| /* | 
 |  * NTP state machine interfaces and logic. | 
 |  * | 
 |  * This code was mainly moved from kernel/timer.c and kernel/time.c | 
 |  * Please see those files for relevant copyright info and historical | 
 |  * changelogs. | 
 |  */ | 
 | #include <linux/capability.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/time.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #include "tick-internal.h" | 
 |  | 
 | /* | 
 |  * NTP timekeeping variables: | 
 |  */ | 
 |  | 
 | DEFINE_RAW_SPINLOCK(ntp_lock); | 
 |  | 
 |  | 
 | /* USER_HZ period (usecs): */ | 
 | unsigned long			tick_usec = TICK_USEC; | 
 |  | 
 | /* ACTHZ period (nsecs): */ | 
 | unsigned long			tick_nsec; | 
 |  | 
 | static u64			tick_length; | 
 | static u64			tick_length_base; | 
 |  | 
 | #define MAX_TICKADJ		500LL		/* usecs */ | 
 | #define MAX_TICKADJ_SCALED \ | 
 | 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 
 |  | 
 | /* | 
 |  * phase-lock loop variables | 
 |  */ | 
 |  | 
 | /* | 
 |  * clock synchronization status | 
 |  * | 
 |  * (TIME_ERROR prevents overwriting the CMOS clock) | 
 |  */ | 
 | static int			time_state = TIME_OK; | 
 |  | 
 | /* clock status bits:							*/ | 
 | static int			time_status = STA_UNSYNC; | 
 |  | 
 | /* TAI offset (secs):							*/ | 
 | static long			time_tai; | 
 |  | 
 | /* time adjustment (nsecs):						*/ | 
 | static s64			time_offset; | 
 |  | 
 | /* pll time constant:							*/ | 
 | static long			time_constant = 2; | 
 |  | 
 | /* maximum error (usecs):						*/ | 
 | static long			time_maxerror = NTP_PHASE_LIMIT; | 
 |  | 
 | /* estimated error (usecs):						*/ | 
 | static long			time_esterror = NTP_PHASE_LIMIT; | 
 |  | 
 | /* frequency offset (scaled nsecs/secs):				*/ | 
 | static s64			time_freq; | 
 |  | 
 | /* time at last adjustment (secs):					*/ | 
 | static long			time_reftime; | 
 |  | 
 | static long			time_adjust; | 
 |  | 
 | /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/ | 
 | static s64			ntp_tick_adj; | 
 |  | 
 | #ifdef CONFIG_NTP_PPS | 
 |  | 
 | /* | 
 |  * The following variables are used when a pulse-per-second (PPS) signal | 
 |  * is available. They establish the engineering parameters of the clock | 
 |  * discipline loop when controlled by the PPS signal. | 
 |  */ | 
 | #define PPS_VALID	10	/* PPS signal watchdog max (s) */ | 
 | #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */ | 
 | #define PPS_INTMIN	2	/* min freq interval (s) (shift) */ | 
 | #define PPS_INTMAX	8	/* max freq interval (s) (shift) */ | 
 | #define PPS_INTCOUNT	4	/* number of consecutive good intervals to | 
 | 				   increase pps_shift or consecutive bad | 
 | 				   intervals to decrease it */ | 
 | #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */ | 
 |  | 
 | static int pps_valid;		/* signal watchdog counter */ | 
 | static long pps_tf[3];		/* phase median filter */ | 
 | static long pps_jitter;		/* current jitter (ns) */ | 
 | static struct timespec pps_fbase; /* beginning of the last freq interval */ | 
 | static int pps_shift;		/* current interval duration (s) (shift) */ | 
 | static int pps_intcnt;		/* interval counter */ | 
 | static s64 pps_freq;		/* frequency offset (scaled ns/s) */ | 
 | static long pps_stabil;		/* current stability (scaled ns/s) */ | 
 |  | 
 | /* | 
 |  * PPS signal quality monitors | 
 |  */ | 
 | static long pps_calcnt;		/* calibration intervals */ | 
 | static long pps_jitcnt;		/* jitter limit exceeded */ | 
 | static long pps_stbcnt;		/* stability limit exceeded */ | 
 | static long pps_errcnt;		/* calibration errors */ | 
 |  | 
 |  | 
 | /* PPS kernel consumer compensates the whole phase error immediately. | 
 |  * Otherwise, reduce the offset by a fixed factor times the time constant. | 
 |  */ | 
 | static inline s64 ntp_offset_chunk(s64 offset) | 
 | { | 
 | 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) | 
