      internal_function; | 
 | static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | 
 | 			     int subexp_idx, int type) internal_function; | 
 | static reg_errcode_t check_arrival (re_match_context_t *mctx, | 
 | 				    state_array_t *path, int top_node, | 
 | 				    int top_str, int last_node, int last_str, | 
 | 				    int type) internal_function; | 
 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | 
 | 						   int str_idx, | 
 | 						   re_node_set *cur_nodes, | 
 | 						   re_node_set *next_nodes) | 
 |      internal_function; | 
 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, | 
 | 					       re_node_set *cur_nodes, | 
 | 					       int ex_subexp, int type) | 
 |      internal_function; | 
 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, | 
 | 						   re_node_set *dst_nodes, | 
 | 						   int target, int ex_subexp, | 
 | 						   int type) internal_function; | 
 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | 
 | 					 re_node_set *cur_nodes, int cur_str, | 
 | 					 int subexp_num, int type) | 
 |      internal_function; | 
 | static int build_trtable (const re_dfa_t *dfa, | 
 | 			  re_dfastate_t *state) internal_function; | 
 | #ifdef RE_ENABLE_I18N | 
 | static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, | 
 | 				    const re_string_t *input, int idx) | 
 |      internal_function; | 
 | # ifdef _LIBC | 
 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, | 
 | 						   size_t name_len) | 
 |      internal_function; | 
 | # endif /* _LIBC */ | 
 | #endif /* RE_ENABLE_I18N */ | 
 | static int group_nodes_into_DFAstates (const re_dfa_t *dfa, | 
 | 				       const re_dfastate_t *state, | 
 | 				       re_node_set *states_node, | 
 | 				       bitset_t *states_ch) internal_function; | 
 | static int check_node_accept (const re_match_context_t *mctx, | 
 | 			      const re_token_t *node, int idx) | 
 |      internal_function; | 
 | static reg_errcode_t extend_buffers (re_match_context_t *mctx, int min_len) | 
 |      internal_function; | 
 |  | 
 | /* Entry point for POSIX code.  */ | 
 |  | 
 | /* regexec searches for a given pattern, specified by PREG, in the | 
 |    string STRING. | 
 |  | 
 |    If NMATCH is zero or REG_NOSUB was set in the cflags argument to | 
 |    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at | 
 |    least NMATCH elements, and we set them to the offsets of the | 
 |    corresponding matched substrings. | 
 |  | 
 |    EFLAGS specifies `execution flags' which affect matching: if | 
 |    REG_NOTBOL is set, then ^ does not match at the beginning of the | 
 |    string; if REG_NOTEOL is set, then $ does not match at the end. | 
 |  | 
 |    We return 0 if we find a match and REG_NOMATCH if not.  */ | 
 |  | 
 | int | 
 | regexec (const regex_t *__restrict preg, const char *__restrict string, | 
 | 	 size_t nmatch, regmatch_t pmatch[], int eflags) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int start, length; | 
 |   re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
 |  | 
 |   if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | 
 |     return REG_BADPAT; | 
 |  | 
 |   if (eflags & REG_STARTEND) | 
 |     { | 
 |       start = pmatch[0].rm_so; | 
 |       length = pmatch[0].rm_eo; | 
 |     } | 
 |   else | 
 |     { | 
 |       start = 0; | 
 |       length = strlen (string); | 
 |     } | 
 |  | 
 |   __libc_lock_lock (dfa->lock); | 
 |   if (preg->no_sub) | 
 |     err = re_search_internal (preg, string, length, start, length - start, | 
 | 			      length, 0, NULL, eflags); | 
 |   else | 
 |     err = re_search_internal (preg, string, length, start, length - start, | 
 | 			      length, nmatch, pmatch, eflags); | 
 |   __libc_lock_unlock (dfa->lock); | 
 |   return err != REG_NOERROR; | 
 | } | 
 |  | 
 | #ifdef _LIBC | 
 | # include <shlib-compat.h> | 
 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); | 
 |  | 
 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) | 
 | __typeof__ (__regexec) __compat_regexec; | 
 |  | 
 | int | 
 | attribute_compat_text_section | 
 | __compat_regexec (const regex_t *__restrict preg, | 
 | 		  const char *__restrict string, size_t nmatch, | 
 | 		  regmatch_t pmatch[], int eflags) | 
 | { | 
 |   return regexec (preg, string, nmatch, pmatch, | 
 | 		  eflags & (REG_NOTBOL | REG_NOTEOL)); | 
 | } | 
 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); | 
 | # endif | 
 | #endif | 
 |  | 
 | /* Entry points for GNU code.  */ | 
 |  | 
 | /* re_match, re_search, re_match_2, re_search_2 | 
 |  | 
 |    The former two functions operate on STRING with length LENGTH, | 
 |    while the later two operate on concatenation of STRING1 and STRING2 | 
 |    with lengths LENGTH1 and LENGTH2, respectively. | 
 |  | 
 |    re_match() matches the compiled pattern in BUFP against the string, | 
 |    starting at index START. | 
 |  | 
 |    re_search() first tries matching at index START, then it tries to match | 
 |    starting from index START + 1, and so on.  The last start position tried | 
 |    is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same | 
 |    way as re_match().) | 
 |  | 
 |    The parameter STOP of re_{match,search}_2 specifies that no match exceeding | 
 |    the first STOP characters of the concatenation of the strings should be | 
 |    concerned. | 
 |  | 
 |    If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match | 
 |    and all groups is stroed in REGS.  (For the "_2" variants, the offsets are | 
 |    computed relative to the concatenation, not relative to the individual | 
 |    strings.) | 
 |  | 
 |    On success, re_match* functions return the length of the match, re_search* | 
 |    return the position of the start of the match.  Return value -1 means no | 
 |    match was found and -2 indicates an internal error.  */ | 
 |  | 
 | int | 
 | re_match (struct re_pattern_buffer *bufp, const char *string, int length, | 
 | 	  int start, struct re_registers *regs) | 
 | { | 
 |   return re_search_stub (bufp, string, length, start, 0, length, regs, 1); | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_match, re_match) | 
 | #endif | 
 |  | 
 | int | 
 | re_search (struct re_pattern_buffer *bufp, const char *string, int length, | 
 | 	   int start, int range, struct re_registers *regs) | 
 | { | 
 |   return re_search_stub (bufp, string, length, start, range, length, regs, 0); | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_search, re_search) | 
 | #endif | 
 |  | 
 | int | 
 | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int length1, | 
 | 	    const char *string2, int length2, int start, | 
 | 	    struct re_registers *regs, int stop) | 
 | { | 
 |   return re_search_2_stub (bufp, string1, length1, string2, length2, | 
 | 			   start, 0, regs, stop, 1); | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_match_2, re_match_2) | 
 | #endif | 
 |  | 
 | int | 
 | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int length1, | 
 | 	     const char *string2, int length2, int start, int range, | 
 | 	     struct re_registers *regs, int stop) | 
 | { | 
 |   return re_search_2_stub (bufp, string1, length1, string2, length2, | 
 | 			   start, range, regs, stop, 0); | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_search_2, re_search_2) | 
 | #endif | 
 |  | 
 | static int | 
 | internal_function | 
 | re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, | 
 | 		  int length1, const char *string2, int length2, int start, | 
 | 		  int range, struct re_registers *regs, | 
 | 		  int stop, int ret_len) | 
 | { | 
 |   const char *str; | 
 |   int rval; | 
 |   int len = length1 + length2; | 
 |   char *s = NULL; | 
 |  | 
 |   if (BE (length1 < 0 || length2 < 0 || stop < 0 || len < length1, 0)) | 
 |     return -2; | 
 |  | 
 |   /* Concatenate the strings.  */ | 
 |   if (length2 > 0) | 
 |     if (length1 > 0) | 
 |       { | 
 | 	s = re_malloc (char, len); | 
 |  | 
 | 	if (BE (s == NULL, 0)) | 
 | 	  return -2; | 
 | #ifdef _LIBC | 
 | 	memcpy (__mempcpy (s, string1, length1), string2, length2); | 
 | #else | 
 | 	memcpy (s, string1, length1); | 
 | 	memcpy (s + length1, string2, length2); | 
 | #endif | 
 | 	str = s; | 
 |       } | 
 |     else | 
 |       str = string2; | 
 |   else | 
 |     str = string1; | 
 |  | 
 |   rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len); | 
 |   re_free (s); | 
 |   return rval; | 
 | } | 
 |  | 
 | /* The parameters have the same meaning as those of re_search. | 
 |    Additional parameters: | 
 |    If RET_LEN is nonzero the length of the match is returned (re_match style); | 
 |    otherwise the position of the match is returned.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | re_search_stub (struct re_pattern_buffer *bufp, const char *string, int length, | 
 | 		int start, int range, int stop, struct re_registers *regs, | 
 | 		int ret_len) | 
 | { | 
 |   reg_errcode_t result; | 
 |   regmatch_t *pmatch; | 
 |   int nregs, rval; | 
 |   int eflags = 0; | 
 |   re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
 |  | 
 |   /* Check for out-of-range.  */ | 
 |   if (BE (start < 0 || start > length, 0)) | 
 |     return -1; | 
 |   if (BE (start + range > length, 0)) | 
 |     range = length - start; | 
 |   else if (BE (start + range < 0, 0)) | 
 |     range = -start; | 
 |  | 
 |   __libc_lock_lock (dfa->lock); | 
 |  | 
 |   eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; | 
 |   eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; | 
 |  | 
 |   /* Compile fastmap if we haven't yet.  */ | 
 |   if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate) | 
 |     re_compile_fastmap (bufp); | 
 |  | 
 |   if (BE (bufp->no_sub, 0)) | 
 |     regs = NULL; | 
 |  | 
 |   /* We need at least 1 register.  */ | 
 |   if (regs == NULL) | 
 |     nregs = 1; | 
 |   else if (BE (bufp->regs_allocated == REGS_FIXED && | 
 | 	       regs->num_regs < bufp->re_nsub + 1, 0)) | 
 |     { | 
 |       nregs = regs->num_regs; | 
 |       if (BE (nregs < 1, 0)) | 
 | 	{ | 
 | 	  /* Nothing can be copied to regs.  */ | 
 | 	  regs = NULL; | 
 | 	  nregs = 1; | 
 | 	} | 
 |     } | 
 |   else | 
 |     nregs = bufp->re_nsub + 1; | 
 |   pmatch = re_malloc (regmatch_t, nregs); | 
 |   if (BE (pmatch == NULL, 0)) | 
 |     { | 
 |       rval = -2; | 
 |       goto out; | 
 |     } | 
 |  | 
 |   result = re_search_internal (bufp, string, length, start, range, stop, | 
 | 			       nregs, pmatch, eflags); | 
 |  | 
 |   rval = 0; | 
 |  | 
 |   /* I hope we needn't fill ther regs with -1's when no match was found.  */ | 
 |   if (result != REG_NOERROR) | 
 |     rval = -1; | 
 |   else if (regs != NULL) | 
 |     { | 
 |       /* If caller wants register contents data back, copy them.  */ | 
 |       bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, | 
 | 					   bufp->regs_allocated); | 
 |       if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) | 
 | 	rval = -2; | 
 |     } | 
 |  | 
 |   if (BE (rval == 0, 1)) | 
 |     { | 
 |       if (ret_len) | 
 | 	{ | 
 | 	  assert (pmatch[0].rm_so == start); | 
 | 	  rval = pmatch[0].rm_eo - start; | 
 | 	} | 
 |       else | 
 | 	rval = pmatch[0].rm_so; | 
 |     } | 
 |   re_free (pmatch); | 
 |  out: | 
 |   __libc_lock_unlock (dfa->lock); | 
 |   return rval; | 
 | } | 
 |  | 
 | static unsigned | 
 | internal_function | 
 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, int nregs, | 
 | 	      int regs_allocated) | 
 | { | 
 |   int rval = REGS_REALLOCATE; | 
 |   int i; | 
 |   int need_regs = nregs + 1; | 
 |   /* We need one extra element beyond `num_regs' for the `-1' marker GNU code | 
 |      uses.  */ | 
 |  | 
 |   /* Have the register data arrays been allocated?  */ | 
 |   if (regs_allocated == REGS_UNALLOCATED) | 
 |     { /* No.  So allocate them with malloc.  */ | 
 |       regs->start = re_malloc (regoff_t, need_regs); | 
 |       if (BE (regs->start == NULL, 0)) | 
 | 	return REGS_UNALLOCATED; | 
 |       regs->end = re_malloc (regoff_t, need_regs); | 
 |       if (BE (regs->end == NULL, 0)) | 
 | 	{ | 
 | 	  re_free (regs->start); | 
 | 	  return REGS_UNALLOCATED; | 
 | 	} | 
 |       regs->num_regs = need_regs; | 
 |     } | 
 |   else if (regs_allocated == REGS_REALLOCATE) | 
 |     { /* Yes.  If we need more elements than were already | 
 | 	 allocated, reallocate them.  If we need fewer, just | 
 | 	 leave it alone.  */ | 
 |       if (BE (need_regs > regs->num_regs, 0)) | 
 | 	{ | 
 | 	  regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); | 
 | 	  regoff_t *new_end; | 
 | 	  if (BE (new_start == NULL, 0)) | 
 | 	    return REGS_UNALLOCATED; | 
 | 	  new_end = re_realloc (regs->end, regoff_t, need_regs); | 
 | 	  if (BE (new_end == NULL, 0)) | 
 | 	    { | 
 | 	      re_free (new_start); | 
 | 	      return REGS_UNALLOCATED; | 
 | 	    } | 
 | 	  regs->start = new_start; | 
 | 	  regs->end = new_end; | 
 | 	  regs->num_regs = need_regs; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       assert (regs_allocated == REGS_FIXED); | 
 |       /* This function may not be called with REGS_FIXED and nregs too big.  */ | 
 |       assert (regs->num_regs >= nregs); | 
 |       rval = REGS_FIXED; | 
 |     } | 
 |  | 
 |   /* Copy the regs.  */ | 
 |   for (i = 0; i < nregs; ++i) | 
 |     { | 
 |       regs->start[i] = pmatch[i].rm_so; | 
 |       regs->end[i] = pmatch[i].rm_eo; | 
 |     } | 
 |   for ( ; i < regs->num_regs; ++i) | 
 |     regs->start[i] = regs->end[i] = -1; | 
 |  | 
 |   return rval; | 
 | } | 
 |  | 
 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | 
 |    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use | 
 |    this memory for recording register information.  STARTS and ENDS | 
 |    must be allocated using the malloc library routine, and must each | 
 |    be at least NUM_REGS * sizeof (regoff_t) bytes long. | 
 |  | 
 |    If NUM_REGS == 0, then subsequent matches should allocate their own | 
 |    register data. | 
 |  | 
 |    Unless this function is called, the first search or match using | 
 |    PATTERN_BUFFER will allocate its own register data, without | 
 |    freeing the old data.  */ | 
 |  | 
 | void | 
 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, | 
 | 		  unsigned num_regs, regoff_t *starts, regoff_t *ends) | 
 | { | 
 |   if (num_regs) | 
 |     { | 
 |       bufp->regs_allocated = REGS_REALLOCATE; | 
 |       regs->num_regs = num_regs; | 
 |       regs->start = starts; | 
 |       regs->end = ends; | 
 |     } | 
 |   else | 
 |     { | 
 |       bufp->regs_allocated = REGS_UNALLOCATED; | 
 |       regs->num_regs = 0; | 
 |       regs->start = regs->end = (regoff_t *) 0; | 
 |     } | 
 | } | 
 | #ifdef _LIBC | 
 | weak_alias (__re_set_registers, re_set_registers) | 
 | #endif | 
 |  | 
 | /* Entry points compatible with 4.2 BSD regex library.  We don't define | 
 |    them unless specifically requested.  */ | 
 |  | 
 | #if defined _REGEX_RE_COMP || defined _LIBC | 
 | int | 
 | # ifdef _LIBC | 
 | weak_function | 
 | # endif | 
 | re_exec (const char *s) | 
 | { | 
 |   return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); | 
 | } | 
 | #endif /* _REGEX_RE_COMP */ | 
 |  | 
 | /* Internal entry point.  */ | 
 |  | 
 | /* Searches for a compiled pattern PREG in the string STRING, whose | 
 |    length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same | 
 |    mingings with regexec.  START, and RANGE have the same meanings | 
 |    with re_search. | 
 |    Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | 
 |    otherwise return the error code. | 
 |    Note: We assume front end functions already check ranges. | 
 |    (START + RANGE >= 0 && START + RANGE <= LENGTH)  */ | 
 |  | 
 | static reg_errcode_t | 
 | __attribute_warn_unused_result__ internal_function | 
 | re_search_internal (const regex_t *preg, const char *string, int length, | 
 | 		    int start, int range, int stop, size_t nmatch, | 
 | 		    regmatch_t pmatch[], int eflags) | 
 | { | 
 |   reg_errcode_t err; | 
 |   const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | 
 |   int left_lim, right_lim, incr; | 
 |   int fl_longest_match, match_first, match_kind, match_last = -1; | 
 |   int extra_nmatch; | 
 |   int sb, ch; | 
 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | 
 |   re_match_context_t mctx = { .dfa = dfa }; | 
 | #else | 
 |   re_match_context_t mctx; | 
 | #endif | 
 |   char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate | 
 | 		   && range && !preg->can_be_null) ? preg->fastmap : NULL; | 
 |   RE_TRANSLATE_TYPE t = preg->translate; | 
 |  | 
 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) | 
 |   memset (&mctx, '\0', sizeof (re_match_context_t)); | 
 |   mctx.dfa = dfa; | 
 | #endif | 
 |  | 
 |   extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | 
 |   nmatch -= extra_nmatch; | 
 |  | 
 |   /* Check if the DFA haven't been compiled.  */ | 
 |   if (BE (preg->used == 0 || dfa->init_state == NULL | 
 | 	  || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | 
 | 	  || dfa->init_state_begbuf == NULL, 0)) | 
 |     return REG_NOMATCH; | 
 |  | 
 | #ifdef DEBUG | 
 |   /* We assume front-end functions already check them.  */ | 
 |   assert (start + range >= 0 && start + range <= length); | 
 | #endif | 
 |  | 
 |   /* If initial states with non-begbuf contexts have no elements, | 
 |      the regex must be anchored.  If preg->newline_anchor is set, | 
