|  | /* | 
|  | * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  | /* | 
|  | * This driver supports the sensor part of the first and second revision of | 
|  | * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because | 
|  | * of lack of specs the CPU/RAM voltage & frequency control is not supported! | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/hwmon.h> | 
|  | #include <linux/hwmon-sysfs.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | /* Banks */ | 
|  | #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */ | 
|  | #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */ | 
|  | #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */ | 
|  | #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */ | 
|  | /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ | 
|  | #define ABIT_UGURU_MAX_BANK1_SENSORS		16 | 
|  | /* | 
|  | * Warning if you increase one of the 2 MAX defines below to 10 or higher you | 
|  | * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! | 
|  | */ | 
|  | /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ | 
|  | #define ABIT_UGURU_MAX_BANK2_SENSORS		6 | 
|  | /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ | 
|  | #define ABIT_UGURU_MAX_PWMS			5 | 
|  | /* uGuru sensor bank 1 flags */			     /* Alarm if: */ | 
|  | #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */ | 
|  | #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */ | 
|  | #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */ | 
|  | #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */ | 
|  | #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */ | 
|  | #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */ | 
|  | /* uGuru sensor bank 2 flags */			     /* Alarm if: */ | 
|  | #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */ | 
|  | /* uGuru sensor bank common flags */ | 
|  | #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */ | 
|  | #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */ | 
|  | /* uGuru fan PWM (speed control) flags */ | 
|  | #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */ | 
|  | /* Values used for conversion */ | 
|  | #define ABIT_UGURU_FAN_MAX			15300 /* RPM */ | 
|  | /* Bank1 sensor types */ | 
|  | #define ABIT_UGURU_IN_SENSOR			0 | 
|  | #define ABIT_UGURU_TEMP_SENSOR			1 | 
|  | #define ABIT_UGURU_NC				2 | 
|  | /* | 
|  | * In many cases we need to wait for the uGuru to reach a certain status, most | 
|  | * of the time it will reach this status within 30 - 90 ISA reads, and thus we | 
|  | * can best busy wait. This define gives the total amount of reads to try. | 
|  | */ | 
|  | #define ABIT_UGURU_WAIT_TIMEOUT			125 | 
|  | /* | 
|  | * However sometimes older versions of the uGuru seem to be distracted and they | 
|  | * do not respond for a long time. To handle this we sleep before each of the | 
|  | * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. | 
|  | */ | 
|  | #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5 | 
|  | /* | 
|  | * Normally all expected status in abituguru_ready, are reported after the | 
|  | * first read, but sometimes not and we need to poll. | 
|  | */ | 
|  | #define ABIT_UGURU_READY_TIMEOUT		5 | 
|  | /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ | 
|  | #define ABIT_UGURU_MAX_RETRIES			3 | 
|  | #define ABIT_UGURU_RETRY_DELAY			(HZ/5) | 
|  | /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ | 
|  | #define ABIT_UGURU_MAX_TIMEOUTS			2 | 
|  | /* utility macros */ | 
|  | #define ABIT_UGURU_NAME				"abituguru" | 
|  | #define ABIT_UGURU_DEBUG(level, format, arg...)				\ | 
|  | if (level <= verbose)						\ | 
|  | printk(KERN_DEBUG ABIT_UGURU_NAME ": "	format , ## arg) | 
|  | /* Macros to help calculate the sysfs_names array length */ | 
|  | /* | 
|  | * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, | 
|  | * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 | 
|  | */ | 
|  | #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) | 
|  | /* | 
|  | * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, | 
|  | * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 | 
|  | */ | 
|  | #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16) | 
|  | /* | 
|  | * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, | 
|  | * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 | 
|  | */ | 
|  | #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14) | 
|  | /* | 
|  | * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, | 
|  | * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 | 
|  | */ | 
|  | #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22) | 
|  | /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ | 
|  | #define ABITUGURU_SYSFS_NAMES_LENGTH	( \ | 
|  | ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ | 
|  | ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ | 
|  | ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) | 
|  |  | 
|  | /* | 
|  | * All the macros below are named identical to the oguru and oguru2 programs | 
|  | * reverse engineered by Olle Sandberg, hence the names might not be 100% | 
|  | * logical. I could come up with better names, but I prefer keeping the names | 
|  | * identical so that this driver can be compared with his work more easily. | 
|  | */ | 
|  | /* Two i/o-ports are used by uGuru */ | 
|  | #define ABIT_UGURU_BASE				0x00E0 | 
|  | /* Used to tell uGuru what to read and to read the actual data */ | 
|  | #define ABIT_UGURU_CMD				0x00 | 
|  | /* Mostly used to check if uGuru is busy */ | 
|  | #define ABIT_UGURU_DATA				0x04 | 
|  | #define ABIT_UGURU_REGION_LENGTH		5 | 
|  | /* uGuru status' */ | 
|  | #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */ | 
|  | #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */ | 
|  | #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */ | 
|  | #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */ | 
|  |  | 
|  | /* Constants */ | 
|  | /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ | 
|  | static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; | 
|  | /* | 
|  | * Min / Max allowed values for sensor2 (fan) alarm threshold, these values | 
|  | * correspond to 300-3000 RPM | 
|  | */ | 
|  | static const u8 abituguru_bank2_min_threshold = 5; | 
|  | static const u8 abituguru_bank2_max_threshold = 50; | 
|  | /* | 
|  | * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 | 
|  | * are temperature trip points. | 
|  | */ | 
|  | static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; | 
|  | /* | 
|  | * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a | 
|  | * special case the minium allowed pwm% setting for this is 30% (77) on | 
|  | * some MB's this special case is handled in the code! | 
|  | */ | 
|  | static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; | 
|  | static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; | 
|  |  | 
|  |  | 
|  | /* Insmod parameters */ | 
|  | static bool force; | 
|  | module_param(force, bool, 0); | 
|  | MODULE_PARM_DESC(force, "Set to one to force detection."); | 
|  | static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; | 
|  | module_param_array(bank1_types, int, NULL, 0); | 
