| /* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) -- | 
 |    Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. | 
 |    Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. | 
 |    Return the single-limb remainder. | 
 |    There are no constraints on the value of the divisor. | 
 |  | 
 |    QUOT_PTR and DIVIDEND_PTR might point to the same limb. | 
 |  | 
 | Copyright (C) 1991-2016 Free Software Foundation, Inc. | 
 |  | 
 | This file is part of the GNU MP Library. | 
 |  | 
 | The GNU MP Library is free software; you can redistribute it and/or modify | 
 | it under the terms of the GNU Lesser General Public License as published by | 
 | the Free Software Foundation; either version 2.1 of the License, or (at your | 
 | option) any later version. | 
 |  | 
 | The GNU MP Library is distributed in the hope that it will be useful, but | 
 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
 | License for more details. | 
 |  | 
 | You should have received a copy of the GNU Lesser General Public License | 
 | along with the GNU MP Library; see the file COPYING.LIB.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <gmp.h> | 
 | #include "gmp-impl.h" | 
 | #include "longlong.h" | 
 |  | 
 | #ifndef UMUL_TIME | 
 | #define UMUL_TIME 1 | 
 | #endif | 
 |  | 
 | #ifndef UDIV_TIME | 
 | #define UDIV_TIME UMUL_TIME | 
 | #endif | 
 |  | 
 | /* FIXME: We should be using invert_limb (or invert_normalized_limb) | 
 |    here (not udiv_qrnnd).  */ | 
 |  | 
 | mp_limb_t | 
 | mpn_divmod_1 (mp_ptr quot_ptr, | 
 | 	      mp_srcptr dividend_ptr, mp_size_t dividend_size, | 
 | 	      mp_limb_t divisor_limb) | 
 | { | 
 |   mp_size_t i; | 
 |   mp_limb_t n1, n0, r; | 
 |   mp_limb_t dummy __attribute__ ((unused)); | 
 |  | 
 |   /* ??? Should this be handled at all?  Rely on callers?  */ | 
 |   if (dividend_size == 0) | 
 |     return 0; | 
 |  | 
 |   /* If multiplication is much faster than division, and the | 
 |      dividend is large, pre-invert the divisor, and use | 
 |      only multiplications in the inner loop.  */ | 
 |  | 
 |   /* This test should be read: | 
 |        Does it ever help to use udiv_qrnnd_preinv? | 
 | 	 && Does what we save compensate for the inversion overhead?  */ | 
 |   if (UDIV_TIME > (2 * UMUL_TIME + 6) | 
 |       && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) | 
 |     { | 
 |       int normalization_steps; | 
 |  | 
 |       count_leading_zeros (normalization_steps, divisor_limb); | 
 |       if (normalization_steps != 0) | 
 | 	{ | 
 | 	  mp_limb_t divisor_limb_inverted; | 
 |  | 
 | 	  divisor_limb <<= normalization_steps; | 
 |  | 
 | 	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
 | 	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
 | 	     most significant bit (with weight 2**N) implicit.  */ | 
 |  | 
 | 	  /* Special case for DIVISOR_LIMB == 100...000.  */ | 
 | 	  if (divisor_limb << 1 == 0) | 
 | 	    divisor_limb_inverted = ~(mp_limb_t) 0; | 
 | 	  else | 
 | 	    udiv_qrnnd (divisor_limb_inverted, dummy, | 
 | 			-divisor_limb, 0, divisor_limb); | 
 |  | 
 | 	  n1 = dividend_ptr[dividend_size - 1]; | 
 | 	  r = n1 >> (BITS_PER_MP_LIMB - normalization_steps); | 
 |  | 
 | 	  /* Possible optimization: | 
 | 	     if (r == 0 | 
 | 	     && divisor_limb > ((n1 << normalization_steps) | 