 |      we'll never use init_state_nl, so do not check it.  */ | 
 |   if (dfa->init_state->nodes.nelem == 0 | 
 |       && dfa->init_state_word->nodes.nelem == 0 | 
 |       && (dfa->init_state_nl->nodes.nelem == 0 | 
 | 	  || !preg->newline_anchor)) | 
 |     { | 
 |       if (start != 0 && start + range != 0) | 
 | 	return REG_NOMATCH; | 
 |       start = range = 0; | 
 |     } | 
 |  | 
 |   /* We must check the longest matching, if nmatch > 0.  */ | 
 |   fl_longest_match = (nmatch != 0 || dfa->nbackref); | 
 |  | 
 |   err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | 
 | 			    preg->translate, preg->syntax & RE_ICASE, dfa); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     goto free_return; | 
 |   mctx.input.stop = stop; | 
 |   mctx.input.raw_stop = stop; | 
 |   mctx.input.newline_anchor = preg->newline_anchor; | 
 |  | 
 |   err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     goto free_return; | 
 |  | 
 |   /* We will log all the DFA states through which the dfa pass, | 
 |      if nmatch > 1, or this dfa has "multibyte node", which is a | 
 |      back-reference or a node which can accept multibyte character or | 
 |      multi character collating element.  */ | 
 |   if (nmatch > 1 || dfa->has_mb_node) | 
 |     { | 
 |       /* Avoid overflow.  */ | 
 |       if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0)) | 
 | 	{ | 
 | 	  err = REG_ESPACE; | 
 | 	  goto free_return; | 
 | 	} | 
 |  | 
 |       mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); | 
 |       if (BE (mctx.state_log == NULL, 0)) | 
 | 	{ | 
 | 	  err = REG_ESPACE; | 
 | 	  goto free_return; | 
 | 	} | 
 |     } | 
 |   else | 
 |     mctx.state_log = NULL; | 
 |  | 
 |   match_first = start; | 
 |   mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | 
 | 			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | 
 |  | 
 |   /* Check incrementally whether of not the input string match.  */ | 
 |   incr = (range < 0) ? -1 : 1; | 
 |   left_lim = (range < 0) ? start + range : start; | 
 |   right_lim = (range < 0) ? start : start + range; | 
 |   sb = dfa->mb_cur_max == 1; | 
 |   match_kind = | 
 |     (fastmap | 
 |      ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) | 
 | 	| (range >= 0 ? 2 : 0) | 
 | 	| (t != NULL ? 1 : 0)) | 
 |      : 8); | 
 |  | 
 |   for (;; match_first += incr) | 
 |     { | 
 |       err = REG_NOMATCH; | 
 |       if (match_first < left_lim || right_lim < match_first) | 
 | 	goto free_return; | 
 |  | 
 |       /* Advance as rapidly as possible through the string, until we | 
 | 	 find a plausible place to start matching.  This may be done | 
 | 	 with varying efficiency, so there are various possibilities: | 
 | 	 only the most common of them are specialized, in order to | 
 | 	 save on code size.  We use a switch statement for speed.  */ | 
 |       switch (match_kind) | 
 | 	{ | 
 | 	case 8: | 
 | 	  /* No fastmap.  */ | 
 | 	  break; | 
 |  | 
 | 	case 7: | 
 | 	  /* Fastmap with single-byte translation, match forward.  */ | 
 | 	  while (BE (match_first < right_lim, 1) | 
 | 		 && !fastmap[t[(unsigned char) string[match_first]]]) | 
 | 	    ++match_first; | 
 | 	  goto forward_match_found_start_or_reached_end; | 
 |  | 
 | 	case 6: | 
 | 	  /* Fastmap without translation, match forward.  */ | 
 | 	  while (BE (match_first < right_lim, 1) | 
 | 		 && !fastmap[(unsigned char) string[match_first]]) | 
 | 	    ++match_first; | 
 |  | 
 | 	forward_match_found_start_or_reached_end: | 
 | 	  if (BE (match_first == right_lim, 0)) | 
 | 	    { | 
 | 	      ch = match_first >= length | 
 | 		       ? 0 : (unsigned char) string[match_first]; | 
 | 	      if (!fastmap[t ? t[ch] : ch]) | 
 | 		goto free_return; | 
 | 	    } | 
 | 	  break; | 
 |  | 
 | 	case 4: | 
 | 	case 5: | 
 | 	  /* Fastmap without multi-byte translation, match backwards.  */ | 
 | 	  while (match_first >= left_lim) | 
 | 	    { | 
 | 	      ch = match_first >= length | 
 | 		       ? 0 : (unsigned char) string[match_first]; | 
 | 	      if (fastmap[t ? t[ch] : ch]) | 
 | 		break; | 
 | 	      --match_first; | 
 | 	    } | 
 | 	  if (match_first < left_lim) | 
 | 	    goto free_return; | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  /* In this case, we can't determine easily the current byte, | 
 | 	     since it might be a component byte of a multibyte | 
 | 	     character.  Then we use the constructed buffer instead.  */ | 
 | 	  for (;;) | 
 | 	    { | 
 | 	      /* If MATCH_FIRST is out of the valid range, reconstruct the | 
 | 		 buffers.  */ | 
 | 	      unsigned int offset = match_first - mctx.input.raw_mbs_idx; | 
 | 	      if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0)) | 
 | 		{ | 
 | 		  err = re_string_reconstruct (&mctx.input, match_first, | 
 | 					       eflags); | 
 | 		  if (BE (err != REG_NOERROR, 0)) | 
 | 		    goto free_return; | 
 |  | 
 | 		  offset = match_first - mctx.input.raw_mbs_idx; | 
 | 		} | 
 | 	      /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | 
 | 		 Note that MATCH_FIRST must not be smaller than 0.  */ | 
 | 	      ch = (match_first >= length | 
 | 		    ? 0 : re_string_byte_at (&mctx.input, offset)); | 
 | 	      if (fastmap[ch]) | 
 | 		break; | 
 | 	      match_first += incr; | 
 | 	      if (match_first < left_lim || match_first > right_lim) | 
 | 		{ | 
 | 		  err = REG_NOMATCH; | 
 | 		  goto free_return; | 
 | 		} | 
 | 	    } | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       /* Reconstruct the buffers so that the matcher can assume that | 
 | 	 the matching starts from the beginning of the buffer.  */ | 
 |       err = re_string_reconstruct (&mctx.input, match_first, eflags); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	goto free_return; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |      /* Don't consider this char as a possible match start if it part, | 
 | 	yet isn't the head, of a multibyte character.  */ | 
 |       if (!sb && !re_string_first_byte (&mctx.input, 0)) | 
 | 	continue; | 
 | #endif | 
 |  | 
 |       /* It seems to be appropriate one, then use the matcher.  */ | 
 |       /* We assume that the matching starts from 0.  */ | 
 |       mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | 
 |       match_last = check_matching (&mctx, fl_longest_match, | 
 | 				   range >= 0 ? &match_first : NULL); | 
 |       if (match_last != -1) | 
 | 	{ | 
 | 	  if (BE (match_last == -2, 0)) | 
 | 	    { | 
 | 	      err = REG_ESPACE; | 
 | 	      goto free_return; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      mctx.match_last = match_last; | 
 | 	      if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) | 
 | 		{ | 
 | 		  re_dfastate_t *pstate = mctx.state_log[match_last]; | 
 | 		  mctx.last_node = check_halt_state_context (&mctx, pstate, | 
 | 							     match_last); | 
 | 		} | 
 | 	      if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) | 
 | 		  || dfa->nbackref) | 
 | 		{ | 
 | 		  err = prune_impossible_nodes (&mctx); | 
 | 		  if (err == REG_NOERROR) | 
 | 		    break; | 
 | 		  if (BE (err != REG_NOMATCH, 0)) | 
 | 		    goto free_return; | 
 | 		  match_last = -1; | 
 | 		} | 
 | 	      else | 
 | 		break; /* We found a match.  */ | 
 | 	    } | 
 | 	} | 
 |  | 
 |       match_ctx_clean (&mctx); | 
 |     } | 
 |  | 
 | #ifdef DEBUG | 
 |   assert (match_last != -1); | 
 |   assert (err == REG_NOERROR); | 
 | #endif | 
 |  | 
 |   /* Set pmatch[] if we need.  */ | 
 |   if (nmatch > 0) | 
 |     { | 
 |       int reg_idx; | 
 |  | 
 |       /* Initialize registers.  */ | 
 |       for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | 
 | 	pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | 
 |  | 
 |       /* Set the points where matching start/end.  */ | 
 |       pmatch[0].rm_so = 0; | 
 |       pmatch[0].rm_eo = mctx.match_last; | 
 |  | 
 |       if (!preg->no_sub && nmatch > 1) | 
 | 	{ | 
 | 	  err = set_regs (preg, &mctx, nmatch, pmatch, | 
 | 			  dfa->has_plural_match && dfa->nbackref > 0); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    goto free_return; | 
 | 	} | 
 |  | 
 |       /* At last, add the offset to the each registers, since we slided | 
 | 	 the buffers so that we could assume that the matching starts | 
 | 	 from 0.  */ | 
 |       for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | 
 | 	if (pmatch[reg_idx].rm_so != -1) | 
 | 	  { | 
 | #ifdef RE_ENABLE_I18N | 
 | 	    if (BE (mctx.input.offsets_needed != 0, 0)) | 
 | 	      { | 
 | 		pmatch[reg_idx].rm_so = | 
 | 		  (pmatch[reg_idx].rm_so == mctx.input.valid_len | 
 | 		   ? mctx.input.valid_raw_len | 
 | 		   : mctx.input.offsets[pmatch[reg_idx].rm_so]); | 
 | 		pmatch[reg_idx].rm_eo = | 
 | 		  (pmatch[reg_idx].rm_eo == mctx.input.valid_len | 
 | 		   ? mctx.input.valid_raw_len | 
 | 		   : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | 
 | 	      } | 
 | #else | 
 | 	    assert (mctx.input.offsets_needed == 0); | 
 | #endif | 
 | 	    pmatch[reg_idx].rm_so += match_first; | 
 | 	    pmatch[reg_idx].rm_eo += match_first; | 
 | 	  } | 
 |       for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | 
 | 	{ | 
 | 	  pmatch[nmatch + reg_idx].rm_so = -1; | 
 | 	  pmatch[nmatch + reg_idx].rm_eo = -1; | 
 | 	} | 
 |  | 
 |       if (dfa->subexp_map) | 
 | 	for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | 
 | 	  if (dfa->subexp_map[reg_idx] != reg_idx) | 
 | 	    { | 
 | 	      pmatch[reg_idx + 1].rm_so | 
 | 		= pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | 
 | 	      pmatch[reg_idx + 1].rm_eo | 
 | 		= pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | 
 | 	    } | 
 |     } | 
 |  | 
 |  free_return: | 
 |   re_free (mctx.state_log); | 
 |   if (dfa->nbackref) | 
 |     match_ctx_free (&mctx); | 
 |   re_string_destruct (&mctx.input); | 
 |   return err; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | prune_impossible_nodes (re_match_context_t *mctx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int halt_node, match_last; | 
 |   reg_errcode_t ret; | 
 |   re_dfastate_t **sifted_states; | 
 |   re_dfastate_t **lim_states = NULL; | 
 |   re_sift_context_t sctx; | 
 | #ifdef DEBUG | 
 |   assert (mctx->state_log != NULL); | 
 | #endif | 
 |   match_last = mctx->match_last; | 
 |   halt_node = mctx->last_node; | 
 |  | 
 |   /* Avoid overflow.  */ | 
 |   if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0)) | 
 |     return REG_ESPACE; | 
 |  | 
 |   sifted_states = re_malloc (re_dfastate_t *, match_last + 1); | 
 |   if (BE (sifted_states == NULL, 0)) | 
 |     { | 
 |       ret = REG_ESPACE; | 
 |       goto free_return; | 
 |     } | 
 |   if (dfa->nbackref) | 
 |     { | 
 |       lim_states = re_malloc (re_dfastate_t *, match_last + 1); | 
 |       if (BE (lim_states == NULL, 0)) | 
 | 	{ | 
 | 	  ret = REG_ESPACE; | 
 | 	  goto free_return; | 
 | 	} | 
 |       while (1) | 
 | 	{ | 
 | 	  memset (lim_states, '\0', | 
 | 		  sizeof (re_dfastate_t *) * (match_last + 1)); | 
 | 	  sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | 
 | 			 match_last); | 
 | 	  ret = sift_states_backward (mctx, &sctx); | 
 | 	  re_node_set_free (&sctx.limits); | 
 | 	  if (BE (ret != REG_NOERROR, 0)) | 
 | 	      goto free_return; | 
 | 	  if (sifted_states[0] != NULL || lim_states[0] != NULL) | 
 | 	    break; | 
 | 	  do | 
 | 	    { | 
 | 	      --match_last; | 
 | 	      if (match_last < 0) | 
 | 		{ | 
 | 		  ret = REG_NOMATCH; | 
 | 		  goto free_return; | 
 | 		} | 
 | 	    } while (mctx->state_log[match_last] == NULL | 
 | 		     || !mctx->state_log[match_last]->halt); | 
 | 	  halt_node = check_halt_state_context (mctx, | 
 | 						mctx->state_log[match_last], | 
 | 						match_last); | 
 | 	} | 
 |       ret = merge_state_array (dfa, sifted_states, lim_states, | 
 | 			       match_last + 1); | 
 |       re_free (lim_states); | 
 |       lim_states = NULL; | 
 |       if (BE (ret != REG_NOERROR, 0)) | 
 | 	goto free_return; | 
 |     } | 
 |   else | 
 |     { | 
 |       sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | 
 |       ret = sift_states_backward (mctx, &sctx); | 
 |       re_node_set_free (&sctx.limits); | 
 |       if (BE (ret != REG_NOERROR, 0)) | 
 | 	goto free_return; | 
 |       if (sifted_states[0] == NULL) | 
 | 	{ | 
 | 	  ret = REG_NOMATCH; | 
 | 	  goto free_return; | 
 | 	} | 
 |     } | 
 |   re_free (mctx->state_log); | 
 |   mctx->state_log = sifted_states; | 
 |   sifted_states = NULL; | 
 |   mctx->last_node = halt_node; | 
 |   mctx->match_last = match_last; | 
 |   ret = REG_NOERROR; | 
 |  free_return: | 
 |   re_free (sifted_states); | 
 |   re_free (lim_states); | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Acquire an initial state and return it. | 
 |    We must select appropriate initial state depending on the context, | 
 |    since initial states may have constraints like "\<", "^", etc..  */ | 
 |  | 
 | static inline re_dfastate_t * | 
 | __attribute ((always_inline)) internal_function | 
 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | 
 | 			    int idx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   if (dfa->init_state->has_constraint) | 
 |     { | 
 |       unsigned int context; | 
 |       context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | 
 |       if (IS_WORD_CONTEXT (context)) | 
 | 	return dfa->init_state_word; | 
 |       else if (IS_ORDINARY_CONTEXT (context)) | 
 | 	return dfa->init_state; | 
 |       else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | 
 | 	return dfa->init_state_begbuf; | 
 |       else if (IS_NEWLINE_CONTEXT (context)) | 
 | 	return dfa->init_state_nl; | 
 |       else if (IS_BEGBUF_CONTEXT (context)) | 
 | 	{ | 
 | 	  /* It is relatively rare case, then calculate on demand.  */ | 
 | 	  return re_acquire_state_context (err, dfa, | 
 | 					   dfa->init_state->entrance_nodes, | 
 | 					   context); | 
 | 	} | 
 |       else | 
 | 	/* Must not happen?  */ | 
 | 	return dfa->init_state; | 
 |     } | 
 |   else | 
 |     return dfa->init_state; | 
 | } | 
 |  | 
 | /* Check whether the regular expression match input string INPUT or not, | 
 |    and return the index where the matching end, return -1 if not match, | 
 |    or return -2 in case of an error. | 
 |    FL_LONGEST_MATCH means we want the POSIX longest matching. | 
 |    If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | 
 |    next place where we may want to try matching. | 
 |    Note that the matcher assume that the maching starts from the current | 
 |    index of the buffer.  */ | 
 |  | 
 | static int | 
 | internal_function __attribute_warn_unused_result__ | 
 | check_matching (re_match_context_t *mctx, int fl_longest_match, | 
 | 		int *p_match_first) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err; | 
 |   int match = 0; | 
 |   int match_last = -1; | 
 |   int cur_str_idx = re_string_cur_idx (&mctx->input); | 
 |   re_dfastate_t *cur_state; | 
 |   int at_init_state = p_match_first != NULL; | 
 |   int next_start_idx = cur_str_idx; | 
 |  | 
 |   err = REG_NOERROR; | 
 |   cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | 
 |   /* An initial state must not be NULL (invalid).  */ | 
 |   if (BE (cur_state == NULL, 0)) | 
 |     { | 
 |       assert (err == REG_ESPACE); | 
 |       return -2; | 
 |     } | 
 |  | 
 |   if (mctx->state_log != NULL) | 
 |     { | 
 |       mctx->state_log[cur_str_idx] = cur_state; | 
 |  | 
 |       /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | 
 | 	 later.  E.g. Processing back references.  */ | 
 |       if (BE (dfa->nbackref, 0)) | 
 | 	{ | 
 | 	  at_init_state = 0; | 
 | 	  err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 |  | 
 | 	  if (cur_state->has_backref) | 
 | 	    { | 
 | 	      err = transit_state_bkref (mctx, &cur_state->nodes); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		return err; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If the RE accepts NULL string.  */ | 
 |   if (BE (cur_state->halt, 0)) | 
 |     { | 
 |       if (!cur_state->has_constraint | 
 | 	  || check_halt_state_context (mctx, cur_state, cur_str_idx)) | 
 | 	{ | 
 | 	  if (!fl_longest_match) | 
 | 	    return cur_str_idx; | 
 | 	  else | 
 | 	    { | 
 | 	      match_last = cur_str_idx; | 
 | 	      match = 1; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   while (!re_string_eoi (&mctx->input)) | 
 |     { | 
 |       re_dfastate_t *old_state = cur_state; | 
 |       int next_char_idx = re_string_cur_idx (&mctx->input) + 1; | 
 |  | 
 |       if ((BE (next_char_idx >= mctx->input.bufs_len, 0) | 
 | 	   && mctx->input.bufs_len < mctx->input.len) | 
 | 	  || (BE (next_char_idx >= mctx->input.valid_len, 0) | 
 | 	      && mctx->input.valid_len < mctx->input.len)) | 
 | 	{ | 
 | 	  err = extend_buffers (mctx, next_char_idx + 1); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      assert (err == REG_ESPACE); | 
 | 	      return -2; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       cur_state = transit_state (&err, mctx, cur_state); | 
 |       if (mctx->state_log != NULL) | 
 | 	cur_state = merge_state_with_log (&err, mctx, cur_state); | 
 |  | 
 |       if (cur_state == NULL) | 
 | 	{ | 
 | 	  /* Reached the invalid state or an error.  Try to recover a valid | 
 | 	     state using the state log, if available and if we have not | 
 | 	     already found a valid (even if not the longest) match.  */ | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return -2; | 
