| /* | 
 |  * SLUB: A slab allocator that limits cache line use instead of queuing | 
 |  * objects in per cpu and per node lists. | 
 |  * | 
 |  * The allocator synchronizes using per slab locks or atomic operatios | 
 |  * and only uses a centralized lock to manage a pool of partial slabs. | 
 |  * | 
 |  * (C) 2007 SGI, Christoph Lameter | 
 |  * (C) 2011 Linux Foundation, Christoph Lameter | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> /* struct reclaim_state */ | 
 | #include <linux/module.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/kmemcheck.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/stacktrace.h> | 
 | #include <linux/prefetch.h> | 
 |  | 
 | #include <trace/events/kmem.h> | 
 |  | 
 | /* | 
 |  * Lock order: | 
 |  *   1. slub_lock (Global Semaphore) | 
 |  *   2. node->list_lock | 
 |  *   3. slab_lock(page) (Only on some arches and for debugging) | 
 |  * | 
 |  *   slub_lock | 
 |  * | 
 |  *   The role of the slub_lock is to protect the list of all the slabs | 
 |  *   and to synchronize major metadata changes to slab cache structures. | 
 |  * | 
 |  *   The slab_lock is only used for debugging and on arches that do not | 
 |  *   have the ability to do a cmpxchg_double. It only protects the second | 
 |  *   double word in the page struct. Meaning | 
 |  *	A. page->freelist	-> List of object free in a page | 
 |  *	B. page->counters	-> Counters of objects | 
 |  *	C. page->frozen		-> frozen state | 
 |  * | 
 |  *   If a slab is frozen then it is exempt from list management. It is not | 
 |  *   on any list. The processor that froze the slab is the one who can | 
 |  *   perform list operations on the page. Other processors may put objects | 
 |  *   onto the freelist but the processor that froze the slab is the only | 
 |  *   one that can retrieve the objects from the page's freelist. | 
 |  * | 
 |  *   The list_lock protects the partial and full list on each node and | 
 |  *   the partial slab counter. If taken then no new slabs may be added or | 
 |  *   removed from the lists nor make the number of partial slabs be modified. | 
 |  *   (Note that the total number of slabs is an atomic value that may be | 
 |  *   modified without taking the list lock). | 
 |  * | 
 |  *   The list_lock is a centralized lock and thus we avoid taking it as | 
 |  *   much as possible. As long as SLUB does not have to handle partial | 
 |  *   slabs, operations can continue without any centralized lock. F.e. | 
 |  *   allocating a long series of objects that fill up slabs does not require | 
 |  *   the list lock. | 
 |  *   Interrupts are disabled during allocation and deallocation in order to | 
 |  *   make the slab allocator safe to use in the context of an irq. In addition | 
 |  *   interrupts are disabled to ensure that the processor does not change | 
 |  *   while handling per_cpu slabs, due to kernel preemption. | 
 |  * | 
 |  * SLUB assigns one slab for allocation to each processor. | 
 |  * Allocations only occur from these slabs called cpu slabs. | 
 |  * | 
 |  * Slabs with free elements are kept on a partial list and during regular | 
 |  * operations no list for full slabs is used. If an object in a full slab is | 
 |  * freed then the slab will show up again on the partial lists. | 
 |  * We track full slabs for debugging purposes though because otherwise we | 
 |  * cannot scan all objects. | 
 |  * | 
 |  * Slabs are freed when they become empty. Teardown and setup is | 
 |  * minimal so we rely on the page allocators per cpu caches for | 
 |  * fast frees and allocs. | 
 |  * | 
 |  * Overloading of page flags that are otherwise used for LRU management. | 
 |  * | 
 |  * PageActive 		The slab is frozen and exempt from list processing. | 
 |  * 			This means that the slab is dedicated to a purpose | 
 |  * 			such as satisfying allocations for a specific | 
 |  * 			processor. Objects may be freed in the slab while | 
 |  * 			it is frozen but slab_free will then skip the usual | 
 |  * 			list operations. It is up to the processor holding | 
 |  * 			the slab to integrate the slab into the slab lists | 
 |  * 			when the slab is no longer needed. | 
 |  * | 
 |  * 			One use of this flag is to mark slabs that are | 
 |  * 			used for allocations. Then such a slab becomes a cpu | 
 |  * 			slab. The cpu slab may be equipped with an additional | 
 |  * 			freelist that allows lockless access to | 
 |  * 			free objects in addition to the regular freelist | 
 |  * 			that requires the slab lock. | 
 |  * | 
 |  * PageError		Slab requires special handling due to debug | 
 |  * 			options set. This moves	slab handling out of | 
 |  * 			the fast path and disables lockless freelists. | 
 |  */ | 
 |  | 
 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
 | 		SLAB_TRACE | SLAB_DEBUG_FREE) | 
 |  | 
 | static inline int kmem_cache_debug(struct kmem_cache *s) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	return unlikely(s->flags & SLAB_DEBUG_FLAGS); | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Issues still to be resolved: | 
 |  * | 
 |  * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
 |  * | 
 |  * - Variable sizing of the per node arrays | 
 |  */ | 
 |  | 
 | /* Enable to test recovery from slab corruption on boot */ | 
 | #undef SLUB_RESILIENCY_TEST | 
 |  | 
 | /* Enable to log cmpxchg failures */ | 
 | #undef SLUB_DEBUG_CMPXCHG | 
 |  | 
 | /* | 
 |  * Mininum number of partial slabs. These will be left on the partial | 
 |  * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
 |  */ | 
 | #define MIN_PARTIAL 5 | 
 |  | 
 | /* | 
 |  * Maximum number of desirable partial slabs. | 
 |  * The existence of more partial slabs makes kmem_cache_shrink | 
 |  * sort the partial list by the number of objects in the. | 
 |  */ | 
 | #define MAX_PARTIAL 10 | 
 |  | 
 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | 
 | 				SLAB_POISON | SLAB_STORE_USER) | 
 |  | 
 | /* | 
 |  * Debugging flags that require metadata to be stored in the slab.  These get | 
 |  * disabled when slub_debug=O is used and a cache's min order increases with | 
 |  * metadata. | 
 |  */ | 
 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | 
 |  | 
 | /* | 
 |  * Set of flags that will prevent slab merging | 
 |  */ | 
 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
 | 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | 
 | 		SLAB_FAILSLAB) | 
 |  | 
 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 
 | 		SLAB_CACHE_DMA | SLAB_NOTRACK) | 
 |  | 
 | #define OO_SHIFT	16 | 
 | #define OO_MASK		((1 << OO_SHIFT) - 1) | 
 | #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */ | 
 |  | 
 | /* Internal SLUB flags */ | 
 | #define __OBJECT_POISON		0x80000000UL /* Poison object */ | 
 | #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */ | 
 |  | 
 | static int kmem_size = sizeof(struct kmem_cache); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static struct notifier_block slab_notifier; | 
 | #endif | 
 |  | 
 | static enum { | 
 | 	DOWN,		/* No slab functionality available */ | 
 | 	PARTIAL,	/* Kmem_cache_node works */ | 
 | 	UP,		/* Everything works but does not show up in sysfs */ | 
 | 	SYSFS		/* Sysfs up */ | 
 | } slab_state = DOWN; | 
 |  | 
 | /* A list of all slab caches on the system */ | 
 | static DECLARE_RWSEM(slub_lock); | 
 | static LIST_HEAD(slab_caches); | 
 |  | 
 | /* | 
 |  * Tracking user of a slab. | 
 |  */ | 
 | #define TRACK_ADDRS_COUNT 16 | 
 | struct track { | 
 | 	unsigned long addr;	/* Called from address */ | 
 | #ifdef CONFIG_STACKTRACE | 
 | 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */ | 
 | #endif | 
 | 	int cpu;		/* Was running on cpu */ | 
 | 	int pid;		/* Pid context */ | 
 | 	unsigned long when;	/* When did the operation occur */ | 
 | }; | 
 |  | 
 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static int sysfs_slab_add(struct kmem_cache *); | 
 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
 | static void sysfs_slab_remove(struct kmem_cache *); | 
 |  | 
 | #else | 
 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
 | 							{ return 0; } | 
 | static inline void sysfs_slab_remove(struct kmem_cache *s) | 
 | { | 
 | 	kfree(s->name); | 
 | 	kfree(s); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static inline void stat(const struct kmem_cache *s, enum stat_item si) | 
 | { | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	__this_cpu_inc(s->cpu_slab->stat[si]); | 
 | #endif | 
 | } | 
 |  | 
 | /******************************************************************** | 
 |  * 			Core slab cache functions | 
 |  *******************************************************************/ | 
 |  | 
 | int slab_is_available(void) | 
 | { | 
 | 	return slab_state >= UP; | 
 | } | 
 |  | 
 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | 
 | { | 
 | 	return s->node[node]; | 
 | } | 
 |  | 
 | /* Verify that a pointer has an address that is valid within a slab page */ | 
 | static inline int check_valid_pointer(struct kmem_cache *s, | 
 | 				struct page *page, const void *object) | 
 | { | 
 | 	void *base; | 
 |  | 
 | 	if (!object) | 
 | 		return 1; | 
 |  | 
 | 	base = page_address(page); | 
 | 	if (object < base || object >= base + page->objects * s->size || | 
 | 		(object - base) % s->size) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
 | { | 
 | 	return *(void **)(object + s->offset); | 
 | } | 
 |  | 
 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) | 
 | { | 
 | 	prefetch(object + s->offset); | 
 | } | 
 |  | 
 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) | 
 | { | 
 | 	void *p; | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); | 
 | #else | 
 | 	p = get_freepointer(s, object); | 
 | #endif | 
 | 	return p; | 
 | } | 
 |  | 
 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
 | { | 
 | 	*(void **)(object + s->offset) = fp; | 
 | } | 
 |  | 
 | /* Loop over all objects in a slab */ | 
 | #define for_each_object(__p, __s, __addr, __objects) \ | 
 | 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | 
 | 			__p += (__s)->size) | 
 |  | 
 | /* Determine object index from a given position */ | 
 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | 
 | { | 
 | 	return (p - addr) / s->size; | 
 | } | 
 |  | 
 | static inline size_t slab_ksize(const struct kmem_cache *s) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * Debugging requires use of the padding between object | 
 | 	 * and whatever may come after it. | 
 | 	 */ | 
 | 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 
 | 		return s->objsize; | 
 |  | 
 | #endif | 
 | 	/* | 
 | 	 * If we have the need to store the freelist pointer | 
 | 	 * back there or track user information then we can | 
 | 	 * only use the space before that information. | 
 | 	 */ | 
 | 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | 
 | 		return s->inuse; | 
 | 	/* | 
 | 	 * Else we can use all the padding etc for the allocation | 
 | 	 */ | 
 | 	return s->size; | 
 | } | 
 |  | 
 | static inline int order_objects(int order, unsigned long size, int reserved) | 
 | { | 
 | 	return ((PAGE_SIZE << order) - reserved) / size; | 
 | } | 
 |  | 
 | static inline struct kmem_cache_order_objects oo_make(int order, | 
 | 		unsigned long size, int reserved) | 
 | { | 
 | 	struct kmem_cache_order_objects x = { | 
 | 		(order << OO_SHIFT) + order_objects(order, size, reserved) | 
 | 	}; | 
 |  | 
 | 	return x; | 
 | } | 
 |  | 
 | static inline int oo_order(struct kmem_cache_order_objects x) | 
 | { | 
 | 	return x.x >> OO_SHIFT; | 
 | } | 
 |  | 
 | static inline int oo_objects(struct kmem_cache_order_objects x) | 
 | { | 
 | 	return x.x & OO_MASK; | 
 | } | 
 |  | 
 | /* | 
 |  * Per slab locking using the pagelock | 
 |  */ | 
 | static __always_inline void slab_lock(struct page *page) | 
 | { | 
 | 	bit_spin_lock(PG_locked, &page->flags); | 
 | } | 
 |  | 
 | static __always_inline void slab_unlock(struct page *page) | 
 | { | 
 | 	__bit_spin_unlock(PG_locked, &page->flags); | 
 | } | 
 |  | 
 | /* Interrupts must be disabled (for the fallback code to work right) */ | 
 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
 | 		void *freelist_old, unsigned long counters_old, | 
 | 		void *freelist_new, unsigned long counters_new, | 
 | 		const char *n) | 
 | { | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 	if (s->flags & __CMPXCHG_DOUBLE) { | 
 | 		if (cmpxchg_double(&page->freelist, &page->counters, | 
 | 			freelist_old, counters_old, | 
 | 			freelist_new, counters_new)) | 
 | 		return 1; | 
 | 	} else | 
 | #endif | 
 | 	{ | 
 | 		slab_lock(page); | 
 | 		if (page->freelist == freelist_old && page->counters == counters_old) { | 
 | 			page->freelist = freelist_new; | 
 | 			page->counters = counters_new; | 
 | 			slab_unlock(page); | 
 | 			return 1; | 
 | 		} | 
 | 		slab_unlock(page); | 
 | 	} | 
 |  | 
 | 	cpu_relax(); | 
 | 	stat(s, CMPXCHG_DOUBLE_FAIL); | 
 |  | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
 | 		void *freelist_old, unsigned long counters_old, | 
 | 		void *freelist_new, unsigned long counters_new, | 
 | 		const char *n) | 
 | { | 
 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 	if (s->flags & __CMPXCHG_DOUBLE) { | 
 | 		if (cmpxchg_double(&page->freelist, &page->counters, | 
 | 			freelist_old, counters_old, | 
 | 			freelist_new, counters_new)) | 
 | 		return 1; | 
 | 	} else | 
 | #endif | 
 | 	{ | 
 | 		unsigned long flags; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		slab_lock(page); | 
 | 		if (page->freelist == freelist_old && page->counters == counters_old) { | 
 | 			page->freelist = freelist_new; | 
 | 			page->counters = counters_new; | 
 | 			slab_unlock(page); | 
 | 			local_irq_restore(flags); | 
 | 			return 1; | 
 | 		} | 
 | 		slab_unlock(page); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 |  | 
 | 	cpu_relax(); | 
 | 	stat(s, CMPXCHG_DOUBLE_FAIL); | 
 |  | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | /* | 
 |  * Determine a map of object in use on a page. | 
 |  * | 
 |  * Node listlock must be held to guarantee that the page does | 
 |  * not vanish from under us. | 
 |  */ | 
 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | 
 | { | 
 | 	void *p; | 
 | 	void *addr = page_address(page); | 
 |  | 
 | 	for (p = page->freelist; p; p = get_freepointer(s, p)) | 
 | 		set_bit(slab_index(p, s, addr), map); | 
 | } | 
 |  | 
 | /* | 
 |  * Debug settings: | 
 |  */ | 
 | #ifdef CONFIG_SLUB_DEBUG_ON | 
 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | #else | 
 | static int slub_debug; | 
 | #endif | 
 |  | 
 | static char *slub_debug_slabs; | 
 | static int disable_higher_order_debug; | 
 |  | 
 | /* | 
 |  * Object debugging | 
 |  */ | 
 | static void print_section(char *text, u8 *addr, unsigned int length) | 
 | { | 
 | 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, | 
 | 			length, 1); | 
 | } | 
 |  | 
 | static struct track *get_track(struct kmem_cache *s, void *object, | 
 | 	enum track_item alloc) | 
 | { | 
 | 	struct track *p; | 
 |  | 
 | 	if (s->offset) | 
 | 		p = object + s->offset + sizeof(void *); | 
 | 	else | 
 | 		p = object + s->inuse; | 
 |  | 
 | 	return p + alloc; | 
 | } | 
 |  | 
 | static void set_track(struct kmem_cache *s, void *object, | 
 | 			enum track_item alloc, unsigned long addr) | 
 | { | 
 | 	struct track *p = get_track(s, object, alloc); | 
 |  | 
 | 	if (addr) { | 
 | #ifdef CONFIG_STACKTRACE | 
 | 		struct stack_trace trace; | 
 | 		int i; | 
 |  | 
 | 		trace.nr_entries = 0; | 
 | 		trace.max_entries = TRACK_ADDRS_COUNT; | 
 | 		trace.entries = p->addrs; | 
 | 		trace.skip = 3; | 
 | 		save_stack_trace(&trace); | 
 |  | 
 | 		/* See rant in lockdep.c */ | 
 | 		if (trace.nr_entries != 0 && | 
 | 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX) | 
 | 			trace.nr_entries--; | 
 |  | 
 | 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | 
 | 			p->addrs[i] = 0; | 
 | #endif | 
 | 		p->addr = addr; | 
 | 		p->cpu = smp_processor_id(); | 
 | 		p->pid = current->pid; | 
 | 		p->when = jiffies; | 
 | 	} else | 
 | 		memset(p, 0, sizeof(struct track)); | 
 | } | 
 |  | 
 | static void init_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	set_track(s, object, TRACK_FREE, 0UL); | 
 | 	set_track(s, object, TRACK_ALLOC, 0UL); | 
 | } | 
 |  | 
 | static void print_track(const char *s, struct track *t) | 
 | { | 
 | 	if (!t->addr) | 
 | 		return; | 
 |  | 
 | 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 
 | 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); | 
 | #ifdef CONFIG_STACKTRACE | 
 | 	{ | 
 | 		int i; | 
 | 		for (i = 0; i < TRACK_ADDRS_COUNT; i++) | 
 | 			if (t->addrs[i]) | 
 | 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); | 
 | 			else | 
 | 				break; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void print_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | 
 | 	print_track("Freed", get_track(s, object, TRACK_FREE)); | 
 | } | 
 |  | 
 | static void print_page_info(struct page *page) | 
 | { | 