 | 		return offset; | 
 | 	else | 
 | 		return shift_right(offset, SHIFT_PLL + time_constant); | 
 | } | 
 |  | 
 | static inline void pps_reset_freq_interval(void) | 
 | { | 
 | 	/* the PPS calibration interval may end | 
 | 	   surprisingly early */ | 
 | 	pps_shift = PPS_INTMIN; | 
 | 	pps_intcnt = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pps_clear - Clears the PPS state variables | 
 |  * | 
 |  * Must be called while holding a write on the ntp_lock | 
 |  */ | 
 | static inline void pps_clear(void) | 
 | { | 
 | 	pps_reset_freq_interval(); | 
 | 	pps_tf[0] = 0; | 
 | 	pps_tf[1] = 0; | 
 | 	pps_tf[2] = 0; | 
 | 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; | 
 | 	pps_freq = 0; | 
 | } | 
 |  | 
 | /* Decrease pps_valid to indicate that another second has passed since | 
 |  * the last PPS signal. When it reaches 0, indicate that PPS signal is | 
 |  * missing. | 
 |  * | 
 |  * Must be called while holding a write on the ntp_lock | 
 |  */ | 
 | static inline void pps_dec_valid(void) | 
 | { | 
 | 	if (pps_valid > 0) | 
 | 		pps_valid--; | 
 | 	else { | 
 | 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 
 | 				 STA_PPSWANDER | STA_PPSERROR); | 
 | 		pps_clear(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void pps_set_freq(s64 freq) | 
 | { | 
 | 	pps_freq = freq; | 
 | } | 
 |  | 
 | static inline int is_error_status(int status) | 
 | { | 
 | 	return (time_status & (STA_UNSYNC|STA_CLOCKERR)) | 
 | 		/* PPS signal lost when either PPS time or | 
 | 		 * PPS frequency synchronization requested | 
 | 		 */ | 
 | 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME)) | 
 | 			&& !(time_status & STA_PPSSIGNAL)) | 
 | 		/* PPS jitter exceeded when | 
 | 		 * PPS time synchronization requested */ | 
 | 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER)) | 
 | 			== (STA_PPSTIME|STA_PPSJITTER)) | 
 | 		/* PPS wander exceeded or calibration error when | 
 | 		 * PPS frequency synchronization requested | 
 | 		 */ | 
 | 		|| ((time_status & STA_PPSFREQ) | 
 | 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR))); | 
 | } | 
 |  | 
 | static inline void pps_fill_timex(struct timex *txc) | 
 | { | 
 | 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * | 
 | 					 PPM_SCALE_INV, NTP_SCALE_SHIFT); | 
 | 	txc->jitter	   = pps_jitter; | 
 | 	if (!(time_status & STA_NANO)) | 
 | 		txc->jitter /= NSEC_PER_USEC; | 
 | 	txc->shift	   = pps_shift; | 
 | 	txc->stabil	   = pps_stabil; | 
 | 	txc->jitcnt	   = pps_jitcnt; | 
 | 	txc->calcnt	   = pps_calcnt; | 
 | 	txc->errcnt	   = pps_errcnt; | 
 | 	txc->stbcnt	   = pps_stbcnt; | 
 | } | 
 |  | 
 | #else /* !CONFIG_NTP_PPS */ | 
 |  | 
 | static inline s64 ntp_offset_chunk(s64 offset) | 
 | { | 
 | 	return shift_right(offset, SHIFT_PLL + time_constant); | 
 | } | 
 |  | 
 | static inline void pps_reset_freq_interval(void) {} | 
 | static inline void pps_clear(void) {} | 
 | static inline void pps_dec_valid(void) {} | 
 | static inline void pps_set_freq(s64 freq) {} | 
 |  | 
 | static inline int is_error_status(int status) | 
 | { | 
 | 	return status & (STA_UNSYNC|STA_CLOCKERR); | 
 | } | 
 |  | 
 | static inline void pps_fill_timex(struct timex *txc) | 
 | { | 
 | 	/* PPS is not implemented, so these are zero */ | 
 | 	txc->ppsfreq	   = 0; | 
 | 	txc->jitter	   = 0; | 
 | 	txc->shift	   = 0; | 
 | 	txc->stabil	   = 0; | 
 | 	txc->jitcnt	   = 0; | 
 | 	txc->calcnt	   = 0; | 
 | 	txc->errcnt	   = 0; | 
 | 	txc->stbcnt	   = 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_NTP_PPS */ | 
 |  | 
 |  | 
 | /** | 
 |  * ntp_synced - Returns 1 if the NTP status is not UNSYNC | 
 |  * | 
 |  */ | 
 | static inline int ntp_synced(void) | 
 | { | 
 | 	return !(time_status & STA_UNSYNC); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * NTP methods: | 
 |  */ | 
 |  | 
 | /* | 
 |  * Update (tick_length, tick_length_base, tick_nsec), based | 