 |  | 
 | 	  if (mctx->state_log == NULL | 
 | 	      || (match && !fl_longest_match) | 
 | 	      || (cur_state = find_recover_state (&err, mctx)) == NULL) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       if (BE (at_init_state, 0)) | 
 | 	{ | 
 | 	  if (old_state == cur_state) | 
 | 	    next_start_idx = next_char_idx; | 
 | 	  else | 
 | 	    at_init_state = 0; | 
 | 	} | 
 |  | 
 |       if (cur_state->halt) | 
 | 	{ | 
 | 	  /* Reached a halt state. | 
 | 	     Check the halt state can satisfy the current context.  */ | 
 | 	  if (!cur_state->has_constraint | 
 | 	      || check_halt_state_context (mctx, cur_state, | 
 | 					   re_string_cur_idx (&mctx->input))) | 
 | 	    { | 
 | 	      /* We found an appropriate halt state.  */ | 
 | 	      match_last = re_string_cur_idx (&mctx->input); | 
 | 	      match = 1; | 
 |  | 
 | 	      /* We found a match, do not modify match_first below.  */ | 
 | 	      p_match_first = NULL; | 
 | 	      if (!fl_longest_match) | 
 | 		break; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (p_match_first) | 
 |     *p_match_first += next_start_idx; | 
 |  | 
 |   return match_last; | 
 | } | 
 |  | 
 | /* Check NODE match the current context.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context) | 
 | { | 
 |   re_token_type_t type = dfa->nodes[node].type; | 
 |   unsigned int constraint = dfa->nodes[node].constraint; | 
 |   if (type != END_OF_RE) | 
 |     return 0; | 
 |   if (!constraint) | 
 |     return 1; | 
 |   if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | 
 |     return 0; | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Check the halt state STATE match the current context. | 
 |    Return 0 if not match, if the node, STATE has, is a halt node and | 
 |    match the context, return the node.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | check_halt_state_context (const re_match_context_t *mctx, | 
 | 			  const re_dfastate_t *state, int idx) | 
 | { | 
 |   int i; | 
 |   unsigned int context; | 
 | #ifdef DEBUG | 
 |   assert (state->halt); | 
 | #endif | 
 |   context = re_string_context_at (&mctx->input, idx, mctx->eflags); | 
 |   for (i = 0; i < state->nodes.nelem; ++i) | 
 |     if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | 
 |       return state->nodes.elems[i]; | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | 
 |    corresponding to the DFA). | 
 |    Return the destination node, and update EPS_VIA_NODES, return -1 in case | 
 |    of errors.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs, | 
 | 		   int *pidx, int node, re_node_set *eps_via_nodes, | 
 | 		   struct re_fail_stack_t *fs) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int i, err; | 
 |   if (IS_EPSILON_NODE (dfa->nodes[node].type)) | 
 |     { | 
 |       re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | 
 |       re_node_set *edests = &dfa->edests[node]; | 
 |       int dest_node; | 
 |       err = re_node_set_insert (eps_via_nodes, node); | 
 |       if (BE (err < 0, 0)) | 
 | 	return -2; | 
 |       /* Pick up a valid destination, or return -1 if none is found.  */ | 
 |       for (dest_node = -1, i = 0; i < edests->nelem; ++i) | 
 | 	{ | 
 | 	  int candidate = edests->elems[i]; | 
 | 	  if (!re_node_set_contains (cur_nodes, candidate)) | 
 | 	    continue; | 
 | 	  if (dest_node == -1) | 
 | 	    dest_node = candidate; | 
 |  | 
 | 	  else | 
 | 	    { | 
 | 	      /* In order to avoid infinite loop like "(a*)*", return the second | 
 | 		 epsilon-transition if the first was already considered.  */ | 
 | 	      if (re_node_set_contains (eps_via_nodes, dest_node)) | 
 | 		return candidate; | 
 |  | 
 | 	      /* Otherwise, push the second epsilon-transition on the fail stack.  */ | 
 | 	      else if (fs != NULL | 
 | 		       && push_fail_stack (fs, *pidx, candidate, nregs, regs, | 
 | 					   eps_via_nodes)) | 
 | 		return -2; | 
 |  | 
 | 	      /* We know we are going to exit.  */ | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       return dest_node; | 
 |     } | 
 |   else | 
 |     { | 
 |       int naccepted = 0; | 
 |       re_token_type_t type = dfa->nodes[node].type; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (dfa->nodes[node].accept_mb) | 
 | 	naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | 
 |       else | 
 | #endif /* RE_ENABLE_I18N */ | 
 |       if (type == OP_BACK_REF) | 
 | 	{ | 
 | 	  int subexp_idx = dfa->nodes[node].opr.idx + 1; | 
 | 	  naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | 
 | 	  if (fs != NULL) | 
 | 	    { | 
 | 	      if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | 
 | 		return -1; | 
 | 	      else if (naccepted) | 
 | 		{ | 
 | 		  char *buf = (char *) re_string_get_buffer (&mctx->input); | 
 | 		  if (mctx->input.valid_len - *pidx < naccepted | 
 | 		      || (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | 
 | 				  naccepted) | 
 | 			  != 0)) | 
 | 		    return -1; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (naccepted == 0) | 
 | 	    { | 
 | 	      int dest_node; | 
 | 	      err = re_node_set_insert (eps_via_nodes, node); | 
 | 	      if (BE (err < 0, 0)) | 
 | 		return -2; | 
 | 	      dest_node = dfa->edests[node].elems[0]; | 
 | 	      if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | 
 | 					dest_node)) | 
 | 		return dest_node; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (naccepted != 0 | 
 | 	  || check_node_accept (mctx, dfa->nodes + node, *pidx)) | 
 | 	{ | 
 | 	  int dest_node = dfa->nexts[node]; | 
 | 	  *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | 
 | 	  if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | 
 | 		     || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | 
 | 					       dest_node))) | 
 | 	    return -1; | 
 | 	  re_node_set_empty (eps_via_nodes); | 
 | 	  return dest_node; | 
 | 	} | 
 |     } | 
 |   return -1; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node, | 
 | 		 int nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int num = fs->num++; | 
 |   if (fs->num == fs->alloc) | 
 |     { | 
 |       struct re_fail_stack_ent_t *new_array; | 
 |       new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) | 
 | 				       * fs->alloc * 2)); | 
 |       if (new_array == NULL) | 
 | 	return REG_ESPACE; | 
 |       fs->alloc *= 2; | 
 |       fs->stack = new_array; | 
 |     } | 
 |   fs->stack[num].idx = str_idx; | 
 |   fs->stack[num].node = dest_node; | 
 |   fs->stack[num].regs = re_malloc (regmatch_t, nregs); | 
 |   if (fs->stack[num].regs == NULL) | 
 |     return REG_ESPACE; | 
 |   memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | 
 |   err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | 
 |   return err; | 
 | } | 
 |  | 
 | static int | 
 | internal_function | 
 | pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs, | 
 | 		regmatch_t *regs, re_node_set *eps_via_nodes) | 
 | { | 
 |   int num = --fs->num; | 
 |   assert (num >= 0); | 
 |   *pidx = fs->stack[num].idx; | 
 |   memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | 
 |   re_node_set_free (eps_via_nodes); | 
 |   re_free (fs->stack[num].regs); | 
 |   *eps_via_nodes = fs->stack[num].eps_via_nodes; | 
 |   return fs->stack[num].node; | 
 | } | 
 |  | 
 | /* Set the positions where the subexpressions are starts/ends to registers | 
 |    PMATCH. | 
 |    Note: We assume that pmatch[0] is already set, and | 
 |    pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, | 
 | 	  regmatch_t *pmatch, int fl_backtrack) | 
 | { | 
 |   const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | 
 |   int idx, cur_node; | 
 |   re_node_set eps_via_nodes; | 
 |   struct re_fail_stack_t *fs; | 
 |   struct re_fail_stack_t fs_body = { 0, 2, NULL }; | 
 |   regmatch_t *prev_idx_match; | 
 |   int prev_idx_match_malloced = 0; | 
 |  | 
 | #ifdef DEBUG | 
 |   assert (nmatch > 1); | 
 |   assert (mctx->state_log != NULL); | 
 | #endif | 
 |   if (fl_backtrack) | 
 |     { | 
 |       fs = &fs_body; | 
 |       fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); | 
 |       if (fs->stack == NULL) | 
 | 	return REG_ESPACE; | 
 |     } | 
 |   else | 
 |     fs = NULL; | 
 |  | 
 |   cur_node = dfa->init_node; | 
 |   re_node_set_init_empty (&eps_via_nodes); | 
 |  | 
 |   if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | 
 |     prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | 
 |   else | 
 |     { | 
 |       prev_idx_match = re_malloc (regmatch_t, nmatch); | 
 |       if (prev_idx_match == NULL) | 
 | 	{ | 
 | 	  free_fail_stack_return (fs); | 
 | 	  return REG_ESPACE; | 
 | 	} | 
 |       prev_idx_match_malloced = 1; | 
 |     } | 
 |   memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | 
 |  | 
 |   for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | 
 |     { | 
 |       update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | 
 |  | 
 |       if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | 
 | 	{ | 
 | 	  int reg_idx; | 
 | 	  if (fs) | 
 | 	    { | 
 | 	      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | 
 | 		if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | 
 | 		  break; | 
 | 	      if (reg_idx == nmatch) | 
 | 		{ | 
 | 		  re_node_set_free (&eps_via_nodes); | 
 | 		  if (prev_idx_match_malloced) | 
 | 		    re_free (prev_idx_match); | 
 | 		  return free_fail_stack_return (fs); | 
 | 		} | 
 | 	      cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | 
 | 					 &eps_via_nodes); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      re_node_set_free (&eps_via_nodes); | 
 | 	      if (prev_idx_match_malloced) | 
 | 		re_free (prev_idx_match); | 
 | 	      return REG_NOERROR; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Proceed to next node.  */ | 
 |       cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | 
 | 				    &eps_via_nodes, fs); | 
 |  | 
 |       if (BE (cur_node < 0, 0)) | 
 | 	{ | 
 | 	  if (BE (cur_node == -2, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&eps_via_nodes); | 
 | 	      if (prev_idx_match_malloced) | 
 | 		re_free (prev_idx_match); | 
 | 	      free_fail_stack_return (fs); | 
 | 	      return REG_ESPACE; | 
 | 	    } | 
 | 	  if (fs) | 
 | 	    cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | 
 | 				       &eps_via_nodes); | 
 | 	  else | 
 | 	    { | 
 | 	      re_node_set_free (&eps_via_nodes); | 
 | 	      if (prev_idx_match_malloced) | 
 | 		re_free (prev_idx_match); | 
 | 	      return REG_NOMATCH; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   re_node_set_free (&eps_via_nodes); | 
 |   if (prev_idx_match_malloced) | 
 |     re_free (prev_idx_match); | 
 |   return free_fail_stack_return (fs); | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | free_fail_stack_return (struct re_fail_stack_t *fs) | 
 | { | 
 |   if (fs) | 
 |     { | 
 |       int fs_idx; | 
 |       for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | 
 | 	{ | 
 | 	  re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | 
 | 	  re_free (fs->stack[fs_idx].regs); | 
 | 	} | 
 |       re_free (fs->stack); | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static void | 
 | internal_function | 
 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | 
 | 	     regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch) | 
 | { | 
 |   int type = dfa->nodes[cur_node].type; | 
 |   if (type == OP_OPEN_SUBEXP) | 
 |     { | 
 |       int reg_num = dfa->nodes[cur_node].opr.idx + 1; | 
 |  | 
 |       /* We are at the first node of this sub expression.  */ | 
 |       if (reg_num < nmatch) | 
 | 	{ | 
 | 	  pmatch[reg_num].rm_so = cur_idx; | 
 | 	  pmatch[reg_num].rm_eo = -1; | 
 | 	} | 
 |     } | 
 |   else if (type == OP_CLOSE_SUBEXP) | 
 |     { | 
 |       int reg_num = dfa->nodes[cur_node].opr.idx + 1; | 
 |       if (reg_num < nmatch) | 
 | 	{ | 
 | 	  /* We are at the last node of this sub expression.  */ | 
 | 	  if (pmatch[reg_num].rm_so < cur_idx) | 
 | 	    { | 
 | 	      pmatch[reg_num].rm_eo = cur_idx; | 
 | 	      /* This is a non-empty match or we are not inside an optional | 
 | 		 subexpression.  Accept this right away.  */ | 
 | 	      memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (dfa->nodes[cur_node].opt_subexp | 
 | 		  && prev_idx_match[reg_num].rm_so != -1) | 
 | 		/* We transited through an empty match for an optional | 
 | 		   subexpression, like (a?)*, and this is not the subexp's | 
 | 		   first match.  Copy back the old content of the registers | 
 | 		   so that matches of an inner subexpression are undone as | 
 | 		   well, like in ((a?))*.  */ | 
 | 		memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | 
 | 	      else | 
 | 		/* We completed a subexpression, but it may be part of | 
 | 		   an optional one, so do not update PREV_IDX_MATCH.  */ | 
 | 		pmatch[reg_num].rm_eo = cur_idx; | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | 
 |    and sift the nodes in each states according to the following rules. | 
 |    Updated state_log will be wrote to STATE_LOG. | 
 |  | 
 |    Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | 
 |      1. When STR_IDX == MATCH_LAST(the last index in the state_log): | 
 | 	If `a' isn't the LAST_NODE and `a' can't epsilon transit to | 
 | 	the LAST_NODE, we throw away the node `a'. | 
 |      2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | 
 | 	string `s' and transit to `b': | 
 | 	i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | 
 | 	   away the node `a'. | 
 | 	ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | 
 | 	    thrown away, we throw away the node `a'. | 
 |      3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | 
 | 	i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | 
 | 	   node `a'. | 
 | 	ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | 
 | 	    we throw away the node `a'.  */ | 
 |  | 
 | #define STATE_NODE_CONTAINS(state,node) \ | 
 |   ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int null_cnt = 0; | 
 |   int str_idx = sctx->last_str_idx; | 
 |   re_node_set cur_dest; | 
 |  | 
 | #ifdef DEBUG | 
 |   assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | 
 | #endif | 
 |  | 
 |   /* Build sifted state_log[str_idx].  It has the nodes which can epsilon | 
 |      transit to the last_node and the last_node itself.  */ | 
 |   err = re_node_set_init_1 (&cur_dest, sctx->last_node); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return err; | 
 |   err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     goto free_return; | 
 |  | 
 |   /* Then check each states in the state_log.  */ | 
 |   while (str_idx > 0) | 
 |     { | 
 |       /* Update counters.  */ | 
 |       null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | 
 |       if (null_cnt > mctx->max_mb_elem_len) | 
 | 	{ | 
 | 	  memset (sctx->sifted_states, '\0', | 
 | 		  sizeof (re_dfastate_t *) * str_idx); | 
 | 	  re_node_set_free (&cur_dest); | 
 | 	  return REG_NOERROR; | 
 | 	} | 
 |       re_node_set_empty (&cur_dest); | 
 |       --str_idx; | 
 |  | 
 |       if (mctx->state_log[str_idx]) | 
 | 	{ | 
 | 	  err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    goto free_return; | 
 | 	} | 
 |  | 
 |       /* Add all the nodes which satisfy the following conditions: | 
 | 	 - It can epsilon transit to a node in CUR_DEST. | 
 | 	 - It is in CUR_SRC. | 
 | 	 And update state_log.  */ | 
 |       err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	goto free_return; | 
 |     } | 
 |   err = REG_NOERROR; | 
 |  free_return: | 
 |   re_node_set_free (&cur_dest); | 
 |   return err; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
 | 		     int str_idx, re_node_set *cur_dest) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | 
 |   int i; | 
 |  | 
 |   /* Then build the next sifted state. | 
 |      We build the next sifted state on `cur_dest', and update | 
 |      `sifted_states[str_idx]' with `cur_dest'. | 
 |      Note: | 
 |      `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | 
 |      `cur_src' points the node_set of the old `state_log[str_idx]' | 
 |      (with the epsilon nodes pre-filtered out).  */ | 
 |   for (i = 0; i < cur_src->nelem; i++) | 
 |     { | 
 |       int prev_node = cur_src->elems[i]; | 
 |       int naccepted = 0; | 
 |       int ret; | 
 |  | 
 | #ifdef DEBUG | 
 |       re_token_type_t type = dfa->nodes[prev_node].type; | 
 |       assert (!IS_EPSILON_NODE (type)); | 
 | #endif | 
 | #ifdef RE_ENABLE_I18N | 
 |       /* If the node may accept `multi byte'.  */ | 
 |       if (dfa->nodes[prev_node].accept_mb) | 
 | 	naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | 
 | 					 str_idx, sctx->last_str_idx); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |       /* We don't check backreferences here. | 
 | 	 See update_cur_sifted_state().  */ | 
 |       if (!naccepted | 
 | 	  && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | 
 | 	  && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | 
 | 				  dfa->nexts[prev_node])) | 
 | 	naccepted = 1; | 
 |  | 
 |       if (naccepted == 0) | 
 | 	continue; | 
 |  | 
 |       if (sctx->limits.nelem) | 
 | 	{ | 
 | 	  int to_idx = str_idx + naccepted; | 
 | 	  if (check_dst_limits (mctx, &sctx->limits, | 
 | 				dfa->nexts[prev_node], to_idx, | 
 | 				prev_node, str_idx)) | 
 | 	    continue; | 
 | 	} | 
 |       ret = re_node_set_insert (cur_dest, prev_node); | 
 |       if (BE (ret == -1, 0)) | 
