|  | /* Return arc hyperbole sine for double value, with the imaginary part | 
|  | of the result possibly adjusted for use in computing other | 
|  | functions. | 
|  | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include <complex.h> | 
|  | #include <math.h> | 
|  | #include <math_private.h> | 
|  | #include <float.h> | 
|  |  | 
|  | /* Return the complex inverse hyperbolic sine of finite nonzero Z, | 
|  | with the imaginary part of the result subtracted from pi/2 if ADJ | 
|  | is nonzero.  */ | 
|  |  | 
|  | __complex__ double | 
|  | __kernel_casinh (__complex__ double x, int adj) | 
|  | { | 
|  | __complex__ double res; | 
|  | double rx, ix; | 
|  | __complex__ double y; | 
|  |  | 
|  | /* Avoid cancellation by reducing to the first quadrant.  */ | 
|  | rx = fabs (__real__ x); | 
|  | ix = fabs (__imag__ x); | 
|  |  | 
|  | if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON) | 
|  | { | 
|  | /* For large x in the first quadrant, x + csqrt (1 + x * x) | 
|  | is sufficiently close to 2 * x to make no significant | 
|  | difference to the result; avoid possible overflow from | 
|  | the squaring and addition.  */ | 
|  | __real__ y = rx; | 
|  | __imag__ y = ix; | 
|  |  | 
|  | if (adj) | 
|  | { | 
|  | double t = __real__ y; | 
|  | __real__ y = __copysign (__imag__ y, __imag__ x); | 
|  | __imag__ y = t; | 
|  | } | 
|  |  | 
|  | res = __clog (y); | 
|  | __real__ res += M_LN2; | 
|  | } | 
|  | else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0) | 
|  | { | 
|  | double s = __ieee754_hypot (1.0, rx); | 
|  |  | 
|  | __real__ res = __ieee754_log (rx + s); | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (s, __imag__ x); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (ix, s); | 
|  | } | 
|  | else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5) | 
|  | { | 
|  | double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0)); | 
|  |  | 
|  | __real__ res = __ieee754_log (ix + s); | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (s, rx); | 
|  | } | 
|  | else if (ix > 1.0 && ix < 1.5 && rx < 0.5) | 
|  | { | 
|  | if (rx < DBL_EPSILON * DBL_EPSILON) | 
|  | { | 
|  | double ix2m1 = (ix + 1.0) * (ix - 1.0); | 
|  | double s = __ieee754_sqrt (ix2m1); | 
|  |  | 
|  | __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (s, rx); | 
|  | } | 
|  | else | 
|  | { | 
|  | double ix2m1 = (ix + 1.0) * (ix - 1.0); | 
|  | double rx2 = rx * rx; | 
|  | double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); | 
|  | double d = __ieee754_sqrt (ix2m1 * ix2m1 + f); | 
|  | double dp = d + ix2m1; | 
|  | double dm = f / dp; | 
|  | double r1 = __ieee754_sqrt ((dm + rx2) / 2.0); | 
|  | double r2 = rx * ix / r1; | 
|  |  | 
|  | __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2, | 
|  | __imag__ x)); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); | 
|  | } | 
|  | } | 
|  | else if (ix == 1.0 && rx < 0.5) | 
|  | { | 
|  | if (rx < DBL_EPSILON / 8.0) | 
|  | { | 
|  | __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx), | 
|  | __copysign (1.0, __imag__ x)); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx)); | 
|  | } | 
|  | else | 
|  | { | 
|  | double d = rx * __ieee754_sqrt (4.0 + rx * rx); | 
|  | double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0); | 
|  | double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0); | 
|  |  | 
|  | __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2, | 
|  | __imag__ x)); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1); | 
|  | } | 
|  | } | 
|  | else if (ix < 1.0 && rx < 0.5) | 
|  | { | 
|  | if (ix >= DBL_EPSILON) | 
|  | { | 
|  | if (rx < DBL_EPSILON * DBL_EPSILON) | 
|  | { | 
|  | double onemix2 = (1.0 + ix) * (1.0 - ix); | 
|  | double s = __ieee754_sqrt (onemix2); | 
|  |  | 
|  | __real__ res = __log1p (2.0 * rx / s) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (s, __imag__ x); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (ix, s); | 
|  | } | 
|  | else | 
|  | { | 
|  | double onemix2 = (1.0 + ix) * (1.0 - ix); | 
|  | double rx2 = rx * rx; | 
|  | double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); | 
|  | double d = __ieee754_sqrt (onemix2 * onemix2 + f); | 
|  | double dp = d + onemix2; | 
|  | double dm = f / dp; | 
|  | double r1 = __ieee754_sqrt ((dp + rx2) / 2.0); | 
|  | double r2 = rx * ix / r1; | 
|  |  | 
|  | __real__ res | 
|  | = __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (rx + r1, | 
|  | __copysign (ix + r2, | 
|  | __imag__ x)); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | double s = __ieee754_hypot (1.0, rx); | 
|  |  | 
|  | __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0; | 
|  | if (adj) | 
|  | __imag__ res = __ieee754_atan2 (s, __imag__ x); | 
|  | else | 
|  | __imag__ res = __ieee754_atan2 (ix, s); | 
|  | } | 
|  | math_check_force_underflow_nonneg (__real__ res); | 
|  | } | 
|  | else | 
|  | { | 
|  | __real__ y = (rx - ix) * (rx + ix) + 1.0; | 
|  | __imag__ y = 2.0 * rx * ix; | 
|  |  | 
|  | y = __csqrt (y); | 
|  |  | 
|  | __real__ y += rx; | 
|  | __imag__ y += ix; | 
|  |  | 
|  | if (adj) | 
|  | { | 
|  | double t = __real__ y; | 
|  | __real__ y = __copysign (__imag__ y, __imag__ x); | 
|  | __imag__ y = t; | 
|  | } | 
|  |  | 
|  | res = __clog (y); | 
|  | } | 
|  |  | 
|  | /* Give results the correct sign for the original argument.  */ | 
|  | __real__ res = __copysign (__real__ res, __real__ x); | 
|  | __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x)); | 
|  |  | 
|  | return res; | 
|  | } |