|  | /* Load a shared object at runtime, relocate it, and run its initializer. | 
|  | Copyright (C) 1996-2016 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <dlfcn.h> | 
|  | #include <errno.h> | 
|  | #include <libintl.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  | #include <sys/mman.h>		/* Check whether MAP_COPY is defined.  */ | 
|  | #include <sys/param.h> | 
|  | #include <libc-lock.h> | 
|  | #include <ldsodefs.h> | 
|  | #include <caller.h> | 
|  | #include <sysdep-cancel.h> | 
|  | #include <tls.h> | 
|  | #include <stap-probe.h> | 
|  | #include <atomic.h> | 
|  |  | 
|  | #include <dl-dst.h> | 
|  |  | 
|  |  | 
|  | extern int __libc_multiple_libcs;	/* Defined in init-first.c.  */ | 
|  |  | 
|  | /* We must be careful not to leave us in an inconsistent state.  Thus we | 
|  | catch any error and re-raise it after cleaning up.  */ | 
|  |  | 
|  | struct dl_open_args | 
|  | { | 
|  | const char *file; | 
|  | int mode; | 
|  | /* This is the caller of the dlopen() function.  */ | 
|  | const void *caller_dlopen; | 
|  | /* This is the caller of _dl_open().  */ | 
|  | const void *caller_dl_open; | 
|  | struct link_map *map; | 
|  | /* Namespace ID.  */ | 
|  | Lmid_t nsid; | 
|  | /* Original parameters to the program and the current environment.  */ | 
|  | int argc; | 
|  | char **argv; | 
|  | char **env; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int | 
|  | add_to_global (struct link_map *new) | 
|  | { | 
|  | struct link_map **new_global; | 
|  | unsigned int to_add = 0; | 
|  | unsigned int cnt; | 
|  |  | 
|  | /* Count the objects we have to put in the global scope.  */ | 
|  | for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt) | 
|  | if (new->l_searchlist.r_list[cnt]->l_global == 0) | 
|  | ++to_add; | 
|  |  | 
|  | /* The symbols of the new objects and its dependencies are to be | 
|  | introduced into the global scope that will be used to resolve | 
|  | references from other dynamically-loaded objects. | 
|  |  | 
|  | The global scope is the searchlist in the main link map.  We | 
|  | extend this list if necessary.  There is one problem though: | 
|  | since this structure was allocated very early (before the libc | 
|  | is loaded) the memory it uses is allocated by the malloc()-stub | 
|  | in the ld.so.  When we come here these functions are not used | 
|  | anymore.  Instead the malloc() implementation of the libc is | 
|  | used.  But this means the block from the main map cannot be used | 
|  | in an realloc() call.  Therefore we allocate a completely new | 
|  | array the first time we have to add something to the locale scope.  */ | 
|  |  | 
|  | struct link_namespaces *ns = &GL(dl_ns)[new->l_ns]; | 
|  | if (ns->_ns_global_scope_alloc == 0) | 
|  | { | 
|  | /* This is the first dynamic object given global scope.  */ | 
|  | ns->_ns_global_scope_alloc | 
|  | = ns->_ns_main_searchlist->r_nlist + to_add + 8; | 
|  | new_global = (struct link_map **) | 
|  | malloc (ns->_ns_global_scope_alloc * sizeof (struct link_map *)); | 
|  | if (new_global == NULL) | 
|  | { | 
|  | ns->_ns_global_scope_alloc = 0; | 
|  | nomem: | 
|  | _dl_signal_error (ENOMEM, new->l_libname->name, NULL, | 