 | 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 
 | 		page, page->objects, page->inuse, page->freelist, page->flags); | 
 |  | 
 | } | 
 |  | 
 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	printk(KERN_ERR "========================================" | 
 | 			"=====================================\n"); | 
 | 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); | 
 | 	printk(KERN_ERR "----------------------------------------" | 
 | 			"-------------------------------------\n\n"); | 
 | } | 
 |  | 
 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | 
 | } | 
 |  | 
 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
 | { | 
 | 	unsigned int off;	/* Offset of last byte */ | 
 | 	u8 *addr = page_address(page); | 
 |  | 
 | 	print_tracking(s, p); | 
 |  | 
 | 	print_page_info(page); | 
 |  | 
 | 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
 | 			p, p - addr, get_freepointer(s, p)); | 
 |  | 
 | 	if (p > addr + 16) | 
 | 		print_section("Bytes b4 ", p - 16, 16); | 
 |  | 
 | 	print_section("Object ", p, min_t(unsigned long, s->objsize, | 
 | 				PAGE_SIZE)); | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		print_section("Redzone ", p + s->objsize, | 
 | 			s->inuse - s->objsize); | 
 |  | 
 | 	if (s->offset) | 
 | 		off = s->offset + sizeof(void *); | 
 | 	else | 
 | 		off = s->inuse; | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		off += 2 * sizeof(struct track); | 
 |  | 
 | 	if (off != s->size) | 
 | 		/* Beginning of the filler is the free pointer */ | 
 | 		print_section("Padding ", p + off, s->size - off); | 
 |  | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static void object_err(struct kmem_cache *s, struct page *page, | 
 | 			u8 *object, char *reason) | 
 | { | 
 | 	slab_bug(s, "%s", reason); | 
 | 	print_trailer(s, page, object); | 
 | } | 
 |  | 
 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	slab_bug(s, "%s", buf); | 
 | 	print_page_info(page); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static void init_object(struct kmem_cache *s, void *object, u8 val) | 
 | { | 
 | 	u8 *p = object; | 
 |  | 
 | 	if (s->flags & __OBJECT_POISON) { | 
 | 		memset(p, POISON_FREE, s->objsize - 1); | 
 | 		p[s->objsize - 1] = POISON_END; | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		memset(p + s->objsize, val, s->inuse - s->objsize); | 
 | } | 
 |  | 
 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
 | 						void *from, void *to) | 
 | { | 
 | 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
 | 	memset(from, data, to - from); | 
 | } | 
 |  | 
 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
 | 			u8 *object, char *what, | 
 | 			u8 *start, unsigned int value, unsigned int bytes) | 
 | { | 
 | 	u8 *fault; | 
 | 	u8 *end; | 
 |  | 
 | 	fault = memchr_inv(start, value, bytes); | 
 | 	if (!fault) | 
 | 		return 1; | 
 |  | 
 | 	end = start + bytes; | 
 | 	while (end > fault && end[-1] == value) | 
 | 		end--; | 
 |  | 
 | 	slab_bug(s, "%s overwritten", what); | 
 | 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
 | 					fault, end - 1, fault[0], value); | 
 | 	print_trailer(s, page, object); | 
 |  | 
 | 	restore_bytes(s, what, value, fault, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Object layout: | 
 |  * | 
 |  * object address | 
 |  * 	Bytes of the object to be managed. | 
 |  * 	If the freepointer may overlay the object then the free | 
 |  * 	pointer is the first word of the object. | 
 |  * | 
 |  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
 |  * 	0xa5 (POISON_END) | 
 |  * | 
 |  * object + s->objsize | 
 |  * 	Padding to reach word boundary. This is also used for Redzoning. | 
 |  * 	Padding is extended by another word if Redzoning is enabled and | 
 |  * 	objsize == inuse. | 
 |  * | 
 |  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
 |  * 	0xcc (RED_ACTIVE) for objects in use. | 
 |  * | 
 |  * object + s->inuse | 
 |  * 	Meta data starts here. | 
 |  * | 
 |  * 	A. Free pointer (if we cannot overwrite object on free) | 
 |  * 	B. Tracking data for SLAB_STORE_USER | 
 |  * 	C. Padding to reach required alignment boundary or at mininum | 
 |  * 		one word if debugging is on to be able to detect writes | 
 |  * 		before the word boundary. | 
 |  * | 
 |  *	Padding is done using 0x5a (POISON_INUSE) | 
 |  * | 
 |  * object + s->size | 
 |  * 	Nothing is used beyond s->size. | 
 |  * | 
 |  * If slabcaches are merged then the objsize and inuse boundaries are mostly | 
 |  * ignored. And therefore no slab options that rely on these boundaries | 
 |  * may be used with merged slabcaches. | 
 |  */ | 
 |  | 
 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
 | { | 
 | 	unsigned long off = s->inuse;	/* The end of info */ | 
 |  | 
 | 	if (s->offset) | 
 | 		/* Freepointer is placed after the object. */ | 
 | 		off += sizeof(void *); | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		/* We also have user information there */ | 
 | 		off += 2 * sizeof(struct track); | 
 |  | 
 | 	if (s->size == off) | 
 | 		return 1; | 
 |  | 
 | 	return check_bytes_and_report(s, page, p, "Object padding", | 
 | 				p + off, POISON_INUSE, s->size - off); | 
 | } | 
 |  | 
 | /* Check the pad bytes at the end of a slab page */ | 
 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	u8 *start; | 
 | 	u8 *fault; | 
 | 	u8 *end; | 
 | 	int length; | 
 | 	int remainder; | 
 |  | 
 | 	if (!(s->flags & SLAB_POISON)) | 
 | 		return 1; | 
 |  | 
 | 	start = page_address(page); | 
 | 	length = (PAGE_SIZE << compound_order(page)) - s->reserved; | 
 | 	end = start + length; | 
 | 	remainder = length % s->size; | 
 | 	if (!remainder) | 
 | 		return 1; | 
 |  | 
 | 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder); | 
 | 	if (!fault) | 
 | 		return 1; | 
 | 	while (end > fault && end[-1] == POISON_INUSE) | 
 | 		end--; | 
 |  | 
 | 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
 | 	print_section("Padding ", end - remainder, remainder); | 
 |  | 
 | 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_object(struct kmem_cache *s, struct page *page, | 
 | 					void *object, u8 val) | 
 | { | 
 | 	u8 *p = object; | 
 | 	u8 *endobject = object + s->objsize; | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) { | 
 | 		if (!check_bytes_and_report(s, page, object, "Redzone", | 
 | 			endobject, val, s->inuse - s->objsize)) | 
 | 			return 0; | 
 | 	} else { | 
 | 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { | 
 | 			check_bytes_and_report(s, page, p, "Alignment padding", | 
 | 				endobject, POISON_INUSE, s->inuse - s->objsize); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_POISON) { | 
 | 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && | 
 | 			(!check_bytes_and_report(s, page, p, "Poison", p, | 
 | 					POISON_FREE, s->objsize - 1) || | 
 | 			 !check_bytes_and_report(s, page, p, "Poison", | 
 | 				p + s->objsize - 1, POISON_END, 1))) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * check_pad_bytes cleans up on its own. | 
 | 		 */ | 
 | 		check_pad_bytes(s, page, p); | 
 | 	} | 
 |  | 
 | 	if (!s->offset && val == SLUB_RED_ACTIVE) | 
 | 		/* | 
 | 		 * Object and freepointer overlap. Cannot check | 
 | 		 * freepointer while object is allocated. | 
 | 		 */ | 
 | 		return 1; | 
 |  | 
 | 	/* Check free pointer validity */ | 
 | 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
 | 		object_err(s, page, p, "Freepointer corrupt"); | 
 | 		/* | 
 | 		 * No choice but to zap it and thus lose the remainder | 
 | 		 * of the free objects in this slab. May cause | 
 | 		 * another error because the object count is now wrong. | 
 | 		 */ | 
 | 		set_freepointer(s, p, NULL); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int check_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	int maxobj; | 
 |  | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 |  | 
 | 	if (!PageSlab(page)) { | 
 | 		slab_err(s, page, "Not a valid slab page"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	maxobj = order_objects(compound_order(page), s->size, s->reserved); | 
 | 	if (page->objects > maxobj) { | 
 | 		slab_err(s, page, "objects %u > max %u", | 
 | 			s->name, page->objects, maxobj); | 
 | 		return 0; | 
 | 	} | 
 | 	if (page->inuse > page->objects) { | 
 | 		slab_err(s, page, "inuse %u > max %u", | 
 | 			s->name, page->inuse, page->objects); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Slab_pad_check fixes things up after itself */ | 
 | 	slab_pad_check(s, page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine if a certain object on a page is on the freelist. Must hold the | 
 |  * slab lock to guarantee that the chains are in a consistent state. | 
 |  */ | 
 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
 | { | 
 | 	int nr = 0; | 
 | 	void *fp; | 
 | 	void *object = NULL; | 
 | 	unsigned long max_objects; | 
 |  | 
 | 	fp = page->freelist; | 
 | 	while (fp && nr <= page->objects) { | 
 | 		if (fp == search) | 
 | 			return 1; | 
 | 		if (!check_valid_pointer(s, page, fp)) { | 
 | 			if (object) { | 
 | 				object_err(s, page, object, | 
 | 					"Freechain corrupt"); | 
 | 				set_freepointer(s, object, NULL); | 
 | 				break; | 
 | 			} else { | 
 | 				slab_err(s, page, "Freepointer corrupt"); | 
 | 				page->freelist = NULL; | 
 | 				page->inuse = page->objects; | 
 | 				slab_fix(s, "Freelist cleared"); | 
 | 				return 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		object = fp; | 
 | 		fp = get_freepointer(s, object); | 
 | 		nr++; | 
 | 	} | 
 |  | 
 | 	max_objects = order_objects(compound_order(page), s->size, s->reserved); | 
 | 	if (max_objects > MAX_OBJS_PER_PAGE) | 
 | 		max_objects = MAX_OBJS_PER_PAGE; | 
 |  | 
 | 	if (page->objects != max_objects) { | 
 | 		slab_err(s, page, "Wrong number of objects. Found %d but " | 
 | 			"should be %d", page->objects, max_objects); | 
 | 		page->objects = max_objects; | 
 | 		slab_fix(s, "Number of objects adjusted."); | 
 | 	} | 
 | 	if (page->inuse != page->objects - nr) { | 
 | 		slab_err(s, page, "Wrong object count. Counter is %d but " | 
 | 			"counted were %d", page->inuse, page->objects - nr); | 
 | 		page->inuse = page->objects - nr; | 
 | 		slab_fix(s, "Object count adjusted."); | 
 | 	} | 
 | 	return search == NULL; | 
 | } | 
 |  | 
 | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
 | 								int alloc) | 
 | { | 
 | 	if (s->flags & SLAB_TRACE) { | 
 | 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
 | 			s->name, | 
 | 			alloc ? "alloc" : "free", | 
 | 			object, page->inuse, | 
 | 			page->freelist); | 
 |  | 
 | 		if (!alloc) | 
 | 			print_section("Object ", (void *)object, s->objsize); | 
 |  | 
 | 		dump_stack(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Hooks for other subsystems that check memory allocations. In a typical | 
 |  * production configuration these hooks all should produce no code at all. | 
 |  */ | 
 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | 
 | { | 
 | 	flags &= gfp_allowed_mask; | 
 | 	lockdep_trace_alloc(flags); | 
 | 	might_sleep_if(flags & __GFP_WAIT); | 
 |  | 
 | 	return should_failslab(s->objsize, flags, s->flags); | 
 | } | 
 |  | 
 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) | 
 | { | 
 | 	flags &= gfp_allowed_mask; | 
 | 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); | 
 | 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); | 
 | } | 
 |  | 
 | static inline void slab_free_hook(struct kmem_cache *s, void *x) | 
 | { | 
 | 	kmemleak_free_recursive(x, s->flags); | 
 |  | 
 | 	/* | 
 | 	 * Trouble is that we may no longer disable interupts in the fast path | 
 | 	 * So in order to make the debug calls that expect irqs to be | 
 | 	 * disabled we need to disable interrupts temporarily. | 
 | 	 */ | 
 | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) | 
 | 	{ | 
 | 		unsigned long flags; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		kmemcheck_slab_free(s, x, s->objsize); | 
 | 		debug_check_no_locks_freed(x, s->objsize); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | #endif | 
 | 	if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
 | 		debug_check_no_obj_freed(x, s->objsize); | 
 | } | 
 |  | 
 | /* | 
 |  * Tracking of fully allocated slabs for debugging purposes. | 
 |  * | 
 |  * list_lock must be held. | 
 |  */ | 
 | static void add_full(struct kmem_cache *s, | 
 | 	struct kmem_cache_node *n, struct page *page) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	list_add(&page->lru, &n->full); | 
 | } | 
 |  | 
 | /* | 
 |  * list_lock must be held. | 
 |  */ | 
 | static void remove_full(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	list_del(&page->lru); | 
 | } | 
 |  | 
 | /* Tracking of the number of slabs for debugging purposes */ | 
 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	return atomic_long_read(&n->nr_slabs); | 
 | } | 
 |  | 
 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
 | { | 
 | 	return atomic_long_read(&n->nr_slabs); | 
 | } | 
 |  | 
 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	/* | 
 | 	 * May be called early in order to allocate a slab for the | 
 | 	 * kmem_cache_node structure. Solve the chicken-egg | 
 | 	 * dilemma by deferring the increment of the count during | 
 | 	 * bootstrap (see early_kmem_cache_node_alloc). | 
 | 	 */ | 
 | 	if (n) { | 
 | 		atomic_long_inc(&n->nr_slabs); | 
 | 		atomic_long_add(objects, &n->total_objects); | 
 | 	} | 
 | } | 
 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	atomic_long_dec(&n->nr_slabs); | 
 | 	atomic_long_sub(objects, &n->total_objects); | 
 | } | 
 |  | 
 | /* Object debug checks for alloc/free paths */ | 
 | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
 | 								void *object) | 
 | { | 
 | 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
 | 		return; | 
 |  | 
 | 	init_object(s, object, SLUB_RED_INACTIVE); | 
 | 	init_tracking(s, object); | 
 | } | 
 |  | 
 | static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, | 
 | 					void *object, unsigned long addr) | 
 | { | 
 | 	if (!check_slab(s, page)) | 
 | 		goto bad; | 
 |  | 
 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 		object_err(s, page, object, "Freelist Pointer check fails"); | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (!check_object(s, page, object, SLUB_RED_INACTIVE)) | 
 | 		goto bad; | 
 |  | 
 | 	/* Success perform special debug activities for allocs */ | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		set_track(s, object, TRACK_ALLOC, addr); | 
 | 	trace(s, page, object, 1); | 
 | 	init_object(s, object, SLUB_RED_ACTIVE); | 
 | 	return 1; | 
 |  | 
 | bad: | 
 | 	if (PageSlab(page)) { | 
 | 		/* | 
 | 		 * If this is a slab page then lets do the best we can | 
 | 		 * to avoid issues in the future. Marking all objects | 
 | 		 * as used avoids touching the remaining objects. | 
 | 		 */ | 
 | 		slab_fix(s, "Marking all objects used"); | 
 | 		page->inuse = page->objects; | 
 | 		page->freelist = NULL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int free_debug_processing(struct kmem_cache *s, | 
 | 		 struct page *page, void *object, unsigned long addr) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int rc = 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	slab_lock(page); | 
 |  | 
 | 	if (!check_slab(s, page)) | 
 | 		goto fail; | 
 |  | 
 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 		slab_err(s, page, "Invalid object pointer 0x%p", object); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (on_freelist(s, page, object)) { | 
 | 		object_err(s, page, object, "Object already free"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (!check_object(s, page, object, SLUB_RED_ACTIVE)) | 
 | 		goto out; | 
 |  | 
 | 	if (unlikely(s != page->slab)) { | 
 | 		if (!PageSlab(page)) { | 
 | 			slab_err(s, page, "Attempt to free object(0x%p) " | 
 | 				"outside of slab", object); | 
 | 		} else if (!page->slab) { | 
 | 			printk(KERN_ERR | 
 | 				"SLUB <none>: no slab for object 0x%p.\n", | 
 | 						object); | 
 | 			dump_stack(); | 
 | 		} else | 
 | 			object_err(s, page, object, | 
 | 					"page slab pointer corrupt."); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		set_track(s, object, TRACK_FREE, addr); | 
 | 	trace(s, page, object, 0); | 
 | 	init_object(s, object, SLUB_RED_INACTIVE); | 
 | 	rc = 1; | 
 | out: | 
 | 	slab_unlock(page); | 
 | 	local_irq_restore(flags); | 
 | 	return rc; | 
 |  | 
 | fail: | 
 | 	slab_fix(s, "Object at 0x%p not freed", object); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static int __init setup_slub_debug(char *str) | 
 | { | 
 | 	slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | 	if (*str++ != '=' || !*str) | 
 | 		/* | 
 | 		 * No options specified. Switch on full debugging. | 
 | 		 */ | 
 | 		goto out; | 
 |  | 
 | 	if (*str == ',') | 
 | 		/* | 
 | 		 * No options but restriction on slabs. This means full | 
 | 		 * debugging for slabs matching a pattern. | 
 | 		 */ | 
 | 		goto check_slabs; | 
 |  | 
 | 	if (tolower(*str) == 'o') { | 
 | 		/* | 
 | 		 * Avoid enabling debugging on caches if its minimum order | 