 | 			     | (dividend_ptr[dividend_size - 2] >> ...))) | 
 | 	     ...one division less... */ | 
 |  | 
 | 	  for (i = dividend_size - 2; i >= 0; i--) | 
 | 	    { | 
 | 	      n0 = dividend_ptr[i]; | 
 | 	      udiv_qrnnd_preinv (quot_ptr[i + 1], r, r, | 
 | 				 ((n1 << normalization_steps) | 
 | 				  | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))), | 
 | 				 divisor_limb, divisor_limb_inverted); | 
 | 	      n1 = n0; | 
 | 	    } | 
 | 	  udiv_qrnnd_preinv (quot_ptr[0], r, r, | 
 | 			     n1 << normalization_steps, | 
 | 			     divisor_limb, divisor_limb_inverted); | 
 | 	  return r >> normalization_steps; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  mp_limb_t divisor_limb_inverted; | 
 |  | 
 | 	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The | 
 | 	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the | 
 | 	     most significant bit (with weight 2**N) implicit.  */ | 
 |  | 
 | 	  /* Special case for DIVISOR_LIMB == 100...000.  */ | 
 | 	  if (divisor_limb << 1 == 0) | 
 | 	    divisor_limb_inverted = ~(mp_limb_t) 0; | 
 | 	  else | 
 | 	    udiv_qrnnd (divisor_limb_inverted, dummy, | 
 | 			-divisor_limb, 0, divisor_limb); | 
 |  | 
 | 	  i = dividend_size - 1; | 
 | 	  r = dividend_ptr[i]; | 
 |  | 
 | 	  if (r >= divisor_limb) | 
 | 	    r = 0; | 
 | 	  else | 
 | 	    { | 
 | 	      quot_ptr[i] = 0; | 
 | 	      i--; | 
 | 	    } | 
 |  | 
 | 	  for (; i >= 0; i--) | 
 | 	    { | 
 | 	      n0 = dividend_ptr[i]; | 
 | 	      udiv_qrnnd_preinv (quot_ptr[i], r, r, | 
 | 				 n0, divisor_limb, divisor_limb_inverted); | 
 | 	    } | 
 | 	  return r; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       if (UDIV_NEEDS_NORMALIZATION) | 
 | 	{ | 
 | 	  int normalization_steps; | 
 |  | 
 | 	  count_leading_zeros (normalization_steps, divisor_limb); | 
 | 	  if (normalization_steps != 0) | 
 | 	    { | 
 | 	      divisor_limb <<= normalization_steps; | 
 |  | 
 | 	      n1 = dividend_ptr[dividend_size - 1]; | 
 | 	      r = n1 >> (BITS_PER_MP_LIMB - normalization_steps); | 
 |  | 
 | 	      /* Possible optimization: | 
 | 		 if (r == 0 | 
 | 		 && divisor_limb > ((n1 << normalization_steps) | 
 | 				 | (dividend_ptr[dividend_size - 2] >> ...))) | 
 | 		 ...one division less... */ | 
 |  | 
 | 	      for (i = dividend_size - 2; i >= 0; i--) | 
 | 		{ | 
 | 		  n0 = dividend_ptr[i]; | 
 | 		  udiv_qrnnd (quot_ptr[i + 1], r, r, | 
 | 			      ((n1 << normalization_steps) | 
 | 			       | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))), | 
 | 			      divisor_limb); | 
 | 		  n1 = n0; | 
 | 		} | 
 | 	      udiv_qrnnd (quot_ptr[0], r, r, | 
 | 			  n1 << normalization_steps, | 
 | 			  divisor_limb); | 
 | 	      return r >> normalization_steps; | 
 | 	    } | 
 | 	} | 
 |       /* No normalization needed, either because udiv_qrnnd doesn't require | 
 | 	 it, or because DIVISOR_LIMB is already normalized.  */ | 
 |  | 
 |       i = dividend_size - 1; | 
 |       r = dividend_ptr[i]; | 
 |  | 
 |       if (r >= divisor_limb) | 
 | 	r = 0; | 
 |       else | 
 | 	{ | 
 | 	  quot_ptr[i] = 0; | 
 | 	  i--; | 
 | 	} | 
 |  | 
 |       for (; i >= 0; i--) | 
 | 	{ | 
 | 	  n0 = dividend_ptr[i]; | 
 | 	  udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb); | 
 | 	} | 
 |       return r; | 
 |     } | 
 | } |