| /* mpn_divrem -- Divide natural numbers, producing both remainder and | 
 |    quotient. | 
 |  | 
 | Copyright (C) 1993-2016 Free Software Foundation, Inc. | 
 |  | 
 | This file is part of the GNU MP Library. | 
 |  | 
 | The GNU MP Library is free software; you can redistribute it and/or modify | 
 | it under the terms of the GNU Lesser General Public License as published by | 
 | the Free Software Foundation; either version 2.1 of the License, or (at your | 
 | option) any later version. | 
 |  | 
 | The GNU MP Library is distributed in the hope that it will be useful, but | 
 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
 | License for more details. | 
 |  | 
 | You should have received a copy of the GNU Lesser General Public License | 
 | along with the GNU MP Library; see the file COPYING.LIB.  If not, see | 
 | <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <gmp.h> | 
 | #include "gmp-impl.h" | 
 | #include "longlong.h" | 
 |  | 
 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write | 
 |    the NSIZE-DSIZE least significant quotient limbs at QP | 
 |    and the DSIZE long remainder at NP.  If QEXTRA_LIMBS is | 
 |    non-zero, generate that many fraction bits and append them after the | 
 |    other quotient limbs. | 
 |    Return the most significant limb of the quotient, this is always 0 or 1. | 
 |  | 
 |    Preconditions: | 
 |    0. NSIZE >= DSIZE. | 
 |    1. The most significant bit of the divisor must be set. | 
 |    2. QP must either not overlap with the input operands at all, or | 
 |       QP + DSIZE >= NP must hold true.  (This means that it's | 
 |       possible to put the quotient in the high part of NUM, right after the | 
 |       remainder in NUM. | 
 |    3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.  */ | 
 |  | 
 | mp_limb_t | 
 | mpn_divrem (mp_ptr qp, mp_size_t qextra_limbs, | 
 | 	    mp_ptr np, mp_size_t nsize, | 
 | 	    mp_srcptr dp, mp_size_t dsize) | 
 | { | 
 |   mp_limb_t most_significant_q_limb = 0; | 
 |  | 
 |   switch (dsize) | 
 |     { | 
 |     case 0: | 
 |       /* We are asked to divide by zero, so go ahead and do it!  (To make | 
 | 	 the compiler not remove this statement, return the value.)  */ | 
 |       return 1 / dsize; | 
 |  | 
 |     case 1: | 
 |       { | 
 | 	mp_size_t i; | 
 | 	mp_limb_t n1; | 
 | 	mp_limb_t d; | 
 |  | 
 | 	d = dp[0]; | 
 | 	n1 = np[nsize - 1]; | 
 |  | 
 | 	if (n1 >= d) | 
 | 	  { | 
 | 	    n1 -= d; | 
 | 	    most_significant_q_limb = 1; | 
 | 	  } | 
 |  | 
 | 	qp += qextra_limbs; | 
 | 	for (i = nsize - 2; i >= 0; i--) | 
 | 	  udiv_qrnnd (qp[i], n1, n1, np[i], d); | 
 | 	qp -= qextra_limbs; | 
 |  | 
 | 	for (i = qextra_limbs - 1; i >= 0; i--) | 
 | 	  udiv_qrnnd (qp[i], n1, n1, 0, d); | 
 |  | 
 | 	np[0] = n1; | 
 |       } | 
 |       break; | 
 |  | 
 |     case 2: | 
 |       { | 
 | 	mp_size_t i; | 
 | 	mp_limb_t n1, n0, n2; | 
 | 	mp_limb_t d1, d0; | 
 |  | 
 | 	np += nsize - 2; | 
 | 	d1 = dp[1]; | 
 | 	d0 = dp[0]; | 
 | 	n1 = np[1]; | 
 | 	n0 = np[0]; | 
 |  | 
 | 	if (n1 >= d1 && (n1 > d1 || n0 >= d0)) | 
 | 	  { | 
 | 	    sub_ddmmss (n1, n0, n1, n0, d1, d0); | 
 | 	    most_significant_q_limb = 1; | 
 | 	  } | 
 |  | 
 | 	for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) | 