 | 		 * would increase as a result. | 
 | 		 */ | 
 | 		disable_higher_order_debug = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	slub_debug = 0; | 
 | 	if (*str == '-') | 
 | 		/* | 
 | 		 * Switch off all debugging measures. | 
 | 		 */ | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Determine which debug features should be switched on | 
 | 	 */ | 
 | 	for (; *str && *str != ','; str++) { | 
 | 		switch (tolower(*str)) { | 
 | 		case 'f': | 
 | 			slub_debug |= SLAB_DEBUG_FREE; | 
 | 			break; | 
 | 		case 'z': | 
 | 			slub_debug |= SLAB_RED_ZONE; | 
 | 			break; | 
 | 		case 'p': | 
 | 			slub_debug |= SLAB_POISON; | 
 | 			break; | 
 | 		case 'u': | 
 | 			slub_debug |= SLAB_STORE_USER; | 
 | 			break; | 
 | 		case 't': | 
 | 			slub_debug |= SLAB_TRACE; | 
 | 			break; | 
 | 		case 'a': | 
 | 			slub_debug |= SLAB_FAILSLAB; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_ERR "slub_debug option '%c' " | 
 | 				"unknown. skipped\n", *str); | 
 | 		} | 
 | 	} | 
 |  | 
 | check_slabs: | 
 | 	if (*str == ',') | 
 | 		slub_debug_slabs = str + 1; | 
 | out: | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_debug", setup_slub_debug); | 
 |  | 
 | static unsigned long kmem_cache_flags(unsigned long objsize, | 
 | 	unsigned long flags, const char *name, | 
 | 	void (*ctor)(void *)) | 
 | { | 
 | 	/* | 
 | 	 * Enable debugging if selected on the kernel commandline. | 
 | 	 */ | 
 | 	if (slub_debug && (!slub_debug_slabs || | 
 | 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) | 
 | 		flags |= slub_debug; | 
 |  | 
 | 	return flags; | 
 | } | 
 | #else | 
 | static inline void setup_object_debug(struct kmem_cache *s, | 
 | 			struct page *page, void *object) {} | 
 |  | 
 | static inline int alloc_debug_processing(struct kmem_cache *s, | 
 | 	struct page *page, void *object, unsigned long addr) { return 0; } | 
 |  | 
 | static inline int free_debug_processing(struct kmem_cache *s, | 
 | 	struct page *page, void *object, unsigned long addr) { return 0; } | 
 |  | 
 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | 			{ return 1; } | 
 | static inline int check_object(struct kmem_cache *s, struct page *page, | 
 | 			void *object, u8 val) { return 1; } | 
 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 					struct page *page) {} | 
 | static inline void remove_full(struct kmem_cache *s, struct page *page) {} | 
 | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 
 | 	unsigned long flags, const char *name, | 
 | 	void (*ctor)(void *)) | 
 | { | 
 | 	return flags; | 
 | } | 
 | #define slub_debug 0 | 
 |  | 
 | #define disable_higher_order_debug 0 | 
 |  | 
 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | 							{ return 0; } | 
 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
 | 							{ return 0; } | 
 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
 | 							int objects) {} | 
 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
 | 							int objects) {} | 
 |  | 
 | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | 
 | 							{ return 0; } | 
 |  | 
 | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, | 
 | 		void *object) {} | 
 |  | 
 | static inline void slab_free_hook(struct kmem_cache *s, void *x) {} | 
 |  | 
 | #endif /* CONFIG_SLUB_DEBUG */ | 
 |  | 
 | static void setup_object(struct kmem_cache *s, struct page *page, | 
 | 				void *object) | 
 | { | 
 | 	setup_object_debug(s, page, object); | 
 | 	if (unlikely(s->ctor)) | 
 | 		s->ctor(object); | 
 | } | 
 |  | 
 | /* | 
 |  * Slab allocation and freeing | 
 |  */ | 
 | static inline struct page *alloc_slab_page(gfp_t flags, int node, | 
 | 					struct kmem_cache_order_objects oo) | 
 | { | 
 | 	int order = oo_order(oo); | 
 |  | 
 | 	flags |= __GFP_NOTRACK; | 
 |  | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		return alloc_pages(flags, order); | 
 | 	else | 
 | 		return alloc_pages_exact_node(node, flags, order); | 
 | } | 
 |  | 
 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache_order_objects oo = s->oo; | 
 | 	gfp_t alloc_gfp; | 
 | 	void *start, *last, *p; | 
 | 	int idx, order; | 
 |  | 
 | 	flags &= gfp_allowed_mask; | 
 |  | 
 | 	if (flags & __GFP_WAIT) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	flags |= s->allocflags; | 
 |  | 
 | 	/* | 
 | 	 * Let the initial higher-order allocation fail under memory pressure | 
 | 	 * so we fall-back to the minimum order allocation. | 
 | 	 */ | 
 | 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | 
 |  | 
 | 	page = alloc_slab_page(alloc_gfp, node, oo); | 
 | 	if (unlikely(!page)) { | 
 | 		oo = s->min; | 
 | 		/* | 
 | 		 * Allocation may have failed due to fragmentation. | 
 | 		 * Try a lower order alloc if possible | 
 | 		 */ | 
 | 		page = alloc_slab_page(flags, node, oo); | 
 | 		if (unlikely(!page)) | 
 | 			goto out; | 
 | 		stat(s, ORDER_FALLBACK); | 
 | 	} | 
 |  | 
 | 	if (kmemcheck_enabled | 
 | 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { | 
 | 		int pages = 1 << oo_order(oo); | 
 |  | 
 | 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); | 
 |  | 
 | 		/* | 
 | 		 * Objects from caches that have a constructor don't get | 
 | 		 * cleared when they're allocated, so we need to do it here. | 
 | 		 */ | 
 | 		if (s->ctor) | 
 | 			kmemcheck_mark_uninitialized_pages(page, pages); | 
 | 		else | 
 | 			kmemcheck_mark_unallocated_pages(page, pages); | 
 | 	} | 
 |  | 
 | 	page->objects = oo_objects(oo); | 
 | 	page->slab = s; | 
 | 	page->flags |= 1 << PG_slab; | 
 |  | 
 | 	start = page_address(page); | 
 |  | 
 | 	if (unlikely(s->flags & SLAB_POISON)) | 
 | 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); | 
 |  | 
 | 	last = start; | 
 | 	for_each_object(p, s, start, page->objects) { | 
 | 		setup_object(s, page, last); | 
 | 		set_freepointer(s, last, p); | 
 | 		last = p; | 
 | 	} | 
 | 	setup_object(s, page, last); | 
 | 	set_freepointer(s, last, NULL); | 
 |  | 
 | 	page->freelist = start; | 
 | 	page->inuse = page->objects; | 
 | 	page->frozen = 1; | 
 |  | 
 | out: | 
 | 	if (flags & __GFP_WAIT) | 
 | 		local_irq_disable(); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	mod_zone_page_state(page_zone(page), | 
 | 		(s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
 | 		1 << oo_order(oo)); | 
 |  | 
 | 	inc_slabs_node(s, page_to_nid(page), page->objects); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | 
 | 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return allocate_slab(s, | 
 | 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
 | } | 
 |  | 
 | static void __free_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	int order = compound_order(page); | 
 | 	int pages = 1 << order; | 
 |  | 
 | 	if (kmem_cache_debug(s)) { | 
 | 		void *p; | 
 |  | 
 | 		slab_pad_check(s, page); | 
 | 		for_each_object(p, s, page_address(page), | 
 | 						page->objects) | 
 | 			check_object(s, page, p, SLUB_RED_INACTIVE); | 
 | 	} | 
 |  | 
 | 	kmemcheck_free_shadow(page, compound_order(page)); | 
 |  | 
 | 	mod_zone_page_state(page_zone(page), | 
 | 		(s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
 | 		-pages); | 
 |  | 
 | 	__ClearPageSlab(page); | 
 | 	reset_page_mapcount(page); | 
 | 	if (current->reclaim_state) | 
 | 		current->reclaim_state->reclaimed_slab += pages; | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | #define need_reserve_slab_rcu						\ | 
 | 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) | 
 |  | 
 | static void rcu_free_slab(struct rcu_head *h) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (need_reserve_slab_rcu) | 
 | 		page = virt_to_head_page(h); | 
 | 	else | 
 | 		page = container_of((struct list_head *)h, struct page, lru); | 
 |  | 
 | 	__free_slab(page->slab, page); | 
 | } | 
 |  | 
 | static void free_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | 
 | 		struct rcu_head *head; | 
 |  | 
 | 		if (need_reserve_slab_rcu) { | 
 | 			int order = compound_order(page); | 
 | 			int offset = (PAGE_SIZE << order) - s->reserved; | 
 |  | 
 | 			VM_BUG_ON(s->reserved != sizeof(*head)); | 
 | 			head = page_address(page) + offset; | 
 | 		} else { | 
 | 			/* | 
 | 			 * RCU free overloads the RCU head over the LRU | 
 | 			 */ | 
 | 			head = (void *)&page->lru; | 
 | 		} | 
 |  | 
 | 		call_rcu(head, rcu_free_slab); | 
 | 	} else | 
 | 		__free_slab(s, page); | 
 | } | 
 |  | 
 | static void discard_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	dec_slabs_node(s, page_to_nid(page), page->objects); | 
 | 	free_slab(s, page); | 
 | } | 
 |  | 
 | /* | 
 |  * Management of partially allocated slabs. | 
 |  * | 
 |  * list_lock must be held. | 
 |  */ | 
 | static inline void add_partial(struct kmem_cache_node *n, | 
 | 				struct page *page, int tail) | 
 | { | 
 | 	n->nr_partial++; | 
 | 	if (tail == DEACTIVATE_TO_TAIL) | 
 | 		list_add_tail(&page->lru, &n->partial); | 
 | 	else | 
 | 		list_add(&page->lru, &n->partial); | 
 | } | 
 |  | 
 | /* | 
 |  * list_lock must be held. | 
 |  */ | 
 | static inline void remove_partial(struct kmem_cache_node *n, | 
 | 					struct page *page) | 
 | { | 
 | 	list_del(&page->lru); | 
 | 	n->nr_partial--; | 
 | } | 
 |  | 
 | /* | 
 |  * Lock slab, remove from the partial list and put the object into the | 
 |  * per cpu freelist. | 
 |  * | 
 |  * Returns a list of objects or NULL if it fails. | 
 |  * | 
 |  * Must hold list_lock. | 
 |  */ | 
 | static inline void *acquire_slab(struct kmem_cache *s, | 
 | 		struct kmem_cache_node *n, struct page *page, | 
 | 		int mode) | 
 | { | 
 | 	void *freelist; | 
 | 	unsigned long counters; | 
 | 	struct page new; | 
 |  | 
 | 	/* | 
 | 	 * Zap the freelist and set the frozen bit. | 
 | 	 * The old freelist is the list of objects for the | 
 | 	 * per cpu allocation list. | 
 | 	 */ | 
 | 	do { | 
 | 		freelist = page->freelist; | 
 | 		counters = page->counters; | 
 | 		new.counters = counters; | 
 | 		if (mode) { | 
 | 			new.inuse = page->objects; | 
 | 			new.freelist = NULL; | 
 | 		} else { | 
 | 			new.freelist = freelist; | 
 | 		} | 
 |  | 
 | 		VM_BUG_ON(new.frozen); | 
 | 		new.frozen = 1; | 
 |  | 
 | 	} while (!__cmpxchg_double_slab(s, page, | 
 | 			freelist, counters, | 
 | 			new.freelist, new.counters, | 
 | 			"lock and freeze")); | 
 |  | 
 | 	remove_partial(n, page); | 
 | 	return freelist; | 
 | } | 
 |  | 
 | static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); | 
 |  | 
 | /* | 
 |  * Try to allocate a partial slab from a specific node. | 
 |  */ | 
 | static void *get_partial_node(struct kmem_cache *s, | 
 | 		struct kmem_cache_node *n, struct kmem_cache_cpu *c) | 
 | { | 
 | 	struct page *page, *page2; | 
 | 	void *object = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Racy check. If we mistakenly see no partial slabs then we | 
 | 	 * just allocate an empty slab. If we mistakenly try to get a | 
 | 	 * partial slab and there is none available then get_partials() | 
 | 	 * will return NULL. | 
 | 	 */ | 
 | 	if (!n || !n->nr_partial) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock(&n->list_lock); | 
 | 	list_for_each_entry_safe(page, page2, &n->partial, lru) { | 
 | 		void *t = acquire_slab(s, n, page, object == NULL); | 
 | 		int available; | 
 |  | 
 | 		if (!t) | 
 | 			break; | 
 |  | 
 | 		if (!object) { | 
 | 			c->page = page; | 
 | 			c->node = page_to_nid(page); | 
 | 			stat(s, ALLOC_FROM_PARTIAL); | 
 | 			object = t; | 
 | 			available =  page->objects - page->inuse; | 
 | 		} else { | 
 | 			available = put_cpu_partial(s, page, 0); | 
 | 			stat(s, CPU_PARTIAL_NODE); | 
 | 		} | 
 | 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2) | 
 | 			break; | 
 |  | 
 | 	} | 
 | 	spin_unlock(&n->list_lock); | 
 | 	return object; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a page from somewhere. Search in increasing NUMA distances. | 
 |  */ | 
 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, | 
 | 		struct kmem_cache_cpu *c) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	struct zonelist *zonelist; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	enum zone_type high_zoneidx = gfp_zone(flags); | 
 | 	void *object; | 
 | 	unsigned int cpuset_mems_cookie; | 
 |  | 
 | 	/* | 
 | 	 * The defrag ratio allows a configuration of the tradeoffs between | 
 | 	 * inter node defragmentation and node local allocations. A lower | 
 | 	 * defrag_ratio increases the tendency to do local allocations | 
 | 	 * instead of attempting to obtain partial slabs from other nodes. | 
 | 	 * | 
 | 	 * If the defrag_ratio is set to 0 then kmalloc() always | 
 | 	 * returns node local objects. If the ratio is higher then kmalloc() | 
 | 	 * may return off node objects because partial slabs are obtained | 
 | 	 * from other nodes and filled up. | 
 | 	 * | 
 | 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes | 
 | 	 * defrag_ratio = 1000) then every (well almost) allocation will | 
 | 	 * first attempt to defrag slab caches on other nodes. This means | 
 | 	 * scanning over all nodes to look for partial slabs which may be | 
 | 	 * expensive if we do it every time we are trying to find a slab | 
 | 	 * with available objects. | 
 | 	 */ | 
 | 	if (!s->remote_node_defrag_ratio || | 
 | 			get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
 | 		return NULL; | 
 |  | 
 | 	do { | 
 | 		cpuset_mems_cookie = get_mems_allowed(); | 
 | 		zonelist = node_zonelist(slab_node(), flags); | 
 | 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
 | 			struct kmem_cache_node *n; | 
 |  | 
 | 			n = get_node(s, zone_to_nid(zone)); | 
 |  | 
 | 			if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 
 | 					n->nr_partial > s->min_partial) { | 
 | 				object = get_partial_node(s, n, c); | 
 | 				if (object) { | 
 | 					/* | 
 | 					 * Return the object even if | 
 | 					 * put_mems_allowed indicated that | 
 | 					 * the cpuset mems_allowed was | 
 | 					 * updated in parallel. It's a | 
 | 					 * harmless race between the alloc | 
 | 					 * and the cpuset update. | 
 | 					 */ | 
 | 					put_mems_allowed(cpuset_mems_cookie); | 
 | 					return object; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} while (!put_mems_allowed(cpuset_mems_cookie)); | 
 | #endif | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a partial page, lock it and return it. | 
 |  */ | 
 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, | 
 | 		struct kmem_cache_cpu *c) | 
 | { | 
 | 	void *object; | 
 | 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; | 
 |  | 
 | 	object = get_partial_node(s, get_node(s, searchnode), c); | 
 | 	if (object || node != NUMA_NO_NODE) | 
 | 		return object; | 
 |  | 
 | 	return get_any_partial(s, flags, c); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | /* | 
 |  * Calculate the next globally unique transaction for disambiguiation | 
 |  * during cmpxchg. The transactions start with the cpu number and are then | 
 |  * incremented by CONFIG_NR_CPUS. | 
 |  */ | 
 | #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS) | 
 | #else | 
 | /* | 
 |  * No preemption supported therefore also no need to check for | 
 |  * different cpus. | 
 |  */ | 
 | #define TID_STEP 1 | 
 | #endif | 
 |  | 
 | static inline unsigned long next_tid(unsigned long tid) | 
 | { | 
 | 	return tid + TID_STEP; | 
 | } | 
 |  | 
 | static inline unsigned int tid_to_cpu(unsigned long tid) | 
 | { | 
 | 	return tid % TID_STEP; | 
 | } | 
 |  | 
 | static inline unsigned long tid_to_event(unsigned long tid) | 
 | { | 
 | 	return tid / TID_STEP; | 
 | } | 
 |  | 
 | static inline unsigned int init_tid(int cpu) | 
 | { | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static inline void note_cmpxchg_failure(const char *n, | 
 | 		const struct kmem_cache *s, unsigned long tid) | 
 | { | 
 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | 
 |  | 
 | 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | 
 | 		printk("due to cpu change %d -> %d\n", | 
 | 			tid_to_cpu(tid), tid_to_cpu(actual_tid)); | 
 | 	else | 
 | #endif | 
 | 	if (tid_to_event(tid) != tid_to_event(actual_tid)) | 
 | 		printk("due to cpu running other code. Event %ld->%ld\n", | 
 | 			tid_to_event(tid), tid_to_event(actual_tid)); | 
 | 	else | 
 | 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n", | 
 | 			actual_tid, tid, next_tid(tid)); | 
 | #endif | 
 | 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | 
 | } | 
 |  | 
 | void init_kmem_cache_cpus(struct kmem_cache *s) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the cpu slab | 
 |  */ | 
 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
 | { | 
 | 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; | 
 | 	struct page *page = c->page; | 
 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 | 	int lock = 0; | 
 | 	enum slab_modes l = M_NONE, m = M_NONE; | 
 | 	void *freelist; | 
 | 	void *nextfree; | 
 | 	int tail = DEACTIVATE_TO_HEAD; | 
 | 	struct page new; | 
 | 	struct page old; | 
 |  | 
 | 	if (page->freelist) { | 
 | 		stat(s, DEACTIVATE_REMOTE_FREES); | 
 | 		tail = DEACTIVATE_TO_TAIL; | 