|  | MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" | 
|  | "   -1 autodetect\n" | 
|  | "    0 volt sensor\n" | 
|  | "    1 temp sensor\n" | 
|  | "    2 not connected"); | 
|  | static int fan_sensors; | 
|  | module_param(fan_sensors, int, 0); | 
|  | MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " | 
|  | "(0 = autodetect)"); | 
|  | static int pwms; | 
|  | module_param(pwms, int, 0); | 
|  | MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " | 
|  | "(0 = autodetect)"); | 
|  |  | 
|  | /* Default verbose is 2, since this driver is still in the testing phase */ | 
|  | static int verbose = 2; | 
|  | module_param(verbose, int, 0644); | 
|  | MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" | 
|  | "   0 normal output\n" | 
|  | "   1 + verbose error reporting\n" | 
|  | "   2 + sensors type probing info\n" | 
|  | "   3 + retryable error reporting"); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * For the Abit uGuru, we need to keep some data in memory. | 
|  | * The structure is dynamically allocated, at the same time when a new | 
|  | * abituguru device is allocated. | 
|  | */ | 
|  | struct abituguru_data { | 
|  | struct device *hwmon_dev;	/* hwmon registered device */ | 
|  | struct mutex update_lock;	/* protect access to data and uGuru */ | 
|  | unsigned long last_updated;	/* In jiffies */ | 
|  | unsigned short addr;		/* uguru base address */ | 
|  | char uguru_ready;		/* is the uguru in ready state? */ | 
|  | unsigned char update_timeouts;	/* | 
|  | * number of update timeouts since last | 
|  | * successful update | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The sysfs attr and their names are generated automatically, for bank1 | 
|  | * we cannot use a predefined array because we don't know beforehand | 
|  | * of a sensor is a volt or a temp sensor, for bank2 and the pwms its | 
|  | * easier todo things the same way.  For in sensors we have 9 (temp 7) | 
|  | * sysfs entries per sensor, for bank2 and pwms 6. | 
|  | */ | 
|  | struct sensor_device_attribute_2 sysfs_attr[ | 
|  | ABIT_UGURU_MAX_BANK1_SENSORS * 9 + | 
|  | ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; | 
|  | /* Buffer to store the dynamically generated sysfs names */ | 
|  | char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; | 
|  |  | 
|  | /* Bank 1 data */ | 
|  | /* number of and addresses of [0] in, [1] temp sensors */ | 
|  | u8 bank1_sensors[2]; | 
|  | u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; | 
|  | u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; | 
|  | /* | 
|  | * This array holds 3 entries per sensor for the bank 1 sensor settings | 
|  | * (flags, min, max for voltage / flags, warn, shutdown for temp). | 
|  | */ | 
|  | u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; | 
|  | /* | 
|  | * Maximum value for each sensor used for scaling in mV/millidegrees | 
|  | * Celsius. | 
|  | */ | 
|  | int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; | 
|  |  | 
|  | /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ | 
|  | u8 bank2_sensors; /* actual number of bank2 sensors found */ | 
|  | u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; | 
|  | u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ | 
|  |  | 
|  | /* Alarms 2 bytes for bank1, 1 byte for bank2 */ | 
|  | u8 alarms[3]; | 
|  |  | 
|  | /* Fan PWM (speed control) 5 bytes per PWM */ | 
|  | u8 pwms; /* actual number of pwms found */ | 
|  | u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; | 
|  | }; | 
|  |  | 
|  | static const char *never_happen = "This should never happen."; | 
|  | static const char *report_this = | 
|  | "Please report this to the abituguru maintainer (see MAINTAINERS)"; | 
|  |  | 
|  | /* wait till the uguru is in the specified state */ | 
|  | static int abituguru_wait(struct abituguru_data *data, u8 state) | 
|  | { | 
|  | int timeout = ABIT_UGURU_WAIT_TIMEOUT; | 
|  |  | 
|  | while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { | 
|  | timeout--; | 
|  | if (timeout == 0) | 
|  | return -EBUSY; | 
|  | /* | 
|  | * sleep a bit before our last few tries, see the comment on | 
|  | * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. | 
|  | */ | 
|  | if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) | 
|  | msleep(0); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Put the uguru in ready for input state */ | 
|  | static int abituguru_ready(struct abituguru_data *data) | 
|  | { | 
|  | int timeout = ABIT_UGURU_READY_TIMEOUT; | 
|  |  | 
|  | if (data->uguru_ready) | 
|  | return 0; | 
|  |  | 
|  | /* Reset? / Prepare for next read/write cycle */ | 
|  | outb(0x00, data->addr + ABIT_UGURU_DATA); | 
|  |  | 
|  | /* Wait till the uguru is ready */ | 
|  | if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { | 
|  | ABIT_UGURU_DEBUG(1, | 
|  | "timeout exceeded waiting for ready state\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Cmd port MUST be read now and should contain 0xAC */ | 
|  | while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { | 
|  | timeout--; | 
|  | if (timeout == 0) { | 
|  | ABIT_UGURU_DEBUG(1, | 
|  | "CMD reg does not hold 0xAC after ready command\n"); | 
|  | return -EIO; | 
|  | } | 
|  | msleep(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After this the ABIT_UGURU_DATA port should contain | 
|  | * ABIT_UGURU_STATUS_INPUT | 
|  | */ | 
|  | timeout = ABIT_UGURU_READY_TIMEOUT; | 
|  | while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { | 
|  | timeout--; | 
|  | if (timeout == 0) { | 
|  | ABIT_UGURU_DEBUG(1, | 
|  | "state != more input after ready command\n"); | 
|  | return -EIO; | 
|  | } | 
|  | msleep(0); | 
|  | } | 
|  |  | 
|  | data->uguru_ready = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send the bank and then sensor address to the uGuru for the next read/write | 
|  | * cycle. This function gets called as the first part of a read/write by | 
|  | * abituguru_read and abituguru_write. This function should never be | 
|  | * called by any other function. | 
|  | */ | 
|  | static int abituguru_send_address(struct abituguru_data *data, | 
|  | u8 bank_addr, u8 sensor_addr, int retries) | 
|  | { | 
|  | /* | 
|  | * assume the caller does error handling itself if it has not requested | 
|  | * any retries, and thus be quiet. | 
|  | */ | 
|  | int report_errors = retries; | 
|  |  | 
|  | for (;;) { | 
|  | /* | 
|  | * Make sure the uguru is ready and then send the bank address, | 
|  | * after this the uguru is no longer "ready". | 
|  | */ | 
|  | if (abituguru_ready(data) != 0) | 
|  | return -EIO; | 
|  | outb(bank_addr, data->addr + ABIT_UGURU_DATA); | 
|  | data->uguru_ready = 0; | 
|  |  | 
|  | /* | 
|  | * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again | 
|  | * and send the sensor addr | 
|  | */ | 
|  | if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { | 
|  | if (retries) { | 
|  | ABIT_UGURU_DEBUG(3, "timeout exceeded " | 
|  | "waiting for more input state, %d " | 
|  | "tries remaining\n", retries); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_timeout(ABIT_UGURU_RETRY_DELAY); | 
|  | retries--; | 
|  | continue; | 