|  | N_("cannot extend global scope")); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Copy over the old entries.  */ | 
|  | ns->_ns_main_searchlist->r_list | 
|  | = memcpy (new_global, ns->_ns_main_searchlist->r_list, | 
|  | (ns->_ns_main_searchlist->r_nlist | 
|  | * sizeof (struct link_map *))); | 
|  | } | 
|  | else if (ns->_ns_main_searchlist->r_nlist + to_add | 
|  | > ns->_ns_global_scope_alloc) | 
|  | { | 
|  | /* We have to extend the existing array of link maps in the | 
|  | main map.  */ | 
|  | struct link_map **old_global | 
|  | = GL(dl_ns)[new->l_ns]._ns_main_searchlist->r_list; | 
|  | size_t new_nalloc = ((ns->_ns_global_scope_alloc + to_add) * 2); | 
|  |  | 
|  | new_global = (struct link_map **) | 
|  | malloc (new_nalloc * sizeof (struct link_map *)); | 
|  | if (new_global == NULL) | 
|  | goto nomem; | 
|  |  | 
|  | memcpy (new_global, old_global, | 
|  | ns->_ns_global_scope_alloc * sizeof (struct link_map *)); | 
|  |  | 
|  | ns->_ns_global_scope_alloc = new_nalloc; | 
|  | ns->_ns_main_searchlist->r_list = new_global; | 
|  |  | 
|  | if (!RTLD_SINGLE_THREAD_P) | 
|  | THREAD_GSCOPE_WAIT (); | 
|  |  | 
|  | free (old_global); | 
|  | } | 
|  |  | 
|  | /* Now add the new entries.  */ | 
|  | unsigned int new_nlist = ns->_ns_main_searchlist->r_nlist; | 
|  | for (cnt = 0; cnt < new->l_searchlist.r_nlist; ++cnt) | 
|  | { | 
|  | struct link_map *map = new->l_searchlist.r_list[cnt]; | 
|  |  | 
|  | if (map->l_global == 0) | 
|  | { | 
|  | map->l_global = 1; | 
|  | ns->_ns_main_searchlist->r_list[new_nlist++] = map; | 
|  |  | 
|  | /* We modify the global scope.  Report this.  */ | 
|  | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) | 
|  | _dl_debug_printf ("\nadd %s [%lu] to global scope\n", | 
|  | map->l_name, map->l_ns); | 
|  | } | 
|  | } | 
|  | atomic_write_barrier (); | 
|  | ns->_ns_main_searchlist->r_nlist = new_nlist; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Search link maps in all namespaces for the DSO that contains the object at | 
|  | address ADDR.  Returns the pointer to the link map of the matching DSO, or | 
|  | NULL if a match is not found.  */ | 
|  | struct link_map * | 
|  | internal_function | 
|  | _dl_find_dso_for_object (const ElfW(Addr) addr) | 
|  | { | 
|  | struct link_map *l; | 
|  |  | 
|  | /* Find the highest-addressed object that ADDR is not below.  */ | 
|  | for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns) | 
|  | for (l = GL(dl_ns)[ns]._ns_loaded; l != NULL; l = l->l_next) | 
|  | if (addr >= l->l_map_start && addr < l->l_map_end | 
|  | && (l->l_contiguous | 
|  | || _dl_addr_inside_object (l, (ElfW(Addr)) addr))) | 
|  | { | 
|  | assert (ns == l->l_ns); | 
|  | return l; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | rtld_hidden_def (_dl_find_dso_for_object); | 
|  |  | 
|  | static void | 
|  | dl_open_worker (void *a) | 
|  | { | 
|  | struct dl_open_args *args = a; | 
|  | const char *file = args->file; | 
|  | int mode = args->mode; | 
|  | struct link_map *call_map = NULL; | 
|  |  | 
|  | /* Check whether _dl_open() has been called from a valid DSO.  */ | 
|  | if (__check_caller (args->caller_dl_open, | 
|  | allow_libc|allow_libdl|allow_ldso) != 0) | 
|  | _dl_signal_error (0, "dlopen", NULL, N_("invalid caller")); | 
|  |  | 