 | 	return REG_ESPACE; | 
 |     } | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Helper functions.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx) | 
 | { | 
 |   int top = mctx->state_log_top; | 
 |  | 
 |   if ((next_state_log_idx >= mctx->input.bufs_len | 
 |        && mctx->input.bufs_len < mctx->input.len) | 
 |       || (next_state_log_idx >= mctx->input.valid_len | 
 | 	  && mctx->input.valid_len < mctx->input.len)) | 
 |     { | 
 |       reg_errcode_t err; | 
 |       err = extend_buffers (mctx, next_state_log_idx + 1); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |     } | 
 |  | 
 |   if (top < next_state_log_idx) | 
 |     { | 
 |       memset (mctx->state_log + top + 1, '\0', | 
 | 	      sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | 
 |       mctx->state_log_top = next_state_log_idx; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, | 
 | 		   re_dfastate_t **src, int num) | 
 | { | 
 |   int st_idx; | 
 |   reg_errcode_t err; | 
 |   for (st_idx = 0; st_idx < num; ++st_idx) | 
 |     { | 
 |       if (dst[st_idx] == NULL) | 
 | 	dst[st_idx] = src[st_idx]; | 
 |       else if (src[st_idx] != NULL) | 
 | 	{ | 
 | 	  re_node_set merged_set; | 
 | 	  err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | 
 | 					&src[st_idx]->nodes); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	  dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | 
 | 	  re_node_set_free (&merged_set); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | update_cur_sifted_state (const re_match_context_t *mctx, | 
 | 			 re_sift_context_t *sctx, int str_idx, | 
 | 			 re_node_set *dest_nodes) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |   const re_node_set *candidates; | 
 |   candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | 
 | 		: &mctx->state_log[str_idx]->nodes); | 
 |  | 
 |   if (dest_nodes->nelem == 0) | 
 |     sctx->sifted_states[str_idx] = NULL; | 
 |   else | 
 |     { | 
 |       if (candidates) | 
 | 	{ | 
 | 	  /* At first, add the nodes which can epsilon transit to a node in | 
 | 	     DEST_NODE.  */ | 
 | 	  err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 |  | 
 | 	  /* Then, check the limitations in the current sift_context.  */ | 
 | 	  if (sctx->limits.nelem) | 
 | 	    { | 
 | 	      err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | 
 | 					 mctx->bkref_ents, str_idx); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		return err; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |     } | 
 |  | 
 |   if (candidates && mctx->state_log[str_idx]->has_backref) | 
 |     { | 
 |       err = sift_states_bkref (mctx, sctx, str_idx, candidates); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, | 
 | 		       const re_node_set *candidates) | 
 | { | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |   int i; | 
 |  | 
 |   re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return err; | 
 |  | 
 |   if (!state->inveclosure.alloc) | 
 |     { | 
 |       err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return REG_ESPACE; | 
 |       for (i = 0; i < dest_nodes->nelem; i++) | 
 | 	{ | 
 | 	  err = re_node_set_merge (&state->inveclosure, | 
 | 				   dfa->inveclosures + dest_nodes->elems[i]); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	} | 
 |     } | 
 |   return re_node_set_add_intersect (dest_nodes, candidates, | 
 | 				    &state->inveclosure); | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes, | 
 | 		       const re_node_set *candidates) | 
 | { | 
 |     int ecl_idx; | 
 |     reg_errcode_t err; | 
 |     re_node_set *inv_eclosure = dfa->inveclosures + node; | 
 |     re_node_set except_nodes; | 
 |     re_node_set_init_empty (&except_nodes); | 
 |     for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | 
 |       { | 
 | 	int cur_node = inv_eclosure->elems[ecl_idx]; | 
 | 	if (cur_node == node) | 
 | 	  continue; | 
 | 	if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | 
 | 	  { | 
 | 	    int edst1 = dfa->edests[cur_node].elems[0]; | 
 | 	    int edst2 = ((dfa->edests[cur_node].nelem > 1) | 
 | 			 ? dfa->edests[cur_node].elems[1] : -1); | 
 | 	    if ((!re_node_set_contains (inv_eclosure, edst1) | 
 | 		 && re_node_set_contains (dest_nodes, edst1)) | 
 | 		|| (edst2 > 0 | 
 | 		    && !re_node_set_contains (inv_eclosure, edst2) | 
 | 		    && re_node_set_contains (dest_nodes, edst2))) | 
 | 	      { | 
 | 		err = re_node_set_add_intersect (&except_nodes, candidates, | 
 | 						 dfa->inveclosures + cur_node); | 
 | 		if (BE (err != REG_NOERROR, 0)) | 
 | 		  { | 
 | 		    re_node_set_free (&except_nodes); | 
 | 		    return err; | 
 | 		  } | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |     for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | 
 |       { | 
 | 	int cur_node = inv_eclosure->elems[ecl_idx]; | 
 | 	if (!re_node_set_contains (&except_nodes, cur_node)) | 
 | 	  { | 
 | 	    int idx = re_node_set_contains (dest_nodes, cur_node) - 1; | 
 | 	    re_node_set_remove_at (dest_nodes, idx); | 
 | 	  } | 
 |       } | 
 |     re_node_set_free (&except_nodes); | 
 |     return REG_NOERROR; | 
 | } | 
 |  | 
 | static int | 
 | internal_function | 
 | check_dst_limits (const re_match_context_t *mctx, re_node_set *limits, | 
 | 		  int dst_node, int dst_idx, int src_node, int src_idx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int lim_idx, src_pos, dst_pos; | 
 |  | 
 |   int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | 
 |   int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | 
 |   for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | 
 |     { | 
 |       int subexp_idx; | 
 |       struct re_backref_cache_entry *ent; | 
 |       ent = mctx->bkref_ents + limits->elems[lim_idx]; | 
 |       subexp_idx = dfa->nodes[ent->node].opr.idx; | 
 |  | 
 |       dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | 
 | 					   subexp_idx, dst_node, dst_idx, | 
 | 					   dst_bkref_idx); | 
 |       src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | 
 | 					   subexp_idx, src_node, src_idx, | 
 | 					   src_bkref_idx); | 
 |  | 
 |       /* In case of: | 
 | 	 <src> <dst> ( <subexp> ) | 
 | 	 ( <subexp> ) <src> <dst> | 
 | 	 ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */ | 
 |       if (src_pos == dst_pos) | 
 | 	continue; /* This is unrelated limitation.  */ | 
 |       else | 
 | 	return 1; | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | internal_function | 
 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | 
 | 			     int subexp_idx, int from_node, int bkref_idx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   const re_node_set *eclosures = dfa->eclosures + from_node; | 
 |   int node_idx; | 
 |  | 
 |   /* Else, we are on the boundary: examine the nodes on the epsilon | 
 |      closure.  */ | 
 |   for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | 
 |     { | 
 |       int node = eclosures->elems[node_idx]; | 
 |       switch (dfa->nodes[node].type) | 
 | 	{ | 
 | 	case OP_BACK_REF: | 
 | 	  if (bkref_idx != -1) | 
 | 	    { | 
 | 	      struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | 
 | 	      do | 
 | 		{ | 
 | 		  int dst, cpos; | 
 |  | 
 | 		  if (ent->node != node) | 
 | 		    continue; | 
 |  | 
 | 		  if (subexp_idx < BITSET_WORD_BITS | 
 | 		      && !(ent->eps_reachable_subexps_map | 
 | 			   & ((bitset_word_t) 1 << subexp_idx))) | 
 | 		    continue; | 
 |  | 
 | 		  /* Recurse trying to reach the OP_OPEN_SUBEXP and | 
 | 		     OP_CLOSE_SUBEXP cases below.  But, if the | 
 | 		     destination node is the same node as the source | 
 | 		     node, don't recurse because it would cause an | 
 | 		     infinite loop: a regex that exhibits this behavior | 
 | 		     is ()\1*\1*  */ | 
 | 		  dst = dfa->edests[node].elems[0]; | 
 | 		  if (dst == from_node) | 
 | 		    { | 
 | 		      if (boundaries & 1) | 
 | 			return -1; | 
 | 		      else /* if (boundaries & 2) */ | 
 | 			return 0; | 
 | 		    } | 
 |  | 
 | 		  cpos = | 
 | 		    check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | 
 | 						 dst, bkref_idx); | 
 | 		  if (cpos == -1 /* && (boundaries & 1) */) | 
 | 		    return -1; | 
 | 		  if (cpos == 0 && (boundaries & 2)) | 
 | 		    return 0; | 
 |  | 
 | 		  if (subexp_idx < BITSET_WORD_BITS) | 
 | 		    ent->eps_reachable_subexps_map | 
 | 		      &= ~((bitset_word_t) 1 << subexp_idx); | 
 | 		} | 
 | 	      while (ent++->more); | 
 | 	    } | 
 | 	  break; | 
 |  | 
 | 	case OP_OPEN_SUBEXP: | 
 | 	  if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | 
 | 	    return -1; | 
 | 	  break; | 
 |  | 
 | 	case OP_CLOSE_SUBEXP: | 
 | 	  if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | 
 | 	    return 0; | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	    break; | 
 | 	} | 
 |     } | 
 |  | 
 |   return (boundaries & 2) ? 1 : 0; | 
 | } | 
 |  | 
 | static int | 
 | internal_function | 
 | check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit, | 
 | 			   int subexp_idx, int from_node, int str_idx, | 
 | 			   int bkref_idx) | 
 | { | 
 |   struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | 
 |   int boundaries; | 
 |  | 
 |   /* If we are outside the range of the subexpression, return -1 or 1.  */ | 
 |   if (str_idx < lim->subexp_from) | 
 |     return -1; | 
 |  | 
 |   if (lim->subexp_to < str_idx) | 
 |     return 1; | 
 |  | 
 |   /* If we are within the subexpression, return 0.  */ | 
 |   boundaries = (str_idx == lim->subexp_from); | 
 |   boundaries |= (str_idx == lim->subexp_to) << 1; | 
 |   if (boundaries == 0) | 
 |     return 0; | 
 |  | 
 |   /* Else, examine epsilon closure.  */ | 
 |   return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | 
 | 				      from_node, bkref_idx); | 
 | } | 
 |  | 
 | /* Check the limitations of sub expressions LIMITS, and remove the nodes | 
 |    which are against limitations from DEST_NODES. */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, | 
 | 		     const re_node_set *candidates, re_node_set *limits, | 
 | 		     struct re_backref_cache_entry *bkref_ents, int str_idx) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int node_idx, lim_idx; | 
 |  | 
 |   for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | 
 |     { | 
 |       int subexp_idx; | 
 |       struct re_backref_cache_entry *ent; | 
 |       ent = bkref_ents + limits->elems[lim_idx]; | 
 |  | 
 |       if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | 
 | 	continue; /* This is unrelated limitation.  */ | 
 |  | 
 |       subexp_idx = dfa->nodes[ent->node].opr.idx; | 
 |       if (ent->subexp_to == str_idx) | 
 | 	{ | 
 | 	  int ops_node = -1; | 
 | 	  int cls_node = -1; | 
 | 	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
 | 	    { | 
 | 	      int node = dest_nodes->elems[node_idx]; | 
 | 	      re_token_type_t type = dfa->nodes[node].type; | 
 | 	      if (type == OP_OPEN_SUBEXP | 
 | 		  && subexp_idx == dfa->nodes[node].opr.idx) | 
 | 		ops_node = node; | 
 | 	      else if (type == OP_CLOSE_SUBEXP | 
 | 		       && subexp_idx == dfa->nodes[node].opr.idx) | 
 | 		cls_node = node; | 
 | 	    } | 
 |  | 
 | 	  /* Check the limitation of the open subexpression.  */ | 
 | 	  /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */ | 
 | 	  if (ops_node >= 0) | 
 | 	    { | 
 | 	      err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | 
 | 					   candidates); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		return err; | 
 | 	    } | 
 |  | 
 | 	  /* Check the limitation of the close subexpression.  */ | 
 | 	  if (cls_node >= 0) | 
 | 	    for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
 | 	      { | 
 | 		int node = dest_nodes->elems[node_idx]; | 
 | 		if (!re_node_set_contains (dfa->inveclosures + node, | 
 | 					   cls_node) | 
 | 		    && !re_node_set_contains (dfa->eclosures + node, | 
 | 					      cls_node)) | 
 | 		  { | 
 | 		    /* It is against this limitation. | 
 | 		       Remove it form the current sifted state.  */ | 
 | 		    err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | 
 | 						 candidates); | 
 | 		    if (BE (err != REG_NOERROR, 0)) | 
 | 		      return err; | 
 | 		    --node_idx; | 
 | 		  } | 
 | 	      } | 
 | 	} | 
 |       else /* (ent->subexp_to != str_idx)  */ | 
 | 	{ | 
 | 	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
 | 	    { | 
 | 	      int node = dest_nodes->elems[node_idx]; | 
 | 	      re_token_type_t type = dfa->nodes[node].type; | 
 | 	      if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | 
 | 		{ | 
 | 		  if (subexp_idx != dfa->nodes[node].opr.idx) | 
 | 		    continue; | 
 | 		  /* It is against this limitation. | 
 | 		     Remove it form the current sifted state.  */ | 
 | 		  err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | 
 | 					       candidates); | 
 | 		  if (BE (err != REG_NOERROR, 0)) | 
 | 		    return err; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
 | 		   int str_idx, const re_node_set *candidates) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err; | 
 |   int node_idx, node; | 
 |   re_sift_context_t local_sctx; | 
 |   int first_idx = search_cur_bkref_entry (mctx, str_idx); | 
 |  | 
 |   if (first_idx == -1) | 
 |     return REG_NOERROR; | 
 |  | 
 |   local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */ | 
 |  | 
 |   for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | 
 |     { | 
 |       int enabled_idx; | 
 |       re_token_type_t type; | 
 |       struct re_backref_cache_entry *entry; | 
 |       node = candidates->elems[node_idx]; | 
 |       type = dfa->nodes[node].type; | 
 |       /* Avoid infinite loop for the REs like "()\1+".  */ | 
 |       if (node == sctx->last_node && str_idx == sctx->last_str_idx) | 
 | 	continue; | 
 |       if (type != OP_BACK_REF) | 
 | 	continue; | 
 |  | 
 |       entry = mctx->bkref_ents + first_idx; | 
 |       enabled_idx = first_idx; | 
 |       do | 
 | 	{ | 
 | 	  int subexp_len; | 
 | 	  int to_idx; | 
 | 	  int dst_node; | 
 | 	  int ret; | 
 | 	  re_dfastate_t *cur_state; | 
 |  | 
 | 	  if (entry->node != node) | 
 | 	    continue; | 
 | 	  subexp_len = entry->subexp_to - entry->subexp_from; | 
 | 	  to_idx = str_idx + subexp_len; | 
 | 	  dst_node = (subexp_len ? dfa->nexts[node] | 
 | 		      : dfa->edests[node].elems[0]); | 
 |  | 
 | 	  if (to_idx > sctx->last_str_idx | 
 | 	      || sctx->sifted_states[to_idx] == NULL | 
 | 	      || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | 
 | 	      || check_dst_limits (mctx, &sctx->limits, node, | 
 | 				   str_idx, dst_node, to_idx)) | 
 | 	    continue; | 
 |  | 
 | 	  if (local_sctx.sifted_states == NULL) | 
 | 	    { | 
 | 	      local_sctx = *sctx; | 
 | 	      err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		goto free_return; | 
 | 	    } | 
 | 	  local_sctx.last_node = node; | 
 | 	  local_sctx.last_str_idx = str_idx; | 
 | 	  ret = re_node_set_insert (&local_sctx.limits, enabled_idx); | 
 | 	  if (BE (ret < 0, 0)) | 
 | 	    { | 
 | 	      err = REG_ESPACE; | 
 | 	      goto free_return; | 
 | 	    } | 
 | 	  cur_state = local_sctx.sifted_states[str_idx]; | 
 | 	  err = sift_states_backward (mctx, &local_sctx); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    goto free_return; | 
 | 	  if (sctx->limited_states != NULL) | 
 | 	    { | 
 | 	      err = merge_state_array (dfa, sctx->limited_states, | 
 | 				       local_sctx.sifted_states, | 
 | 				       str_idx + 1); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		goto free_return; | 
 | 	    } | 
 | 	  local_sctx.sifted_states[str_idx] = cur_state; | 
 | 	  re_node_set_remove (&local_sctx.limits, enabled_idx); | 
 |  | 
 | 	  /* mctx->bkref_ents may have changed, reload the pointer.  */ | 
 | 	  entry = mctx->bkref_ents + enabled_idx; | 
 | 	} | 
 |       while (enabled_idx++, entry++->more); | 
 |     } | 
 |   err = REG_NOERROR; | 
 |  free_return: | 
 |   if (local_sctx.sifted_states != NULL) | 
 |     { | 
 |       re_node_set_free (&local_sctx.limits); | 
 |     } | 
 |  | 
 |   return err; | 
 | } | 
 |  | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | static int | 
 | internal_function | 
 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
 | 		     int node_idx, int str_idx, int max_str_idx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int naccepted; | 
 |   /* Check the node can accept `multi byte'.  */ | 
 |   naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | 
 |   if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | 
 |       !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | 
 | 			    dfa->nexts[node_idx])) | 
 |     /* The node can't accept the `multi byte', or the | 
 |        destination was already thrown away, then the node | 
 |        could't accept the current input `multi byte'.   */ | 
 |     naccepted = 0; | 
 |   /* Otherwise, it is sure that the node could accept | 
 |      `naccepted' bytes input.  */ | 
 |   return naccepted; | 
 | } | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |  | 
 | /* Functions for state transition.  */ | 
 |  | 
 | /* Return the next state to which the current state STATE will transit by | 
 |    accepting the current input byte, and update STATE_LOG if necessary. | 
 |    If STATE can accept a multibyte char/collating element/back reference | 
 |    update the destination of STATE_LOG.  */ | 
 |  | 
 | static re_dfastate_t * | 