|  | } | 
|  | if (report_errors) | 
|  | ABIT_UGURU_DEBUG(1, "timeout exceeded " | 
|  | "waiting for more input state " | 
|  | "(bank: %d)\n", (int)bank_addr); | 
|  | return -EBUSY; | 
|  | } | 
|  | outb(sensor_addr, data->addr + ABIT_UGURU_CMD); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read count bytes from sensor sensor_addr in bank bank_addr and store the | 
|  | * result in buf, retry the send address part of the read retries times. | 
|  | */ | 
|  | static int abituguru_read(struct abituguru_data *data, | 
|  | u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Send the address */ | 
|  | i = abituguru_send_address(data, bank_addr, sensor_addr, retries); | 
|  | if (i) | 
|  | return i; | 
|  |  | 
|  | /* And read the data */ | 
|  | for (i = 0; i < count; i++) { | 
|  | if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { | 
|  | ABIT_UGURU_DEBUG(retries ? 1 : 3, | 
|  | "timeout exceeded waiting for " | 
|  | "read state (bank: %d, sensor: %d)\n", | 
|  | (int)bank_addr, (int)sensor_addr); | 
|  | break; | 
|  | } | 
|  | buf[i] = inb(data->addr + ABIT_UGURU_CMD); | 
|  | } | 
|  |  | 
|  | /* Last put the chip back in ready state */ | 
|  | abituguru_ready(data); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send | 
|  | * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. | 
|  | */ | 
|  | static int abituguru_write(struct abituguru_data *data, | 
|  | u8 bank_addr, u8 sensor_addr, u8 *buf, int count) | 
|  | { | 
|  | /* | 
|  | * We use the ready timeout as we have to wait for 0xAC just like the | 
|  | * ready function | 
|  | */ | 
|  | int i, timeout = ABIT_UGURU_READY_TIMEOUT; | 
|  |  | 
|  | /* Send the address */ | 
|  | i = abituguru_send_address(data, bank_addr, sensor_addr, | 
|  | ABIT_UGURU_MAX_RETRIES); | 
|  | if (i) | 
|  | return i; | 
|  |  | 
|  | /* And write the data */ | 
|  | for (i = 0; i < count; i++) { | 
|  | if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { | 
|  | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " | 
|  | "write state (bank: %d, sensor: %d)\n", | 
|  | (int)bank_addr, (int)sensor_addr); | 
|  | break; | 
|  | } | 
|  | outb(buf[i], data->addr + ABIT_UGURU_CMD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we need to wait till the chip is ready to be read again, | 
|  | * so that we can read 0xAC as confirmation that our write has | 
|  | * succeeded. | 
|  | */ | 
|  | if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { | 
|  | ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " | 
|  | "after write (bank: %d, sensor: %d)\n", (int)bank_addr, | 
|  | (int)sensor_addr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Cmd port MUST be read now and should contain 0xAC */ | 
|  | while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { | 
|  | timeout--; | 
|  | if (timeout == 0) { | 
|  | ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " | 
|  | "write (bank: %d, sensor: %d)\n", | 
|  | (int)bank_addr, (int)sensor_addr); | 
|  | return -EIO; | 
|  | } | 
|  | msleep(0); | 
|  | } | 
|  |  | 
|  | /* Last put the chip back in ready state */ | 
|  | abituguru_ready(data); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detect sensor type. Temp and Volt sensors are enabled with | 
|  | * different masks and will ignore enable masks not meant for them. | 
|  | * This enables us to test what kind of sensor we're dealing with. | 
|  | * By setting the alarm thresholds so that we will always get an | 
|  | * alarm for sensor type X and then enabling the sensor as sensor type | 
|  | * X, if we then get an alarm it is a sensor of type X. | 
|  | */ | 
|  | static int __devinit | 
|  | abituguru_detect_bank1_sensor_type(struct abituguru_data *data, | 
|  | u8 sensor_addr) | 
|  | { | 
|  | u8 val, test_flag, buf[3]; | 
|  | int i, ret = -ENODEV; /* error is the most common used retval :| */ | 
|  |  | 
|  | /* If overriden by the user return the user selected type */ | 
|  | if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && | 
|  | bank1_types[sensor_addr] <= ABIT_UGURU_NC) { | 
|  | ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " | 
|  | "%d because of \"bank1_types\" module param\n", | 
|  | bank1_types[sensor_addr], (int)sensor_addr); | 
|  | return bank1_types[sensor_addr]; | 
|  | } | 
|  |  | 
|  | /* First read the sensor and the current settings */ | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, | 
|  | 1, ABIT_UGURU_MAX_RETRIES) != 1) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Test val is sane / usable for sensor type detection. */ | 
|  | if ((val < 10u) || (val > 250u)) { | 
|  | pr_warn("bank1-sensor: %d reading (%d) too close to limits, " | 
|  | "unable to determine sensor type, skipping sensor\n", | 
|  | (int)sensor_addr, (int)val); | 
|  | /* | 
|  | * assume no sensor is there for sensors for which we can't | 
|  | * determine the sensor type because their reading is too close | 
|  | * to their limits, this usually means no sensor is there. | 
|  | */ | 
|  | return ABIT_UGURU_NC; | 
|  | } | 
|  |  | 
|  | ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); | 
|  | /* | 
|  | * Volt sensor test, enable volt low alarm, set min value ridicously | 
|  | * high, or vica versa if the reading is very high. If its a volt | 
|  | * sensor this should always give us an alarm. | 
|  | */ | 
|  | if (val <= 240u) { | 
|  | buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; | 
|  | buf[1] = 245; | 
|  | buf[2] = 250; | 
|  | test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; | 
|  | } else { | 
|  | buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; | 
|  | buf[1] = 5; | 
|  | buf[2] = 10; | 
|  | test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; | 
|  | } | 
|  |  | 
|  | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | 
|  | buf, 3) != 3) | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | /* | 
|  | * Now we need 20 ms to give the uguru time to read the sensors | 
|  | * and raise a voltage alarm | 
|  | */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_timeout(HZ/50); | 
|  | /* Check for alarm and check the alarm is a volt low alarm. */ | 
|  | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, | 
|  | ABIT_UGURU_MAX_RETRIES) != 3) | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | 
|  | sensor_addr, buf, 3, | 
|  | ABIT_UGURU_MAX_RETRIES) != 3) | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | if (buf[0] & test_flag) { | 
|  | ABIT_UGURU_DEBUG(2, "  found volt sensor\n"); | 
|  | ret = ABIT_UGURU_IN_SENSOR; | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | } else | 
|  | ABIT_UGURU_DEBUG(2, "  alarm raised during volt " | 
|  | "sensor test, but volt range flag not set\n"); | 
|  | } else | 
|  | ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor " | 
|  | "test\n"); | 
|  |  | 
|  | /* | 
|  | * Temp sensor test, enable sensor as a temp sensor, set beep value | 
|  | * ridicously low (but not too low, otherwise uguru ignores it). | 
|  | * If its a temp sensor this should always give us an alarm. | 
|  | */ | 
|  | buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; | 
|  | buf[1] = 5; | 
|  | buf[2] = 10; | 