|  | /* Determine the caller's map if necessary.  This is needed in case | 
|  | we have a DST, when we don't know the namespace ID we have to put | 
|  | the new object in, or when the file name has no path in which | 
|  | case we need to look along the RUNPATH/RPATH of the caller.  */ | 
|  | const char *dst = strchr (file, '$'); | 
|  | if (dst != NULL || args->nsid == __LM_ID_CALLER | 
|  | || strchr (file, '/') == NULL) | 
|  | { | 
|  | const void *caller_dlopen = args->caller_dlopen; | 
|  |  | 
|  | /* We have to find out from which object the caller is calling. | 
|  | By default we assume this is the main application.  */ | 
|  | call_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded; | 
|  |  | 
|  | struct link_map *l = _dl_find_dso_for_object ((ElfW(Addr)) caller_dlopen); | 
|  |  | 
|  | if (l) | 
|  | call_map = l; | 
|  |  | 
|  | if (args->nsid == __LM_ID_CALLER) | 
|  | args->nsid = call_map->l_ns; | 
|  | } | 
|  |  | 
|  | /* One might be tempted to assert that we are RT_CONSISTENT at this point, but that | 
|  | may not be true if this is a recursive call to dlopen.  */ | 
|  | _dl_debug_initialize (0, args->nsid); | 
|  |  | 
|  | /* Load the named object.  */ | 
|  | struct link_map *new; | 
|  | args->map = new = _dl_map_object (call_map, file, lt_loaded, 0, | 
|  | mode | __RTLD_CALLMAP, args->nsid); | 
|  |  | 
|  | /* Mark the object as not deletable if the RTLD_NODELETE flags was passed. | 
|  | Do this early so that we don't skip marking the object if it was | 
|  | already loaded.  */ | 
|  | if (__glibc_unlikely (mode & RTLD_NODELETE)) | 
|  | new->l_flags_1 |= DF_1_NODELETE; | 
|  |  | 
|  | /* If the pointer returned is NULL this means the RTLD_NOLOAD flag is | 
|  | set and the object is not already loaded.  */ | 
|  | if (new == NULL) | 
|  | { | 
|  | assert (mode & RTLD_NOLOAD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (__glibc_unlikely (mode & __RTLD_SPROF)) | 
|  | /* This happens only if we load a DSO for 'sprof'.  */ | 
|  | return; | 
|  |  | 
|  | /* This object is directly loaded.  */ | 
|  | ++new->l_direct_opencount; | 
|  |  | 
|  | /* It was already open.  */ | 
|  | if (__glibc_unlikely (new->l_searchlist.r_list != NULL)) | 
|  | { | 
|  | /* Let the user know about the opencount.  */ | 
|  | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES)) | 
|  | _dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n", | 
|  | new->l_name, new->l_ns, new->l_direct_opencount); | 
|  |  | 
|  | /* If the user requested the object to be in the global namespace | 
|  | but it is not so far, add it now.  */ | 
|  | if ((mode & RTLD_GLOBAL) && new->l_global == 0) | 
|  | (void) add_to_global (new); | 
|  |  | 
|  | assert (_dl_debug_initialize (0, args->nsid)->r_state == RT_CONSISTENT); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Load that object's dependencies.  */ | 
|  | _dl_map_object_deps (new, NULL, 0, 0, | 
|  | mode & (__RTLD_DLOPEN | RTLD_DEEPBIND | __RTLD_AUDIT)); | 
|  |  | 
|  | /* So far, so good.  Now check the versions.  */ | 
|  | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) | 
|  | if (new->l_searchlist.r_list[i]->l_real->l_versions == NULL) | 
|  | (void) _dl_check_map_versions (new->l_searchlist.r_list[i]->l_real, | 