 |  * on (tick_usec, ntp_tick_adj, time_freq): | 
 |  */ | 
 | static void ntp_update_frequency(void) | 
 | { | 
 | 	u64 second_length; | 
 | 	u64 new_base; | 
 |  | 
 | 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 
 | 						<< NTP_SCALE_SHIFT; | 
 |  | 
 | 	second_length		+= ntp_tick_adj; | 
 | 	second_length		+= time_freq; | 
 |  | 
 | 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 
 | 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ); | 
 |  | 
 | 	/* | 
 | 	 * Don't wait for the next second_overflow, apply | 
 | 	 * the change to the tick length immediately: | 
 | 	 */ | 
 | 	tick_length		+= new_base - tick_length_base; | 
 | 	tick_length_base	 = new_base; | 
 | } | 
 |  | 
 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | 
 | { | 
 | 	time_status &= ~STA_MODE; | 
 |  | 
 | 	if (secs < MINSEC) | 
 | 		return 0; | 
 |  | 
 | 	if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | 
 | 		return 0; | 
 |  | 
 | 	time_status |= STA_MODE; | 
 |  | 
 | 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | 
 | } | 
 |  | 
 | static void ntp_update_offset(long offset) | 
 | { | 
 | 	s64 freq_adj; | 
 | 	s64 offset64; | 
 | 	long secs; | 
 |  | 
 | 	if (!(time_status & STA_PLL)) | 
 | 		return; | 
 |  | 
 | 	if (!(time_status & STA_NANO)) | 
 | 		offset *= NSEC_PER_USEC; | 
 |  | 
 | 	/* | 
 | 	 * Scale the phase adjustment and | 
 | 	 * clamp to the operating range. | 
 | 	 */ | 
 | 	offset = min(offset, MAXPHASE); | 
 | 	offset = max(offset, -MAXPHASE); | 
 |  | 
 | 	/* | 
 | 	 * Select how the frequency is to be controlled | 
 | 	 * and in which mode (PLL or FLL). | 
 | 	 */ | 
 | 	secs = get_seconds() - time_reftime; | 
 | 	if (unlikely(time_status & STA_FREQHOLD)) | 
 | 		secs = 0; | 
 |  | 
 | 	time_reftime = get_seconds(); | 
 |  | 
 | 	offset64    = offset; | 
 | 	freq_adj    = ntp_update_offset_fll(offset64, secs); | 
 |  | 
 | 	/* | 
 | 	 * Clamp update interval to reduce PLL gain with low | 
 | 	 * sampling rate (e.g. intermittent network connection) | 
 | 	 * to avoid instability. | 
 | 	 */ | 
 | 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) | 
 | 		secs = 1 << (SHIFT_PLL + 1 + time_constant); | 
 |  | 
 | 	freq_adj    += (offset64 * secs) << | 
 | 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | 
 |  | 
 | 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED); | 
 |  | 
 | 	time_freq   = max(freq_adj, -MAXFREQ_SCALED); | 
 |  | 
 | 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 
 | } | 
 |  | 
 | /** | 
 |  * ntp_clear - Clears the NTP state variables | 
 |  */ | 
 | void ntp_clear(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ntp_lock, flags); | 
 |  | 
 | 	time_adjust	= 0;		/* stop active adjtime() */ | 
 | 	time_status	|= STA_UNSYNC; | 
 | 	time_maxerror	= NTP_PHASE_LIMIT; | 
 | 	time_esterror	= NTP_PHASE_LIMIT; | 
 |  | 
 | 	ntp_update_frequency(); | 
 |  | 
 | 	tick_length	= tick_length_base; | 
 | 	time_offset	= 0; | 
 |  | 
 | 	/* Clear PPS state variables */ | 
 | 	pps_clear(); | 
 | 	raw_spin_unlock_irqrestore(&ntp_lock, flags); | 
 |  | 
 | } | 
 |  | 
 |  | 
 | u64 ntp_tick_length(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	s64 ret; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ntp_lock, flags); | 
 | 	ret = tick_length; | 
 | 	raw_spin_unlock_irqrestore(&ntp_lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * this routine handles the overflow of the microsecond field | 
 |  * | 
 |  * The tricky bits of code to handle the accurate clock support | 
 |  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
 |  * They were originally developed for SUN and DEC kernels. | 
 |  * All the kudos should go to Dave for this stuff. | 
 |  * | 
 |  * Also handles leap second processing, and returns leap offset | 
 |  */ | 
 | int second_overflow(unsigned long secs) | 
 | { | 