|  | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, | 
|  | buf, 3) != 3) | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | /* | 
|  | * Now we need 50 ms to give the uguru time to read the sensors | 
|  | * and raise a temp alarm | 
|  | */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_timeout(HZ/20); | 
|  | /* Check for alarm and check the alarm is a temp high alarm. */ | 
|  | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, | 
|  | ABIT_UGURU_MAX_RETRIES) != 3) | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | 
|  | sensor_addr, buf, 3, | 
|  | ABIT_UGURU_MAX_RETRIES) != 3) | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { | 
|  | ABIT_UGURU_DEBUG(2, "  found temp sensor\n"); | 
|  | ret = ABIT_UGURU_TEMP_SENSOR; | 
|  | goto abituguru_detect_bank1_sensor_type_exit; | 
|  | } else | 
|  | ABIT_UGURU_DEBUG(2, "  alarm raised during temp " | 
|  | "sensor test, but temp high flag not set\n"); | 
|  | } else | 
|  | ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor " | 
|  | "test\n"); | 
|  |  | 
|  | ret = ABIT_UGURU_NC; | 
|  | abituguru_detect_bank1_sensor_type_exit: | 
|  | /* | 
|  | * Restore original settings, failing here is really BAD, it has been | 
|  | * reported that some BIOS-es hang when entering the uGuru menu with | 
|  | * invalid settings present in the uGuru, so we try this 3 times. | 
|  | */ | 
|  | for (i = 0; i < 3; i++) | 
|  | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, | 
|  | sensor_addr, data->bank1_settings[sensor_addr], | 
|  | 3) == 3) | 
|  | break; | 
|  | if (i == 3) { | 
|  | pr_err("Fatal error could not restore original settings. %s %s\n", | 
|  | never_happen, report_this); | 
|  | return -ENODEV; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These functions try to find out how many sensors there are in bank2 and how | 
|  | * many pwms there are. The purpose of this is to make sure that we don't give | 
|  | * the user the possibility to change settings for non-existent sensors / pwm. | 
|  | * The uGuru will happily read / write whatever memory happens to be after the | 
|  | * memory storing the PWM settings when reading/writing to a PWM which is not | 
|  | * there. Notice even if we detect a PWM which doesn't exist we normally won't | 
|  | * write to it, unless the user tries to change the settings. | 
|  | * | 
|  | * Although the uGuru allows reading (settings) from non existing bank2 | 
|  | * sensors, my version of the uGuru does seem to stop writing to them, the | 
|  | * write function above aborts in this case with: | 
|  | * "CMD reg does not hold 0xAC after write" | 
|  | * | 
|  | * Notice these 2 tests are non destructive iow read-only tests, otherwise | 
|  | * they would defeat their purpose. Although for the bank2_sensors detection a | 
|  | * read/write test would be feasible because of the reaction above, I've | 
|  | * however opted to stay on the safe side. | 
|  | */ | 
|  | static void __devinit | 
|  | abituguru_detect_no_bank2_sensors(struct abituguru_data *data) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { | 
|  | data->bank2_sensors = fan_sensors; | 
|  | ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " | 
|  | "\"fan_sensors\" module param\n", | 
|  | (int)data->bank2_sensors); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); | 
|  | for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { | 
|  | /* | 
|  | * 0x89 are the known used bits: | 
|  | * -0x80 enable shutdown | 
|  | * -0x08 enable beep | 
|  | * -0x01 enable alarm | 
|  | * All other bits should be 0, but on some motherboards | 
|  | * 0x40 (bit 6) is also high for some of the fans?? | 
|  | */ | 
|  | if (data->bank2_settings[i][0] & ~0xC9) { | 
|  | ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem " | 
|  | "to be a fan sensor: settings[0] = %02X\n", | 
|  | i, (unsigned int)data->bank2_settings[i][0]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* check if the threshold is within the allowed range */ | 
|  | if (data->bank2_settings[i][1] < | 
|  | abituguru_bank2_min_threshold) { | 
|  | ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem " | 
|  | "to be a fan sensor: the threshold (%d) is " | 
|  | "below the minimum (%d)\n", i, | 
|  | (int)data->bank2_settings[i][1], | 
|  | (int)abituguru_bank2_min_threshold); | 
|  | break; | 
|  | } | 
|  | if (data->bank2_settings[i][1] > | 
|  | abituguru_bank2_max_threshold) { | 
|  | ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem " | 
|  | "to be a fan sensor: the threshold (%d) is " | 
|  | "above the maximum (%d)\n", i, | 
|  | (int)data->bank2_settings[i][1], | 
|  | (int)abituguru_bank2_max_threshold); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | data->bank2_sensors = i; | 
|  | ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", | 
|  | (int)data->bank2_sensors); | 
|  | } | 
|  |  | 
|  | static void __devinit | 
|  | abituguru_detect_no_pwms(struct abituguru_data *data) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { | 
|  | data->pwms = pwms; | 
|  | ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " | 
|  | "\"pwms\" module param\n", (int)data->pwms); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); | 
|  | for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { | 
|  | /* | 
|  | * 0x80 is the enable bit and the low | 
|  | * nibble is which temp sensor to use, | 
|  | * the other bits should be 0 | 
|  | */ | 
|  | if (data->pwm_settings[i][0] & ~0x8F) { | 
|  | ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem " | 
|  | "to be a pwm channel: settings[0] = %02X\n", | 
|  | i, (unsigned int)data->pwm_settings[i][0]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the low nibble must correspond to one of the temp sensors | 
|  | * we've found | 
|  | */ | 
|  | for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; | 
|  | j++) { | 
|  | if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == | 
|  | (data->pwm_settings[i][0] & 0x0F)) | 
|  | break; | 
|  | } | 
|  | if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { | 
|  | ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem " | 
|  | "to be a pwm channel: %d is not a valid temp " | 
|  | "sensor address\n", i, | 
|  | data->pwm_settings[i][0] & 0x0F); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* check if all other settings are within the allowed range */ | 
|  | for (j = 1; j < 5; j++) { | 
|  | u8 min; | 
|  | /* special case pwm1 min pwm% */ | 
|  | if ((i == 0) && ((j == 1) || (j == 2))) | 
|  | min = 77; | 
|  | else | 
|  | min = abituguru_pwm_min[j]; | 
|  | if (data->pwm_settings[i][j] < min) { | 
|  | ABIT_UGURU_DEBUG(2, "  pwm channel %d does " | 
|  | "not seem to be a pwm channel: " | 
|  | "setting %d (%d) is below the minimum " | 
|  | "value (%d)\n", i, j, | 
|  | (int)data->pwm_settings[i][j], | 
|  | (int)min); | 
|  | goto abituguru_detect_no_pwms_exit; | 
|  | } | 
|  | if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { | 
|  | ABIT_UGURU_DEBUG(2, "  pwm channel %d does " | 
|  | "not seem to be a pwm channel: " | 
|  | "setting %d (%d) is above the maximum " | 
|  | "value (%d)\n", i, j, | 
|  | (int)data->pwm_settings[i][j], | 