 | 	  { | 
 | 	    mp_limb_t q; | 
 | 	    mp_limb_t r; | 
 |  | 
 | 	    if (i >= qextra_limbs) | 
 | 	      np--; | 
 | 	    else | 
 | 	      np[0] = 0; | 
 |  | 
 | 	    if (n1 == d1) | 
 | 	      { | 
 | 		/* Q should be either 111..111 or 111..110.  Need special | 
 | 		   treatment of this rare case as normal division would | 
 | 		   give overflow.  */ | 
 | 		q = ~(mp_limb_t) 0; | 
 |  | 
 | 		r = n0 + d1; | 
 | 		if (r < d1)	/* Carry in the addition? */ | 
 | 		  { | 
 | 		    add_ssaaaa (n1, n0, r - d0, np[0], 0, d0); | 
 | 		    qp[i] = q; | 
 | 		    continue; | 
 | 		  } | 
 | 		n1 = d0 - (d0 != 0); | 
 | 		n0 = -d0; | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		udiv_qrnnd (q, r, n1, n0, d1); | 
 | 		umul_ppmm (n1, n0, d0, q); | 
 | 	      } | 
 |  | 
 | 	    n2 = np[0]; | 
 | 	  q_test: | 
 | 	    if (n1 > r || (n1 == r && n0 > n2)) | 
 | 	      { | 
 | 		/* The estimated Q was too large.  */ | 
 | 		q--; | 
 |  | 
 | 		sub_ddmmss (n1, n0, n1, n0, 0, d0); | 
 | 		r += d1; | 
 | 		if (r >= d1)	/* If not carry, test Q again.  */ | 
 | 		  goto q_test; | 
 | 	      } | 
 |  | 
 | 	    qp[i] = q; | 
 | 	    sub_ddmmss (n1, n0, r, n2, n1, n0); | 
 | 	  } | 
 | 	np[1] = n1; | 
 | 	np[0] = n0; | 
 |       } | 
 |       break; | 
 |  | 
 |     default: | 
 |       { | 
 | 	mp_size_t i; | 
 | 	mp_limb_t dX, d1, n0; | 
 |  | 
 | 	np += nsize - dsize; | 
 | 	dX = dp[dsize - 1]; | 
 | 	d1 = dp[dsize - 2]; | 
 | 	n0 = np[dsize - 1]; | 
 |  | 
 | 	if (n0 >= dX) | 
 | 	  { | 
 | 	    if (n0 > dX || mpn_cmp (np, dp, dsize - 1) >= 0) | 
 | 	      { | 
 | 		mpn_sub_n (np, np, dp, dsize); | 
 | 		n0 = np[dsize - 1]; | 
 | 		most_significant_q_limb = 1; | 
 | 	      } | 
 | 	  } | 
 |  | 
 | 	for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) | 
 | 	  { | 
 | 	    mp_limb_t q; | 
 | 	    mp_limb_t n1, n2; | 
 | 	    mp_limb_t cy_limb; | 
 |  | 
 | 	    if (i >= qextra_limbs) | 
 | 	      { | 
 | 		np--; | 
 | 		n2 = np[dsize]; | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		n2 = np[dsize - 1]; | 
 | 		MPN_COPY_DECR (np + 1, np, dsize); | 
 | 		np[0] = 0; | 
 | 	      } | 
 |  | 
 | 	    if (n0 == dX) | 
 | 	      /* This might over-estimate q, but it's probably not worth | 
 | 		 the extra code here to find out.  */ | 
 | 	      q = ~(mp_limb_t) 0; | 
 | 	    else | 
 | 	      { | 
 | 		mp_limb_t r; | 
 |  | 
 | 		udiv_qrnnd (q, r, n0, np[dsize - 1], dX); | 
 | 		umul_ppmm (n1, n0, d1, q); | 
 |  | 
 | 		while (n1 > r || (n1 == r && n0 > np[dsize - 2])) | 
 | 		  { | 
 | 		    q--; | 
 | 		    r += dX; | 
 | 		    if (r < dX)	/* I.e. "carry in previous addition?"  */ | 
 | 		      break; | 
 | 		    n1 -= n0 < d1; | 
 | 		    n0 -= d1; | 
 | 		  } | 
 | 	      } | 
 |  | 
 | 	    /* Possible optimization: We already have (q * n0) and (1 * n1) | 
 | 	       after the calculation of q.  Taking advantage of that, we | 
 | 	       could make this loop make two iterations less.  */ | 
 |  | 
 | 	    cy_limb = mpn_submul_1 (np, dp, dsize, q); | 
 |  | 
 | 	    if (n2 != cy_limb) | 
 | 	      { | 
 | 		mpn_add_n (np, np, dp, dsize); | 
 | 		q--; | 
 | 	      } | 
 |  | 
 | 	    qp[i] = q; | 
 | 	    n0 = np[dsize - 1]; | 
 | 	  } | 
 |       } | 
 |     } | 
 |  | 
 |   return most_significant_q_limb; | 
 | } |