 | 	s64 delta; | 
 | 	int leap = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ntp_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Leap second processing. If in leap-insert state at the end of the | 
 | 	 * day, the system clock is set back one second; if in leap-delete | 
 | 	 * state, the system clock is set ahead one second. | 
 | 	 */ | 
 | 	switch (time_state) { | 
 | 	case TIME_OK: | 
 | 		if (time_status & STA_INS) | 
 | 			time_state = TIME_INS; | 
 | 		else if (time_status & STA_DEL) | 
 | 			time_state = TIME_DEL; | 
 | 		break; | 
 | 	case TIME_INS: | 
 | 		if (!(time_status & STA_INS)) | 
 | 			time_state = TIME_OK; | 
 | 		else if (secs % 86400 == 0) { | 
 | 			leap = -1; | 
 | 			time_state = TIME_OOP; | 
 | 			time_tai++; | 
 | 			printk(KERN_NOTICE | 
 | 				"Clock: inserting leap second 23:59:60 UTC\n"); | 
 | 		} | 
 | 		break; | 
 | 	case TIME_DEL: | 
 | 		if (!(time_status & STA_DEL)) | 
 | 			time_state = TIME_OK; | 
 | 		else if ((secs + 1) % 86400 == 0) { | 
 | 			leap = 1; | 
 | 			time_tai--; | 
 | 			time_state = TIME_WAIT; | 
 | 			printk(KERN_NOTICE | 
 | 				"Clock: deleting leap second 23:59:59 UTC\n"); | 
 | 		} | 
 | 		break; | 
 | 	case TIME_OOP: | 
 | 		time_state = TIME_WAIT; | 
 | 		break; | 
 |  | 
 | 	case TIME_WAIT: | 
 | 		if (!(time_status & (STA_INS | STA_DEL))) | 
 | 			time_state = TIME_OK; | 
 | 		break; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Bump the maxerror field */ | 
 | 	time_maxerror += MAXFREQ / NSEC_PER_USEC; | 
 | 	if (time_maxerror > NTP_PHASE_LIMIT) { | 
 | 		time_maxerror = NTP_PHASE_LIMIT; | 
 | 		time_status |= STA_UNSYNC; | 
 | 	} | 
 |  | 
 | 	/* Compute the phase adjustment for the next second */ | 
 | 	tick_length	 = tick_length_base; | 
 |  | 
 | 	delta		 = ntp_offset_chunk(time_offset); | 
 | 	time_offset	-= delta; | 
 | 	tick_length	+= delta; | 
 |  | 
 | 	/* Check PPS signal */ | 
 | 	pps_dec_valid(); | 
 |  | 
 | 	if (!time_adjust) | 
 | 		goto out; | 
 |  | 
 | 	if (time_adjust > MAX_TICKADJ) { | 
 | 		time_adjust -= MAX_TICKADJ; | 
 | 		tick_length += MAX_TICKADJ_SCALED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (time_adjust < -MAX_TICKADJ) { | 
 | 		time_adjust += MAX_TICKADJ; | 
 | 		tick_length -= MAX_TICKADJ_SCALED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | 
 | 							 << NTP_SCALE_SHIFT; | 
 | 	time_adjust = 0; | 
 |  | 
 |  | 
 |  | 
 | out: | 
 | 	raw_spin_unlock_irqrestore(&ntp_lock, flags); | 
 |  | 
 | 	return leap; | 
 | } | 
 |  | 
 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 
 |  | 
 | static void sync_cmos_clock(struct work_struct *work); | 
 |  | 
 | static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); | 
 |  | 
 | static void sync_cmos_clock(struct work_struct *work) | 
 | { | 
 | 	struct timespec now, next; | 
 | 	int fail = 1; | 
 |  | 
 | 	/* | 
 | 	 * If we have an externally synchronized Linux clock, then update | 
 | 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | 
 | 	 * called as close as possible to 500 ms before the new second starts. | 
 | 	 * This code is run on a timer.  If the clock is set, that timer | 
 | 	 * may not expire at the correct time.  Thus, we adjust... | 
 | 	 */ | 
 | 	if (!ntp_synced()) { | 
 | 		/* | 
 | 		 * Not synced, exit, do not restart a timer (if one is | 
 | 		 * running, let it run out). | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	getnstimeofday(&now); | 
 | 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) | 
 | 		fail = update_persistent_clock(now); | 
 |  | 
 | 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); | 
 | 	if (next.tv_nsec <= 0) | 
 | 		next.tv_nsec += NSEC_PER_SEC; | 
 |  | 
 | 	if (!fail) | 
 | 		next.tv_sec = 659; | 
 | 	else | 
 | 		next.tv_sec = 0; | 
 |  | 
 | 	if (next.tv_nsec >= NSEC_PER_SEC) { | 
 | 		next.tv_sec++; | 
 | 		next.tv_nsec -= NSEC_PER_SEC; | 
 | 	} | 