 | internal_function __attribute_warn_unused_result__ | 
 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | 
 | 	       re_dfastate_t *state) | 
 | { | 
 |   re_dfastate_t **trtable; | 
 |   unsigned char ch; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   /* If the current state can accept multibyte.  */ | 
 |   if (BE (state->accept_mb, 0)) | 
 |     { | 
 |       *err = transit_state_mb (mctx, state); | 
 |       if (BE (*err != REG_NOERROR, 0)) | 
 | 	return NULL; | 
 |     } | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |   /* Then decide the next state with the single byte.  */ | 
 | #if 0 | 
 |   if (0) | 
 |     /* don't use transition table  */ | 
 |     return transit_state_sb (err, mctx, state); | 
 | #endif | 
 |  | 
 |   /* Use transition table  */ | 
 |   ch = re_string_fetch_byte (&mctx->input); | 
 |   for (;;) | 
 |     { | 
 |       trtable = state->trtable; | 
 |       if (BE (trtable != NULL, 1)) | 
 | 	return trtable[ch]; | 
 |  | 
 |       trtable = state->word_trtable; | 
 |       if (BE (trtable != NULL, 1)) | 
 | 	{ | 
 | 	  unsigned int context; | 
 | 	  context | 
 | 	    = re_string_context_at (&mctx->input, | 
 | 				    re_string_cur_idx (&mctx->input) - 1, | 
 | 				    mctx->eflags); | 
 | 	  if (IS_WORD_CONTEXT (context)) | 
 | 	    return trtable[ch + SBC_MAX]; | 
 | 	  else | 
 | 	    return trtable[ch]; | 
 | 	} | 
 |  | 
 |       if (!build_trtable (mctx->dfa, state)) | 
 | 	{ | 
 | 	  *err = REG_ESPACE; | 
 | 	  return NULL; | 
 | 	} | 
 |  | 
 |       /* Retry, we now have a transition table.  */ | 
 |     } | 
 | } | 
 |  | 
 | /* Update the state_log if we need */ | 
 | re_dfastate_t * | 
 | internal_function | 
 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | 
 | 		      re_dfastate_t *next_state) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int cur_idx = re_string_cur_idx (&mctx->input); | 
 |  | 
 |   if (cur_idx > mctx->state_log_top) | 
 |     { | 
 |       mctx->state_log[cur_idx] = next_state; | 
 |       mctx->state_log_top = cur_idx; | 
 |     } | 
 |   else if (mctx->state_log[cur_idx] == 0) | 
 |     { | 
 |       mctx->state_log[cur_idx] = next_state; | 
 |     } | 
 |   else | 
 |     { | 
 |       re_dfastate_t *pstate; | 
 |       unsigned int context; | 
 |       re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | 
 |       /* If (state_log[cur_idx] != 0), it implies that cur_idx is | 
 | 	 the destination of a multibyte char/collating element/ | 
 | 	 back reference.  Then the next state is the union set of | 
 | 	 these destinations and the results of the transition table.  */ | 
 |       pstate = mctx->state_log[cur_idx]; | 
 |       log_nodes = pstate->entrance_nodes; | 
 |       if (next_state != NULL) | 
 | 	{ | 
 | 	  table_nodes = next_state->entrance_nodes; | 
 | 	  *err = re_node_set_init_union (&next_nodes, table_nodes, | 
 | 					     log_nodes); | 
 | 	  if (BE (*err != REG_NOERROR, 0)) | 
 | 	    return NULL; | 
 | 	} | 
 |       else | 
 | 	next_nodes = *log_nodes; | 
 |       /* Note: We already add the nodes of the initial state, | 
 | 	 then we don't need to add them here.  */ | 
 |  | 
 |       context = re_string_context_at (&mctx->input, | 
 | 				      re_string_cur_idx (&mctx->input) - 1, | 
 | 				      mctx->eflags); | 
 |       next_state = mctx->state_log[cur_idx] | 
 | 	= re_acquire_state_context (err, dfa, &next_nodes, context); | 
 |       /* We don't need to check errors here, since the return value of | 
 | 	 this function is next_state and ERR is already set.  */ | 
 |  | 
 |       if (table_nodes != NULL) | 
 | 	re_node_set_free (&next_nodes); | 
 |     } | 
 |  | 
 |   if (BE (dfa->nbackref, 0) && next_state != NULL) | 
 |     { | 
 |       /* Check OP_OPEN_SUBEXP in the current state in case that we use them | 
 | 	 later.  We must check them here, since the back references in the | 
 | 	 next state might use them.  */ | 
 |       *err = check_subexp_matching_top (mctx, &next_state->nodes, | 
 | 					cur_idx); | 
 |       if (BE (*err != REG_NOERROR, 0)) | 
 | 	return NULL; | 
 |  | 
 |       /* If the next state has back references.  */ | 
 |       if (next_state->has_backref) | 
 | 	{ | 
 | 	  *err = transit_state_bkref (mctx, &next_state->nodes); | 
 | 	  if (BE (*err != REG_NOERROR, 0)) | 
 | 	    return NULL; | 
 | 	  next_state = mctx->state_log[cur_idx]; | 
 | 	} | 
 |     } | 
 |  | 
 |   return next_state; | 
 | } | 
 |  | 
 | /* Skip bytes in the input that correspond to part of a | 
 |    multi-byte match, then look in the log for a state | 
 |    from which to restart matching.  */ | 
 | re_dfastate_t * | 
 | internal_function | 
 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | 
 | { | 
 |   re_dfastate_t *cur_state; | 
 |   do | 
 |     { | 
 |       int max = mctx->state_log_top; | 
 |       int cur_str_idx = re_string_cur_idx (&mctx->input); | 
 |  | 
 |       do | 
 | 	{ | 
 | 	  if (++cur_str_idx > max) | 
 | 	    return NULL; | 
 | 	  re_string_skip_bytes (&mctx->input, 1); | 
 | 	} | 
 |       while (mctx->state_log[cur_str_idx] == NULL); | 
 |  | 
 |       cur_state = merge_state_with_log (err, mctx, NULL); | 
 |     } | 
 |   while (*err == REG_NOERROR && cur_state == NULL); | 
 |   return cur_state; | 
 | } | 
 |  | 
 | /* Helper functions for transit_state.  */ | 
 |  | 
 | /* From the node set CUR_NODES, pick up the nodes whose types are | 
 |    OP_OPEN_SUBEXP and which have corresponding back references in the regular | 
 |    expression. And register them to use them later for evaluating the | 
 |    correspoding back references.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | 
 | 			   int str_idx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int node_idx; | 
 |   reg_errcode_t err; | 
 |  | 
 |   /* TODO: This isn't efficient. | 
 | 	   Because there might be more than one nodes whose types are | 
 | 	   OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | 
 | 	   nodes. | 
 | 	   E.g. RE: (a){2}  */ | 
 |   for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | 
 |     { | 
 |       int node = cur_nodes->elems[node_idx]; | 
 |       if (dfa->nodes[node].type == OP_OPEN_SUBEXP | 
 | 	  && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | 
 | 	  && (dfa->used_bkref_map | 
 | 	      & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) | 
 | 	{ | 
 | 	  err = match_ctx_add_subtop (mctx, node, str_idx); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | #if 0 | 
 | /* Return the next state to which the current state STATE will transit by | 
 |    accepting the current input byte.  */ | 
 |  | 
 | static re_dfastate_t * | 
 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | 
 | 		  re_dfastate_t *state) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   re_node_set next_nodes; | 
 |   re_dfastate_t *next_state; | 
 |   int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | 
 |   unsigned int context; | 
 |  | 
 |   *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | 
 |   if (BE (*err != REG_NOERROR, 0)) | 
 |     return NULL; | 
 |   for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | 
 |     { | 
 |       int cur_node = state->nodes.elems[node_cnt]; | 
 |       if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | 
 | 	{ | 
 | 	  *err = re_node_set_merge (&next_nodes, | 
 | 				    dfa->eclosures + dfa->nexts[cur_node]); | 
 | 	  if (BE (*err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&next_nodes); | 
 | 	      return NULL; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | 
 |   next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | 
 |   /* We don't need to check errors here, since the return value of | 
 |      this function is next_state and ERR is already set.  */ | 
 |  | 
 |   re_node_set_free (&next_nodes); | 
 |   re_string_skip_bytes (&mctx->input, 1); | 
 |   return next_state; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | static reg_errcode_t | 
 | internal_function | 
 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err; | 
 |   int i; | 
 |  | 
 |   for (i = 0; i < pstate->nodes.nelem; ++i) | 
 |     { | 
 |       re_node_set dest_nodes, *new_nodes; | 
 |       int cur_node_idx = pstate->nodes.elems[i]; | 
 |       int naccepted, dest_idx; | 
 |       unsigned int context; | 
 |       re_dfastate_t *dest_state; | 
 |  | 
 |       if (!dfa->nodes[cur_node_idx].accept_mb) | 
 | 	continue; | 
 |  | 
 |       if (dfa->nodes[cur_node_idx].constraint) | 
 | 	{ | 
 | 	  context = re_string_context_at (&mctx->input, | 
 | 					  re_string_cur_idx (&mctx->input), | 
 | 					  mctx->eflags); | 
 | 	  if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | 
 | 					   context)) | 
 | 	    continue; | 
 | 	} | 
 |  | 
 |       /* How many bytes the node can accept?  */ | 
 |       naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | 
 | 					   re_string_cur_idx (&mctx->input)); | 
 |       if (naccepted == 0) | 
 | 	continue; | 
 |  | 
 |       /* The node can accepts `naccepted' bytes.  */ | 
 |       dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | 
 |       mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | 
 | 			       : mctx->max_mb_elem_len); | 
 |       err = clean_state_log_if_needed (mctx, dest_idx); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 | #ifdef DEBUG | 
 |       assert (dfa->nexts[cur_node_idx] != -1); | 
 | #endif | 
 |       new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | 
 |  | 
 |       dest_state = mctx->state_log[dest_idx]; | 
 |       if (dest_state == NULL) | 
 | 	dest_nodes = *new_nodes; | 
 |       else | 
 | 	{ | 
 | 	  err = re_node_set_init_union (&dest_nodes, | 
 | 					dest_state->entrance_nodes, new_nodes); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |       context = re_string_context_at (&mctx->input, dest_idx - 1, | 
 | 				      mctx->eflags); | 
 |       mctx->state_log[dest_idx] | 
 | 	= re_acquire_state_context (&err, dfa, &dest_nodes, context); | 
 |       if (dest_state != NULL) | 
 | 	re_node_set_free (&dest_nodes); | 
 |       if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err; | 
 |   int i; | 
 |   int cur_str_idx = re_string_cur_idx (&mctx->input); | 
 |  | 
 |   for (i = 0; i < nodes->nelem; ++i) | 
 |     { | 
 |       int dest_str_idx, prev_nelem, bkc_idx; | 
 |       int node_idx = nodes->elems[i]; | 
 |       unsigned int context; | 
 |       const re_token_t *node = dfa->nodes + node_idx; | 
 |       re_node_set *new_dest_nodes; | 
 |  | 
 |       /* Check whether `node' is a backreference or not.  */ | 
 |       if (node->type != OP_BACK_REF) | 
 | 	continue; | 
 |  | 
 |       if (node->constraint) | 
 | 	{ | 
 | 	  context = re_string_context_at (&mctx->input, cur_str_idx, | 
 | 					  mctx->eflags); | 
 | 	  if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | 
 | 	    continue; | 
 | 	} | 
 |  | 
 |       /* `node' is a backreference. | 
 | 	 Check the substring which the substring matched.  */ | 
 |       bkc_idx = mctx->nbkref_ents; | 
 |       err = get_subexp (mctx, node_idx, cur_str_idx); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	goto free_return; | 
 |  | 
 |       /* And add the epsilon closures (which is `new_dest_nodes') of | 
 | 	 the backreference to appropriate state_log.  */ | 
 | #ifdef DEBUG | 
 |       assert (dfa->nexts[node_idx] != -1); | 
 | #endif | 
 |       for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | 
 | 	{ | 
 | 	  int subexp_len; | 
 | 	  re_dfastate_t *dest_state; | 
 | 	  struct re_backref_cache_entry *bkref_ent; | 
 | 	  bkref_ent = mctx->bkref_ents + bkc_idx; | 
 | 	  if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | 
 | 	    continue; | 
 | 	  subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | 
 | 	  new_dest_nodes = (subexp_len == 0 | 
 | 			    ? dfa->eclosures + dfa->edests[node_idx].elems[0] | 
 | 			    : dfa->eclosures + dfa->nexts[node_idx]); | 
 | 	  dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | 
 | 			  - bkref_ent->subexp_from); | 
 | 	  context = re_string_context_at (&mctx->input, dest_str_idx - 1, | 
 | 					  mctx->eflags); | 
 | 	  dest_state = mctx->state_log[dest_str_idx]; | 
 | 	  prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | 
 | 			: mctx->state_log[cur_str_idx]->nodes.nelem); | 
 | 	  /* Add `new_dest_node' to state_log.  */ | 
 | 	  if (dest_state == NULL) | 
 | 	    { | 
 | 	      mctx->state_log[dest_str_idx] | 
 | 		= re_acquire_state_context (&err, dfa, new_dest_nodes, | 
 | 					    context); | 
 | 	      if (BE (mctx->state_log[dest_str_idx] == NULL | 
 | 		      && err != REG_NOERROR, 0)) | 
 | 		goto free_return; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      re_node_set dest_nodes; | 
 | 	      err = re_node_set_init_union (&dest_nodes, | 
 | 					    dest_state->entrance_nodes, | 
 | 					    new_dest_nodes); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		{ | 
 | 		  re_node_set_free (&dest_nodes); | 
 | 		  goto free_return; | 
 | 		} | 
 | 	      mctx->state_log[dest_str_idx] | 
 | 		= re_acquire_state_context (&err, dfa, &dest_nodes, context); | 
 | 	      re_node_set_free (&dest_nodes); | 
 | 	      if (BE (mctx->state_log[dest_str_idx] == NULL | 
 | 		      && err != REG_NOERROR, 0)) | 
 | 		goto free_return; | 
 | 	    } | 
 | 	  /* We need to check recursively if the backreference can epsilon | 
 | 	     transit.  */ | 
 | 	  if (subexp_len == 0 | 
 | 	      && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | 
 | 	    { | 
 | 	      err = check_subexp_matching_top (mctx, new_dest_nodes, | 
 | 					       cur_str_idx); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		goto free_return; | 
 | 	      err = transit_state_bkref (mctx, new_dest_nodes); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		goto free_return; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   err = REG_NOERROR; | 
 |  free_return: | 
 |   return err; | 
 | } | 
 |  | 
 | /* Enumerate all the candidates which the backreference BKREF_NODE can match | 
 |    at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | 
 |    Note that we might collect inappropriate candidates here. | 
 |    However, the cost of checking them strictly here is too high, then we | 
 |    delay these checking for prune_impossible_nodes().  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int subexp_num, sub_top_idx; | 
 |   const char *buf = (const char *) re_string_get_buffer (&mctx->input); | 
 |   /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */ | 
 |   int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | 
 |   if (cache_idx != -1) | 
 |     { | 
 |       const struct re_backref_cache_entry *entry | 
 | 	= mctx->bkref_ents + cache_idx; | 
 |       do | 
 | 	if (entry->node == bkref_node) | 
 | 	  return REG_NOERROR; /* We already checked it.  */ | 
 |       while (entry++->more); | 
 |     } | 
 |  | 
 |   subexp_num = dfa->nodes[bkref_node].opr.idx; | 
 |  | 
 |   /* For each sub expression  */ | 
 |   for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | 
 |     { | 
 |       reg_errcode_t err; | 
 |       re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | 
 |       re_sub_match_last_t *sub_last; | 
 |       int sub_last_idx, sl_str, bkref_str_off; | 
 |  | 
 |       if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | 
 | 	continue; /* It isn't related.  */ | 
 |  | 
 |       sl_str = sub_top->str_idx; | 
 |       bkref_str_off = bkref_str_idx; | 
 |       /* At first, check the last node of sub expressions we already | 
 | 	 evaluated.  */ | 
 |       for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | 
 | 	{ | 
 | 	  int sl_str_diff; | 
 | 	  sub_last = sub_top->lasts[sub_last_idx]; | 
 | 	  sl_str_diff = sub_last->str_idx - sl_str; | 
 | 	  /* The matched string by the sub expression match with the substring | 
 | 	     at the back reference?  */ | 
 | 	  if (sl_str_diff > 0) | 
 | 	    { | 
 | 	      if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | 
 | 		{ | 
 | 		  /* Not enough chars for a successful match.  */ | 
 | 		  if (bkref_str_off + sl_str_diff > mctx->input.len) | 
 | 		    break; | 
 |  | 
 | 		  err = clean_state_log_if_needed (mctx, | 
 | 						   bkref_str_off | 
 | 						   + sl_str_diff); | 
 | 		  if (BE (err != REG_NOERROR, 0)) | 
 | 		    return err; | 
 | 		  buf = (const char *) re_string_get_buffer (&mctx->input); | 
 | 		} | 
 | 	      if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | 
 | 		/* We don't need to search this sub expression any more.  */ | 
 | 		break; | 
 | 	    } | 
 | 	  bkref_str_off += sl_str_diff; | 
 | 	  sl_str += sl_str_diff; | 
 | 	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | 
 | 				bkref_str_idx); | 
 |  | 
 | 	  /* Reload buf, since the preceding call might have reallocated | 
 | 	     the buffer.  */ | 
 | 	  buf = (const char *) re_string_get_buffer (&mctx->input); | 
 |  | 
 | 	  if (err == REG_NOMATCH) | 
 | 	    continue; | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |  | 
 |       if (sub_last_idx < sub_top->nlasts) | 
 | 	continue; | 
 |       if (sub_last_idx > 0) | 
 | 	++sl_str; | 
 |       /* Then, search for the other last nodes of the sub expression.  */ | 
 |       for (; sl_str <= bkref_str_idx; ++sl_str) | 
 | 	{ | 
 | 	  int cls_node, sl_str_off; | 
 | 	  const re_node_set *nodes; | 
 | 	  sl_str_off = sl_str - sub_top->str_idx; | 
 | 	  /* The matched string by the sub expression match with the substring | 