|  | 0, 0); | 
|  |  | 
|  | #ifdef SHARED | 
|  | /* Auditing checkpoint: we have added all objects.  */ | 
|  | if (__glibc_unlikely (GLRO(dl_naudit) > 0)) | 
|  | { | 
|  | struct link_map *head = GL(dl_ns)[new->l_ns]._ns_loaded; | 
|  | /* Do not call the functions for any auditing object.  */ | 
|  | if (head->l_auditing == 0) | 
|  | { | 
|  | struct audit_ifaces *afct = GLRO(dl_audit); | 
|  | for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt) | 
|  | { | 
|  | if (afct->activity != NULL) | 
|  | afct->activity (&head->l_audit[cnt].cookie, LA_ACT_CONSISTENT); | 
|  |  | 
|  | afct = afct->next; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Notify the debugger all new objects are now ready to go.  */ | 
|  | struct r_debug *r = _dl_debug_initialize (0, args->nsid); | 
|  | r->r_state = RT_CONSISTENT; | 
|  | _dl_debug_state (); | 
|  | LIBC_PROBE (map_complete, 3, args->nsid, r, new); | 
|  |  | 
|  | /* Print scope information.  */ | 
|  | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) | 
|  | _dl_show_scope (new, 0); | 
|  |  | 
|  | /* Only do lazy relocation if `LD_BIND_NOW' is not set.  */ | 
|  | int reloc_mode = mode & __RTLD_AUDIT; | 
|  | if (GLRO(dl_lazy)) | 
|  | reloc_mode |= mode & RTLD_LAZY; | 
|  |  | 
|  | /* Sort the objects by dependency for the relocation process.  This | 
|  | allows IFUNC relocations to work and it also means copy | 
|  | relocation of dependencies are if necessary overwritten.  */ | 
|  | size_t nmaps = 0; | 
|  | struct link_map *l = new; | 
|  | do | 
|  | { | 
|  | if (! l->l_real->l_relocated) | 
|  | ++nmaps; | 
|  | l = l->l_next; | 
|  | } | 
|  | while (l != NULL); | 
|  | struct link_map *maps[nmaps]; | 
|  | nmaps = 0; | 
|  | l = new; | 
|  | do | 
|  | { | 
|  | if (! l->l_real->l_relocated) | 
|  | maps[nmaps++] = l; | 
|  | l = l->l_next; | 
|  | } | 
|  | while (l != NULL); | 
|  | if (nmaps > 1) | 
|  | { | 
|  | uint16_t seen[nmaps]; | 
|  | memset (seen, '\0', sizeof (seen)); | 
|  | size_t i = 0; | 
|  | while (1) | 
|  | { | 
|  | ++seen[i]; | 
|  | struct link_map *thisp = maps[i]; | 
|  |  | 
|  | /* Find the last object in the list for which the current one is | 
|  | a dependency and move the current object behind the object | 
|  | with the dependency.  */ | 
|  | size_t k = nmaps - 1; | 
|  | while (k > i) | 
|  | { | 
|  | struct link_map **runp = maps[k]->l_initfini; | 
|  | if (runp != NULL) | 
|  | /* Look through the dependencies of the object.  */ | 
|  | while (*runp != NULL) | 
|  | if (__glibc_unlikely (*runp++ == thisp)) | 
|  | { | 
|  | /* Move the current object to the back past the last | 
|  | object with it as the dependency.  */ | 
|  | memmove (&maps[i], &maps[i + 1], | 
|  | (k - i) * sizeof (maps[0])); | 
|  | maps[k] = thisp; | 
|  |  | 
|  | if (seen[i + 1] > nmaps - i) | 
|  | { | 
|  | ++i; | 
|  | goto next_clear; | 
|  | } | 
|  |  | 
|  | uint16_t this_seen = seen[i]; | 
|  | memmove (&seen[i], &seen[i + 1], | 
|  | (k - i) * sizeof (seen[0])); | 
|  | seen[k] = this_seen; | 
|  |  | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | --k; | 
|  | } | 
|  |  | 
|  | if (++i == nmaps) | 
|  | break; | 
|  | next_clear: | 
|  | memset (&seen[i], 0, (nmaps - i) * sizeof (seen[0])); | 