 | 	} | 
 |  | 
 | 	c->tid = next_tid(c->tid); | 
 | 	c->page = NULL; | 
 | 	freelist = c->freelist; | 
 | 	c->freelist = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Stage one: Free all available per cpu objects back | 
 | 	 * to the page freelist while it is still frozen. Leave the | 
 | 	 * last one. | 
 | 	 * | 
 | 	 * There is no need to take the list->lock because the page | 
 | 	 * is still frozen. | 
 | 	 */ | 
 | 	while (freelist && (nextfree = get_freepointer(s, freelist))) { | 
 | 		void *prior; | 
 | 		unsigned long counters; | 
 |  | 
 | 		do { | 
 | 			prior = page->freelist; | 
 | 			counters = page->counters; | 
 | 			set_freepointer(s, freelist, prior); | 
 | 			new.counters = counters; | 
 | 			new.inuse--; | 
 | 			VM_BUG_ON(!new.frozen); | 
 |  | 
 | 		} while (!__cmpxchg_double_slab(s, page, | 
 | 			prior, counters, | 
 | 			freelist, new.counters, | 
 | 			"drain percpu freelist")); | 
 |  | 
 | 		freelist = nextfree; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Stage two: Ensure that the page is unfrozen while the | 
 | 	 * list presence reflects the actual number of objects | 
 | 	 * during unfreeze. | 
 | 	 * | 
 | 	 * We setup the list membership and then perform a cmpxchg | 
 | 	 * with the count. If there is a mismatch then the page | 
 | 	 * is not unfrozen but the page is on the wrong list. | 
 | 	 * | 
 | 	 * Then we restart the process which may have to remove | 
 | 	 * the page from the list that we just put it on again | 
 | 	 * because the number of objects in the slab may have | 
 | 	 * changed. | 
 | 	 */ | 
 | redo: | 
 |  | 
 | 	old.freelist = page->freelist; | 
 | 	old.counters = page->counters; | 
 | 	VM_BUG_ON(!old.frozen); | 
 |  | 
 | 	/* Determine target state of the slab */ | 
 | 	new.counters = old.counters; | 
 | 	if (freelist) { | 
 | 		new.inuse--; | 
 | 		set_freepointer(s, freelist, old.freelist); | 
 | 		new.freelist = freelist; | 
 | 	} else | 
 | 		new.freelist = old.freelist; | 
 |  | 
 | 	new.frozen = 0; | 
 |  | 
 | 	if (!new.inuse && n->nr_partial > s->min_partial) | 
 | 		m = M_FREE; | 
 | 	else if (new.freelist) { | 
 | 		m = M_PARTIAL; | 
 | 		if (!lock) { | 
 | 			lock = 1; | 
 | 			/* | 
 | 			 * Taking the spinlock removes the possiblity | 
 | 			 * that acquire_slab() will see a slab page that | 
 | 			 * is frozen | 
 | 			 */ | 
 | 			spin_lock(&n->list_lock); | 
 | 		} | 
 | 	} else { | 
 | 		m = M_FULL; | 
 | 		if (kmem_cache_debug(s) && !lock) { | 
 | 			lock = 1; | 
 | 			/* | 
 | 			 * This also ensures that the scanning of full | 
 | 			 * slabs from diagnostic functions will not see | 
 | 			 * any frozen slabs. | 
 | 			 */ | 
 | 			spin_lock(&n->list_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (l != m) { | 
 |  | 
 | 		if (l == M_PARTIAL) | 
 |  | 
 | 			remove_partial(n, page); | 
 |  | 
 | 		else if (l == M_FULL) | 
 |  | 
 | 			remove_full(s, page); | 
 |  | 
 | 		if (m == M_PARTIAL) { | 
 |  | 
 | 			add_partial(n, page, tail); | 
 | 			stat(s, tail); | 
 |  | 
 | 		} else if (m == M_FULL) { | 
 |  | 
 | 			stat(s, DEACTIVATE_FULL); | 
 | 			add_full(s, n, page); | 
 |  | 
 | 		} | 
 | 	} | 
 |  | 
 | 	l = m; | 
 | 	if (!__cmpxchg_double_slab(s, page, | 
 | 				old.freelist, old.counters, | 
 | 				new.freelist, new.counters, | 
 | 				"unfreezing slab")) | 
 | 		goto redo; | 
 |  | 
 | 	if (lock) | 
 | 		spin_unlock(&n->list_lock); | 
 |  | 
 | 	if (m == M_FREE) { | 
 | 		stat(s, DEACTIVATE_EMPTY); | 
 | 		discard_slab(s, page); | 
 | 		stat(s, FREE_SLAB); | 
 | 	} | 
 | } | 
 |  | 
 | /* Unfreeze all the cpu partial slabs */ | 
 | static void unfreeze_partials(struct kmem_cache *s) | 
 | { | 
 | 	struct kmem_cache_node *n = NULL, *n2 = NULL; | 
 | 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); | 
 | 	struct page *page, *discard_page = NULL; | 
 |  | 
 | 	while ((page = c->partial)) { | 
 | 		struct page new; | 
 | 		struct page old; | 
 |  | 
 | 		c->partial = page->next; | 
 |  | 
 | 		n2 = get_node(s, page_to_nid(page)); | 
 | 		if (n != n2) { | 
 | 			if (n) | 
 | 				spin_unlock(&n->list_lock); | 
 |  | 
 | 			n = n2; | 
 | 			spin_lock(&n->list_lock); | 
 | 		} | 
 |  | 
 | 		do { | 
 |  | 
 | 			old.freelist = page->freelist; | 
 | 			old.counters = page->counters; | 
 | 			VM_BUG_ON(!old.frozen); | 
 |  | 
 | 			new.counters = old.counters; | 
 | 			new.freelist = old.freelist; | 
 |  | 
 | 			new.frozen = 0; | 
 |  | 
 | 		} while (!cmpxchg_double_slab(s, page, | 
 | 				old.freelist, old.counters, | 
 | 				new.freelist, new.counters, | 
 | 				"unfreezing slab")); | 
 |  | 
 | 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { | 
 | 			page->next = discard_page; | 
 | 			discard_page = page; | 
 | 		} else { | 
 | 			add_partial(n, page, DEACTIVATE_TO_TAIL); | 
 | 			stat(s, FREE_ADD_PARTIAL); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (n) | 
 | 		spin_unlock(&n->list_lock); | 
 |  | 
 | 	while (discard_page) { | 
 | 		page = discard_page; | 
 | 		discard_page = discard_page->next; | 
 |  | 
 | 		stat(s, DEACTIVATE_EMPTY); | 
 | 		discard_slab(s, page); | 
 | 		stat(s, FREE_SLAB); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Put a page that was just frozen (in __slab_free) into a partial page | 
 |  * slot if available. This is done without interrupts disabled and without | 
 |  * preemption disabled. The cmpxchg is racy and may put the partial page | 
 |  * onto a random cpus partial slot. | 
 |  * | 
 |  * If we did not find a slot then simply move all the partials to the | 
 |  * per node partial list. | 
 |  */ | 
 | int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | 
 | { | 
 | 	struct page *oldpage; | 
 | 	int pages; | 
 | 	int pobjects; | 
 |  | 
 | 	do { | 
 | 		pages = 0; | 
 | 		pobjects = 0; | 
 | 		oldpage = this_cpu_read(s->cpu_slab->partial); | 
 |  | 
 | 		if (oldpage) { | 
 | 			pobjects = oldpage->pobjects; | 
 | 			pages = oldpage->pages; | 
 | 			if (drain && pobjects > s->cpu_partial) { | 
 | 				unsigned long flags; | 
 | 				/* | 
 | 				 * partial array is full. Move the existing | 
 | 				 * set to the per node partial list. | 
 | 				 */ | 
 | 				local_irq_save(flags); | 
 | 				unfreeze_partials(s); | 
 | 				local_irq_restore(flags); | 
 | 				pobjects = 0; | 
 | 				pages = 0; | 
 | 				stat(s, CPU_PARTIAL_DRAIN); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		pages++; | 
 | 		pobjects += page->objects - page->inuse; | 
 |  | 
 | 		page->pages = pages; | 
 | 		page->pobjects = pobjects; | 
 | 		page->next = oldpage; | 
 |  | 
 | 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); | 
 | 	return pobjects; | 
 | } | 
 |  | 
 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
 | { | 
 | 	stat(s, CPUSLAB_FLUSH); | 
 | 	deactivate_slab(s, c); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush cpu slab. | 
 |  * | 
 |  * Called from IPI handler with interrupts disabled. | 
 |  */ | 
 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
 | { | 
 | 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 |  | 
 | 	if (likely(c)) { | 
 | 		if (c->page) | 
 | 			flush_slab(s, c); | 
 |  | 
 | 		unfreeze_partials(s); | 
 | 	} | 
 | } | 
 |  | 
 | static void flush_cpu_slab(void *d) | 
 | { | 
 | 	struct kmem_cache *s = d; | 
 |  | 
 | 	__flush_cpu_slab(s, smp_processor_id()); | 
 | } | 
 |  | 
 | static bool has_cpu_slab(int cpu, void *info) | 
 | { | 
 | 	struct kmem_cache *s = info; | 
 | 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 |  | 
 | 	return c->page || c->partial; | 
 | } | 
 |  | 
 | static void flush_all(struct kmem_cache *s) | 
 | { | 
 | 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the objects in a per cpu structure fit numa | 
 |  * locality expectations. | 
 |  */ | 
 | static inline int node_match(struct kmem_cache_cpu *c, int node) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	if (node != NUMA_NO_NODE && c->node != node) | 
 | 		return 0; | 
 | #endif | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int count_free(struct page *page) | 
 | { | 
 | 	return page->objects - page->inuse; | 
 | } | 
 |  | 
 | static unsigned long count_partial(struct kmem_cache_node *n, | 
 | 					int (*get_count)(struct page *)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long x = 0; | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 	list_for_each_entry(page, &n->partial, lru) | 
 | 		x += get_count(page); | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return x; | 
 | } | 
 |  | 
 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	return atomic_long_read(&n->total_objects); | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static noinline void | 
 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	printk(KERN_WARNING | 
 | 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", | 
 | 		nid, gfpflags); | 
 | 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, " | 
 | 		"default order: %d, min order: %d\n", s->name, s->objsize, | 
 | 		s->size, oo_order(s->oo), oo_order(s->min)); | 
 |  | 
 | 	if (oo_order(s->min) > get_order(s->objsize)) | 
 | 		printk(KERN_WARNING "  %s debugging increased min order, use " | 
 | 		       "slub_debug=O to disable.\n", s->name); | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 | 		unsigned long nr_slabs; | 
 | 		unsigned long nr_objs; | 
 | 		unsigned long nr_free; | 
 |  | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		nr_free  = count_partial(n, count_free); | 
 | 		nr_slabs = node_nr_slabs(n); | 
 | 		nr_objs  = node_nr_objs(n); | 
 |  | 
 | 		printk(KERN_WARNING | 
 | 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n", | 
 | 			node, nr_slabs, nr_objs, nr_free); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, | 
 | 			int node, struct kmem_cache_cpu **pc) | 
 | { | 
 | 	void *object; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	struct page *page = new_slab(s, flags, node); | 
 |  | 
 | 	if (page) { | 
 | 		c = __this_cpu_ptr(s->cpu_slab); | 
 | 		if (c->page) | 
 | 			flush_slab(s, c); | 
 |  | 
 | 		/* | 
 | 		 * No other reference to the page yet so we can | 
 | 		 * muck around with it freely without cmpxchg | 
 | 		 */ | 
 | 		object = page->freelist; | 
 | 		page->freelist = NULL; | 
 |  | 
 | 		stat(s, ALLOC_SLAB); | 
 | 		c->node = page_to_nid(page); | 
 | 		c->page = page; | 
 | 		*pc = c; | 
 | 	} else | 
 | 		object = NULL; | 
 |  | 
 | 	return object; | 
 | } | 
 |  | 
 | /* | 
 |  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist | 
 |  * or deactivate the page. | 
 |  * | 
 |  * The page is still frozen if the return value is not NULL. | 
 |  * | 
 |  * If this function returns NULL then the page has been unfrozen. | 
 |  */ | 
 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	struct page new; | 
 | 	unsigned long counters; | 
 | 	void *freelist; | 
 |  | 
 | 	do { | 
 | 		freelist = page->freelist; | 
 | 		counters = page->counters; | 
 | 		new.counters = counters; | 
 | 		VM_BUG_ON(!new.frozen); | 
 |  | 
 | 		new.inuse = page->objects; | 
 | 		new.frozen = freelist != NULL; | 
 |  | 
 | 	} while (!cmpxchg_double_slab(s, page, | 
 | 		freelist, counters, | 
 | 		NULL, new.counters, | 
 | 		"get_freelist")); | 
 |  | 
 | 	return freelist; | 
 | } | 
 |  | 
 | /* | 
 |  * Slow path. The lockless freelist is empty or we need to perform | 
 |  * debugging duties. | 
 |  * | 
 |  * Processing is still very fast if new objects have been freed to the | 
 |  * regular freelist. In that case we simply take over the regular freelist | 
 |  * as the lockless freelist and zap the regular freelist. | 
 |  * | 
 |  * If that is not working then we fall back to the partial lists. We take the | 
 |  * first element of the freelist as the object to allocate now and move the | 
 |  * rest of the freelist to the lockless freelist. | 
 |  * | 
 |  * And if we were unable to get a new slab from the partial slab lists then | 
 |  * we need to allocate a new slab. This is the slowest path since it involves | 
 |  * a call to the page allocator and the setup of a new slab. | 
 |  */ | 
 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
 | 			  unsigned long addr, struct kmem_cache_cpu *c) | 
 | { | 
 | 	void **object; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | #ifdef CONFIG_PREEMPT | 
 | 	/* | 
 | 	 * We may have been preempted and rescheduled on a different | 
 | 	 * cpu before disabling interrupts. Need to reload cpu area | 
 | 	 * pointer. | 
 | 	 */ | 
 | 	c = this_cpu_ptr(s->cpu_slab); | 
 | #endif | 
 |  | 
 | 	if (!c->page) | 
 | 		goto new_slab; | 
 | redo: | 
 | 	if (unlikely(!node_match(c, node))) { | 
 | 		stat(s, ALLOC_NODE_MISMATCH); | 
 | 		deactivate_slab(s, c); | 
 | 		goto new_slab; | 
 | 	} | 
 |  | 
 | 	/* must check again c->freelist in case of cpu migration or IRQ */ | 
 | 	object = c->freelist; | 
 | 	if (object) | 
 | 		goto load_freelist; | 
 |  | 
 | 	stat(s, ALLOC_SLOWPATH); | 
 |  | 
 | 	object = get_freelist(s, c->page); | 
 |  | 
 | 	if (!object) { | 
 | 		c->page = NULL; | 
 | 		stat(s, DEACTIVATE_BYPASS); | 
 | 		goto new_slab; | 
 | 	} | 
 |  | 
 | 	stat(s, ALLOC_REFILL); | 
 |  | 
 | load_freelist: | 
 | 	c->freelist = get_freepointer(s, object); | 
 | 	c->tid = next_tid(c->tid); | 
 | 	local_irq_restore(flags); | 
 | 	return object; | 
 |  | 
 | new_slab: | 
 |  | 
 | 	if (c->partial) { | 
 | 		c->page = c->partial; | 
 | 		c->partial = c->page->next; | 
 | 		c->node = page_to_nid(c->page); | 
 | 		stat(s, CPU_PARTIAL_ALLOC); | 
 | 		c->freelist = NULL; | 
 | 		goto redo; | 
 | 	} | 
 |  | 
 | 	/* Then do expensive stuff like retrieving pages from the partial lists */ | 
 | 	object = get_partial(s, gfpflags, node, c); | 
 |  | 
 | 	if (unlikely(!object)) { | 
 |  | 
 | 		object = new_slab_objects(s, gfpflags, node, &c); | 
 |  | 
 | 		if (unlikely(!object)) { | 
 | 			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) | 
 | 				slab_out_of_memory(s, gfpflags, node); | 
 |  | 
 | 			local_irq_restore(flags); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (likely(!kmem_cache_debug(s))) | 
 | 		goto load_freelist; | 
 |  | 
 | 	/* Only entered in the debug case */ | 
 | 	if (!alloc_debug_processing(s, c->page, object, addr)) | 
 | 		goto new_slab;	/* Slab failed checks. Next slab needed */ | 
 |  | 
 | 	c->freelist = get_freepointer(s, object); | 
 | 	deactivate_slab(s, c); | 
 | 	c->node = NUMA_NO_NODE; | 
 | 	local_irq_restore(flags); | 
 | 	return object; | 
 | } | 
 |  | 
 | /* | 
 |  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
 |  * have the fastpath folded into their functions. So no function call | 
 |  * overhead for requests that can be satisfied on the fastpath. | 
 |  * | 
 |  * The fastpath works by first checking if the lockless freelist can be used. | 
 |  * If not then __slab_alloc is called for slow processing. | 
 |  * | 
 |  * Otherwise we can simply pick the next object from the lockless free list. | 
 |  */ | 
 | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
 | 		gfp_t gfpflags, int node, unsigned long addr) | 
 | { | 
 | 	void **object; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	unsigned long tid; | 
 |  | 
 | 	if (slab_pre_alloc_hook(s, gfpflags)) | 
 | 		return NULL; | 
 |  | 
 | redo: | 
 |  | 
 | 	/* | 
 | 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 
 | 	 * enabled. We may switch back and forth between cpus while | 
 | 	 * reading from one cpu area. That does not matter as long | 
 | 	 * as we end up on the original cpu again when doing the cmpxchg. | 
 | 	 */ | 
 | 	c = __this_cpu_ptr(s->cpu_slab); | 
 |  | 
 | 	/* | 
 | 	 * The transaction ids are globally unique per cpu and per operation on | 
 | 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | 
 | 	 * occurs on the right processor and that there was no operation on the | 
 | 	 * linked list in between. | 
 | 	 */ | 
 | 	tid = c->tid; | 
 | 	barrier(); | 
 |  | 
 | 	object = c->freelist; | 
 | 	if (unlikely(!object || !node_match(c, node))) | 
 |  | 
 | 		object = __slab_alloc(s, gfpflags, node, addr, c); | 
 |  | 
 | 	else { | 
 | 		void *next_object = get_freepointer_safe(s, object); | 
 |  | 
 | 		/* | 
 | 		 * The cmpxchg will only match if there was no additional | 
 | 		 * operation and if we are on the right processor. | 
 | 		 * | 
 | 		 * The cmpxchg does the following atomically (without lock semantics!) | 
 | 		 * 1. Relocate first pointer to the current per cpu area. | 
 | 		 * 2. Verify that tid and freelist have not been changed | 
 | 		 * 3. If they were not changed replace tid and freelist | 
 | 		 * | 
 | 		 * Since this is without lock semantics the protection is only against | 
 | 		 * code executing on this cpu *not* from access by other cpus. | 
 | 		 */ | 
 | 		if (unlikely(!this_cpu_cmpxchg_double( | 
 | 				s->cpu_slab->freelist, s->cpu_slab->tid, | 
 | 				object, tid, | 
 | 				next_object, next_tid(tid)))) { | 
 |  | 
 | 			note_cmpxchg_failure("slab_alloc", s, tid); | 
 | 			goto redo; | 
 | 		} | 
 | 		prefetch_freepointer(s, next_object); | 
 | 		stat(s, ALLOC_FASTPATH); | 
 | 	} | 
 |  | 