|  | (int)abituguru_pwm_max[j]); | 
|  | goto abituguru_detect_no_pwms_exit; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check that min temp < max temp and min pwm < max pwm */ | 
|  | if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { | 
|  | ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem " | 
|  | "to be a pwm channel: min pwm (%d) >= " | 
|  | "max pwm (%d)\n", i, | 
|  | (int)data->pwm_settings[i][1], | 
|  | (int)data->pwm_settings[i][2]); | 
|  | break; | 
|  | } | 
|  | if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { | 
|  | ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem " | 
|  | "to be a pwm channel: min temp (%d) >= " | 
|  | "max temp (%d)\n", i, | 
|  | (int)data->pwm_settings[i][3], | 
|  | (int)data->pwm_settings[i][4]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | abituguru_detect_no_pwms_exit: | 
|  | data->pwms = i; | 
|  | ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Following are the sysfs callback functions. These functions expect: | 
|  | * sensor_device_attribute_2->index:   sensor address/offset in the bank | 
|  | * sensor_device_attribute_2->nr:      register offset, bitmask or NA. | 
|  | */ | 
|  | static struct abituguru_data *abituguru_update_device(struct device *dev); | 
|  |  | 
|  | static ssize_t show_bank1_value(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = abituguru_update_device(dev); | 
|  | if (!data) | 
|  | return -EIO; | 
|  | return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * | 
|  | data->bank1_max_value[attr->index] + 128) / 255); | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank1_setting(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | return sprintf(buf, "%d\n", | 
|  | (data->bank1_settings[attr->index][attr->nr] * | 
|  | data->bank1_max_value[attr->index] + 128) / 255); | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank2_value(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = abituguru_update_device(dev); | 
|  | if (!data) | 
|  | return -EIO; | 
|  | return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * | 
|  | ABIT_UGURU_FAN_MAX + 128) / 255); | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank2_setting(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | return sprintf(buf, "%d\n", | 
|  | (data->bank2_settings[attr->index][attr->nr] * | 
|  | ABIT_UGURU_FAN_MAX + 128) / 255); | 
|  | } | 
|  |  | 
|  | static ssize_t store_bank1_setting(struct device *dev, struct device_attribute | 
|  | *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | unsigned long val; | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = count; | 
|  | val = (val * 255 + data->bank1_max_value[attr->index] / 2) / | 
|  | data->bank1_max_value[attr->index]; | 
|  | if (val > 255) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | if (data->bank1_settings[attr->index][attr->nr] != val) { | 
|  | u8 orig_val = data->bank1_settings[attr->index][attr->nr]; | 
|  | data->bank1_settings[attr->index][attr->nr] = val; | 
|  | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, | 
|  | attr->index, data->bank1_settings[attr->index], | 
|  | 3) <= attr->nr) { | 
|  | data->bank1_settings[attr->index][attr->nr] = orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t store_bank2_setting(struct device *dev, struct device_attribute | 
|  | *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | unsigned long val; | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = count; | 
|  | val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; | 
|  |  | 
|  | /* this check can be done before taking the lock */ | 
|  | if (val < abituguru_bank2_min_threshold || | 
|  | val > abituguru_bank2_max_threshold) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | if (data->bank2_settings[attr->index][attr->nr] != val) { | 
|  | u8 orig_val = data->bank2_settings[attr->index][attr->nr]; | 
|  | data->bank2_settings[attr->index][attr->nr] = val; | 
|  | if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, | 
|  | attr->index, data->bank2_settings[attr->index], | 
|  | 2) <= attr->nr) { | 
|  | data->bank2_settings[attr->index][attr->nr] = orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank1_alarm(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = abituguru_update_device(dev); | 
|  | if (!data) | 
|  | return -EIO; | 
|  | /* | 
|  | * See if the alarm bit for this sensor is set, and if the | 
|  | * alarm matches the type of alarm we're looking for (for volt | 
|  | * it can be either low or high). The type is stored in a few | 
|  | * readonly bits in the settings part of the relevant sensor. | 
|  | * The bitmask of the type is passed to us in attr->nr. | 
|  | */ | 
|  | if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && | 
|  | (data->bank1_settings[attr->index][0] & attr->nr)) | 
|  | return sprintf(buf, "1\n"); | 
|  | else | 
|  | return sprintf(buf, "0\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank2_alarm(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = abituguru_update_device(dev); | 
|  | if (!data) | 
|  | return -EIO; | 
|  | if (data->alarms[2] & (0x01 << attr->index)) | 
|  | return sprintf(buf, "1\n"); | 
|  | else | 
|  | return sprintf(buf, "0\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank1_mask(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | if (data->bank1_settings[attr->index][0] & attr->nr) | 
|  | return sprintf(buf, "1\n"); | 
|  | else | 
|  | return sprintf(buf, "0\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t show_bank2_mask(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | if (data->bank2_settings[attr->index][0] & attr->nr) | 
|  | return sprintf(buf, "1\n"); | 
|  | else | 
|  | return sprintf(buf, "0\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t store_bank1_mask(struct device *dev, | 
|  | struct device_attribute *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | ssize_t ret; | 
|  | u8 orig_val; | 
|  | unsigned long mask; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &mask); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = count; | 
|  | mutex_lock(&data->update_lock); | 
|  | orig_val = data->bank1_settings[attr->index][0]; | 
|  |  | 
|  | if (mask) | 
|  | data->bank1_settings[attr->index][0] |= attr->nr; | 
|  | else | 
|  | data->bank1_settings[attr->index][0] &= ~attr->nr; | 
|  |  | 
|  | if ((data->bank1_settings[attr->index][0] != orig_val) && | 
|  | (abituguru_write(data, | 
|  | ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, | 
|  | data->bank1_settings[attr->index], 3) < 1)) { | 
|  | data->bank1_settings[attr->index][0] = orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t store_bank2_mask(struct device *dev, | 
|  | struct device_attribute *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | ssize_t ret; | 
|  | u8 orig_val; | 
|  | unsigned long mask; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &mask); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = count; | 
|  | mutex_lock(&data->update_lock); | 
|  | orig_val = data->bank2_settings[attr->index][0]; | 
|  |  | 
|  | if (mask) | 
|  | data->bank2_settings[attr->index][0] |= attr->nr; | 
|  | else | 