|  | next:; | 
|  | } | 
|  | } | 
|  |  | 
|  | int relocation_in_progress = 0; | 
|  |  | 
|  | for (size_t i = nmaps; i-- > 0; ) | 
|  | { | 
|  | l = maps[i]; | 
|  |  | 
|  | if (! relocation_in_progress) | 
|  | { | 
|  | /* Notify the debugger that relocations are about to happen.  */ | 
|  | LIBC_PROBE (reloc_start, 2, args->nsid, r); | 
|  | relocation_in_progress = 1; | 
|  | } | 
|  |  | 
|  | #ifdef SHARED | 
|  | if (__glibc_unlikely (GLRO(dl_profile) != NULL)) | 
|  | { | 
|  | /* If this here is the shared object which we want to profile | 
|  | make sure the profile is started.  We can find out whether | 
|  | this is necessary or not by observing the `_dl_profile_map' | 
|  | variable.  If it was NULL but is not NULL afterwards we must | 
|  | start the profiling.  */ | 
|  | struct link_map *old_profile_map = GL(dl_profile_map); | 
|  |  | 
|  | _dl_relocate_object (l, l->l_scope, reloc_mode | RTLD_LAZY, 1); | 
|  |  | 
|  | if (old_profile_map == NULL && GL(dl_profile_map) != NULL) | 
|  | { | 
|  | /* We must prepare the profiling.  */ | 
|  | _dl_start_profile (); | 
|  |  | 
|  | /* Prevent unloading the object.  */ | 
|  | GL(dl_profile_map)->l_flags_1 |= DF_1_NODELETE; | 
|  | } | 
|  | } | 
|  | else | 
|  | #endif | 
|  | _dl_relocate_object (l, l->l_scope, reloc_mode, 0); | 
|  | } | 
|  |  | 
|  | /* If the file is not loaded now as a dependency, add the search | 
|  | list of the newly loaded object to the scope.  */ | 
|  | bool any_tls = false; | 
|  | unsigned int first_static_tls = new->l_searchlist.r_nlist; | 
|  | for (unsigned int i = 0; i < new->l_searchlist.r_nlist; ++i) | 
|  | { | 
|  | struct link_map *imap = new->l_searchlist.r_list[i]; | 
|  | int from_scope = 0; | 
|  |  | 
|  | /* If the initializer has been called already, the object has | 
|  | not been loaded here and now.  */ | 
|  | if (imap->l_init_called && imap->l_type == lt_loaded) | 
|  | { | 
|  | struct r_scope_elem **runp = imap->l_scope; | 
|  | size_t cnt = 0; | 
|  |  | 
|  | while (*runp != NULL) | 
|  | { | 
|  | if (*runp == &new->l_searchlist) | 
|  | break; | 
|  | ++cnt; | 
|  | ++runp; | 
|  | } | 
|  |  | 
|  | if (*runp != NULL) | 
|  | /* Avoid duplicates.  */ | 
|  | continue; | 
|  |  | 
|  | if (__glibc_unlikely (cnt + 1 >= imap->l_scope_max)) | 
|  | { | 
|  | /* The 'r_scope' array is too small.  Allocate a new one | 
|  | dynamically.  */ | 
|  | size_t new_size; | 
|  | struct r_scope_elem **newp; | 
|  |  | 
|  | #define SCOPE_ELEMS(imap) \ | 
|  | (sizeof (imap->l_scope_mem) / sizeof (imap->l_scope_mem[0])) | 
|  |  | 
|  | if (imap->l_scope != imap->l_scope_mem | 
|  | && imap->l_scope_max < SCOPE_ELEMS (imap)) | 
|  | { | 
|  | new_size = SCOPE_ELEMS (imap); | 
|  | newp = imap->l_scope_mem; | 
|  | } | 
|  | else | 
|  | { | 
|  | new_size = imap->l_scope_max * 2; | 
|  | newp = (struct r_scope_elem **) | 
|  | malloc (new_size * sizeof (struct r_scope_elem *)); | 
|  | if (newp == NULL) | 
|  | _dl_signal_error (ENOMEM, "dlopen", NULL, | 
|  | N_("cannot create scope list")); | 
|  | } | 
|  |  | 
|  | memcpy (newp, imap->l_scope, cnt * sizeof (imap->l_scope[0])); | 
|  | struct r_scope_elem **old = imap->l_scope; | 
|  |  | 
|  | imap->l_scope = newp; | 
|  |  | 