 | 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT_RT_FULL | 
 | /* | 
 |  * RT can not call schedule_delayed_work from real interrupt context. | 
 |  * Need to make a thread to do the real work. | 
 |  */ | 
 | static struct task_struct *cmos_delay_thread; | 
 | static bool do_cmos_delay; | 
 |  | 
 | static int run_cmos_delay(void *ignore) | 
 | { | 
 | 	while (!kthread_should_stop()) { | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		if (do_cmos_delay) { | 
 | 			do_cmos_delay = false; | 
 | 			schedule_delayed_work(&sync_cmos_work, 0); | 
 | 		} | 
 | 		schedule(); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void notify_cmos_timer(void) | 
 | { | 
 | 	do_cmos_delay = true; | 
 | 	/* Make visible before waking up process */ | 
 | 	smp_wmb(); | 
 | 	wake_up_process(cmos_delay_thread); | 
 | } | 
 |  | 
 | static __init int create_cmos_delay_thread(void) | 
 | { | 
 | 	cmos_delay_thread = kthread_run(run_cmos_delay, NULL, "kcmosdelayd"); | 
 | 	BUG_ON(!cmos_delay_thread); | 
 | 	return 0; | 
 | } | 
 | early_initcall(create_cmos_delay_thread); | 
 | #else | 
 | static void notify_cmos_timer(void) | 
 | { | 
 | 	schedule_delayed_work(&sync_cmos_work, 0); | 
 | } | 
 | #endif /* CONFIG_PREEMPT_RT_FULL */ | 
 |  | 
 | #else | 
 | static inline void notify_cmos_timer(void) { } | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Propagate a new txc->status value into the NTP state: | 
 |  */ | 
 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | 
 | { | 
 | 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | 
 | 		time_state = TIME_OK; | 
 | 		time_status = STA_UNSYNC; | 
 | 		/* restart PPS frequency calibration */ | 
 | 		pps_reset_freq_interval(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we turn on PLL adjustments then reset the | 
 | 	 * reference time to current time. | 
 | 	 */ | 
 | 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | 
 | 		time_reftime = get_seconds(); | 
 |  | 
 | 	/* only set allowed bits */ | 
 | 	time_status &= STA_RONLY; | 
 | 	time_status |= txc->status & ~STA_RONLY; | 
 |  | 
 | } | 
 | /* | 
 |  * Called with the xtime lock held, so we can access and modify | 
 |  * all the global NTP state: | 
 |  */ | 
 | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | 
 | { | 
 | 	if (txc->modes & ADJ_STATUS) | 
 | 		process_adj_status(txc, ts); | 
 |  | 
 | 	if (txc->modes & ADJ_NANO) | 
 | 		time_status |= STA_NANO; | 
 |  | 
 | 	if (txc->modes & ADJ_MICRO) | 
 | 		time_status &= ~STA_NANO; | 
 |  | 
 | 	if (txc->modes & ADJ_FREQUENCY) { | 
 | 		time_freq = txc->freq * PPM_SCALE; | 
 | 		time_freq = min(time_freq, MAXFREQ_SCALED); | 
 | 		time_freq = max(time_freq, -MAXFREQ_SCALED); | 
 | 		/* update pps_freq */ | 
 | 		pps_set_freq(time_freq); | 
 | 	} | 
 |  | 
 | 	if (txc->modes & ADJ_MAXERROR) | 
 | 		time_maxerror = txc->maxerror; | 
 |  | 
 | 	if (txc->modes & ADJ_ESTERROR) | 
 | 		time_esterror = txc->esterror; | 
 |  | 
 | 	if (txc->modes & ADJ_TIMECONST) { | 
 | 		time_constant = txc->constant; | 
 | 		if (!(time_status & STA_NANO)) | 
 | 			time_constant += 4; | 
 | 		time_constant = min(time_constant, (long)MAXTC); | 
 | 		time_constant = max(time_constant, 0l); | 
 | 	} | 
 |  | 
 | 	if (txc->modes & ADJ_TAI && txc->constant > 0) | 
 | 		time_tai = txc->constant; | 
 |  | 
 | 	if (txc->modes & ADJ_OFFSET) | 
 | 		ntp_update_offset(txc->offset); | 
 |  | 
 | 	if (txc->modes & ADJ_TICK) | 
 | 		tick_usec = txc->tick; | 
 |  | 
 | 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 
 | 		ntp_update_frequency(); | 
 | } | 
 |  | 
 | /* | 
 |  * adjtimex mainly allows reading (and writing, if superuser) of | 
 |  * kernel time-keeping variables. used by xntpd. | 
 |  */ | 
 | int do_adjtimex(struct timex *txc) | 
 | { | 
 | 	struct timespec ts; | 
 | 	int result; | 
 |  | 
 | 	/* Validate the data before disabling interrupts */ | 