 | 	if (unlikely(gfpflags & __GFP_ZERO) && object) | 
 | 		memset(object, 0, s->objsize); | 
 |  | 
 | 	slab_post_alloc_hook(s, gfpflags, object); | 
 |  | 
 | 	return object; | 
 | } | 
 |  | 
 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
 | { | 
 | 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); | 
 |  | 
 | 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
 | { | 
 | 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); | 
 | 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
 |  | 
 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
 | { | 
 | 	void *ret = kmalloc_order(size, flags, order); | 
 | 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmalloc_order_trace); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
 | { | 
 | 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); | 
 |  | 
 | 	trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
 | 				    s->objsize, s->size, gfpflags, node); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
 | 				    gfp_t gfpflags, | 
 | 				    int node, size_t size) | 
 | { | 
 | 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); | 
 |  | 
 | 	trace_kmalloc_node(_RET_IP_, ret, | 
 | 			   size, s->size, gfpflags, node); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
 | #endif | 
 | #endif | 
 |  | 
 | /* | 
 |  * Slow patch handling. This may still be called frequently since objects | 
 |  * have a longer lifetime than the cpu slabs in most processing loads. | 
 |  * | 
 |  * So we still attempt to reduce cache line usage. Just take the slab | 
 |  * lock and free the item. If there is no additional partial page | 
 |  * handling required then we can return immediately. | 
 |  */ | 
 | static void __slab_free(struct kmem_cache *s, struct page *page, | 
 | 			void *x, unsigned long addr) | 
 | { | 
 | 	void *prior; | 
 | 	void **object = (void *)x; | 
 | 	int was_frozen; | 
 | 	int inuse; | 
 | 	struct page new; | 
 | 	unsigned long counters; | 
 | 	struct kmem_cache_node *n = NULL; | 
 | 	unsigned long uninitialized_var(flags); | 
 |  | 
 | 	stat(s, FREE_SLOWPATH); | 
 |  | 
 | 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		prior = page->freelist; | 
 | 		counters = page->counters; | 
 | 		set_freepointer(s, object, prior); | 
 | 		new.counters = counters; | 
 | 		was_frozen = new.frozen; | 
 | 		new.inuse--; | 
 | 		if ((!new.inuse || !prior) && !was_frozen && !n) { | 
 |  | 
 | 			if (!kmem_cache_debug(s) && !prior) | 
 |  | 
 | 				/* | 
 | 				 * Slab was on no list before and will be partially empty | 
 | 				 * We can defer the list move and instead freeze it. | 
 | 				 */ | 
 | 				new.frozen = 1; | 
 |  | 
 | 			else { /* Needs to be taken off a list */ | 
 |  | 
 | 	                        n = get_node(s, page_to_nid(page)); | 
 | 				/* | 
 | 				 * Speculatively acquire the list_lock. | 
 | 				 * If the cmpxchg does not succeed then we may | 
 | 				 * drop the list_lock without any processing. | 
 | 				 * | 
 | 				 * Otherwise the list_lock will synchronize with | 
 | 				 * other processors updating the list of slabs. | 
 | 				 */ | 
 | 				spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 			} | 
 | 		} | 
 | 		inuse = new.inuse; | 
 |  | 
 | 	} while (!cmpxchg_double_slab(s, page, | 
 | 		prior, counters, | 
 | 		object, new.counters, | 
 | 		"__slab_free")); | 
 |  | 
 | 	if (likely(!n)) { | 
 |  | 
 | 		/* | 
 | 		 * If we just froze the page then put it onto the | 
 | 		 * per cpu partial list. | 
 | 		 */ | 
 | 		if (new.frozen && !was_frozen) { | 
 | 			put_cpu_partial(s, page, 1); | 
 | 			stat(s, CPU_PARTIAL_FREE); | 
 | 		} | 
 | 		/* | 
 | 		 * The list lock was not taken therefore no list | 
 | 		 * activity can be necessary. | 
 | 		 */ | 
 |                 if (was_frozen) | 
 |                         stat(s, FREE_FROZEN); | 
 |                 return; | 
 |         } | 
 |  | 
 | 	/* | 
 | 	 * was_frozen may have been set after we acquired the list_lock in | 
 | 	 * an earlier loop. So we need to check it here again. | 
 | 	 */ | 
 | 	if (was_frozen) | 
 | 		stat(s, FREE_FROZEN); | 
 | 	else { | 
 | 		if (unlikely(!inuse && n->nr_partial > s->min_partial)) | 
 |                         goto slab_empty; | 
 |  | 
 | 		/* | 
 | 		 * Objects left in the slab. If it was not on the partial list before | 
 | 		 * then add it. | 
 | 		 */ | 
 | 		if (unlikely(!prior)) { | 
 | 			remove_full(s, page); | 
 | 			add_partial(n, page, DEACTIVATE_TO_TAIL); | 
 | 			stat(s, FREE_ADD_PARTIAL); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return; | 
 |  | 
 | slab_empty: | 
 | 	if (prior) { | 
 | 		/* | 
 | 		 * Slab on the partial list. | 
 | 		 */ | 
 | 		remove_partial(n, page); | 
 | 		stat(s, FREE_REMOVE_PARTIAL); | 
 | 	} else | 
 | 		/* Slab must be on the full list */ | 
 | 		remove_full(s, page); | 
 |  | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	stat(s, FREE_SLAB); | 
 | 	discard_slab(s, page); | 
 | } | 
 |  | 
 | /* | 
 |  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
 |  * can perform fastpath freeing without additional function calls. | 
 |  * | 
 |  * The fastpath is only possible if we are freeing to the current cpu slab | 
 |  * of this processor. This typically the case if we have just allocated | 
 |  * the item before. | 
 |  * | 
 |  * If fastpath is not possible then fall back to __slab_free where we deal | 
 |  * with all sorts of special processing. | 
 |  */ | 
 | static __always_inline void slab_free(struct kmem_cache *s, | 
 | 			struct page *page, void *x, unsigned long addr) | 
 | { | 
 | 	void **object = (void *)x; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	unsigned long tid; | 
 |  | 
 | 	slab_free_hook(s, x); | 
 |  | 
 | redo: | 
 | 	/* | 
 | 	 * Determine the currently cpus per cpu slab. | 
 | 	 * The cpu may change afterward. However that does not matter since | 
 | 	 * data is retrieved via this pointer. If we are on the same cpu | 
 | 	 * during the cmpxchg then the free will succedd. | 
 | 	 */ | 
 | 	c = __this_cpu_ptr(s->cpu_slab); | 
 |  | 
 | 	tid = c->tid; | 
 | 	barrier(); | 
 |  | 
 | 	if (likely(page == c->page)) { | 
 | 		set_freepointer(s, object, c->freelist); | 
 |  | 
 | 		if (unlikely(!this_cpu_cmpxchg_double( | 
 | 				s->cpu_slab->freelist, s->cpu_slab->tid, | 
 | 				c->freelist, tid, | 
 | 				object, next_tid(tid)))) { | 
 |  | 
 | 			note_cmpxchg_failure("slab_free", s, tid); | 
 | 			goto redo; | 
 | 		} | 
 | 		stat(s, FREE_FASTPATH); | 
 | 	} else | 
 | 		__slab_free(s, page, x, addr); | 
 |  | 
 | } | 
 |  | 
 | void kmem_cache_free(struct kmem_cache *s, void *x) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = virt_to_head_page(x); | 
 |  | 
 | 	slab_free(s, page, x, _RET_IP_); | 
 |  | 
 | 	trace_kmem_cache_free(_RET_IP_, x); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | /* | 
 |  * Object placement in a slab is made very easy because we always start at | 
 |  * offset 0. If we tune the size of the object to the alignment then we can | 
 |  * get the required alignment by putting one properly sized object after | 
 |  * another. | 
 |  * | 
 |  * Notice that the allocation order determines the sizes of the per cpu | 
 |  * caches. Each processor has always one slab available for allocations. | 
 |  * Increasing the allocation order reduces the number of times that slabs | 
 |  * must be moved on and off the partial lists and is therefore a factor in | 
 |  * locking overhead. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Mininum / Maximum order of slab pages. This influences locking overhead | 
 |  * and slab fragmentation. A higher order reduces the number of partial slabs | 
 |  * and increases the number of allocations possible without having to | 
 |  * take the list_lock. | 
 |  */ | 
 | static int slub_min_order; | 
 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
 | static int slub_min_objects; | 
 |  | 
 | /* | 
 |  * Merge control. If this is set then no merging of slab caches will occur. | 
 |  * (Could be removed. This was introduced to pacify the merge skeptics.) | 
 |  */ | 
 | static int slub_nomerge; | 
 |  | 
 | /* | 
 |  * Calculate the order of allocation given an slab object size. | 
 |  * | 
 |  * The order of allocation has significant impact on performance and other | 
 |  * system components. Generally order 0 allocations should be preferred since | 
 |  * order 0 does not cause fragmentation in the page allocator. Larger objects | 
 |  * be problematic to put into order 0 slabs because there may be too much | 
 |  * unused space left. We go to a higher order if more than 1/16th of the slab | 
 |  * would be wasted. | 
 |  * | 
 |  * In order to reach satisfactory performance we must ensure that a minimum | 
 |  * number of objects is in one slab. Otherwise we may generate too much | 
 |  * activity on the partial lists which requires taking the list_lock. This is | 
 |  * less a concern for large slabs though which are rarely used. | 
 |  * | 
 |  * slub_max_order specifies the order where we begin to stop considering the | 
 |  * number of objects in a slab as critical. If we reach slub_max_order then | 
 |  * we try to keep the page order as low as possible. So we accept more waste | 
 |  * of space in favor of a small page order. | 
 |  * | 
 |  * Higher order allocations also allow the placement of more objects in a | 
 |  * slab and thereby reduce object handling overhead. If the user has | 
 |  * requested a higher mininum order then we start with that one instead of | 
 |  * the smallest order which will fit the object. | 
 |  */ | 
 | static inline int slab_order(int size, int min_objects, | 
 | 				int max_order, int fract_leftover, int reserved) | 
 | { | 
 | 	int order; | 
 | 	int rem; | 
 | 	int min_order = slub_min_order; | 
 |  | 
 | 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) | 
 | 		return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 
 |  | 
 | 	for (order = max(min_order, | 
 | 				fls(min_objects * size - 1) - PAGE_SHIFT); | 
 | 			order <= max_order; order++) { | 
 |  | 
 | 		unsigned long slab_size = PAGE_SIZE << order; | 
 |  | 
 | 		if (slab_size < min_objects * size + reserved) | 
 | 			continue; | 
 |  | 
 | 		rem = (slab_size - reserved) % size; | 
 |  | 
 | 		if (rem <= slab_size / fract_leftover) | 
 | 			break; | 
 |  | 
 | 	} | 
 |  | 
 | 	return order; | 
 | } | 
 |  | 
 | static inline int calculate_order(int size, int reserved) | 
 | { | 
 | 	int order; | 
 | 	int min_objects; | 
 | 	int fraction; | 
 | 	int max_objects; | 
 |  | 
 | 	/* | 
 | 	 * Attempt to find best configuration for a slab. This | 
 | 	 * works by first attempting to generate a layout with | 
 | 	 * the best configuration and backing off gradually. | 
 | 	 * | 
 | 	 * First we reduce the acceptable waste in a slab. Then | 
 | 	 * we reduce the minimum objects required in a slab. | 
 | 	 */ | 
 | 	min_objects = slub_min_objects; | 
 | 	if (!min_objects) | 
 | 		min_objects = 4 * (fls(nr_cpu_ids) + 1); | 
 | 	max_objects = order_objects(slub_max_order, size, reserved); | 
 | 	min_objects = min(min_objects, max_objects); | 
 |  | 
 | 	while (min_objects > 1) { | 
 | 		fraction = 16; | 
 | 		while (fraction >= 4) { | 
 | 			order = slab_order(size, min_objects, | 
 | 					slub_max_order, fraction, reserved); | 
 | 			if (order <= slub_max_order) | 
 | 				return order; | 
 | 			fraction /= 2; | 
 | 		} | 
 | 		min_objects--; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We were unable to place multiple objects in a slab. Now | 
 | 	 * lets see if we can place a single object there. | 
 | 	 */ | 
 | 	order = slab_order(size, 1, slub_max_order, 1, reserved); | 
 | 	if (order <= slub_max_order) | 
 | 		return order; | 
 |  | 
 | 	/* | 
 | 	 * Doh this slab cannot be placed using slub_max_order. | 
 | 	 */ | 
 | 	order = slab_order(size, 1, MAX_ORDER, 1, reserved); | 
 | 	if (order < MAX_ORDER) | 
 | 		return order; | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out what the alignment of the objects will be. | 
 |  */ | 
 | static unsigned long calculate_alignment(unsigned long flags, | 
 | 		unsigned long align, unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * If the user wants hardware cache aligned objects then follow that | 
 | 	 * suggestion if the object is sufficiently large. | 
 | 	 * | 
 | 	 * The hardware cache alignment cannot override the specified | 
 | 	 * alignment though. If that is greater then use it. | 
 | 	 */ | 
 | 	if (flags & SLAB_HWCACHE_ALIGN) { | 
 | 		unsigned long ralign = cache_line_size(); | 
 | 		while (size <= ralign / 2) | 
 | 			ralign /= 2; | 
 | 		align = max(align, ralign); | 
 | 	} | 
 |  | 
 | 	if (align < ARCH_SLAB_MINALIGN) | 
 | 		align = ARCH_SLAB_MINALIGN; | 
 |  | 
 | 	return ALIGN(align, sizeof(void *)); | 
 | } | 
 |  | 
 | static void | 
 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | 
 | { | 
 | 	n->nr_partial = 0; | 
 | 	spin_lock_init(&n->list_lock); | 
 | 	INIT_LIST_HEAD(&n->partial); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	atomic_long_set(&n->nr_slabs, 0); | 
 | 	atomic_long_set(&n->total_objects, 0); | 
 | 	INIT_LIST_HEAD(&n->full); | 
 | #endif | 
 | } | 
 |  | 
 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 
 | { | 
 | 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 
 | 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); | 
 |  | 
 | 	/* | 
 | 	 * Must align to double word boundary for the double cmpxchg | 
 | 	 * instructions to work; see __pcpu_double_call_return_bool(). | 
 | 	 */ | 
 | 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), | 
 | 				     2 * sizeof(void *)); | 
 |  | 
 | 	if (!s->cpu_slab) | 
 | 		return 0; | 
 |  | 
 | 	init_kmem_cache_cpus(s); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static struct kmem_cache *kmem_cache_node; | 
 |  | 
 | /* | 
 |  * No kmalloc_node yet so do it by hand. We know that this is the first | 
 |  * slab on the node for this slabcache. There are no concurrent accesses | 
 |  * possible. | 
 |  * | 
 |  * Note that this function only works on the kmalloc_node_cache | 
 |  * when allocating for the kmalloc_node_cache. This is used for bootstrapping | 
 |  * memory on a fresh node that has no slab structures yet. | 
 |  */ | 
 | static void early_kmem_cache_node_alloc(int node) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | 
 |  | 
 | 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node); | 
 |  | 
 | 	BUG_ON(!page); | 
 | 	if (page_to_nid(page) != node) { | 
 | 		printk(KERN_ERR "SLUB: Unable to allocate memory from " | 
 | 				"node %d\n", node); | 
 | 		printk(KERN_ERR "SLUB: Allocating a useless per node structure " | 
 | 				"in order to be able to continue\n"); | 
 | 	} | 
 |  | 
 | 	n = page->freelist; | 
 | 	BUG_ON(!n); | 
 | 	page->freelist = get_freepointer(kmem_cache_node, n); | 
 | 	page->inuse = 1; | 
 | 	page->frozen = 0; | 
 | 	kmem_cache_node->node[node] = n; | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | 
 | 	init_tracking(kmem_cache_node, n); | 
 | #endif | 
 | 	init_kmem_cache_node(n, kmem_cache_node); | 
 | 	inc_slabs_node(kmem_cache_node, node, page->objects); | 
 |  | 
 | 	add_partial(n, page, DEACTIVATE_TO_HEAD); | 
 | } | 
 |  | 
 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = s->node[node]; | 
 |  | 
 | 		if (n) | 
 | 			kmem_cache_free(kmem_cache_node, n); | 
 |  | 
 | 		s->node[node] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int init_kmem_cache_nodes(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		if (slab_state == DOWN) { | 
 | 			early_kmem_cache_node_alloc(node); | 
 | 			continue; | 
 | 		} | 
 | 		n = kmem_cache_alloc_node(kmem_cache_node, | 
 | 						GFP_KERNEL, node); | 
 |  | 
 | 		if (!n) { | 
 | 			free_kmem_cache_nodes(s); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		s->node[node] = n; | 
 | 		init_kmem_cache_node(n, s); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 
 | { | 
 | 	if (min < MIN_PARTIAL) | 
 | 		min = MIN_PARTIAL; | 
 | 	else if (min > MAX_PARTIAL) | 
 | 		min = MAX_PARTIAL; | 
 | 	s->min_partial = min; | 
 | } | 
 |  | 
 | /* | 
 |  * calculate_sizes() determines the order and the distribution of data within | 
 |  * a slab object. | 
 |  */ | 
 | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
 | { | 
 | 	unsigned long flags = s->flags; | 
 | 	unsigned long size = s->objsize; | 
 | 	unsigned long align = s->align; | 
 | 	int order; | 
 |  | 
 | 	/* | 
 | 	 * Round up object size to the next word boundary. We can only | 
 | 	 * place the free pointer at word boundaries and this determines | 
 | 	 * the possible location of the free pointer. | 
 | 	 */ | 
 | 	size = ALIGN(size, sizeof(void *)); | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * Determine if we can poison the object itself. If the user of | 
 | 	 * the slab may touch the object after free or before allocation | 
 | 	 * then we should never poison the object itself. | 
 | 	 */ | 
 | 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | 
 | 			!s->ctor) | 
 | 		s->flags |= __OBJECT_POISON; | 
 | 	else | 