|  | if (old != imap->l_scope_mem) | 
|  | _dl_scope_free (old); | 
|  |  | 
|  | imap->l_scope_max = new_size; | 
|  | } | 
|  |  | 
|  | /* First terminate the extended list.  Otherwise a thread | 
|  | might use the new last element and then use the garbage | 
|  | at offset IDX+1.  */ | 
|  | imap->l_scope[cnt + 1] = NULL; | 
|  | atomic_write_barrier (); | 
|  | imap->l_scope[cnt] = &new->l_searchlist; | 
|  |  | 
|  | /* Print only new scope information.  */ | 
|  | from_scope = cnt; | 
|  | } | 
|  | /* Only add TLS memory if this object is loaded now and | 
|  | therefore is not yet initialized.  */ | 
|  | else if (! imap->l_init_called | 
|  | /* Only if the module defines thread local data.  */ | 
|  | && __builtin_expect (imap->l_tls_blocksize > 0, 0)) | 
|  | { | 
|  | /* Now that we know the object is loaded successfully add | 
|  | modules containing TLS data to the slot info table.  We | 
|  | might have to increase its size.  */ | 
|  | _dl_add_to_slotinfo (imap); | 
|  |  | 
|  | if (imap->l_need_tls_init | 
|  | && first_static_tls == new->l_searchlist.r_nlist) | 
|  | first_static_tls = i; | 
|  |  | 
|  | /* We have to bump the generation counter.  */ | 
|  | any_tls = true; | 
|  | } | 
|  |  | 
|  | /* Print scope information.  */ | 
|  | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) | 
|  | _dl_show_scope (imap, from_scope); | 
|  | } | 
|  |  | 
|  | /* Bump the generation number if necessary.  */ | 
|  | if (any_tls && __builtin_expect (++GL(dl_tls_generation) == 0, 0)) | 
|  | _dl_fatal_printf (N_("\ | 
|  | TLS generation counter wrapped!  Please report this.")); | 
|  |  | 
|  | /* We need a second pass for static tls data, because _dl_update_slotinfo | 
|  | must not be run while calls to _dl_add_to_slotinfo are still pending.  */ | 
|  | for (unsigned int i = first_static_tls; i < new->l_searchlist.r_nlist; ++i) | 
|  | { | 
|  | struct link_map *imap = new->l_searchlist.r_list[i]; | 
|  |  | 
|  | if (imap->l_need_tls_init | 
|  | && ! imap->l_init_called | 
|  | && imap->l_tls_blocksize > 0) | 
|  | { | 
|  | /* For static TLS we have to allocate the memory here and | 
|  | now, but we can delay updating the DTV.  */ | 
|  | imap->l_need_tls_init = 0; | 
|  | #ifdef SHARED | 
|  | /* Update the slot information data for at least the | 
|  | generation of the DSO we are allocating data for.  */ | 
|  | _dl_update_slotinfo (imap->l_tls_modid); | 
|  | #endif | 
|  |  | 
|  | GL(dl_init_static_tls) (imap); | 
|  | assert (imap->l_need_tls_init == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Notify the debugger all new objects have been relocated.  */ | 
|  | if (relocation_in_progress) | 
|  | LIBC_PROBE (reloc_complete, 3, args->nsid, r, new); | 
|  |  | 
|  | #ifndef SHARED | 
|  | DL_STATIC_INIT (new); | 
|  | #endif | 
|  |  | 
|  | /* Run the initializer functions of new objects.  */ | 
|  | _dl_init (new, args->argc, args->argv, args->env); | 
|  |  | 
|  | /* Now we can make the new map available in the global scope.  */ | 
|  | if (mode & RTLD_GLOBAL) | 
|  | /* Move the object in the global namespace.  */ | 
|  | if (add_to_global (new) != 0) | 
|  | /* It failed.  */ | 
|  | return; | 
|  |  | 
|  | #ifndef SHARED | 
|  | /* We must be the static _dl_open in libc.a.  A static program that | 