 | 	if (txc->modes & ADJ_ADJTIME) { | 
 | 		/* singleshot must not be used with any other mode bits */ | 
 | 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) | 
 | 			return -EINVAL; | 
 | 		if (!(txc->modes & ADJ_OFFSET_READONLY) && | 
 | 		    !capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 | 	} else { | 
 | 		/* In order to modify anything, you gotta be super-user! */ | 
 | 		 if (txc->modes && !capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* | 
 | 		 * if the quartz is off by more than 10% then | 
 | 		 * something is VERY wrong! | 
 | 		 */ | 
 | 		if (txc->modes & ADJ_TICK && | 
 | 		    (txc->tick <  900000/USER_HZ || | 
 | 		     txc->tick > 1100000/USER_HZ)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (txc->modes & ADJ_SETOFFSET) { | 
 | 		struct timespec delta; | 
 | 		delta.tv_sec  = txc->time.tv_sec; | 
 | 		delta.tv_nsec = txc->time.tv_usec; | 
 | 		if (!capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 | 		if (!(txc->modes & ADJ_NANO)) | 
 | 			delta.tv_nsec *= 1000; | 
 | 		result = timekeeping_inject_offset(&delta); | 
 | 		if (result) | 
 | 			return result; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for potential multiplication overflows that can | 
 | 	 * only happen on 64-bit systems: | 
 | 	 */ | 
 | 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { | 
 | 		if (LLONG_MIN / PPM_SCALE > txc->freq) | 
 | 			return -EINVAL; | 
 | 		if (LLONG_MAX / PPM_SCALE < txc->freq) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	getnstimeofday(&ts); | 
 |  | 
 | 	raw_spin_lock_irq(&ntp_lock); | 
 |  | 
 | 	if (txc->modes & ADJ_ADJTIME) { | 
 | 		long save_adjust = time_adjust; | 
 |  | 
 | 		if (!(txc->modes & ADJ_OFFSET_READONLY)) { | 
 | 			/* adjtime() is independent from ntp_adjtime() */ | 
 | 			time_adjust = txc->offset; | 
 | 			ntp_update_frequency(); | 
 | 		} | 
 | 		txc->offset = save_adjust; | 
 | 	} else { | 
 |  | 
 | 		/* If there are input parameters, then process them: */ | 
 | 		if (txc->modes) | 
 | 			process_adjtimex_modes(txc, &ts); | 
 |  | 
 | 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 
 | 				  NTP_SCALE_SHIFT); | 
 | 		if (!(time_status & STA_NANO)) | 
 | 			txc->offset /= NSEC_PER_USEC; | 
 | 	} | 
 |  | 
 | 	result = time_state;	/* mostly `TIME_OK' */ | 
 | 	/* check for errors */ | 
 | 	if (is_error_status(time_status)) | 
 | 		result = TIME_ERROR; | 
 |  | 
 | 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 
 | 					 PPM_SCALE_INV, NTP_SCALE_SHIFT); | 
 | 	txc->maxerror	   = time_maxerror; | 
 | 	txc->esterror	   = time_esterror; | 
 | 	txc->status	   = time_status; | 
 | 	txc->constant	   = time_constant; | 
 | 	txc->precision	   = 1; | 
 | 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE; | 
 | 	txc->tick	   = tick_usec; | 
 | 	txc->tai	   = time_tai; | 
 |  | 
 | 	/* fill PPS status fields */ | 
 | 	pps_fill_timex(txc); | 
 |  | 
 | 	raw_spin_unlock_irq(&ntp_lock); | 
 |  | 
 | 	txc->time.tv_sec = ts.tv_sec; | 
 | 	txc->time.tv_usec = ts.tv_nsec; | 
 | 	if (!(time_status & STA_NANO)) | 
 | 		txc->time.tv_usec /= NSEC_PER_USEC; | 
 |  | 
 | 	notify_cmos_timer(); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | #ifdef	CONFIG_NTP_PPS | 
 |  | 
 | /* actually struct pps_normtime is good old struct timespec, but it is | 
 |  * semantically different (and it is the reason why it was invented): | 
 |  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] | 
 |  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ | 
 | struct pps_normtime { | 
 | 	__kernel_time_t	sec;	/* seconds */ | 
 | 	long		nsec;	/* nanoseconds */ | 
 | }; | 
 |  | 
 | /* normalize the timestamp so that nsec is in the | 
 |    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ | 
 | static inline struct pps_normtime pps_normalize_ts(struct timespec ts) | 
 | { | 
 | 	struct pps_normtime norm = { | 