 | 		s->flags &= ~__OBJECT_POISON; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If we are Redzoning then check if there is some space between the | 
 | 	 * end of the object and the free pointer. If not then add an | 
 | 	 * additional word to have some bytes to store Redzone information. | 
 | 	 */ | 
 | 	if ((flags & SLAB_RED_ZONE) && size == s->objsize) | 
 | 		size += sizeof(void *); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * With that we have determined the number of bytes in actual use | 
 | 	 * by the object. This is the potential offset to the free pointer. | 
 | 	 */ | 
 | 	s->inuse = size; | 
 |  | 
 | 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | 
 | 		s->ctor)) { | 
 | 		/* | 
 | 		 * Relocate free pointer after the object if it is not | 
 | 		 * permitted to overwrite the first word of the object on | 
 | 		 * kmem_cache_free. | 
 | 		 * | 
 | 		 * This is the case if we do RCU, have a constructor or | 
 | 		 * destructor or are poisoning the objects. | 
 | 		 */ | 
 | 		s->offset = size; | 
 | 		size += sizeof(void *); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	if (flags & SLAB_STORE_USER) | 
 | 		/* | 
 | 		 * Need to store information about allocs and frees after | 
 | 		 * the object. | 
 | 		 */ | 
 | 		size += 2 * sizeof(struct track); | 
 |  | 
 | 	if (flags & SLAB_RED_ZONE) | 
 | 		/* | 
 | 		 * Add some empty padding so that we can catch | 
 | 		 * overwrites from earlier objects rather than let | 
 | 		 * tracking information or the free pointer be | 
 | 		 * corrupted if a user writes before the start | 
 | 		 * of the object. | 
 | 		 */ | 
 | 		size += sizeof(void *); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Determine the alignment based on various parameters that the | 
 | 	 * user specified and the dynamic determination of cache line size | 
 | 	 * on bootup. | 
 | 	 */ | 
 | 	align = calculate_alignment(flags, align, s->objsize); | 
 | 	s->align = align; | 
 |  | 
 | 	/* | 
 | 	 * SLUB stores one object immediately after another beginning from | 
 | 	 * offset 0. In order to align the objects we have to simply size | 
 | 	 * each object to conform to the alignment. | 
 | 	 */ | 
 | 	size = ALIGN(size, align); | 
 | 	s->size = size; | 
 | 	if (forced_order >= 0) | 
 | 		order = forced_order; | 
 | 	else | 
 | 		order = calculate_order(size, s->reserved); | 
 |  | 
 | 	if (order < 0) | 
 | 		return 0; | 
 |  | 
 | 	s->allocflags = 0; | 
 | 	if (order) | 
 | 		s->allocflags |= __GFP_COMP; | 
 |  | 
 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 		s->allocflags |= SLUB_DMA; | 
 |  | 
 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		s->allocflags |= __GFP_RECLAIMABLE; | 
 |  | 
 | 	/* | 
 | 	 * Determine the number of objects per slab | 
 | 	 */ | 
 | 	s->oo = oo_make(order, size, s->reserved); | 
 | 	s->min = oo_make(get_order(size), size, s->reserved); | 
 | 	if (oo_objects(s->oo) > oo_objects(s->max)) | 
 | 		s->max = s->oo; | 
 |  | 
 | 	return !!oo_objects(s->oo); | 
 |  | 
 | } | 
 |  | 
 | static int kmem_cache_open(struct kmem_cache *s, | 
 | 		const char *name, size_t size, | 
 | 		size_t align, unsigned long flags, | 
 | 		void (*ctor)(void *)) | 
 | { | 
 | 	memset(s, 0, kmem_size); | 
 | 	s->name = name; | 
 | 	s->ctor = ctor; | 
 | 	s->objsize = size; | 
 | 	s->align = align; | 
 | 	s->flags = kmem_cache_flags(size, flags, name, ctor); | 
 | 	s->reserved = 0; | 
 |  | 
 | 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) | 
 | 		s->reserved = sizeof(struct rcu_head); | 
 |  | 
 | 	if (!calculate_sizes(s, -1)) | 
 | 		goto error; | 
 | 	if (disable_higher_order_debug) { | 
 | 		/* | 
 | 		 * Disable debugging flags that store metadata if the min slab | 
 | 		 * order increased. | 
 | 		 */ | 
 | 		if (get_order(s->size) > get_order(s->objsize)) { | 
 | 			s->flags &= ~DEBUG_METADATA_FLAGS; | 
 | 			s->offset = 0; | 
 | 			if (!calculate_sizes(s, -1)) | 
 | 				goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) | 
 | 		/* Enable fast mode */ | 
 | 		s->flags |= __CMPXCHG_DOUBLE; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * The larger the object size is, the more pages we want on the partial | 
 | 	 * list to avoid pounding the page allocator excessively. | 
 | 	 */ | 
 | 	set_min_partial(s, ilog2(s->size) / 2); | 
 |  | 
 | 	/* | 
 | 	 * cpu_partial determined the maximum number of objects kept in the | 
 | 	 * per cpu partial lists of a processor. | 
 | 	 * | 
 | 	 * Per cpu partial lists mainly contain slabs that just have one | 
 | 	 * object freed. If they are used for allocation then they can be | 
 | 	 * filled up again with minimal effort. The slab will never hit the | 
 | 	 * per node partial lists and therefore no locking will be required. | 
 | 	 * | 
 | 	 * This setting also determines | 
 | 	 * | 
 | 	 * A) The number of objects from per cpu partial slabs dumped to the | 
 | 	 *    per node list when we reach the limit. | 
 | 	 * B) The number of objects in cpu partial slabs to extract from the | 
 | 	 *    per node list when we run out of per cpu objects. We only fetch 50% | 
 | 	 *    to keep some capacity around for frees. | 
 | 	 */ | 
 | 	if (kmem_cache_debug(s)) | 
 | 		s->cpu_partial = 0; | 
 | 	else if (s->size >= PAGE_SIZE) | 
 | 		s->cpu_partial = 2; | 
 | 	else if (s->size >= 1024) | 
 | 		s->cpu_partial = 6; | 
 | 	else if (s->size >= 256) | 
 | 		s->cpu_partial = 13; | 
 | 	else | 
 | 		s->cpu_partial = 30; | 
 |  | 
 | 	s->refcount = 1; | 
 | #ifdef CONFIG_NUMA | 
 | 	s->remote_node_defrag_ratio = 1000; | 
 | #endif | 
 | 	if (!init_kmem_cache_nodes(s)) | 
 | 		goto error; | 
 |  | 
 | 	if (alloc_kmem_cache_cpus(s)) | 
 | 		return 1; | 
 |  | 
 | 	free_kmem_cache_nodes(s); | 
 | error: | 
 | 	if (flags & SLAB_PANIC) | 
 | 		panic("Cannot create slab %s size=%lu realsize=%u " | 
 | 			"order=%u offset=%u flags=%lx\n", | 
 | 			s->name, (unsigned long)size, s->size, oo_order(s->oo), | 
 | 			s->offset, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the size of a slab object | 
 |  */ | 
 | unsigned int kmem_cache_size(struct kmem_cache *s) | 
 | { | 
 | 	return s->objsize; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_size); | 
 |  | 
 | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
 | 							const char *text) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	void *addr = page_address(page); | 
 | 	void *p; | 
 | 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * | 
 | 				     sizeof(long), GFP_ATOMIC); | 
 | 	if (!map) | 
 | 		return; | 
 | 	slab_err(s, page, "%s", text); | 
 | 	slab_lock(page); | 
 |  | 
 | 	get_map(s, page, map); | 
 | 	for_each_object(p, s, addr, page->objects) { | 
 |  | 
 | 		if (!test_bit(slab_index(p, s, addr), map)) { | 
 | 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | 
 | 							p, p - addr); | 
 | 			print_tracking(s, p); | 
 | 		} | 
 | 	} | 
 | 	slab_unlock(page); | 
 | 	kfree(map); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to free all partial slabs on a node. | 
 |  * This is called from kmem_cache_close(). We must be the last thread | 
 |  * using the cache and therefore we do not need to lock anymore. | 
 |  */ | 
 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
 | { | 
 | 	struct page *page, *h; | 
 |  | 
 | 	list_for_each_entry_safe(page, h, &n->partial, lru) { | 
 | 		if (!page->inuse) { | 
 | 			remove_partial(n, page); | 
 | 			discard_slab(s, page); | 
 | 		} else { | 
 | 			list_slab_objects(s, page, | 
 | 				"Objects remaining on kmem_cache_close()"); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Release all resources used by a slab cache. | 
 |  */ | 
 | static inline int kmem_cache_close(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	flush_all(s); | 
 | 	free_percpu(s->cpu_slab); | 
 | 	/* Attempt to free all objects */ | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		free_partial(s, n); | 
 | 		if (n->nr_partial || slabs_node(s, node)) | 
 | 			return 1; | 
 | 	} | 
 | 	free_kmem_cache_nodes(s); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Close a cache and release the kmem_cache structure | 
 |  * (must be used for caches created using kmem_cache_create) | 
 |  */ | 
 | void kmem_cache_destroy(struct kmem_cache *s) | 
 | { | 
 | 	down_write(&slub_lock); | 
 | 	s->refcount--; | 
 | 	if (!s->refcount) { | 
 | 		list_del(&s->list); | 
 | 		up_write(&slub_lock); | 
 | 		if (kmem_cache_close(s)) { | 
 | 			printk(KERN_ERR "SLUB %s: %s called for cache that " | 
 | 				"still has objects.\n", s->name, __func__); | 
 | 			dump_stack(); | 
 | 		} | 
 | 		if (s->flags & SLAB_DESTROY_BY_RCU) | 
 | 			rcu_barrier(); | 
 | 		sysfs_slab_remove(s); | 
 | 	} else | 
 | 		up_write(&slub_lock); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_destroy); | 
 |  | 
 | /******************************************************************** | 
 |  *		Kmalloc subsystem | 
 |  *******************************************************************/ | 
 |  | 
 | struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; | 
 | EXPORT_SYMBOL(kmalloc_caches); | 
 |  | 
 | static struct kmem_cache *kmem_cache; | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; | 
 | #endif | 
 |  | 
 | static int __init setup_slub_min_order(char *str) | 
 | { | 
 | 	get_option(&str, &slub_min_order); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_min_order=", setup_slub_min_order); | 
 |  | 
 | static int __init setup_slub_max_order(char *str) | 
 | { | 
 | 	get_option(&str, &slub_max_order); | 
 | 	slub_max_order = min(slub_max_order, MAX_ORDER - 1); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_max_order=", setup_slub_max_order); | 
 |  | 
 | static int __init setup_slub_min_objects(char *str) | 
 | { | 
 | 	get_option(&str, &slub_min_objects); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_min_objects=", setup_slub_min_objects); | 
 |  | 
 | static int __init setup_slub_nomerge(char *str) | 
 | { | 
 | 	slub_nomerge = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_nomerge", setup_slub_nomerge); | 
 |  | 
 | static struct kmem_cache *__init create_kmalloc_cache(const char *name, | 
 | 						int size, unsigned int flags) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | 
 |  | 
 | 	/* | 
 | 	 * This function is called with IRQs disabled during early-boot on | 
 | 	 * single CPU so there's no need to take slub_lock here. | 
 | 	 */ | 
 | 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, | 
 | 								flags, NULL)) | 
 | 		goto panic; | 
 |  | 
 | 	list_add(&s->list, &slab_caches); | 
 | 	return s; | 
 |  | 
 | panic: | 
 | 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Conversion table for small slabs sizes / 8 to the index in the | 
 |  * kmalloc array. This is necessary for slabs < 192 since we have non power | 
 |  * of two cache sizes there. The size of larger slabs can be determined using | 
 |  * fls. | 
 |  */ | 
 | static s8 size_index[24] = { | 
 | 	3,	/* 8 */ | 
 | 	4,	/* 16 */ | 
 | 	5,	/* 24 */ | 
 | 	5,	/* 32 */ | 
 | 	6,	/* 40 */ | 
 | 	6,	/* 48 */ | 
 | 	6,	/* 56 */ | 
 | 	6,	/* 64 */ | 
 | 	1,	/* 72 */ | 
 | 	1,	/* 80 */ | 
 | 	1,	/* 88 */ | 
 | 	1,	/* 96 */ | 
 | 	7,	/* 104 */ | 
 | 	7,	/* 112 */ | 
 | 	7,	/* 120 */ | 
 | 	7,	/* 128 */ | 
 | 	2,	/* 136 */ | 
 | 	2,	/* 144 */ | 
 | 	2,	/* 152 */ | 
 | 	2,	/* 160 */ | 
 | 	2,	/* 168 */ | 
 | 	2,	/* 176 */ | 
 | 	2,	/* 184 */ | 
 | 	2	/* 192 */ | 
 | }; | 
 |  | 
 | static inline int size_index_elem(size_t bytes) | 
 | { | 
 | 	return (bytes - 1) / 8; | 
 | } | 
 |  | 
 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | 
 | { | 
 | 	int index; | 
 |  | 
 | 	if (size <= 192) { | 
 | 		if (!size) | 
 | 			return ZERO_SIZE_PTR; | 
 |  | 
 | 		index = size_index[size_index_elem(size)]; | 
 | 	} else | 
 | 		index = fls(size - 1); | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	if (unlikely((flags & SLUB_DMA))) | 
 | 		return kmalloc_dma_caches[index]; | 
 |  | 
 | #endif | 
 | 	return kmalloc_caches[index]; | 
 | } | 
 |  | 
 | void *__kmalloc(size_t size, gfp_t flags) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > SLUB_MAX_SIZE)) | 
 | 		return kmalloc_large(size, flags); | 
 |  | 
 | 	s = get_slab(size, flags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); | 
 |  | 
 | 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	void *ptr = NULL; | 
 |  | 
 | 	flags |= __GFP_COMP | __GFP_NOTRACK; | 
 | 	page = alloc_pages_node(node, flags, get_order(size)); | 
 | 	if (page) | 
 | 		ptr = page_address(page); | 
 |  | 
 | 	kmemleak_alloc(ptr, size, 1, flags); | 
 | 	return ptr; | 
 | } | 
 |  | 
 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > SLUB_MAX_SIZE)) { | 
 | 		ret = kmalloc_large_node(size, flags, node); | 
 |  | 
 | 		trace_kmalloc_node(_RET_IP_, ret, | 
 | 				   size, PAGE_SIZE << get_order(size), | 
 | 				   flags, node); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	s = get_slab(size, flags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc(s, flags, node, _RET_IP_); | 
 |  | 
 | 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 | #endif | 
 |  | 
 | size_t ksize(const void *object) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(object == ZERO_SIZE_PTR)) | 
 | 		return 0; | 
 |  | 
 | 	page = virt_to_head_page(object); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		WARN_ON(!PageCompound(page)); | 
 | 		return PAGE_SIZE << compound_order(page); | 
 | 	} | 
 |  | 
 | 	return slab_ksize(page->slab); | 
 | } | 
 | EXPORT_SYMBOL(ksize); | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | bool verify_mem_not_deleted(const void *x) | 
 | { | 
 | 	struct page *page; | 
 | 	void *object = (void *)x; | 
 | 	unsigned long flags; | 
 | 	bool rv; | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(x))) | 
 | 		return false; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	page = virt_to_head_page(x); | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		/* maybe it was from stack? */ | 
 | 		rv = true; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	slab_lock(page); | 
 | 	if (on_freelist(page->slab, page, object)) { | 
 | 		object_err(page->slab, page, object, "Object is on free-list"); | 
 | 		rv = false; | 
 | 	} else { | 
 | 		rv = true; | 
 | 	} | 
 | 	slab_unlock(page); | 
 |  | 
 | out_unlock: | 
 | 	local_irq_restore(flags); | 
 | 	return rv; | 
 | } | 
 | EXPORT_SYMBOL(verify_mem_not_deleted); | 
 | #endif | 
 |  | 
 | void kfree(const void *x) | 
 | { | 
 | 	struct page *page; | 
 | 	void *object = (void *)x; | 
 |  | 
 | 	trace_kfree(_RET_IP_, x); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(x))) | 
 | 		return; | 
 |  | 
 | 	page = virt_to_head_page(x); | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		BUG_ON(!PageCompound(page)); | 
 | 		kmemleak_free(x); | 
 | 		put_page(page); | 
 | 		return; | 
 | 	} | 
 | 	slab_free(page->slab, page, object, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | /* | 
 |  * kmem_cache_shrink removes empty slabs from the partial lists and sorts | 
 |  * the remaining slabs by the number of items in use. The slabs with the | 
 |  * most items in use come first. New allocations will then fill those up | 
 |  * and thus they can be removed from the partial lists. | 
 |  * | 
 |  * The slabs with the least items are placed last. This results in them | 
 |  * being allocated from last increasing the chance that the last objects | 
 |  * are freed in them. | 
 |  */ | 
 | int kmem_cache_shrink(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	int i; | 
 | 	struct kmem_cache_node *n; | 
 | 	struct page *page; | 
 | 	struct page *t; | 
 | 	int objects = oo_objects(s->max); | 
 | 	struct list_head *slabs_by_inuse = | 
 | 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!slabs_by_inuse) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	flush_all(s); | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		n = get_node(s, node); | 
 |  | 
 | 		if (!n->nr_partial) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < objects; i++) | 
 | 			INIT_LIST_HEAD(slabs_by_inuse + i); | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * Build lists indexed by the items in use in each slab. | 
 | 		 * | 
 | 		 * Note that concurrent frees may occur while we hold the | 
 | 		 * list_lock. page->inuse here is the upper limit. | 
 | 		 */ | 
 | 		list_for_each_entry_safe(page, t, &n->partial, lru) { | 
 | 			list_move(&page->lru, slabs_by_inuse + page->inuse); | 
 | 			if (!page->inuse) | 
 | 				n->nr_partial--; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Rebuild the partial list with the slabs filled up most | 
 | 		 * first and the least used slabs at the end. | 
 | 		 */ | 
 | 		for (i = objects - 1; i > 0; i--) | 
 | 			list_splice(slabs_by_inuse + i, n->partial.prev); | 
 |  | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 |  | 
 | 		/* Release empty slabs */ | 
 | 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru) | 
 | 			discard_slab(s, page); | 
 | 	} | 
 |  | 
 | 	kfree(slabs_by_inuse); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_shrink); | 
 |  | 