 | 	     at the back reference?  */ | 
 | 	  if (sl_str_off > 0) | 
 | 	    { | 
 | 	      if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | 
 | 		{ | 
 | 		  /* If we are at the end of the input, we cannot match.  */ | 
 | 		  if (bkref_str_off >= mctx->input.len) | 
 | 		    break; | 
 |  | 
 | 		  err = extend_buffers (mctx, bkref_str_off + 1); | 
 | 		  if (BE (err != REG_NOERROR, 0)) | 
 | 		    return err; | 
 |  | 
 | 		  buf = (const char *) re_string_get_buffer (&mctx->input); | 
 | 		} | 
 | 	      if (buf [bkref_str_off++] != buf[sl_str - 1]) | 
 | 		break; /* We don't need to search this sub expression | 
 | 			  any more.  */ | 
 | 	    } | 
 | 	  if (mctx->state_log[sl_str] == NULL) | 
 | 	    continue; | 
 | 	  /* Does this state have a ')' of the sub expression?  */ | 
 | 	  nodes = &mctx->state_log[sl_str]->nodes; | 
 | 	  cls_node = find_subexp_node (dfa, nodes, subexp_num, | 
 | 				       OP_CLOSE_SUBEXP); | 
 | 	  if (cls_node == -1) | 
 | 	    continue; /* No.  */ | 
 | 	  if (sub_top->path == NULL) | 
 | 	    { | 
 | 	      sub_top->path = calloc (sizeof (state_array_t), | 
 | 				      sl_str - sub_top->str_idx + 1); | 
 | 	      if (sub_top->path == NULL) | 
 | 		return REG_ESPACE; | 
 | 	    } | 
 | 	  /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | 
 | 	     in the current context?  */ | 
 | 	  err = check_arrival (mctx, sub_top->path, sub_top->node, | 
 | 			       sub_top->str_idx, cls_node, sl_str, | 
 | 			       OP_CLOSE_SUBEXP); | 
 | 	  if (err == REG_NOMATCH) | 
 | 	      continue; | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	      return err; | 
 | 	  sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | 
 | 	  if (BE (sub_last == NULL, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | 
 | 				bkref_str_idx); | 
 | 	  if (err == REG_NOMATCH) | 
 | 	    continue; | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Helper functions for get_subexp().  */ | 
 |  | 
 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | 
 |    If it can arrive, register the sub expression expressed with SUB_TOP | 
 |    and SUB_LAST.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | 
 | 		re_sub_match_last_t *sub_last, int bkref_node, int bkref_str) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int to_idx; | 
 |   /* Can the subexpression arrive the back reference?  */ | 
 |   err = check_arrival (mctx, &sub_last->path, sub_last->node, | 
 | 		       sub_last->str_idx, bkref_node, bkref_str, | 
 | 		       OP_OPEN_SUBEXP); | 
 |   if (err != REG_NOERROR) | 
 |     return err; | 
 |   err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | 
 | 			     sub_last->str_idx); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return err; | 
 |   to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | 
 |   return clean_state_log_if_needed (mctx, to_idx); | 
 | } | 
 |  | 
 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | 
 |    Search '(' if FL_OPEN, or search ')' otherwise. | 
 |    TODO: This function isn't efficient... | 
 | 	 Because there might be more than one nodes whose types are | 
 | 	 OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | 
 | 	 nodes. | 
 | 	 E.g. RE: (a){2}  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | 
 | 		  int subexp_idx, int type) | 
 | { | 
 |   int cls_idx; | 
 |   for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | 
 |     { | 
 |       int cls_node = nodes->elems[cls_idx]; | 
 |       const re_token_t *node = dfa->nodes + cls_node; | 
 |       if (node->type == type | 
 | 	  && node->opr.idx == subexp_idx) | 
 | 	return cls_node; | 
 |     } | 
 |   return -1; | 
 | } | 
 |  | 
 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | 
 |    LAST_NODE at LAST_STR.  We record the path onto PATH since it will be | 
 |    heavily reused. | 
 |    Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node, | 
 | 	       int top_str, int last_node, int last_str, int type) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |   int subexp_num, backup_cur_idx, str_idx, null_cnt; | 
 |   re_dfastate_t *cur_state = NULL; | 
 |   re_node_set *cur_nodes, next_nodes; | 
 |   re_dfastate_t **backup_state_log; | 
 |   unsigned int context; | 
 |  | 
 |   subexp_num = dfa->nodes[top_node].opr.idx; | 
 |   /* Extend the buffer if we need.  */ | 
 |   if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | 
 |     { | 
 |       re_dfastate_t **new_array; | 
 |       int old_alloc = path->alloc; | 
 |       path->alloc += last_str + mctx->max_mb_elem_len + 1; | 
 |       new_array = re_realloc (path->array, re_dfastate_t *, path->alloc); | 
 |       if (BE (new_array == NULL, 0)) | 
 | 	{ | 
 | 	  path->alloc = old_alloc; | 
 | 	  return REG_ESPACE; | 
 | 	} | 
 |       path->array = new_array; | 
 |       memset (new_array + old_alloc, '\0', | 
 | 	      sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); | 
 |     } | 
 |  | 
 |   str_idx = path->next_idx ?: top_str; | 
 |  | 
 |   /* Temporary modify MCTX.  */ | 
 |   backup_state_log = mctx->state_log; | 
 |   backup_cur_idx = mctx->input.cur_idx; | 
 |   mctx->state_log = path->array; | 
 |   mctx->input.cur_idx = str_idx; | 
 |  | 
 |   /* Setup initial node set.  */ | 
 |   context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | 
 |   if (str_idx == top_str) | 
 |     { | 
 |       err = re_node_set_init_1 (&next_nodes, top_node); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	return err; | 
 |       err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | 
 |       if (BE (err != REG_NOERROR, 0)) | 
 | 	{ | 
 | 	  re_node_set_free (&next_nodes); | 
 | 	  return err; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       cur_state = mctx->state_log[str_idx]; | 
 |       if (cur_state && cur_state->has_backref) | 
 | 	{ | 
 | 	  err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |       else | 
 | 	re_node_set_init_empty (&next_nodes); | 
 |     } | 
 |   if (str_idx == top_str || (cur_state && cur_state->has_backref)) | 
 |     { | 
 |       if (next_nodes.nelem) | 
 | 	{ | 
 | 	  err = expand_bkref_cache (mctx, &next_nodes, str_idx, | 
 | 				    subexp_num, type); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&next_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	} | 
 |       cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | 
 |       if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | 
 | 	{ | 
 | 	  re_node_set_free (&next_nodes); | 
 | 	  return err; | 
 | 	} | 
 |       mctx->state_log[str_idx] = cur_state; | 
 |     } | 
 |  | 
 |   for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | 
 |     { | 
 |       re_node_set_empty (&next_nodes); | 
 |       if (mctx->state_log[str_idx + 1]) | 
 | 	{ | 
 | 	  err = re_node_set_merge (&next_nodes, | 
 | 				   &mctx->state_log[str_idx + 1]->nodes); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&next_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	} | 
 |       if (cur_state) | 
 | 	{ | 
 | 	  err = check_arrival_add_next_nodes (mctx, str_idx, | 
 | 					      &cur_state->non_eps_nodes, | 
 | 					      &next_nodes); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&next_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	} | 
 |       ++str_idx; | 
 |       if (next_nodes.nelem) | 
 | 	{ | 
 | 	  err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&next_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	  err = expand_bkref_cache (mctx, &next_nodes, str_idx, | 
 | 				    subexp_num, type); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&next_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	} | 
 |       context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | 
 |       cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | 
 |       if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | 
 | 	{ | 
 | 	  re_node_set_free (&next_nodes); | 
 | 	  return err; | 
 | 	} | 
 |       mctx->state_log[str_idx] = cur_state; | 
 |       null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | 
 |     } | 
 |   re_node_set_free (&next_nodes); | 
 |   cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | 
 | 	       : &mctx->state_log[last_str]->nodes); | 
 |   path->next_idx = str_idx; | 
 |  | 
 |   /* Fix MCTX.  */ | 
 |   mctx->state_log = backup_state_log; | 
 |   mctx->input.cur_idx = backup_cur_idx; | 
 |  | 
 |   /* Then check the current node set has the node LAST_NODE.  */ | 
 |   if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | 
 |     return REG_NOERROR; | 
 |  | 
 |   return REG_NOMATCH; | 
 | } | 
 |  | 
 | /* Helper functions for check_arrival.  */ | 
 |  | 
 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | 
 |    to NEXT_NODES. | 
 |    TODO: This function is similar to the functions transit_state*(), | 
 | 	 however this function has many additional works. | 
 | 	 Can't we unify them?  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx, | 
 | 			      re_node_set *cur_nodes, re_node_set *next_nodes) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   int result; | 
 |   int cur_idx; | 
 |   reg_errcode_t err = REG_NOERROR; | 
 |   re_node_set union_set; | 
 |   re_node_set_init_empty (&union_set); | 
 |   for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | 
 |     { | 
 |       int naccepted = 0; | 
 |       int cur_node = cur_nodes->elems[cur_idx]; | 
 | #ifdef DEBUG | 
 |       re_token_type_t type = dfa->nodes[cur_node].type; | 
 |       assert (!IS_EPSILON_NODE (type)); | 
 | #endif | 
 | #ifdef RE_ENABLE_I18N | 
 |       /* If the node may accept `multi byte'.  */ | 
 |       if (dfa->nodes[cur_node].accept_mb) | 
 | 	{ | 
 | 	  naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | 
 | 					       str_idx); | 
 | 	  if (naccepted > 1) | 
 | 	    { | 
 | 	      re_dfastate_t *dest_state; | 
 | 	      int next_node = dfa->nexts[cur_node]; | 
 | 	      int next_idx = str_idx + naccepted; | 
 | 	      dest_state = mctx->state_log[next_idx]; | 
 | 	      re_node_set_empty (&union_set); | 
 | 	      if (dest_state) | 
 | 		{ | 
 | 		  err = re_node_set_merge (&union_set, &dest_state->nodes); | 
 | 		  if (BE (err != REG_NOERROR, 0)) | 
 | 		    { | 
 | 		      re_node_set_free (&union_set); | 
 | 		      return err; | 
 | 		    } | 
 | 		} | 
 | 	      result = re_node_set_insert (&union_set, next_node); | 
 | 	      if (BE (result < 0, 0)) | 
 | 		{ | 
 | 		  re_node_set_free (&union_set); | 
 | 		  return REG_ESPACE; | 
 | 		} | 
 | 	      mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | 
 | 							    &union_set); | 
 | 	      if (BE (mctx->state_log[next_idx] == NULL | 
 | 		      && err != REG_NOERROR, 0)) | 
 | 		{ | 
 | 		  re_node_set_free (&union_set); | 
 | 		  return err; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 | #endif /* RE_ENABLE_I18N */ | 
 |       if (naccepted | 
 | 	  || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | 
 | 	{ | 
 | 	  result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | 
 | 	  if (BE (result < 0, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&union_set); | 
 | 	      return REG_ESPACE; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   re_node_set_free (&union_set); | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | 
 |    CUR_NODES, however exclude the nodes which are: | 
 |     - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | 
 |     - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | 
 | */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function | 
 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, | 
 | 			  int ex_subexp, int type) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int idx, outside_node; | 
 |   re_node_set new_nodes; | 
 | #ifdef DEBUG | 
 |   assert (cur_nodes->nelem); | 
 | #endif | 
 |   err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return err; | 
 |   /* Create a new node set NEW_NODES with the nodes which are epsilon | 
 |      closures of the node in CUR_NODES.  */ | 
 |  | 
 |   for (idx = 0; idx < cur_nodes->nelem; ++idx) | 
 |     { | 
 |       int cur_node = cur_nodes->elems[idx]; | 
 |       const re_node_set *eclosure = dfa->eclosures + cur_node; | 
 |       outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | 
 |       if (outside_node == -1) | 
 | 	{ | 
 | 	  /* There are no problematic nodes, just merge them.  */ | 
 | 	  err = re_node_set_merge (&new_nodes, eclosure); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&new_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* There are problematic nodes, re-calculate incrementally.  */ | 
 | 	  err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | 
 | 					      ex_subexp, type); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      re_node_set_free (&new_nodes); | 
 | 	      return err; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   re_node_set_free (cur_nodes); | 
 |   *cur_nodes = new_nodes; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Helper function for check_arrival_expand_ecl. | 
 |    Check incrementally the epsilon closure of TARGET, and if it isn't | 
 |    problematic append it to DST_NODES.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, | 
 | 			      int target, int ex_subexp, int type) | 
 | { | 
 |   int cur_node; | 
 |   for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | 
 |     { | 
 |       int err; | 
 |  | 
 |       if (dfa->nodes[cur_node].type == type | 
 | 	  && dfa->nodes[cur_node].opr.idx == ex_subexp) | 
 | 	{ | 
 | 	  if (type == OP_CLOSE_SUBEXP) | 
 | 	    { | 
 | 	      err = re_node_set_insert (dst_nodes, cur_node); | 
 | 	      if (BE (err == -1, 0)) | 
 | 		return REG_ESPACE; | 
 | 	    } | 
 | 	  break; | 
 | 	} | 
 |       err = re_node_set_insert (dst_nodes, cur_node); | 
 |       if (BE (err == -1, 0)) | 
 | 	return REG_ESPACE; | 
 |       if (dfa->edests[cur_node].nelem == 0) | 
 | 	break; | 
 |       if (dfa->edests[cur_node].nelem == 2) | 
 | 	{ | 
 | 	  err = check_arrival_expand_ecl_sub (dfa, dst_nodes, | 
 | 					      dfa->edests[cur_node].elems[1], | 
 | 					      ex_subexp, type); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |       cur_node = dfa->edests[cur_node].elems[0]; | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 |  | 
 | /* For all the back references in the current state, calculate the | 
 |    destination of the back references by the appropriate entry | 
 |    in MCTX->BKREF_ENTS.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | 
 | 		    int cur_str, int subexp_num, int type) | 
 | { | 
 |   const re_dfa_t *const dfa = mctx->dfa; | 
 |   reg_errcode_t err; | 
 |   int cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | 
 |   struct re_backref_cache_entry *ent; | 
 |  | 
 |   if (cache_idx_start == -1) | 
 |     return REG_NOERROR; | 
 |  | 
 |  restart: | 
 |   ent = mctx->bkref_ents + cache_idx_start; | 
 |   do | 
 |     { | 
 |       int to_idx, next_node; | 
 |  | 
 |       /* Is this entry ENT is appropriate?  */ | 
 |       if (!re_node_set_contains (cur_nodes, ent->node)) | 
 | 	continue; /* No.  */ | 
 |  | 
 |       to_idx = cur_str + ent->subexp_to - ent->subexp_from; | 
 |       /* Calculate the destination of the back reference, and append it | 
 | 	 to MCTX->STATE_LOG.  */ | 
 |       if (to_idx == cur_str) | 
 | 	{ | 
 | 	  /* The backreference did epsilon transit, we must re-check all the | 
 | 	     node in the current state.  */ | 
 | 	  re_node_set new_dests; | 
 | 	  reg_errcode_t err2, err3; | 
 | 	  next_node = dfa->edests[ent->node].elems[0]; | 
 | 	  if (re_node_set_contains (cur_nodes, next_node)) | 
 | 	    continue; | 
 | 	  err = re_node_set_init_1 (&new_dests, next_node); | 
 | 	  err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | 
 | 	  err3 = re_node_set_merge (cur_nodes, &new_dests); | 
 | 	  re_node_set_free (&new_dests); | 
 | 	  if (BE (err != REG_NOERROR || err2 != REG_NOERROR | 
 | 		  || err3 != REG_NOERROR, 0)) | 
 | 	    { | 
 | 	      err = (err != REG_NOERROR ? err | 
 | 		     : (err2 != REG_NOERROR ? err2 : err3)); | 
 | 	      return err; | 
 | 	    } | 
 | 	  /* TODO: It is still inefficient...  */ | 
 | 	  goto restart; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  re_node_set union_set; | 
 | 	  next_node = dfa->nexts[ent->node]; | 
 | 	  if (mctx->state_log[to_idx]) | 
 | 	    { | 
 | 	      int ret; | 
 | 	      if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | 
 | 					next_node)) | 
 | 		continue; | 
 | 	      err = re_node_set_init_copy (&union_set, | 
 | 					   &mctx->state_log[to_idx]->nodes); | 
 | 	      ret = re_node_set_insert (&union_set, next_node); | 
 | 	      if (BE (err != REG_NOERROR || ret < 0, 0)) | 
 | 		{ | 
 | 		  re_node_set_free (&union_set); | 
 | 		  err = err != REG_NOERROR ? err : REG_ESPACE; | 
 | 		  return err; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      err = re_node_set_init_1 (&union_set, next_node); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		return err; | 
 | 	    } | 
 | 	  mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | 
 | 	  re_node_set_free (&union_set); | 
 | 	  if (BE (mctx->state_log[to_idx] == NULL | 
 | 		  && err != REG_NOERROR, 0)) | 
 | 	    return err; | 
 | 	} | 
 |     } | 
 |   while (ent++->more); | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Build transition table for the state. | 
 |    Return 1 if succeeded, otherwise return NULL.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int i, j, ch, need_word_trtable = 0; | 