|  | has loaded a dynamic object now has competition.  */ | 
|  | __libc_multiple_libcs = 1; | 
|  | #endif | 
|  |  | 
|  | /* Let the user know about the opencount.  */ | 
|  | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES)) | 
|  | _dl_debug_printf ("opening file=%s [%lu]; direct_opencount=%u\n\n", | 
|  | new->l_name, new->l_ns, new->l_direct_opencount); | 
|  | } | 
|  |  | 
|  |  | 
|  | void * | 
|  | _dl_open (const char *file, int mode, const void *caller_dlopen, Lmid_t nsid, | 
|  | int argc, char *argv[], char *env[]) | 
|  | { | 
|  | if ((mode & RTLD_BINDING_MASK) == 0) | 
|  | /* One of the flags must be set.  */ | 
|  | _dl_signal_error (EINVAL, file, NULL, N_("invalid mode for dlopen()")); | 
|  |  | 
|  | /* Make sure we are alone.  */ | 
|  | __rtld_lock_lock_recursive (GL(dl_load_lock)); | 
|  |  | 
|  | if (__glibc_unlikely (nsid == LM_ID_NEWLM)) | 
|  | { | 
|  | /* Find a new namespace.  */ | 
|  | for (nsid = 1; DL_NNS > 1 && nsid < GL(dl_nns); ++nsid) | 
|  | if (GL(dl_ns)[nsid]._ns_loaded == NULL) | 
|  | break; | 
|  |  | 
|  | if (__glibc_unlikely (nsid == DL_NNS)) | 
|  | { | 
|  | /* No more namespace available.  */ | 
|  | __rtld_lock_unlock_recursive (GL(dl_load_lock)); | 
|  |  | 
|  | _dl_signal_error (EINVAL, file, NULL, N_("\ | 
|  | no more namespaces available for dlmopen()")); | 
|  | } | 
|  | else if (nsid == GL(dl_nns)) | 
|  | { | 
|  | __rtld_lock_initialize (GL(dl_ns)[nsid]._ns_unique_sym_table.lock); | 
|  | ++GL(dl_nns); | 
|  | } | 
|  |  | 
|  | _dl_debug_initialize (0, nsid)->r_state = RT_CONSISTENT; | 
|  | } | 
|  | /* Never allow loading a DSO in a namespace which is empty.  Such | 
|  | direct placements is only causing problems.  Also don't allow | 
|  | loading into a namespace used for auditing.  */ | 
|  | else if (__glibc_unlikely (nsid != LM_ID_BASE && nsid != __LM_ID_CALLER) | 
|  | && (__glibc_unlikely (nsid < 0 || nsid >= GL(dl_nns)) | 
|  | /* This prevents the [NSID] index expressions from being | 
|  | evaluated, so the compiler won't think that we are | 
|  | accessing an invalid index here in the !SHARED case where | 
|  | DL_NNS is 1 and so any NSID != 0 is invalid.  */ | 
|  | || DL_NNS == 1 | 
|  | || GL(dl_ns)[nsid]._ns_nloaded == 0 | 
|  | || GL(dl_ns)[nsid]._ns_loaded->l_auditing)) | 
|  | _dl_signal_error (EINVAL, file, NULL, | 
|  | N_("invalid target namespace in dlmopen()")); | 
|  |  | 
|  | struct dl_open_args args; | 
|  | args.file = file; | 
|  | args.mode = mode; | 
|  | args.caller_dlopen = caller_dlopen; | 
|  | args.caller_dl_open = RETURN_ADDRESS (0); | 
|  | args.map = NULL; | 
|  | args.nsid = nsid; | 
|  | args.argc = argc; | 
|  | args.argv = argv; | 
|  | args.env = env; | 
|  |  | 
|  | const char *objname; | 
|  | const char *errstring; | 
|  | bool malloced; | 
|  | int errcode = _dl_catch_error (&objname, &errstring, &malloced, | 
|  | dl_open_worker, &args); | 
|  |  | 
|  | #if defined USE_LDCONFIG && !defined MAP_COPY | 
|  | /* We must unmap the cache file.  */ | 
|  | _dl_unload_cache (); | 
|  | #endif | 
|  |  | 
|  | /* See if an error occurred during loading.  */ | 
|  | if (__glibc_unlikely (errstring != NULL)) | 
|  | { | 
|  | /* Remove the object from memory.  It may be in an inconsistent | 