 | #if defined(CONFIG_MEMORY_HOTPLUG) | 
 | static int slab_mem_going_offline_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	down_read(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) | 
 | 		kmem_cache_shrink(s); | 
 | 	up_read(&slub_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void slab_mem_offline_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	struct kmem_cache *s; | 
 | 	struct memory_notify *marg = arg; | 
 | 	int offline_node; | 
 |  | 
 | 	offline_node = marg->status_change_nid; | 
 |  | 
 | 	/* | 
 | 	 * If the node still has available memory. we need kmem_cache_node | 
 | 	 * for it yet. | 
 | 	 */ | 
 | 	if (offline_node < 0) | 
 | 		return; | 
 |  | 
 | 	down_read(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		n = get_node(s, offline_node); | 
 | 		if (n) { | 
 | 			/* | 
 | 			 * if n->nr_slabs > 0, slabs still exist on the node | 
 | 			 * that is going down. We were unable to free them, | 
 | 			 * and offline_pages() function shouldn't call this | 
 | 			 * callback. So, we must fail. | 
 | 			 */ | 
 | 			BUG_ON(slabs_node(s, offline_node)); | 
 |  | 
 | 			s->node[offline_node] = NULL; | 
 | 			kmem_cache_free(kmem_cache_node, n); | 
 | 		} | 
 | 	} | 
 | 	up_read(&slub_lock); | 
 | } | 
 |  | 
 | static int slab_mem_going_online_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	struct kmem_cache *s; | 
 | 	struct memory_notify *marg = arg; | 
 | 	int nid = marg->status_change_nid; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the node's memory is already available, then kmem_cache_node is | 
 | 	 * already created. Nothing to do. | 
 | 	 */ | 
 | 	if (nid < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We are bringing a node online. No memory is available yet. We must | 
 | 	 * allocate a kmem_cache_node structure in order to bring the node | 
 | 	 * online. | 
 | 	 */ | 
 | 	down_read(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		/* | 
 | 		 * XXX: kmem_cache_alloc_node will fallback to other nodes | 
 | 		 *      since memory is not yet available from the node that | 
 | 		 *      is brought up. | 
 | 		 */ | 
 | 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | 
 | 		if (!n) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		init_kmem_cache_node(n, s); | 
 | 		s->node[nid] = n; | 
 | 	} | 
 | out: | 
 | 	up_read(&slub_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int slab_memory_callback(struct notifier_block *self, | 
 | 				unsigned long action, void *arg) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: | 
 | 		ret = slab_mem_going_online_callback(arg); | 
 | 		break; | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		ret = slab_mem_going_offline_callback(arg); | 
 | 		break; | 
 | 	case MEM_OFFLINE: | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 		slab_mem_offline_callback(arg); | 
 | 		break; | 
 | 	case MEM_ONLINE: | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		break; | 
 | 	} | 
 | 	if (ret) | 
 | 		ret = notifier_from_errno(ret); | 
 | 	else | 
 | 		ret = NOTIFY_OK; | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | /******************************************************************** | 
 |  *			Basic setup of slabs | 
 |  *******************************************************************/ | 
 |  | 
 | /* | 
 |  * Used for early kmem_cache structures that were allocated using | 
 |  * the page allocator | 
 |  */ | 
 |  | 
 | static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	list_add(&s->list, &slab_caches); | 
 | 	s->refcount = -1; | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 | 		struct page *p; | 
 |  | 
 | 		if (n) { | 
 | 			list_for_each_entry(p, &n->partial, lru) | 
 | 				p->slab = s; | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 			list_for_each_entry(p, &n->full, lru) | 
 | 				p->slab = s; | 
 | #endif | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	int i; | 
 | 	int caches = 0; | 
 | 	struct kmem_cache *temp_kmem_cache; | 
 | 	int order; | 
 | 	struct kmem_cache *temp_kmem_cache_node; | 
 | 	unsigned long kmalloc_size; | 
 |  | 
 | 	if (debug_guardpage_minorder()) | 
 | 		slub_max_order = 0; | 
 |  | 
 | 	kmem_size = offsetof(struct kmem_cache, node) + | 
 | 				nr_node_ids * sizeof(struct kmem_cache_node *); | 
 |  | 
 | 	/* Allocate two kmem_caches from the page allocator */ | 
 | 	kmalloc_size = ALIGN(kmem_size, cache_line_size()); | 
 | 	order = get_order(2 * kmalloc_size); | 
 | 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); | 
 |  | 
 | 	/* | 
 | 	 * Must first have the slab cache available for the allocations of the | 
 | 	 * struct kmem_cache_node's. There is special bootstrap code in | 
 | 	 * kmem_cache_open for slab_state == DOWN. | 
 | 	 */ | 
 | 	kmem_cache_node = (void *)kmem_cache + kmalloc_size; | 
 |  | 
 | 	kmem_cache_open(kmem_cache_node, "kmem_cache_node", | 
 | 		sizeof(struct kmem_cache_node), | 
 | 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
 |  | 
 | 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 
 |  | 
 | 	/* Able to allocate the per node structures */ | 
 | 	slab_state = PARTIAL; | 
 |  | 
 | 	temp_kmem_cache = kmem_cache; | 
 | 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, | 
 | 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
 | 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | 
 | 	memcpy(kmem_cache, temp_kmem_cache, kmem_size); | 
 |  | 
 | 	/* | 
 | 	 * Allocate kmem_cache_node properly from the kmem_cache slab. | 
 | 	 * kmem_cache_node is separately allocated so no need to | 
 | 	 * update any list pointers. | 
 | 	 */ | 
 | 	temp_kmem_cache_node = kmem_cache_node; | 
 |  | 
 | 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | 
 | 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); | 
 |  | 
 | 	kmem_cache_bootstrap_fixup(kmem_cache_node); | 
 |  | 
 | 	caches++; | 
 | 	kmem_cache_bootstrap_fixup(kmem_cache); | 
 | 	caches++; | 
 | 	/* Free temporary boot structure */ | 
 | 	free_pages((unsigned long)temp_kmem_cache, order); | 
 |  | 
 | 	/* Now we can use the kmem_cache to allocate kmalloc slabs */ | 
 |  | 
 | 	/* | 
 | 	 * Patch up the size_index table if we have strange large alignment | 
 | 	 * requirements for the kmalloc array. This is only the case for | 
 | 	 * MIPS it seems. The standard arches will not generate any code here. | 
 | 	 * | 
 | 	 * Largest permitted alignment is 256 bytes due to the way we | 
 | 	 * handle the index determination for the smaller caches. | 
 | 	 * | 
 | 	 * Make sure that nothing crazy happens if someone starts tinkering | 
 | 	 * around with ARCH_KMALLOC_MINALIGN | 
 | 	 */ | 
 | 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
 | 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
 |  | 
 | 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
 | 		int elem = size_index_elem(i); | 
 | 		if (elem >= ARRAY_SIZE(size_index)) | 
 | 			break; | 
 | 		size_index[elem] = KMALLOC_SHIFT_LOW; | 
 | 	} | 
 |  | 
 | 	if (KMALLOC_MIN_SIZE == 64) { | 
 | 		/* | 
 | 		 * The 96 byte size cache is not used if the alignment | 
 | 		 * is 64 byte. | 
 | 		 */ | 
 | 		for (i = 64 + 8; i <= 96; i += 8) | 
 | 			size_index[size_index_elem(i)] = 7; | 
 | 	} else if (KMALLOC_MIN_SIZE == 128) { | 
 | 		/* | 
 | 		 * The 192 byte sized cache is not used if the alignment | 
 | 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
 | 		 * instead. | 
 | 		 */ | 
 | 		for (i = 128 + 8; i <= 192; i += 8) | 
 | 			size_index[size_index_elem(i)] = 8; | 
 | 	} | 
 |  | 
 | 	/* Caches that are not of the two-to-the-power-of size */ | 
 | 	if (KMALLOC_MIN_SIZE <= 32) { | 
 | 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); | 
 | 		caches++; | 
 | 	} | 
 |  | 
 | 	if (KMALLOC_MIN_SIZE <= 64) { | 
 | 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); | 
 | 		caches++; | 
 | 	} | 
 |  | 
 | 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | 
 | 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); | 
 | 		caches++; | 
 | 	} | 
 |  | 
 | 	slab_state = UP; | 
 |  | 
 | 	/* Provide the correct kmalloc names now that the caches are up */ | 
 | 	if (KMALLOC_MIN_SIZE <= 32) { | 
 | 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); | 
 | 		BUG_ON(!kmalloc_caches[1]->name); | 
 | 	} | 
 |  | 
 | 	if (KMALLOC_MIN_SIZE <= 64) { | 
 | 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); | 
 | 		BUG_ON(!kmalloc_caches[2]->name); | 
 | 	} | 
 |  | 
 | 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | 
 | 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); | 
 |  | 
 | 		BUG_ON(!s); | 
 | 		kmalloc_caches[i]->name = s; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	register_cpu_notifier(&slab_notifier); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) { | 
 | 		struct kmem_cache *s = kmalloc_caches[i]; | 
 |  | 
 | 		if (s && s->size) { | 
 | 			char *name = kasprintf(GFP_NOWAIT, | 
 | 				 "dma-kmalloc-%d", s->objsize); | 
 |  | 
 | 			BUG_ON(!name); | 
 | 			kmalloc_dma_caches[i] = create_kmalloc_cache(name, | 
 | 				s->objsize, SLAB_CACHE_DMA); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	printk(KERN_INFO | 
 | 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 
 | 		" CPUs=%d, Nodes=%d\n", | 
 | 		caches, cache_line_size(), | 
 | 		slub_min_order, slub_max_order, slub_min_objects, | 
 | 		nr_cpu_ids, nr_node_ids); | 
 | } | 
 |  | 
 | void __init kmem_cache_init_late(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Find a mergeable slab cache | 
 |  */ | 
 | static int slab_unmergeable(struct kmem_cache *s) | 
 | { | 
 | 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | 
 | 		return 1; | 
 |  | 
 | 	if (s->ctor) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * We may have set a slab to be unmergeable during bootstrap. | 
 | 	 */ | 
 | 	if (s->refcount < 0) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kmem_cache *find_mergeable(size_t size, | 
 | 		size_t align, unsigned long flags, const char *name, | 
 | 		void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | 
 | 		return NULL; | 
 |  | 
 | 	if (ctor) | 
 | 		return NULL; | 
 |  | 
 | 	size = ALIGN(size, sizeof(void *)); | 
 | 	align = calculate_alignment(flags, align, size); | 
 | 	size = ALIGN(size, align); | 
 | 	flags = kmem_cache_flags(size, flags, name, NULL); | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		if (slab_unmergeable(s)) | 
 | 			continue; | 
 |  | 
 | 		if (size > s->size) | 
 | 			continue; | 
 |  | 
 | 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) | 
 | 				continue; | 
 | 		/* | 
 | 		 * Check if alignment is compatible. | 
 | 		 * Courtesy of Adrian Drzewiecki | 
 | 		 */ | 
 | 		if ((s->size & ~(align - 1)) != s->size) | 
 | 			continue; | 
 |  | 
 | 		if (s->size - size >= sizeof(void *)) | 
 | 			continue; | 
 |  | 
 | 		return s; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 
 | 		size_t align, unsigned long flags, void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	char *n; | 
 |  | 
 | 	if (WARN_ON(!name)) | 
 | 		return NULL; | 
 |  | 
 | 	down_write(&slub_lock); | 
 | 	s = find_mergeable(size, align, flags, name, ctor); | 
 | 	if (s) { | 
 | 		s->refcount++; | 
 | 		/* | 
 | 		 * Adjust the object sizes so that we clear | 
 | 		 * the complete object on kzalloc. | 
 | 		 */ | 
 | 		s->objsize = max(s->objsize, (int)size); | 
 | 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 
 |  | 
 | 		if (sysfs_slab_alias(s, name)) { | 
 | 			s->refcount--; | 
 | 			goto err; | 
 | 		} | 
 | 		up_write(&slub_lock); | 
 | 		return s; | 
 | 	} | 
 |  | 
 | 	n = kstrdup(name, GFP_KERNEL); | 
 | 	if (!n) | 
 | 		goto err; | 
 |  | 
 | 	s = kmalloc(kmem_size, GFP_KERNEL); | 
 | 	if (s) { | 
 | 		if (kmem_cache_open(s, n, | 
 | 				size, align, flags, ctor)) { | 
 | 			list_add(&s->list, &slab_caches); | 
 | 			up_write(&slub_lock); | 
 | 			if (sysfs_slab_add(s)) { | 
 | 				down_write(&slub_lock); | 
 | 				list_del(&s->list); | 
 | 				kfree(n); | 
 | 				kfree(s); | 
 | 				goto err; | 
 | 			} | 
 | 			return s; | 
 | 		} | 
 | 		kfree(n); | 
 | 		kfree(s); | 
 | 	} | 
 | err: | 
 | 	up_write(&slub_lock); | 
 |  | 
 | 	if (flags & SLAB_PANIC) | 
 | 		panic("Cannot create slabcache %s\n", name); | 
 | 	else | 
 | 		s = NULL; | 
 | 	return s; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_create); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Use the cpu notifier to insure that the cpu slabs are flushed when | 
 |  * necessary. | 
 |  */ | 
 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | 
 | 		unsigned long action, void *hcpu) | 
 | { | 
 | 	long cpu = (long)hcpu; | 
 | 	struct kmem_cache *s; | 
 | 	unsigned long flags; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		down_read(&slub_lock); | 
 | 		list_for_each_entry(s, &slab_caches, list) { | 
 | 			local_irq_save(flags); | 
 | 			__flush_cpu_slab(s, cpu); | 
 | 			local_irq_restore(flags); | 
 | 		} | 
 | 		up_read(&slub_lock); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata slab_notifier = { | 
 | 	.notifier_call = slab_cpuup_callback | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > SLUB_MAX_SIZE)) | 
 | 		return kmalloc_large(size, gfpflags); | 
 |  | 
 | 	s = get_slab(size, gfpflags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); | 
 |  | 
 | 	/* Honor the call site pointer we received. */ | 
 | 	trace_kmalloc(caller, ret, size, s->size, gfpflags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
 | 					int node, unsigned long caller) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	void *ret; | 
 |  | 
 | 	if (unlikely(size > SLUB_MAX_SIZE)) { | 
 | 		ret = kmalloc_large_node(size, gfpflags, node); | 
 |  | 
 | 		trace_kmalloc_node(caller, ret, | 
 | 				   size, PAGE_SIZE << get_order(size), | 
 | 				   gfpflags, node); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	s = get_slab(size, gfpflags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	ret = slab_alloc(s, gfpflags, node, caller); | 
 |  | 
 | 	/* Honor the call site pointer we received. */ | 
 | 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static int count_inuse(struct page *page) | 
 | { | 
 | 	return page->inuse; | 
 | } | 
 |  | 
 | static int count_total(struct page *page) | 
 | { | 
 | 	return page->objects; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static int validate_slab(struct kmem_cache *s, struct page *page, | 
 | 						unsigned long *map) | 
 | { | 
 | 	void *p; | 
 | 	void *addr = page_address(page); | 
 |  | 
 | 	if (!check_slab(s, page) || | 
 | 			!on_freelist(s, page, NULL)) | 
 | 		return 0; | 
 |  | 
 | 	/* Now we know that a valid freelist exists */ | 
 | 	bitmap_zero(map, page->objects); | 
 |  | 
 | 	get_map(s, page, map); | 
 | 	for_each_object(p, s, addr, page->objects) { | 
 | 		if (test_bit(slab_index(p, s, addr), map)) | 
 | 			if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | 
 | 				return 0; | 
 | 	} | 
 |  | 
 | 	for_each_object(p, s, addr, page->objects) | 
 | 		if (!test_bit(slab_index(p, s, addr), map)) | 
 | 			if (!check_object(s, page, p, SLUB_RED_ACTIVE)) | 
 | 				return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
 | 						unsigned long *map) | 
 | { | 
 | 	slab_lock(page); | 
 | 	validate_slab(s, page, map); | 
 | 	slab_unlock(page); | 
 | } | 
 |  | 
 | static int validate_slab_node(struct kmem_cache *s, | 
 | 		struct kmem_cache_node *n, unsigned long *map) | 
 | { | 
 | 	unsigned long count = 0; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 	list_for_each_entry(page, &n->partial, lru) { | 
 | 		validate_slab_slab(s, page, map); | 
 | 		count++; | 
 | 	} | 
 | 	if (count != n->nr_partial) | 
 | 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | 
 | 			"counter=%ld\n", s->name, count, n->nr_partial); | 
 |  | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(page, &n->full, lru) { | 
 | 		validate_slab_slab(s, page, map); | 
 | 		count++; | 
 | 	} | 
 | 	if (count != atomic_long_read(&n->nr_slabs)) | 
 | 		printk(KERN_ERR "SLUB: %s %ld slabs counted but " | 
 | 			"counter=%ld\n", s->name, count, | 
 | 			atomic_long_read(&n->nr_slabs)); | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return count; | 
 | } | 
 |  | 
 | static long validate_slab_cache(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	unsigned long count = 0; | 
 | 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | 
 | 				sizeof(unsigned long), GFP_KERNEL); | 
 |  | 
 | 	if (!map) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	flush_all(s); | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		count += validate_slab_node(s, n, map); | 
 | 	} | 
 | 	kfree(map); | 
 | 	return count; | 
 | } | 
 | /* | 
 |  * Generate lists of code addresses where slabcache objects are allocated | 
 |  * and freed. | 
 |  */ | 
 |  | 
 | struct location { | 
 | 	unsigned long count; | 
 | 	unsigned long addr; | 
 | 	long long sum_time; | 
 | 	long min_time; | 
 | 	long max_time; | 
 | 	long min_pid; | 
 | 	long max_pid; | 
 | 	DECLARE_BITMAP(cpus, NR_CPUS); | 
 | 	nodemask_t nodes; | 
 | }; | 
 |  | 
 | struct loc_track { | 
 | 	unsigned long max; | 