 |   bitset_word_t elem, mask; | 
 |   bool dests_node_malloced = false; | 
 |   bool dest_states_malloced = false; | 
 |   int ndests; /* Number of the destination states from `state'.  */ | 
 |   re_dfastate_t **trtable; | 
 |   re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | 
 |   re_node_set follows, *dests_node; | 
 |   bitset_t *dests_ch; | 
 |   bitset_t acceptable; | 
 |  | 
 |   struct dests_alloc | 
 |   { | 
 |     re_node_set dests_node[SBC_MAX]; | 
 |     bitset_t dests_ch[SBC_MAX]; | 
 |   } *dests_alloc; | 
 |  | 
 |   /* We build DFA states which corresponds to the destination nodes | 
 |      from `state'.  `dests_node[i]' represents the nodes which i-th | 
 |      destination state contains, and `dests_ch[i]' represents the | 
 |      characters which i-th destination state accepts.  */ | 
 |   if (__libc_use_alloca (sizeof (struct dests_alloc))) | 
 |     dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); | 
 |   else | 
 |     { | 
 |       dests_alloc = re_malloc (struct dests_alloc, 1); | 
 |       if (BE (dests_alloc == NULL, 0)) | 
 | 	return 0; | 
 |       dests_node_malloced = true; | 
 |     } | 
 |   dests_node = dests_alloc->dests_node; | 
 |   dests_ch = dests_alloc->dests_ch; | 
 |  | 
 |   /* Initialize transiton table.  */ | 
 |   state->word_trtable = state->trtable = NULL; | 
 |  | 
 |   /* At first, group all nodes belonging to `state' into several | 
 |      destinations.  */ | 
 |   ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | 
 |   if (BE (ndests <= 0, 0)) | 
 |     { | 
 |       if (dests_node_malloced) | 
 | 	free (dests_alloc); | 
 |       /* Return 0 in case of an error, 1 otherwise.  */ | 
 |       if (ndests == 0) | 
 | 	{ | 
 | 	  state->trtable = (re_dfastate_t **) | 
 | 	    calloc (sizeof (re_dfastate_t *), SBC_MAX); | 
 | 	  if (BE (state->trtable == NULL, 0)) | 
 | 	    return 0; | 
 | 	  return 1; | 
 | 	} | 
 |       return 0; | 
 |     } | 
 |  | 
 |   err = re_node_set_alloc (&follows, ndests + 1); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     goto out_free; | 
 |  | 
 |   /* Avoid arithmetic overflow in size calculation.  */ | 
 |   if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) | 
 | 	    / (3 * sizeof (re_dfastate_t *))) | 
 | 	   < ndests), | 
 | 	  0)) | 
 |     goto out_free; | 
 |  | 
 |   if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX | 
 | 			 + ndests * 3 * sizeof (re_dfastate_t *))) | 
 |     dest_states = (re_dfastate_t **) | 
 |       alloca (ndests * 3 * sizeof (re_dfastate_t *)); | 
 |   else | 
 |     { | 
 |       dest_states = (re_dfastate_t **) | 
 | 	malloc (ndests * 3 * sizeof (re_dfastate_t *)); | 
 |       if (BE (dest_states == NULL, 0)) | 
 | 	{ | 
 | out_free: | 
 | 	  if (dest_states_malloced) | 
 | 	    free (dest_states); | 
 | 	  re_node_set_free (&follows); | 
 | 	  for (i = 0; i < ndests; ++i) | 
 | 	    re_node_set_free (dests_node + i); | 
 | 	  if (dests_node_malloced) | 
 | 	    free (dests_alloc); | 
 | 	  return 0; | 
 | 	} | 
 |       dest_states_malloced = true; | 
 |     } | 
 |   dest_states_word = dest_states + ndests; | 
 |   dest_states_nl = dest_states_word + ndests; | 
 |   bitset_empty (acceptable); | 
 |  | 
 |   /* Then build the states for all destinations.  */ | 
 |   for (i = 0; i < ndests; ++i) | 
 |     { | 
 |       int next_node; | 
 |       re_node_set_empty (&follows); | 
 |       /* Merge the follows of this destination states.  */ | 
 |       for (j = 0; j < dests_node[i].nelem; ++j) | 
 | 	{ | 
 | 	  next_node = dfa->nexts[dests_node[i].elems[j]]; | 
 | 	  if (next_node != -1) | 
 | 	    { | 
 | 	      err = re_node_set_merge (&follows, dfa->eclosures + next_node); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		goto out_free; | 
 | 	    } | 
 | 	} | 
 |       dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | 
 |       if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | 
 | 	goto out_free; | 
 |       /* If the new state has context constraint, | 
 | 	 build appropriate states for these contexts.  */ | 
 |       if (dest_states[i]->has_constraint) | 
 | 	{ | 
 | 	  dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | 
 | 							  CONTEXT_WORD); | 
 | 	  if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | 
 | 	    goto out_free; | 
 |  | 
 | 	  if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | 
 | 	    need_word_trtable = 1; | 
 |  | 
 | 	  dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | 
 | 							CONTEXT_NEWLINE); | 
 | 	  if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | 
 | 	    goto out_free; | 
 |  	} | 
 |       else | 
 | 	{ | 
 | 	  dest_states_word[i] = dest_states[i]; | 
 | 	  dest_states_nl[i] = dest_states[i]; | 
 | 	} | 
 |       bitset_merge (acceptable, dests_ch[i]); | 
 |     } | 
 |  | 
 |   if (!BE (need_word_trtable, 0)) | 
 |     { | 
 |       /* We don't care about whether the following character is a word | 
 | 	 character, or we are in a single-byte character set so we can | 
 | 	 discern by looking at the character code: allocate a | 
 | 	 256-entry transition table.  */ | 
 |       trtable = state->trtable = | 
 | 	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); | 
 |       if (BE (trtable == NULL, 0)) | 
 | 	goto out_free; | 
 |  | 
 |       /* For all characters ch...:  */ | 
 |       for (i = 0; i < BITSET_WORDS; ++i) | 
 | 	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | 
 | 	     elem; | 
 | 	     mask <<= 1, elem >>= 1, ++ch) | 
 | 	  if (BE (elem & 1, 0)) | 
 | 	    { | 
 | 	      /* There must be exactly one destination which accepts | 
 | 		 character ch.  See group_nodes_into_DFAstates.  */ | 
 | 	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | 
 | 		; | 
 |  | 
 | 	      /* j-th destination accepts the word character ch.  */ | 
 | 	      if (dfa->word_char[i] & mask) | 
 | 		trtable[ch] = dest_states_word[j]; | 
 | 	      else | 
 | 		trtable[ch] = dest_states[j]; | 
 | 	    } | 
 |     } | 
 |   else | 
 |     { | 
 |       /* We care about whether the following character is a word | 
 | 	 character, and we are in a multi-byte character set: discern | 
 | 	 by looking at the character code: build two 256-entry | 
 | 	 transition tables, one starting at trtable[0] and one | 
 | 	 starting at trtable[SBC_MAX].  */ | 
 |       trtable = state->word_trtable = | 
 | 	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); | 
 |       if (BE (trtable == NULL, 0)) | 
 | 	goto out_free; | 
 |  | 
 |       /* For all characters ch...:  */ | 
 |       for (i = 0; i < BITSET_WORDS; ++i) | 
 | 	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | 
 | 	     elem; | 
 | 	     mask <<= 1, elem >>= 1, ++ch) | 
 | 	  if (BE (elem & 1, 0)) | 
 | 	    { | 
 | 	      /* There must be exactly one destination which accepts | 
 | 		 character ch.  See group_nodes_into_DFAstates.  */ | 
 | 	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | 
 | 		; | 
 |  | 
 | 	      /* j-th destination accepts the word character ch.  */ | 
 | 	      trtable[ch] = dest_states[j]; | 
 | 	      trtable[ch + SBC_MAX] = dest_states_word[j]; | 
 | 	    } | 
 |     } | 
 |  | 
 |   /* new line */ | 
 |   if (bitset_contain (acceptable, NEWLINE_CHAR)) | 
 |     { | 
 |       /* The current state accepts newline character.  */ | 
 |       for (j = 0; j < ndests; ++j) | 
 | 	if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | 
 | 	  { | 
 | 	    /* k-th destination accepts newline character.  */ | 
 | 	    trtable[NEWLINE_CHAR] = dest_states_nl[j]; | 
 | 	    if (need_word_trtable) | 
 | 	      trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | 
 | 	    /* There must be only one destination which accepts | 
 | 	       newline.  See group_nodes_into_DFAstates.  */ | 
 | 	    break; | 
 | 	  } | 
 |     } | 
 |  | 
 |   if (dest_states_malloced) | 
 |     free (dest_states); | 
 |  | 
 |   re_node_set_free (&follows); | 
 |   for (i = 0; i < ndests; ++i) | 
 |     re_node_set_free (dests_node + i); | 
 |  | 
 |   if (dests_node_malloced) | 
 |     free (dests_alloc); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Group all nodes belonging to STATE into several destinations. | 
 |    Then for all destinations, set the nodes belonging to the destination | 
 |    to DESTS_NODE[i] and set the characters accepted by the destination | 
 |    to DEST_CH[i].  This function return the number of destinations.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | 
 | 			    re_node_set *dests_node, bitset_t *dests_ch) | 
 | { | 
 |   reg_errcode_t err; | 
 |   int result; | 
 |   int i, j, k; | 
 |   int ndests; /* Number of the destinations from `state'.  */ | 
 |   bitset_t accepts; /* Characters a node can accept.  */ | 
 |   const re_node_set *cur_nodes = &state->nodes; | 
 |   bitset_empty (accepts); | 
 |   ndests = 0; | 
 |  | 
 |   /* For all the nodes belonging to `state',  */ | 
 |   for (i = 0; i < cur_nodes->nelem; ++i) | 
 |     { | 
 |       re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | 
 |       re_token_type_t type = node->type; | 
 |       unsigned int constraint = node->constraint; | 
 |  | 
 |       /* Enumerate all single byte character this node can accept.  */ | 
 |       if (type == CHARACTER) | 
 | 	bitset_set (accepts, node->opr.c); | 
 |       else if (type == SIMPLE_BRACKET) | 
 | 	{ | 
 | 	  bitset_merge (accepts, node->opr.sbcset); | 
 | 	} | 
 |       else if (type == OP_PERIOD) | 
 | 	{ | 
 | #ifdef RE_ENABLE_I18N | 
 | 	  if (dfa->mb_cur_max > 1) | 
 | 	    bitset_merge (accepts, dfa->sb_char); | 
 | 	  else | 
 | #endif | 
 | 	    bitset_set_all (accepts); | 
 | 	  if (!(dfa->syntax & RE_DOT_NEWLINE)) | 
 | 	    bitset_clear (accepts, '\n'); | 
 | 	  if (dfa->syntax & RE_DOT_NOT_NULL) | 
 | 	    bitset_clear (accepts, '\0'); | 
 | 	} | 
 | #ifdef RE_ENABLE_I18N | 
 |       else if (type == OP_UTF8_PERIOD) | 
 | 	{ | 
 | 	  memset (accepts, '\xff', sizeof (bitset_t) / 2); | 
 | 	  if (!(dfa->syntax & RE_DOT_NEWLINE)) | 
 | 	    bitset_clear (accepts, '\n'); | 
 | 	  if (dfa->syntax & RE_DOT_NOT_NULL) | 
 | 	    bitset_clear (accepts, '\0'); | 
 | 	} | 
 | #endif | 
 |       else | 
 | 	continue; | 
 |  | 
 |       /* Check the `accepts' and sift the characters which are not | 
 | 	 match it the context.  */ | 
 |       if (constraint) | 
 | 	{ | 
 | 	  if (constraint & NEXT_NEWLINE_CONSTRAINT) | 
 | 	    { | 
 | 	      bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | 
 | 	      bitset_empty (accepts); | 
 | 	      if (accepts_newline) | 
 | 		bitset_set (accepts, NEWLINE_CHAR); | 
 | 	      else | 
 | 		continue; | 
 | 	    } | 
 | 	  if (constraint & NEXT_ENDBUF_CONSTRAINT) | 
 | 	    { | 
 | 	      bitset_empty (accepts); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  if (constraint & NEXT_WORD_CONSTRAINT) | 
 | 	    { | 
 | 	      bitset_word_t any_set = 0; | 
 | 	      if (type == CHARACTER && !node->word_char) | 
 | 		{ | 
 | 		  bitset_empty (accepts); | 
 | 		  continue; | 
 | 		} | 
 | #ifdef RE_ENABLE_I18N | 
 | 	      if (dfa->mb_cur_max > 1) | 
 | 		for (j = 0; j < BITSET_WORDS; ++j) | 
 | 		  any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | 
 | 	      else | 
 | #endif | 
 | 		for (j = 0; j < BITSET_WORDS; ++j) | 
 | 		  any_set |= (accepts[j] &= dfa->word_char[j]); | 
 | 	      if (!any_set) | 
 | 		continue; | 
 | 	    } | 
 | 	  if (constraint & NEXT_NOTWORD_CONSTRAINT) | 
 | 	    { | 
 | 	      bitset_word_t any_set = 0; | 
 | 	      if (type == CHARACTER && node->word_char) | 
 | 		{ | 
 | 		  bitset_empty (accepts); | 
 | 		  continue; | 
 | 		} | 
 | #ifdef RE_ENABLE_I18N | 
 | 	      if (dfa->mb_cur_max > 1) | 
 | 		for (j = 0; j < BITSET_WORDS; ++j) | 
 | 		  any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | 
 | 	      else | 
 | #endif | 
 | 		for (j = 0; j < BITSET_WORDS; ++j) | 
 | 		  any_set |= (accepts[j] &= ~dfa->word_char[j]); | 
 | 	      if (!any_set) | 
 | 		continue; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Then divide `accepts' into DFA states, or create a new | 
 | 	 state.  Above, we make sure that accepts is not empty.  */ | 
 |       for (j = 0; j < ndests; ++j) | 
 | 	{ | 
 | 	  bitset_t intersec; /* Intersection sets, see below.  */ | 
 | 	  bitset_t remains; | 
 | 	  /* Flags, see below.  */ | 
 | 	  bitset_word_t has_intersec, not_subset, not_consumed; | 
 |  | 
 | 	  /* Optimization, skip if this state doesn't accept the character.  */ | 
 | 	  if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | 
 | 	    continue; | 
 |  | 
 | 	  /* Enumerate the intersection set of this state and `accepts'.  */ | 
 | 	  has_intersec = 0; | 
 | 	  for (k = 0; k < BITSET_WORDS; ++k) | 
 | 	    has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | 
 | 	  /* And skip if the intersection set is empty.  */ | 
 | 	  if (!has_intersec) | 
 | 	    continue; | 
 |  | 
 | 	  /* Then check if this state is a subset of `accepts'.  */ | 
 | 	  not_subset = not_consumed = 0; | 
 | 	  for (k = 0; k < BITSET_WORDS; ++k) | 
 | 	    { | 
 | 	      not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | 
 | 	      not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | 
 | 	    } | 
 |  | 
 | 	  /* If this state isn't a subset of `accepts', create a | 
 | 	     new group state, which has the `remains'. */ | 
 | 	  if (not_subset) | 
 | 	    { | 
 | 	      bitset_copy (dests_ch[ndests], remains); | 
 | 	      bitset_copy (dests_ch[j], intersec); | 
 | 	      err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | 
 | 	      if (BE (err != REG_NOERROR, 0)) | 
 | 		goto error_return; | 
 | 	      ++ndests; | 
 | 	    } | 
 |  | 
 | 	  /* Put the position in the current group. */ | 
 | 	  result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | 
 | 	  if (BE (result < 0, 0)) | 
 | 	    goto error_return; | 
 |  | 
 | 	  /* If all characters are consumed, go to next node. */ | 
 | 	  if (!not_consumed) | 
 | 	    break; | 
 | 	} | 
 |       /* Some characters remain, create a new group. */ | 
 |       if (j == ndests) | 
 | 	{ | 
 | 	  bitset_copy (dests_ch[ndests], accepts); | 
 | 	  err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | 
 | 	  if (BE (err != REG_NOERROR, 0)) | 
 | 	    goto error_return; | 
 | 	  ++ndests; | 
 | 	  bitset_empty (accepts); | 
 | 	} | 
 |     } | 
 |   return ndests; | 
 |  error_return: | 
 |   for (j = 0; j < ndests; ++j) | 
 |     re_node_set_free (dests_node + j); | 
 |   return -1; | 
 | } | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | 
 |    Return the number of the bytes the node accepts. | 
 |    STR_IDX is the current index of the input string. | 
 |  | 
 |    This function handles the nodes which can accept one character, or | 
 |    one collating element like '.', '[a-z]', opposite to the other nodes | 
 |    can only accept one byte.  */ | 
 |  | 
 | # ifdef _LIBC | 
 | #  include <locale/weight.h> | 
 | # endif | 
 |  | 
 | static int | 
 | internal_function | 
 | check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, | 
 | 			 const re_string_t *input, int str_idx) | 
 | { | 
 |   const re_token_t *node = dfa->nodes + node_idx; | 
 |   int char_len, elem_len; | 
 |   int i; | 
 |  | 
 |   if (BE (node->type == OP_UTF8_PERIOD, 0)) | 
 |     { | 
 |       unsigned char c = re_string_byte_at (input, str_idx), d; | 
 |       if (BE (c < 0xc2, 1)) | 
 | 	return 0; | 
 |  | 
 |       if (str_idx + 2 > input->len) | 
 | 	return 0; | 
 |  | 
 |       d = re_string_byte_at (input, str_idx + 1); | 
 |       if (c < 0xe0) | 
 | 	return (d < 0x80 || d > 0xbf) ? 0 : 2; | 
 |       else if (c < 0xf0) | 
 | 	{ | 
 | 	  char_len = 3; | 
 | 	  if (c == 0xe0 && d < 0xa0) | 
 | 	    return 0; | 
 | 	} | 
 |       else if (c < 0xf8) | 
 | 	{ | 
 | 	  char_len = 4; | 
 | 	  if (c == 0xf0 && d < 0x90) | 
 | 	    return 0; | 
 | 	} | 
 |       else if (c < 0xfc) | 
 | 	{ | 
 | 	  char_len = 5; | 
 | 	  if (c == 0xf8 && d < 0x88) | 
 | 	    return 0; | 
 | 	} | 
 |       else if (c < 0xfe) | 
 | 	{ | 
 | 	  char_len = 6; | 
 | 	  if (c == 0xfc && d < 0x84) | 
 | 	    return 0; | 
 | 	} | 
 |       else | 
 | 	return 0; | 
 |  | 
 |       if (str_idx + char_len > input->len) | 
 | 	return 0; | 
 |  | 
 |       for (i = 1; i < char_len; ++i) | 
 | 	{ | 
 | 	  d = re_string_byte_at (input, str_idx + i); | 
 | 	  if (d < 0x80 || d > 0xbf) | 
 | 	    return 0; | 
 | 	} | 
 |       return char_len; | 
 |     } | 
 |  | 
 |   char_len = re_string_char_size_at (input, str_idx); | 
 |   if (node->type == OP_PERIOD) | 
 |     { | 
 |       if (char_len <= 1) | 
 | 	return 0; | 
 |       /* FIXME: I don't think this if is needed, as both '\n' | 
 | 	 and '\0' are char_len == 1.  */ | 
 |       /* '.' accepts any one character except the following two cases.  */ | 
 |       if ((!(dfa->syntax & RE_DOT_NEWLINE) && | 
 | 	   re_string_byte_at (input, str_idx) == '\n') || | 
 | 	  ((dfa->syntax & RE_DOT_NOT_NULL) && | 
 | 	   re_string_byte_at (input, str_idx) == '\0')) | 
 | 	return 0; | 
 |       return char_len; | 
 |     } | 
 |  | 
 |   elem_len = re_string_elem_size_at (input, str_idx); | 
 |   if ((elem_len <= 1 && char_len <= 1) || char_len == 0) | 
 |     return 0; | 
 |  | 
 |   if (node->type == COMPLEX_BRACKET) | 
 |     { | 
 |       const re_charset_t *cset = node->opr.mbcset; | 
 | # ifdef _LIBC | 
 |       const unsigned char *pin | 
 | 	= ((const unsigned char *) re_string_get_buffer (input) + str_idx); | 