|  | data->bank2_settings[attr->index][0] &= ~attr->nr; | 
|  |  | 
|  | if ((data->bank2_settings[attr->index][0] != orig_val) && | 
|  | (abituguru_write(data, | 
|  | ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, | 
|  | data->bank2_settings[attr->index], 2) < 1)) { | 
|  | data->bank2_settings[attr->index][0] = orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Fan PWM (speed control) */ | 
|  | static ssize_t show_pwm_setting(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * | 
|  | abituguru_pwm_settings_multiplier[attr->nr]); | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_setting(struct device *dev, struct device_attribute | 
|  | *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | u8 min; | 
|  | unsigned long val; | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = count; | 
|  | val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / | 
|  | abituguru_pwm_settings_multiplier[attr->nr]; | 
|  |  | 
|  | /* special case pwm1 min pwm% */ | 
|  | if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) | 
|  | min = 77; | 
|  | else | 
|  | min = abituguru_pwm_min[attr->nr]; | 
|  |  | 
|  | /* this check can be done before taking the lock */ | 
|  | if (val < min || val > abituguru_pwm_max[attr->nr]) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | /* this check needs to be done after taking the lock */ | 
|  | if ((attr->nr & 1) && | 
|  | (val >= data->pwm_settings[attr->index][attr->nr + 1])) | 
|  | ret = -EINVAL; | 
|  | else if (!(attr->nr & 1) && | 
|  | (val <= data->pwm_settings[attr->index][attr->nr - 1])) | 
|  | ret = -EINVAL; | 
|  | else if (data->pwm_settings[attr->index][attr->nr] != val) { | 
|  | u8 orig_val = data->pwm_settings[attr->index][attr->nr]; | 
|  | data->pwm_settings[attr->index][attr->nr] = val; | 
|  | if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | 
|  | attr->index, data->pwm_settings[attr->index], | 
|  | 5) <= attr->nr) { | 
|  | data->pwm_settings[attr->index][attr->nr] = | 
|  | orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t show_pwm_sensor(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | int i; | 
|  | /* | 
|  | * We need to walk to the temp sensor addresses to find what | 
|  | * the userspace id of the configured temp sensor is. | 
|  | */ | 
|  | for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) | 
|  | if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == | 
|  | (data->pwm_settings[attr->index][0] & 0x0F)) | 
|  | return sprintf(buf, "%d\n", i+1); | 
|  |  | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute | 
|  | *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | ssize_t ret; | 
|  | unsigned long val; | 
|  | u8 orig_val; | 
|  | u8 address; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) | 
|  | return -EINVAL; | 
|  |  | 
|  | val -= 1; | 
|  | ret = count; | 
|  | mutex_lock(&data->update_lock); | 
|  | orig_val = data->pwm_settings[attr->index][0]; | 
|  | address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; | 
|  | data->pwm_settings[attr->index][0] &= 0xF0; | 
|  | data->pwm_settings[attr->index][0] |= address; | 
|  | if (data->pwm_settings[attr->index][0] != orig_val) { | 
|  | if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, | 
|  | data->pwm_settings[attr->index], 5) < 1) { | 
|  | data->pwm_settings[attr->index][0] = orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t show_pwm_enable(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | int res = 0; | 
|  | if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) | 
|  | res = 2; | 
|  | return sprintf(buf, "%d\n", res); | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_enable(struct device *dev, struct device_attribute | 
|  | *devattr, const char *buf, size_t count) | 
|  | { | 
|  | struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | u8 orig_val; | 
|  | ssize_t ret; | 
|  | unsigned long user_val; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &user_val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = count; | 
|  | mutex_lock(&data->update_lock); | 
|  | orig_val = data->pwm_settings[attr->index][0]; | 
|  | switch (user_val) { | 
|  | case 0: | 
|  | data->pwm_settings[attr->index][0] &= | 
|  | ~ABIT_UGURU_FAN_PWM_ENABLE; | 
|  | break; | 
|  | case 2: | 
|  | data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if ((data->pwm_settings[attr->index][0] != orig_val) && | 
|  | (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, | 
|  | attr->index, data->pwm_settings[attr->index], | 
|  | 5) < 1)) { | 
|  | data->pwm_settings[attr->index][0] = orig_val; | 
|  | ret = -EIO; | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t show_name(struct device *dev, | 
|  | struct device_attribute *devattr, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%s\n", ABIT_UGURU_NAME); | 
|  | } | 
|  |  | 
|  | /* Sysfs attr templates, the real entries are generated automatically. */ | 
|  | static const | 
|  | struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { | 
|  | { | 
|  | SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), | 
|  | SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, | 
|  | store_bank1_setting, 1, 0), | 
|  | SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, | 
|  | ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), | 
|  | SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, | 
|  | store_bank1_setting, 2, 0), | 
|  | SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, | 
|  | ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), | 
|  | SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), | 
|  | SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | 
|  | SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), | 
|  | SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), | 
|  | }, { | 
|  | SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), | 
|  | SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, | 
|  | ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), | 
|  | SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, | 
|  | store_bank1_setting, 1, 0), | 
|  | SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, | 
|  | store_bank1_setting, 2, 0), | 
|  | SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), | 
|  | SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | 
|  | SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, | 
|  | store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { | 
|  | SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), | 
|  | SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), | 
|  | SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, | 
|  | store_bank2_setting, 1, 0), | 
|  | SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, | 
|  | store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), | 
|  | SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, | 
|  | store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), | 
|  | SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, | 
|  | store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), | 
|  | }; | 
|  |  | 
|  | static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { | 
|  | SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, | 