 | 		.sec = ts.tv_sec, | 
 | 		.nsec = ts.tv_nsec | 
 | 	}; | 
 |  | 
 | 	if (norm.nsec > (NSEC_PER_SEC >> 1)) { | 
 | 		norm.nsec -= NSEC_PER_SEC; | 
 | 		norm.sec++; | 
 | 	} | 
 |  | 
 | 	return norm; | 
 | } | 
 |  | 
 | /* get current phase correction and jitter */ | 
 | static inline long pps_phase_filter_get(long *jitter) | 
 | { | 
 | 	*jitter = pps_tf[0] - pps_tf[1]; | 
 | 	if (*jitter < 0) | 
 | 		*jitter = -*jitter; | 
 |  | 
 | 	/* TODO: test various filters */ | 
 | 	return pps_tf[0]; | 
 | } | 
 |  | 
 | /* add the sample to the phase filter */ | 
 | static inline void pps_phase_filter_add(long err) | 
 | { | 
 | 	pps_tf[2] = pps_tf[1]; | 
 | 	pps_tf[1] = pps_tf[0]; | 
 | 	pps_tf[0] = err; | 
 | } | 
 |  | 
 | /* decrease frequency calibration interval length. | 
 |  * It is halved after four consecutive unstable intervals. | 
 |  */ | 
 | static inline void pps_dec_freq_interval(void) | 
 | { | 
 | 	if (--pps_intcnt <= -PPS_INTCOUNT) { | 
 | 		pps_intcnt = -PPS_INTCOUNT; | 
 | 		if (pps_shift > PPS_INTMIN) { | 
 | 			pps_shift--; | 
 | 			pps_intcnt = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* increase frequency calibration interval length. | 
 |  * It is doubled after four consecutive stable intervals. | 
 |  */ | 
 | static inline void pps_inc_freq_interval(void) | 
 | { | 
 | 	if (++pps_intcnt >= PPS_INTCOUNT) { | 
 | 		pps_intcnt = PPS_INTCOUNT; | 
 | 		if (pps_shift < PPS_INTMAX) { | 
 | 			pps_shift++; | 
 | 			pps_intcnt = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* update clock frequency based on MONOTONIC_RAW clock PPS signal | 
 |  * timestamps | 
 |  * | 
 |  * At the end of the calibration interval the difference between the | 
 |  * first and last MONOTONIC_RAW clock timestamps divided by the length | 
 |  * of the interval becomes the frequency update. If the interval was | 
 |  * too long, the data are discarded. | 
 |  * Returns the difference between old and new frequency values. | 
 |  */ | 
 | static long hardpps_update_freq(struct pps_normtime freq_norm) | 
 | { | 
 | 	long delta, delta_mod; | 
 | 	s64 ftemp; | 
 |  | 
 | 	/* check if the frequency interval was too long */ | 
 | 	if (freq_norm.sec > (2 << pps_shift)) { | 
 | 		time_status |= STA_PPSERROR; | 
 | 		pps_errcnt++; | 
 | 		pps_dec_freq_interval(); | 
 | 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n", | 
 | 				freq_norm.sec); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* here the raw frequency offset and wander (stability) is | 
 | 	 * calculated. If the wander is less than the wander threshold | 
 | 	 * the interval is increased; otherwise it is decreased. | 
 | 	 */ | 
 | 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, | 
 | 			freq_norm.sec); | 
 | 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); | 
 | 	pps_freq = ftemp; | 
 | 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { | 
 | 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta); | 
 | 		time_status |= STA_PPSWANDER; | 
 | 		pps_stbcnt++; | 
 | 		pps_dec_freq_interval(); | 
 | 	} else {	/* good sample */ | 
 | 		pps_inc_freq_interval(); | 
 | 	} | 
 |  | 
 | 	/* the stability metric is calculated as the average of recent | 
 | 	 * frequency changes, but is used only for performance | 
 | 	 * monitoring | 
 | 	 */ | 
 | 	delta_mod = delta; | 
 | 	if (delta_mod < 0) | 
 | 		delta_mod = -delta_mod; | 
 | 	pps_stabil += (div_s64(((s64)delta_mod) << | 
 | 				(NTP_SCALE_SHIFT - SHIFT_USEC), | 
 | 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; | 
 |  | 
 | 	/* if enabled, the system clock frequency is updated */ | 
 | 	if ((time_status & STA_PPSFREQ) != 0 && | 
 | 	    (time_status & STA_FREQHOLD) == 0) { | 
 | 		time_freq = pps_freq; | 
 | 		ntp_update_frequency(); | 
 | 	} | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | /* correct REALTIME clock phase error against PPS signal */ | 