|  | state if relocation failed, for example.  */ | 
|  | if (args.map) | 
|  | { | 
|  | /* Maybe some of the modules which were loaded use TLS. | 
|  | Since it will be removed in the following _dl_close call | 
|  | we have to mark the dtv array as having gaps to fill the | 
|  | holes.  This is a pessimistic assumption which won't hurt | 
|  | if not true.  There is no need to do this when we are | 
|  | loading the auditing DSOs since TLS has not yet been set | 
|  | up.  */ | 
|  | if ((mode & __RTLD_AUDIT) == 0) | 
|  | GL(dl_tls_dtv_gaps) = true; | 
|  |  | 
|  | _dl_close_worker (args.map, true); | 
|  | } | 
|  |  | 
|  | assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT); | 
|  |  | 
|  | /* Release the lock.  */ | 
|  | __rtld_lock_unlock_recursive (GL(dl_load_lock)); | 
|  |  | 
|  | /* Make a local copy of the error string so that we can release the | 
|  | memory allocated for it.  */ | 
|  | size_t len_errstring = strlen (errstring) + 1; | 
|  | char *local_errstring; | 
|  | if (objname == errstring + len_errstring) | 
|  | { | 
|  | size_t total_len = len_errstring + strlen (objname) + 1; | 
|  | local_errstring = alloca (total_len); | 
|  | memcpy (local_errstring, errstring, total_len); | 
|  | objname = local_errstring + len_errstring; | 
|  | } | 
|  | else | 
|  | { | 
|  | local_errstring = alloca (len_errstring); | 
|  | memcpy (local_errstring, errstring, len_errstring); | 
|  | } | 
|  |  | 
|  | if (malloced) | 
|  | free ((char *) errstring); | 
|  |  | 
|  | /* Reraise the error.  */ | 
|  | _dl_signal_error (errcode, objname, NULL, local_errstring); | 
|  | } | 
|  |  | 
|  | assert (_dl_debug_initialize (0, args.nsid)->r_state == RT_CONSISTENT); | 
|  |  | 
|  | /* Release the lock.  */ | 
|  | __rtld_lock_unlock_recursive (GL(dl_load_lock)); | 
|  |  | 
|  | return args.map; | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | _dl_show_scope (struct link_map *l, int from) | 
|  | { | 
|  | _dl_debug_printf ("object=%s [%lu]\n", | 
|  | DSO_FILENAME (l->l_name), l->l_ns); | 
|  | if (l->l_scope != NULL) | 
|  | for (int scope_cnt = from; l->l_scope[scope_cnt] != NULL; ++scope_cnt) | 
|  | { | 
|  | _dl_debug_printf (" scope %u:", scope_cnt); | 
|  |  | 
|  | for (unsigned int cnt = 0; cnt < l->l_scope[scope_cnt]->r_nlist; ++cnt) | 
|  | if (*l->l_scope[scope_cnt]->r_list[cnt]->l_name) | 
|  | _dl_debug_printf_c (" %s", | 
|  | l->l_scope[scope_cnt]->r_list[cnt]->l_name); | 
|  | else | 
|  | _dl_debug_printf_c (" %s", RTLD_PROGNAME); | 
|  |  | 
|  | _dl_debug_printf_c ("\n"); | 
|  | } | 
|  | else | 
|  | _dl_debug_printf (" no scope\n"); | 
|  | _dl_debug_printf ("\n"); | 
|  | } | 
|  |  | 
|  | #if IS_IN (rtld) | 
|  | /* Return non-zero if ADDR lies within one of L's segments.  */ | 
|  | int | 
|  | internal_function | 
|  | _dl_addr_inside_object (struct link_map *l, const ElfW(Addr) addr) | 
|  | { | 
|  | int n = l->l_phnum; | 
|  | const ElfW(Addr) reladdr = addr - l->l_addr; | 
|  |  | 
|  | while (--n >= 0) | 
|  | if (l->l_phdr[n].p_type == PT_LOAD | 
|  | && reladdr - l->l_phdr[n].p_vaddr >= 0 | 
|  | && reladdr - l->l_phdr[n].p_vaddr < l->l_phdr[n].p_memsz) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | #endif |