|  | store_pwm_enable, 0, 0), | 
|  | SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, | 
|  | store_pwm_sensor, 0, 0), | 
|  | SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, | 
|  | store_pwm_setting, 1, 0), | 
|  | SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, | 
|  | store_pwm_setting, 2, 0), | 
|  | SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, | 
|  | store_pwm_setting, 3, 0), | 
|  | SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, | 
|  | store_pwm_setting, 4, 0), | 
|  | }; | 
|  |  | 
|  | static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { | 
|  | SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), | 
|  | }; | 
|  |  | 
|  | static int __devinit abituguru_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct abituguru_data *data; | 
|  | int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; | 
|  | char *sysfs_filename; | 
|  |  | 
|  | /* | 
|  | * El weirdo probe order, to keep the sysfs order identical to the | 
|  | * BIOS and window-appliction listing order. | 
|  | */ | 
|  | const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { | 
|  | 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, | 
|  | 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; | 
|  |  | 
|  | data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; | 
|  | mutex_init(&data->update_lock); | 
|  | platform_set_drvdata(pdev, data); | 
|  |  | 
|  | /* See if the uGuru is ready */ | 
|  | if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) | 
|  | data->uguru_ready = 1; | 
|  |  | 
|  | /* | 
|  | * Completely read the uGuru this has 2 purposes: | 
|  | * - testread / see if one really is there. | 
|  | * - make an in memory copy of all the uguru settings for future use. | 
|  | */ | 
|  | if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, | 
|  | data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) | 
|  | goto abituguru_probe_error; | 
|  |  | 
|  | for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, | 
|  | &data->bank1_value[i], 1, | 
|  | ABIT_UGURU_MAX_RETRIES) != 1) | 
|  | goto abituguru_probe_error; | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, | 
|  | data->bank1_settings[i], 3, | 
|  | ABIT_UGURU_MAX_RETRIES) != 3) | 
|  | goto abituguru_probe_error; | 
|  | } | 
|  | /* | 
|  | * Note: We don't know how many bank2 sensors / pwms there really are, | 
|  | * but in order to "detect" this we need to read the maximum amount | 
|  | * anyways. If we read sensors/pwms not there we'll just read crap | 
|  | * this can't hurt. We need the detection because we don't want | 
|  | * unwanted writes, which will hurt! | 
|  | */ | 
|  | for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, | 
|  | &data->bank2_value[i], 1, | 
|  | ABIT_UGURU_MAX_RETRIES) != 1) | 
|  | goto abituguru_probe_error; | 
|  | if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, | 
|  | data->bank2_settings[i], 2, | 
|  | ABIT_UGURU_MAX_RETRIES) != 2) | 
|  | goto abituguru_probe_error; | 
|  | } | 
|  | for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { | 
|  | if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, | 
|  | data->pwm_settings[i], 5, | 
|  | ABIT_UGURU_MAX_RETRIES) != 5) | 
|  | goto abituguru_probe_error; | 
|  | } | 
|  | data->last_updated = jiffies; | 
|  |  | 
|  | /* Detect sensor types and fill the sysfs attr for bank1 */ | 
|  | sysfs_attr_i = 0; | 
|  | sysfs_filename = data->sysfs_names; | 
|  | sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; | 
|  | for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { | 
|  | res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); | 
|  | if (res < 0) | 
|  | goto abituguru_probe_error; | 
|  | if (res == ABIT_UGURU_NC) | 
|  | continue; | 
|  |  | 
|  | /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ | 
|  | for (j = 0; j < (res ? 7 : 9); j++) { | 
|  | used = snprintf(sysfs_filename, sysfs_names_free, | 
|  | abituguru_sysfs_bank1_templ[res][j].dev_attr. | 
|  | attr.name, data->bank1_sensors[res] + res) | 
|  | + 1; | 
|  | data->sysfs_attr[sysfs_attr_i] = | 
|  | abituguru_sysfs_bank1_templ[res][j]; | 
|  | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | 
|  | sysfs_filename; | 
|  | data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; | 
|  | sysfs_filename += used; | 
|  | sysfs_names_free -= used; | 
|  | sysfs_attr_i++; | 
|  | } | 
|  | data->bank1_max_value[probe_order[i]] = | 
|  | abituguru_bank1_max_value[res]; | 
|  | data->bank1_address[res][data->bank1_sensors[res]] = | 
|  | probe_order[i]; | 
|  | data->bank1_sensors[res]++; | 
|  | } | 
|  | /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ | 
|  | abituguru_detect_no_bank2_sensors(data); | 
|  | for (i = 0; i < data->bank2_sensors; i++) { | 
|  | for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { | 
|  | used = snprintf(sysfs_filename, sysfs_names_free, | 
|  | abituguru_sysfs_fan_templ[j].dev_attr.attr.name, | 
|  | i + 1) + 1; | 
|  | data->sysfs_attr[sysfs_attr_i] = | 
|  | abituguru_sysfs_fan_templ[j]; | 
|  | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | 
|  | sysfs_filename; | 
|  | data->sysfs_attr[sysfs_attr_i].index = i; | 
|  | sysfs_filename += used; | 
|  | sysfs_names_free -= used; | 
|  | sysfs_attr_i++; | 
|  | } | 
|  | } | 
|  | /* Detect number of sensors and fill the sysfs attr for pwms */ | 
|  | abituguru_detect_no_pwms(data); | 
|  | for (i = 0; i < data->pwms; i++) { | 
|  | for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { | 
|  | used = snprintf(sysfs_filename, sysfs_names_free, | 
|  | abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, | 
|  | i + 1) + 1; | 
|  | data->sysfs_attr[sysfs_attr_i] = | 
|  | abituguru_sysfs_pwm_templ[j]; | 
|  | data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = | 
|  | sysfs_filename; | 
|  | data->sysfs_attr[sysfs_attr_i].index = i; | 
|  | sysfs_filename += used; | 
|  | sysfs_names_free -= used; | 
|  | sysfs_attr_i++; | 
|  | } | 
|  | } | 
|  | /* Fail safe check, this should never happen! */ | 
|  | if (sysfs_names_free < 0) { | 
|  | pr_err("Fatal error ran out of space for sysfs attr names. %s %s", | 
|  | never_happen, report_this); | 
|  | res = -ENAMETOOLONG; | 
|  | goto abituguru_probe_error; | 
|  | } | 
|  | pr_info("found Abit uGuru\n"); | 
|  |  | 
|  | /* Register sysfs hooks */ | 
|  | for (i = 0; i < sysfs_attr_i; i++) { | 
|  | res = device_create_file(&pdev->dev, | 
|  | &data->sysfs_attr[i].dev_attr); | 
|  | if (res) | 
|  | goto abituguru_probe_error; | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { | 
|  | res = device_create_file(&pdev->dev, | 
|  | &abituguru_sysfs_attr[i].dev_attr); | 
|  | if (res) | 
|  | goto abituguru_probe_error; | 
|  | } | 
|  |  | 
|  | data->hwmon_dev = hwmon_device_register(&pdev->dev); | 
|  | if (!IS_ERR(data->hwmon_dev)) | 
|  | return 0; /* success */ | 
|  |  | 
|  | res = PTR_ERR(data->hwmon_dev); | 
|  | abituguru_probe_error: | 
|  | for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) | 
|  | device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); | 
|  | for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) | 