 | static void hardpps_update_phase(long error) | 
 | { | 
 | 	long correction = -error; | 
 | 	long jitter; | 
 |  | 
 | 	/* add the sample to the median filter */ | 
 | 	pps_phase_filter_add(correction); | 
 | 	correction = pps_phase_filter_get(&jitter); | 
 |  | 
 | 	/* Nominal jitter is due to PPS signal noise. If it exceeds the | 
 | 	 * threshold, the sample is discarded; otherwise, if so enabled, | 
 | 	 * the time offset is updated. | 
 | 	 */ | 
 | 	if (jitter > (pps_jitter << PPS_POPCORN)) { | 
 | 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", | 
 | 		       jitter, (pps_jitter << PPS_POPCORN)); | 
 | 		time_status |= STA_PPSJITTER; | 
 | 		pps_jitcnt++; | 
 | 	} else if (time_status & STA_PPSTIME) { | 
 | 		/* correct the time using the phase offset */ | 
 | 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, | 
 | 				NTP_INTERVAL_FREQ); | 
 | 		/* cancel running adjtime() */ | 
 | 		time_adjust = 0; | 
 | 	} | 
 | 	/* update jitter */ | 
 | 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; | 
 | } | 
 |  | 
 | /* | 
 |  * hardpps() - discipline CPU clock oscillator to external PPS signal | 
 |  * | 
 |  * This routine is called at each PPS signal arrival in order to | 
 |  * discipline the CPU clock oscillator to the PPS signal. It takes two | 
 |  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former | 
 |  * is used to correct clock phase error and the latter is used to | 
 |  * correct the frequency. | 
 |  * | 
 |  * This code is based on David Mills's reference nanokernel | 
 |  * implementation. It was mostly rewritten but keeps the same idea. | 
 |  */ | 
 | void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) | 
 | { | 
 | 	struct pps_normtime pts_norm, freq_norm; | 
 | 	unsigned long flags; | 
 |  | 
 | 	pts_norm = pps_normalize_ts(*phase_ts); | 
 |  | 
 | 	raw_spin_lock_irqsave(&ntp_lock, flags); | 
 |  | 
 | 	/* clear the error bits, they will be set again if needed */ | 
 | 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); | 
 |  | 
 | 	/* indicate signal presence */ | 
 | 	time_status |= STA_PPSSIGNAL; | 
 | 	pps_valid = PPS_VALID; | 
 |  | 
 | 	/* when called for the first time, | 
 | 	 * just start the frequency interval */ | 
 | 	if (unlikely(pps_fbase.tv_sec == 0)) { | 
 | 		pps_fbase = *raw_ts; | 
 | 		raw_spin_unlock_irqrestore(&ntp_lock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* ok, now we have a base for frequency calculation */ | 
 | 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase)); | 
 |  | 
 | 	/* check that the signal is in the range | 
 | 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ | 
 | 	if ((freq_norm.sec == 0) || | 
 | 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) || | 
 | 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { | 
 | 		time_status |= STA_PPSJITTER; | 
 | 		/* restart the frequency calibration interval */ | 
 | 		pps_fbase = *raw_ts; | 
 | 		raw_spin_unlock_irqrestore(&ntp_lock, flags); | 
 | 		pr_err("hardpps: PPSJITTER: bad pulse\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* signal is ok */ | 
 |  | 
 | 	/* check if the current frequency interval is finished */ | 
 | 	if (freq_norm.sec >= (1 << pps_shift)) { | 
 | 		pps_calcnt++; | 
 | 		/* restart the frequency calibration interval */ | 
 | 		pps_fbase = *raw_ts; | 
 | 		hardpps_update_freq(freq_norm); | 
 | 	} | 
 |  | 
 | 	hardpps_update_phase(pts_norm.nsec); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&ntp_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(hardpps); | 
 |  | 
 | #endif	/* CONFIG_NTP_PPS */ | 
 |  | 
 | static int __init ntp_tick_adj_setup(char *str) | 
 | { | 
 | 	ntp_tick_adj = simple_strtol(str, NULL, 0); | 
 | 	ntp_tick_adj <<= NTP_SCALE_SHIFT; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | 
 |  | 
 | void __init ntp_init(void) | 
 | { | 
 | 	ntp_clear(); | 
 | } |