 |       int j; | 
 |       uint32_t nrules; | 
 | # endif /* _LIBC */ | 
 |       int match_len = 0; | 
 |       wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | 
 | 		    ? re_string_wchar_at (input, str_idx) : 0); | 
 |  | 
 |       /* match with multibyte character?  */ | 
 |       for (i = 0; i < cset->nmbchars; ++i) | 
 | 	if (wc == cset->mbchars[i]) | 
 | 	  { | 
 | 	    match_len = char_len; | 
 | 	    goto check_node_accept_bytes_match; | 
 | 	  } | 
 |       /* match with character_class?  */ | 
 |       for (i = 0; i < cset->nchar_classes; ++i) | 
 | 	{ | 
 | 	  wctype_t wt = cset->char_classes[i]; | 
 | 	  if (__iswctype (wc, wt)) | 
 | 	    { | 
 | 	      match_len = char_len; | 
 | 	      goto check_node_accept_bytes_match; | 
 | 	    } | 
 | 	} | 
 |  | 
 | # ifdef _LIBC | 
 |       nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
 |       if (nrules != 0) | 
 | 	{ | 
 | 	  unsigned int in_collseq = 0; | 
 | 	  const int32_t *table, *indirect; | 
 | 	  const unsigned char *weights, *extra; | 
 | 	  const char *collseqwc; | 
 |  | 
 | 	  /* match with collating_symbol?  */ | 
 | 	  if (cset->ncoll_syms) | 
 | 	    extra = (const unsigned char *) | 
 | 	      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
 | 	  for (i = 0; i < cset->ncoll_syms; ++i) | 
 | 	    { | 
 | 	      const unsigned char *coll_sym = extra + cset->coll_syms[i]; | 
 | 	      /* Compare the length of input collating element and | 
 | 		 the length of current collating element.  */ | 
 | 	      if (*coll_sym != elem_len) | 
 | 		continue; | 
 | 	      /* Compare each bytes.  */ | 
 | 	      for (j = 0; j < *coll_sym; j++) | 
 | 		if (pin[j] != coll_sym[1 + j]) | 
 | 		  break; | 
 | 	      if (j == *coll_sym) | 
 | 		{ | 
 | 		  /* Match if every bytes is equal.  */ | 
 | 		  match_len = j; | 
 | 		  goto check_node_accept_bytes_match; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (cset->nranges) | 
 | 	    { | 
 | 	      if (elem_len <= char_len) | 
 | 		{ | 
 | 		  collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | 
 | 		  in_collseq = __collseq_table_lookup (collseqwc, wc); | 
 | 		} | 
 | 	      else | 
 | 		in_collseq = find_collation_sequence_value (pin, elem_len); | 
 | 	    } | 
 | 	  /* match with range expression?  */ | 
 | 	  for (i = 0; i < cset->nranges; ++i) | 
 | 	    if (cset->range_starts[i] <= in_collseq | 
 | 		&& in_collseq <= cset->range_ends[i]) | 
 | 	      { | 
 | 		match_len = elem_len; | 
 | 		goto check_node_accept_bytes_match; | 
 | 	      } | 
 |  | 
 | 	  /* match with equivalence_class?  */ | 
 | 	  if (cset->nequiv_classes) | 
 | 	    { | 
 | 	      const unsigned char *cp = pin; | 
 | 	      table = (const int32_t *) | 
 | 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
 | 	      weights = (const unsigned char *) | 
 | 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | 
 | 	      extra = (const unsigned char *) | 
 | 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | 
 | 	      indirect = (const int32_t *) | 
 | 		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | 
 | 	      int32_t idx = findidx (table, indirect, extra, &cp, elem_len); | 
 | 	      if (idx > 0) | 
 | 		for (i = 0; i < cset->nequiv_classes; ++i) | 
 | 		  { | 
 | 		    int32_t equiv_class_idx = cset->equiv_classes[i]; | 
 | 		    size_t weight_len = weights[idx & 0xffffff]; | 
 | 		    if (weight_len == weights[equiv_class_idx & 0xffffff] | 
 | 			&& (idx >> 24) == (equiv_class_idx >> 24)) | 
 | 		      { | 
 | 			int cnt = 0; | 
 |  | 
 | 			idx &= 0xffffff; | 
 | 			equiv_class_idx &= 0xffffff; | 
 |  | 
 | 			while (cnt <= weight_len | 
 | 			       && (weights[equiv_class_idx + 1 + cnt] | 
 | 				   == weights[idx + 1 + cnt])) | 
 | 			  ++cnt; | 
 | 			if (cnt > weight_len) | 
 | 			  { | 
 | 			    match_len = elem_len; | 
 | 			    goto check_node_accept_bytes_match; | 
 | 			  } | 
 | 		      } | 
 | 		  } | 
 | 	    } | 
 | 	} | 
 |       else | 
 | # endif /* _LIBC */ | 
 | 	{ | 
 | 	  /* match with range expression?  */ | 
 | #if __GNUC__ >= 2 | 
 | 	  wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; | 
 | #else | 
 | 	  wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | 
 | 	  cmp_buf[2] = wc; | 
 | #endif | 
 | 	  for (i = 0; i < cset->nranges; ++i) | 
 | 	    { | 
 | 	      cmp_buf[0] = cset->range_starts[i]; | 
 | 	      cmp_buf[4] = cset->range_ends[i]; | 
 | 	      if (__wcscoll (cmp_buf, cmp_buf + 2) <= 0 | 
 | 		  && __wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | 
 | 		{ | 
 | 		  match_len = char_len; | 
 | 		  goto check_node_accept_bytes_match; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     check_node_accept_bytes_match: | 
 |       if (!cset->non_match) | 
 | 	return match_len; | 
 |       else | 
 | 	{ | 
 | 	  if (match_len > 0) | 
 | 	    return 0; | 
 | 	  else | 
 | 	    return (elem_len > char_len) ? elem_len : char_len; | 
 | 	} | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | # ifdef _LIBC | 
 | static unsigned int | 
 | internal_function | 
 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | 
 | { | 
 |   uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
 |   if (nrules == 0) | 
 |     { | 
 |       if (mbs_len == 1) | 
 | 	{ | 
 | 	  /* No valid character.  Match it as a single byte character.  */ | 
 | 	  const unsigned char *collseq = (const unsigned char *) | 
 | 	    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | 
 | 	  return collseq[mbs[0]]; | 
 | 	} | 
 |       return UINT_MAX; | 
 |     } | 
 |   else | 
 |     { | 
 |       int32_t idx; | 
 |       const unsigned char *extra = (const unsigned char *) | 
 | 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
 |       int32_t extrasize = (const unsigned char *) | 
 | 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | 
 |  | 
 |       for (idx = 0; idx < extrasize;) | 
 | 	{ | 
 | 	  int mbs_cnt, found = 0; | 
 | 	  int32_t elem_mbs_len; | 
 | 	  /* Skip the name of collating element name.  */ | 
 | 	  idx = idx + extra[idx] + 1; | 
 | 	  elem_mbs_len = extra[idx++]; | 
 | 	  if (mbs_len == elem_mbs_len) | 
 | 	    { | 
 | 	      for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | 
 | 		if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | 
 | 		  break; | 
 | 	      if (mbs_cnt == elem_mbs_len) | 
 | 		/* Found the entry.  */ | 
 | 		found = 1; | 
 | 	    } | 
 | 	  /* Skip the byte sequence of the collating element.  */ | 
 | 	  idx += elem_mbs_len; | 
 | 	  /* Adjust for the alignment.  */ | 
 | 	  idx = (idx + 3) & ~3; | 
 | 	  /* Skip the collation sequence value.  */ | 
 | 	  idx += sizeof (uint32_t); | 
 | 	  /* Skip the wide char sequence of the collating element.  */ | 
 | 	  idx = idx + sizeof (uint32_t) * (*(int32_t *) (extra + idx) + 1); | 
 | 	  /* If we found the entry, return the sequence value.  */ | 
 | 	  if (found) | 
 | 	    return *(uint32_t *) (extra + idx); | 
 | 	  /* Skip the collation sequence value.  */ | 
 | 	  idx += sizeof (uint32_t); | 
 | 	} | 
 |       return UINT_MAX; | 
 |     } | 
 | } | 
 | # endif /* _LIBC */ | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 | /* Check whether the node accepts the byte which is IDX-th | 
 |    byte of the INPUT.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | 
 | 		   int idx) | 
 | { | 
 |   unsigned char ch; | 
 |   ch = re_string_byte_at (&mctx->input, idx); | 
 |   switch (node->type) | 
 |     { | 
 |     case CHARACTER: | 
 |       if (node->opr.c != ch) | 
 | 	return 0; | 
 |       break; | 
 |  | 
 |     case SIMPLE_BRACKET: | 
 |       if (!bitset_contain (node->opr.sbcset, ch)) | 
 | 	return 0; | 
 |       break; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |     case OP_UTF8_PERIOD: | 
 |       if (ch >= 0x80) | 
 | 	return 0; | 
 |       /* FALLTHROUGH */ | 
 | #endif | 
 |     case OP_PERIOD: | 
 |       if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) | 
 | 	  || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) | 
 | 	return 0; | 
 |       break; | 
 |  | 
 |     default: | 
 |       return 0; | 
 |     } | 
 |  | 
 |   if (node->constraint) | 
 |     { | 
 |       /* The node has constraints.  Check whether the current context | 
 | 	 satisfies the constraints.  */ | 
 |       unsigned int context = re_string_context_at (&mctx->input, idx, | 
 | 						   mctx->eflags); | 
 |       if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Extend the buffers, if the buffers have run out.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | extend_buffers (re_match_context_t *mctx, int min_len) | 
 | { | 
 |   reg_errcode_t ret; | 
 |   re_string_t *pstr = &mctx->input; | 
 |  | 
 |   /* Avoid overflow.  */ | 
 |   if (BE (INT_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0)) | 
 |     return REG_ESPACE; | 
 |  | 
 |   /* Double the lengthes of the buffers, but allocate at least MIN_LEN.  */ | 
 |   ret = re_string_realloc_buffers (pstr, | 
 | 				   MAX (min_len, | 
 | 					MIN (pstr->len, pstr->bufs_len * 2))); | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     return ret; | 
 |  | 
 |   if (mctx->state_log != NULL) | 
 |     { | 
 |       /* And double the length of state_log.  */ | 
 |       /* XXX We have no indication of the size of this buffer.  If this | 
 | 	 allocation fail we have no indication that the state_log array | 
 | 	 does not have the right size.  */ | 
 |       re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, | 
 | 					      pstr->bufs_len + 1); | 
 |       if (BE (new_array == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       mctx->state_log = new_array; | 
 |     } | 
 |  | 
 |   /* Then reconstruct the buffers.  */ | 
 |   if (pstr->icase) | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (pstr->mb_cur_max > 1) | 
 | 	{ | 
 | 	  ret = build_wcs_upper_buffer (pstr); | 
 | 	  if (BE (ret != REG_NOERROR, 0)) | 
 | 	    return ret; | 
 | 	} | 
 |       else | 
 | #endif /* RE_ENABLE_I18N  */ | 
 | 	build_upper_buffer (pstr); | 
 |     } | 
 |   else | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (pstr->mb_cur_max > 1) | 
 | 	build_wcs_buffer (pstr); | 
 |       else | 
 | #endif /* RE_ENABLE_I18N  */ | 
 | 	{ | 
 | 	  if (pstr->trans != NULL) | 
 | 	    re_string_translate_buffer (pstr); | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 |  | 
 | /* Functions for matching context.  */ | 
 |  | 
 | /* Initialize MCTX.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | match_ctx_init (re_match_context_t *mctx, int eflags, int n) | 
 | { | 
 |   mctx->eflags = eflags; | 
 |   mctx->match_last = -1; | 
 |   if (n > 0) | 
 |     { | 
 |       mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); | 
 |       mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); | 
 |       if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |     } | 
 |   /* Already zero-ed by the caller. | 
 |      else | 
 |        mctx->bkref_ents = NULL; | 
 |      mctx->nbkref_ents = 0; | 
 |      mctx->nsub_tops = 0;  */ | 
 |   mctx->abkref_ents = n; | 
 |   mctx->max_mb_elem_len = 1; | 
 |   mctx->asub_tops = n; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Clean the entries which depend on the current input in MCTX. | 
 |    This function must be invoked when the matcher changes the start index | 
 |    of the input, or changes the input string.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | match_ctx_clean (re_match_context_t *mctx) | 
 | { | 
 |   int st_idx; | 
 |   for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | 
 |     { | 
 |       int sl_idx; | 
 |       re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | 
 |       for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | 
 | 	{ | 
 | 	  re_sub_match_last_t *last = top->lasts[sl_idx]; | 
 | 	  re_free (last->path.array); | 
 | 	  re_free (last); | 
 | 	} | 
 |       re_free (top->lasts); | 
 |       if (top->path) | 
 | 	{ | 
 | 	  re_free (top->path->array); | 
 | 	  re_free (top->path); | 
 | 	} | 
 |       free (top); | 
 |     } | 
 |  | 
 |   mctx->nsub_tops = 0; | 
 |   mctx->nbkref_ents = 0; | 
 | } | 
 |  | 
 | /* Free all the memory associated with MCTX.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | match_ctx_free (re_match_context_t *mctx) | 
 | { | 
 |   /* First, free all the memory associated with MCTX->SUB_TOPS.  */ | 
 |   match_ctx_clean (mctx); | 
 |   re_free (mctx->sub_tops); | 
 |   re_free (mctx->bkref_ents); | 
 | } | 
 |  | 
 | /* Add a new backreference entry to MCTX. | 
 |    Note that we assume that caller never call this function with duplicate | 
 |    entry, and call with STR_IDX which isn't smaller than any existing entry. | 
 | */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from, | 
 | 		     int to) | 
 | { | 
 |   if (mctx->nbkref_ents >= mctx->abkref_ents) | 
 |     { | 
 |       struct re_backref_cache_entry* new_entry; | 
 |       new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, | 
 | 			      mctx->abkref_ents * 2); | 
 |       if (BE (new_entry == NULL, 0)) | 
 | 	{ | 
 | 	  re_free (mctx->bkref_ents); | 
 | 	  return REG_ESPACE; | 
 | 	} | 
 |       mctx->bkref_ents = new_entry; | 
 |       memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | 
 | 	      sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); | 
 |       mctx->abkref_ents *= 2; | 
 |     } | 
 |   if (mctx->nbkref_ents > 0 | 
 |       && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | 
 |     mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | 
 |  | 
 |   mctx->bkref_ents[mctx->nbkref_ents].node = node; | 
 |   mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | 
 |   mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | 
 |   mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | 
 |  | 
 |   /* This is a cache that saves negative results of check_dst_limits_calc_pos. | 
 |      If bit N is clear, means that this entry won't epsilon-transition to | 
 |      an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If | 
 |      it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | 
 |      such node. | 
 |  | 
 |      A backreference does not epsilon-transition unless it is empty, so set | 
 |      to all zeros if FROM != TO.  */ | 
 |   mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | 
 |     = (from == to ? ~0 : 0); | 
 |  | 
 |   mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | 
 |   if (mctx->max_mb_elem_len < to - from) | 
 |     mctx->max_mb_elem_len = to - from; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Search for the first entry which has the same str_idx, or -1 if none is | 
 |    found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) | 
 | { | 
 |   int left, right, mid, last; | 
 |   last = right = mctx->nbkref_ents; | 
 |   for (left = 0; left < right;) | 
 |     { | 
 |       mid = (left + right) / 2; | 
 |       if (mctx->bkref_ents[mid].str_idx < str_idx) | 
 | 	left = mid + 1; | 
 |       else | 
 | 	right = mid; | 
 |     } | 
 |   if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | 
 |     return left; | 
 |   else | 
 |     return -1; | 
 | } | 
 |  | 
 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | 
 |    at STR_IDX.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx) | 
 | { | 
 | #ifdef DEBUG | 
 |   assert (mctx->sub_tops != NULL); | 
 |   assert (mctx->asub_tops > 0); | 
 | #endif | 
 |   if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | 
 |     { | 
 |       int new_asub_tops = mctx->asub_tops * 2; | 
 |       re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, | 
 | 						   re_sub_match_top_t *, | 
 | 						   new_asub_tops); | 
 |       if (BE (new_array == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       mctx->sub_tops = new_array; | 
 |       mctx->asub_tops = new_asub_tops; | 
 |     } | 
 |   mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); | 
 |   if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | 
 |     return REG_ESPACE; | 
 |   mctx->sub_tops[mctx->nsub_tops]->node = node; | 
 |   mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | 
 |    at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */ | 
 |  | 
 | static re_sub_match_last_t * | 
 | internal_function | 
 | match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx) | 
 | { | 
 |   re_sub_match_last_t *new_entry; | 
 |   if (BE (subtop->nlasts == subtop->alasts, 0)) | 
 |     { | 
 |       int new_alasts = 2 * subtop->alasts + 1; | 
 |       re_sub_match_last_t **new_array = re_realloc (subtop->lasts, | 
 | 						    re_sub_match_last_t *, | 
 | 						    new_alasts); | 
 |       if (BE (new_array == NULL, 0)) | 
 | 	return NULL; | 
 |       subtop->lasts = new_array; | 
 |       subtop->alasts = new_alasts; | 
 |     } | 
 |   new_entry = calloc (1, sizeof (re_sub_match_last_t)); | 
 |   if (BE (new_entry != NULL, 1)) | 
 |     { | 
 |       subtop->lasts[subtop->nlasts] = new_entry; | 
 |       new_entry->node = node; | 
 |       new_entry->str_idx = str_idx; | 
 |       ++subtop->nlasts; | 
 |     } | 
 |   return new_entry; | 
 | } | 
 |  | 
 | static void | 
 | internal_function | 
 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | 
 | 	       re_dfastate_t **limited_sts, int last_node, int last_str_idx) | 
 | { | 
 |   sctx->sifted_states = sifted_sts; | 
 |   sctx->limited_states = limited_sts; | 
 |   sctx->last_node = last_node; | 
 |   sctx->last_str_idx = last_str_idx; | 
 |   re_node_set_init_empty (&sctx->limits); | 
 | } |