|  | device_remove_file(&pdev->dev, | 
|  | &abituguru_sysfs_attr[i].dev_attr); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | kfree(data); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int __devexit abituguru_remove(struct platform_device *pdev) | 
|  | { | 
|  | int i; | 
|  | struct abituguru_data *data = platform_get_drvdata(pdev); | 
|  |  | 
|  | hwmon_device_unregister(data->hwmon_dev); | 
|  | for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) | 
|  | device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); | 
|  | for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) | 
|  | device_remove_file(&pdev->dev, | 
|  | &abituguru_sysfs_attr[i].dev_attr); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | kfree(data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct abituguru_data *abituguru_update_device(struct device *dev) | 
|  | { | 
|  | int i, err; | 
|  | struct abituguru_data *data = dev_get_drvdata(dev); | 
|  | /* fake a complete successful read if no update necessary. */ | 
|  | char success = 1; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | if (time_after(jiffies, data->last_updated + HZ)) { | 
|  | success = 0; | 
|  | err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, | 
|  | data->alarms, 3, 0); | 
|  | if (err != 3) | 
|  | goto LEAVE_UPDATE; | 
|  | for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { | 
|  | err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, | 
|  | i, &data->bank1_value[i], 1, 0); | 
|  | if (err != 1) | 
|  | goto LEAVE_UPDATE; | 
|  | err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, | 
|  | i, data->bank1_settings[i], 3, 0); | 
|  | if (err != 3) | 
|  | goto LEAVE_UPDATE; | 
|  | } | 
|  | for (i = 0; i < data->bank2_sensors; i++) { | 
|  | err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, | 
|  | &data->bank2_value[i], 1, 0); | 
|  | if (err != 1) | 
|  | goto LEAVE_UPDATE; | 
|  | } | 
|  | /* success! */ | 
|  | success = 1; | 
|  | data->update_timeouts = 0; | 
|  | LEAVE_UPDATE: | 
|  | /* handle timeout condition */ | 
|  | if (!success && (err == -EBUSY || err >= 0)) { | 
|  | /* No overflow please */ | 
|  | if (data->update_timeouts < 255u) | 
|  | data->update_timeouts++; | 
|  | if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { | 
|  | ABIT_UGURU_DEBUG(3, "timeout exceeded, will " | 
|  | "try again next update\n"); | 
|  | /* Just a timeout, fake a successful read */ | 
|  | success = 1; | 
|  | } else | 
|  | ABIT_UGURU_DEBUG(1, "timeout exceeded %d " | 
|  | "times waiting for more input state\n", | 
|  | (int)data->update_timeouts); | 
|  | } | 
|  | /* On success set last_updated */ | 
|  | if (success) | 
|  | data->last_updated = jiffies; | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | if (success) | 
|  | return data; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int abituguru_suspend(struct platform_device *pdev, pm_message_t state) | 
|  | { | 
|  | struct abituguru_data *data = platform_get_drvdata(pdev); | 
|  | /* | 
|  | * make sure all communications with the uguru are done and no new | 
|  | * ones are started | 
|  | */ | 
|  | mutex_lock(&data->update_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int abituguru_resume(struct platform_device *pdev) | 
|  | { | 
|  | struct abituguru_data *data = platform_get_drvdata(pdev); | 
|  | /* See if the uGuru is still ready */ | 
|  | if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) | 
|  | data->uguru_ready = 0; | 
|  | mutex_unlock(&data->update_lock); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define abituguru_suspend	NULL | 
|  | #define abituguru_resume	NULL | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | static struct platform_driver abituguru_driver = { | 
|  | .driver = { | 
|  | .owner	= THIS_MODULE, | 
|  | .name	= ABIT_UGURU_NAME, | 
|  | }, | 
|  | .probe		= abituguru_probe, | 
|  | .remove		= __devexit_p(abituguru_remove), | 
|  | .suspend	= abituguru_suspend, | 
|  | .resume		= abituguru_resume, | 
|  | }; | 
|  |  | 
|  | static int __init abituguru_detect(void) | 
|  | { | 
|  | /* | 
|  | * See if there is an uguru there. After a reboot uGuru will hold 0x00 | 
|  | * at DATA and 0xAC, when this driver has already been loaded once | 
|  | * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either | 
|  | * scenario but some will hold 0x00. | 
|  | * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 | 
|  | * after reading CMD first, so CMD must be read first! | 
|  | */ | 
|  | u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); | 
|  | u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); | 
|  | if (((data_val == 0x00) || (data_val == 0x08)) && | 
|  | ((cmd_val == 0x00) || (cmd_val == 0xAC))) | 
|  | return ABIT_UGURU_BASE; | 
|  |  | 
|  | ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " | 
|  | "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); | 
|  |  | 
|  | if (force) { | 
|  | pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); | 
|  | return ABIT_UGURU_BASE; | 
|  | } | 
|  |  | 
|  | /* No uGuru found */ | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static struct platform_device *abituguru_pdev; | 
|  |  | 
|  | static int __init abituguru_init(void) | 
|  | { | 
|  | int address, err; | 
|  | struct resource res = { .flags = IORESOURCE_IO }; | 
|  | const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); | 
|  |  | 
|  | /* safety check, refuse to load on non Abit motherboards */ | 
|  | if (!force && (!board_vendor || | 
|  | strcmp(board_vendor, "http://www.abit.com.tw/"))) | 
|  | return -ENODEV; | 
|  |  | 
|  | address = abituguru_detect(); | 
|  | if (address < 0) | 
|  | return address; | 
|  |  | 
|  | err = platform_driver_register(&abituguru_driver); | 
|  | if (err) | 
|  | goto exit; | 
|  |  | 
|  | abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); | 
|  | if (!abituguru_pdev) { | 
|  | pr_err("Device allocation failed\n"); | 
|  | err = -ENOMEM; | 
|  | goto exit_driver_unregister; | 
|  | } | 
|  |  | 
|  | res.start = address; | 
|  | res.end = address + ABIT_UGURU_REGION_LENGTH - 1; | 
|  | res.name = ABIT_UGURU_NAME; | 
|  |  | 
|  | err = platform_device_add_resources(abituguru_pdev, &res, 1); | 
|  | if (err) { | 
|  | pr_err("Device resource addition failed (%d)\n", err); | 
|  | goto exit_device_put; | 
|  | } | 
|  |  | 
|  | err = platform_device_add(abituguru_pdev); | 
|  | if (err) { | 
|  | pr_err("Device addition failed (%d)\n", err); | 
|  | goto exit_device_put; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_device_put: | 
|  | platform_device_put(abituguru_pdev); | 
|  | exit_driver_unregister: | 
|  | platform_driver_unregister(&abituguru_driver); | 
|  | exit: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit abituguru_exit(void) | 
|  | { | 
|  | platform_device_unregister(abituguru_pdev); | 
|  | platform_driver_unregister(&abituguru_driver); | 
|  | } | 
|  |  | 
|  | MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); | 
|  | MODULE_DESCRIPTION("Abit uGuru Sensor device"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | module_init(abituguru_init); | 
|  | module_exit(abituguru_exit); |