 | 	unsigned long count; | 
 | 	struct location *loc; | 
 | }; | 
 |  | 
 | static void free_loc_track(struct loc_track *t) | 
 | { | 
 | 	if (t->max) | 
 | 		free_pages((unsigned long)t->loc, | 
 | 			get_order(sizeof(struct location) * t->max)); | 
 | } | 
 |  | 
 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
 | { | 
 | 	struct location *l; | 
 | 	int order; | 
 |  | 
 | 	order = get_order(sizeof(struct location) * max); | 
 |  | 
 | 	l = (void *)__get_free_pages(flags, order); | 
 | 	if (!l) | 
 | 		return 0; | 
 |  | 
 | 	if (t->count) { | 
 | 		memcpy(l, t->loc, sizeof(struct location) * t->count); | 
 | 		free_loc_track(t); | 
 | 	} | 
 | 	t->max = max; | 
 | 	t->loc = l; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
 | 				const struct track *track) | 
 | { | 
 | 	long start, end, pos; | 
 | 	struct location *l; | 
 | 	unsigned long caddr; | 
 | 	unsigned long age = jiffies - track->when; | 
 |  | 
 | 	start = -1; | 
 | 	end = t->count; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		pos = start + (end - start + 1) / 2; | 
 |  | 
 | 		/* | 
 | 		 * There is nothing at "end". If we end up there | 
 | 		 * we need to add something to before end. | 
 | 		 */ | 
 | 		if (pos == end) | 
 | 			break; | 
 |  | 
 | 		caddr = t->loc[pos].addr; | 
 | 		if (track->addr == caddr) { | 
 |  | 
 | 			l = &t->loc[pos]; | 
 | 			l->count++; | 
 | 			if (track->when) { | 
 | 				l->sum_time += age; | 
 | 				if (age < l->min_time) | 
 | 					l->min_time = age; | 
 | 				if (age > l->max_time) | 
 | 					l->max_time = age; | 
 |  | 
 | 				if (track->pid < l->min_pid) | 
 | 					l->min_pid = track->pid; | 
 | 				if (track->pid > l->max_pid) | 
 | 					l->max_pid = track->pid; | 
 |  | 
 | 				cpumask_set_cpu(track->cpu, | 
 | 						to_cpumask(l->cpus)); | 
 | 			} | 
 | 			node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		if (track->addr < caddr) | 
 | 			end = pos; | 
 | 		else | 
 | 			start = pos; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Not found. Insert new tracking element. | 
 | 	 */ | 
 | 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
 | 		return 0; | 
 |  | 
 | 	l = t->loc + pos; | 
 | 	if (pos < t->count) | 
 | 		memmove(l + 1, l, | 
 | 			(t->count - pos) * sizeof(struct location)); | 
 | 	t->count++; | 
 | 	l->count = 1; | 
 | 	l->addr = track->addr; | 
 | 	l->sum_time = age; | 
 | 	l->min_time = age; | 
 | 	l->max_time = age; | 
 | 	l->min_pid = track->pid; | 
 | 	l->max_pid = track->pid; | 
 | 	cpumask_clear(to_cpumask(l->cpus)); | 
 | 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 
 | 	nodes_clear(l->nodes); | 
 | 	node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
 | 		struct page *page, enum track_item alloc, | 
 | 		unsigned long *map) | 
 | { | 
 | 	void *addr = page_address(page); | 
 | 	void *p; | 
 |  | 
 | 	bitmap_zero(map, page->objects); | 
 | 	get_map(s, page, map); | 
 |  | 
 | 	for_each_object(p, s, addr, page->objects) | 
 | 		if (!test_bit(slab_index(p, s, addr), map)) | 
 | 			add_location(t, s, get_track(s, p, alloc)); | 
 | } | 
 |  | 
 | static int list_locations(struct kmem_cache *s, char *buf, | 
 | 					enum track_item alloc) | 
 | { | 
 | 	int len = 0; | 
 | 	unsigned long i; | 
 | 	struct loc_track t = { 0, 0, NULL }; | 
 | 	int node; | 
 | 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | 
 | 				     sizeof(unsigned long), GFP_KERNEL); | 
 |  | 
 | 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
 | 				     GFP_TEMPORARY)) { | 
 | 		kfree(map); | 
 | 		return sprintf(buf, "Out of memory\n"); | 
 | 	} | 
 | 	/* Push back cpu slabs */ | 
 | 	flush_all(s); | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 | 		unsigned long flags; | 
 | 		struct page *page; | 
 |  | 
 | 		if (!atomic_long_read(&n->nr_slabs)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 | 		list_for_each_entry(page, &n->partial, lru) | 
 | 			process_slab(&t, s, page, alloc, map); | 
 | 		list_for_each_entry(page, &n->full, lru) | 
 | 			process_slab(&t, s, page, alloc, map); | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < t.count; i++) { | 
 | 		struct location *l = &t.loc[i]; | 
 |  | 
 | 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) | 
 | 			break; | 
 | 		len += sprintf(buf + len, "%7ld ", l->count); | 
 |  | 
 | 		if (l->addr) | 
 | 			len += sprintf(buf + len, "%pS", (void *)l->addr); | 
 | 		else | 
 | 			len += sprintf(buf + len, "<not-available>"); | 
 |  | 
 | 		if (l->sum_time != l->min_time) { | 
 | 			len += sprintf(buf + len, " age=%ld/%ld/%ld", | 
 | 				l->min_time, | 
 | 				(long)div_u64(l->sum_time, l->count), | 
 | 				l->max_time); | 
 | 		} else | 
 | 			len += sprintf(buf + len, " age=%ld", | 
 | 				l->min_time); | 
 |  | 
 | 		if (l->min_pid != l->max_pid) | 
 | 			len += sprintf(buf + len, " pid=%ld-%ld", | 
 | 				l->min_pid, l->max_pid); | 
 | 		else | 
 | 			len += sprintf(buf + len, " pid=%ld", | 
 | 				l->min_pid); | 
 |  | 
 | 		if (num_online_cpus() > 1 && | 
 | 				!cpumask_empty(to_cpumask(l->cpus)) && | 
 | 				len < PAGE_SIZE - 60) { | 
 | 			len += sprintf(buf + len, " cpus="); | 
 | 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 
 | 						 to_cpumask(l->cpus)); | 
 | 		} | 
 |  | 
 | 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && | 
 | 				len < PAGE_SIZE - 60) { | 
 | 			len += sprintf(buf + len, " nodes="); | 
 | 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 
 | 					l->nodes); | 
 | 		} | 
 |  | 
 | 		len += sprintf(buf + len, "\n"); | 
 | 	} | 
 |  | 
 | 	free_loc_track(&t); | 
 | 	kfree(map); | 
 | 	if (!t.count) | 
 | 		len += sprintf(buf, "No data\n"); | 
 | 	return len; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef SLUB_RESILIENCY_TEST | 
 | static void resiliency_test(void) | 
 | { | 
 | 	u8 *p; | 
 |  | 
 | 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); | 
 |  | 
 | 	printk(KERN_ERR "SLUB resiliency testing\n"); | 
 | 	printk(KERN_ERR "-----------------------\n"); | 
 | 	printk(KERN_ERR "A. Corruption after allocation\n"); | 
 |  | 
 | 	p = kzalloc(16, GFP_KERNEL); | 
 | 	p[16] = 0x12; | 
 | 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | 
 | 			" 0x12->0x%p\n\n", p + 16); | 
 |  | 
 | 	validate_slab_cache(kmalloc_caches[4]); | 
 |  | 
 | 	/* Hmmm... The next two are dangerous */ | 
 | 	p = kzalloc(32, GFP_KERNEL); | 
 | 	p[32 + sizeof(void *)] = 0x34; | 
 | 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | 
 | 			" 0x34 -> -0x%p\n", p); | 
 | 	printk(KERN_ERR | 
 | 		"If allocated object is overwritten then not detectable\n\n"); | 
 |  | 
 | 	validate_slab_cache(kmalloc_caches[5]); | 
 | 	p = kzalloc(64, GFP_KERNEL); | 
 | 	p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
 | 	*p = 0x56; | 
 | 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
 | 									p); | 
 | 	printk(KERN_ERR | 
 | 		"If allocated object is overwritten then not detectable\n\n"); | 
 | 	validate_slab_cache(kmalloc_caches[6]); | 
 |  | 
 | 	printk(KERN_ERR "\nB. Corruption after free\n"); | 
 | 	p = kzalloc(128, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	*p = 0x78; | 
 | 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches[7]); | 
 |  | 
 | 	p = kzalloc(256, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	p[50] = 0x9a; | 
 | 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", | 
 | 			p); | 
 | 	validate_slab_cache(kmalloc_caches[8]); | 
 |  | 
 | 	p = kzalloc(512, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	p[512] = 0xab; | 
 | 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches[9]); | 
 | } | 
 | #else | 
 | #ifdef CONFIG_SYSFS | 
 | static void resiliency_test(void) {}; | 
 | #endif | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | enum slab_stat_type { | 
 | 	SL_ALL,			/* All slabs */ | 
 | 	SL_PARTIAL,		/* Only partially allocated slabs */ | 
 | 	SL_CPU,			/* Only slabs used for cpu caches */ | 
 | 	SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
 | 	SL_TOTAL		/* Determine object capacity not slabs */ | 
 | }; | 
 |  | 
 | #define SO_ALL		(1 << SL_ALL) | 
 | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
 | #define SO_CPU		(1 << SL_CPU) | 
 | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
 | #define SO_TOTAL	(1 << SL_TOTAL) | 
 |  | 
 | static ssize_t show_slab_objects(struct kmem_cache *s, | 
 | 			    char *buf, unsigned long flags) | 
 | { | 
 | 	unsigned long total = 0; | 
 | 	int node; | 
 | 	int x; | 
 | 	unsigned long *nodes; | 
 | 	unsigned long *per_cpu; | 
 |  | 
 | 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | 
 | 	if (!nodes) | 
 | 		return -ENOMEM; | 
 | 	per_cpu = nodes + nr_node_ids; | 
 |  | 
 | 	if (flags & SO_CPU) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 | 			int node = ACCESS_ONCE(c->node); | 
 | 			struct page *page; | 
 |  | 
 | 			if (node < 0) | 
 | 				continue; | 
 | 			page = ACCESS_ONCE(c->page); | 
 | 			if (page) { | 
 | 				if (flags & SO_TOTAL) | 
 | 					x = page->objects; | 
 | 				else if (flags & SO_OBJECTS) | 
 | 					x = page->inuse; | 
 | 				else | 
 | 					x = 1; | 
 |  | 
 | 				total += x; | 
 | 				nodes[node] += x; | 
 | 			} | 
 | 			page = c->partial; | 
 |  | 
 | 			if (page) { | 
 | 				node = page_to_nid(page); | 
 | 				if (flags & SO_TOTAL) | 
 | 					WARN_ON_ONCE(1); | 
 | 				else if (flags & SO_OBJECTS) | 
 | 					WARN_ON_ONCE(1); | 
 | 				else | 
 | 					x = page->pages; | 
 | 				total += x; | 
 | 				nodes[node] += x; | 
 | 			} | 
 | 			per_cpu[node]++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	lock_memory_hotplug(); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	if (flags & SO_ALL) { | 
 | 		for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 			struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		if (flags & SO_TOTAL) | 
 | 			x = atomic_long_read(&n->total_objects); | 
 | 		else if (flags & SO_OBJECTS) | 
 | 			x = atomic_long_read(&n->total_objects) - | 
 | 				count_partial(n, count_free); | 
 |  | 
 | 			else | 
 | 				x = atomic_long_read(&n->nr_slabs); | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 | 		} | 
 |  | 
 | 	} else | 
 | #endif | 
 | 	if (flags & SO_PARTIAL) { | 
 | 		for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 			struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 			if (flags & SO_TOTAL) | 
 | 				x = count_partial(n, count_total); | 
 | 			else if (flags & SO_OBJECTS) | 
 | 				x = count_partial(n, count_inuse); | 
 | 			else | 
 | 				x = n->nr_partial; | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 | 		} | 
 | 	} | 
 | 	x = sprintf(buf, "%lu", total); | 
 | #ifdef CONFIG_NUMA | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) | 
 | 		if (nodes[node]) | 
 | 			x += sprintf(buf + x, " N%d=%lu", | 
 | 					node, nodes[node]); | 
 | #endif | 
 | 	unlock_memory_hotplug(); | 
 | 	kfree(nodes); | 
 | 	return x + sprintf(buf + x, "\n"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static int any_slab_objects(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		if (atomic_long_read(&n->total_objects)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) | 
 |  | 
 | struct slab_attribute { | 
 | 	struct attribute attr; | 
 | 	ssize_t (*show)(struct kmem_cache *s, char *buf); | 
 | 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
 | }; | 
 |  | 
 | #define SLAB_ATTR_RO(_name) \ | 
 | 	static struct slab_attribute _name##_attr = \ | 
 | 	__ATTR(_name, 0400, _name##_show, NULL) | 
 |  | 
 | #define SLAB_ATTR(_name) \ | 
 | 	static struct slab_attribute _name##_attr =  \ | 
 | 	__ATTR(_name, 0600, _name##_show, _name##_store) | 
 |  | 
 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->size); | 
 | } | 
 | SLAB_ATTR_RO(slab_size); | 
 |  | 
 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->align); | 
 | } | 
 | SLAB_ATTR_RO(align); | 
 |  | 
 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->objsize); | 
 | } | 
 | SLAB_ATTR_RO(object_size); | 
 |  | 
 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", oo_objects(s->oo)); | 
 | } | 
 | SLAB_ATTR_RO(objs_per_slab); | 
 |  | 
 | static ssize_t order_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	unsigned long order; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &order); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (order > slub_max_order || order < slub_min_order) | 
 | 		return -EINVAL; | 
 |  | 
 | 	calculate_sizes(s, order); | 
 | 	return length; | 
 | } | 
 |  | 
 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", oo_order(s->oo)); | 
 | } | 
 | SLAB_ATTR(order); | 
 |  | 
 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%lu\n", s->min_partial); | 
 | } | 
 |  | 
 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 
 | 				 size_t length) | 
 | { | 
 | 	unsigned long min; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &min); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	set_min_partial(s, min); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(min_partial); | 
 |  | 
 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", s->cpu_partial); | 
 | } | 
 |  | 
 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | 
 | 				 size_t length) | 
 | { | 
 | 	unsigned long objects; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &objects); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (objects && kmem_cache_debug(s)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	s->cpu_partial = objects; | 
 | 	flush_all(s); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(cpu_partial); | 
 |  | 
 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!s->ctor) | 
 | 		return 0; | 
 | 	return sprintf(buf, "%pS\n", s->ctor); | 
 | } | 
 | SLAB_ATTR_RO(ctor); | 
 |  | 
 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->refcount - 1); | 
 | } | 
 | SLAB_ATTR_RO(aliases); | 
 |  | 
 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_PARTIAL); | 
 | } | 
 | SLAB_ATTR_RO(partial); | 
 |  | 
 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_CPU); | 
 | } | 
 | SLAB_ATTR_RO(cpu_slabs); | 
 |  | 
 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
 | } | 
 | SLAB_ATTR_RO(objects); | 
 |  | 
 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
 | } | 
 | SLAB_ATTR_RO(objects_partial); | 
 |  | 
 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	int objects = 0; | 
 | 	int pages = 0; | 
 | 	int cpu; | 
 | 	int len; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; | 
 |  | 
 | 		if (page) { | 
 | 			pages += page->pages; | 
 | 			objects += page->pobjects; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	len = sprintf(buf, "%d(%d)", objects, pages); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; | 
 |  | 
 | 		if (page && len < PAGE_SIZE - 20) | 
 | 			len += sprintf(buf + len, " C%d=%d(%d)", cpu, | 
 | 				page->pobjects, page->pages); | 
 | 	} | 
 | #endif | 
 | 	return len + sprintf(buf + len, "\n"); | 
 | } | 
 | SLAB_ATTR_RO(slabs_cpu_partial); | 
 |  | 
 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
 | } | 
 |  | 
 | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_RECLAIM_ACCOUNT; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(reclaim_account); | 
 |  | 
 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
 | } | 
 | SLAB_ATTR_RO(hwcache_align); | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
 | } | 
 | SLAB_ATTR_RO(cache_dma); | 
 | #endif | 
 |  | 
 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | 
 | } | 
 | SLAB_ATTR_RO(destroy_by_rcu); | 
 |  | 
 | static ssize_t reserved_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->reserved); | 
 | } | 
 | SLAB_ATTR_RO(reserved); | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL); | 
 | } | 
 | SLAB_ATTR_RO(slabs); | 
 |  | 
 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
 | } | 
 | SLAB_ATTR_RO(total_objects); | 
 |  | 
 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | 
 | } | 
 |  | 
 | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_DEBUG_FREE; | 
 | 	if (buf[0] == '1') { | 
 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 		s->flags |= SLAB_DEBUG_FREE; | 
 | 	} | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(sanity_checks); | 
 |  | 
 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
 | } | 
 |  | 
 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
 | 							size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_TRACE; | 
 | 	if (buf[0] == '1') { | 
 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 		s->flags |= SLAB_TRACE; | 
 | 	} | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(trace); | 
 |  | 
 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
 | } | 
 |  | 
 | static ssize_t red_zone_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	if (any_slab_objects(s)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	s->flags &= ~SLAB_RED_ZONE; | 
 | 	if (buf[0] == '1') { | 
 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 		s->flags |= SLAB_RED_ZONE; | 
 | 	} | 
 | 	calculate_sizes(s, -1); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(red_zone); | 
 |  | 
 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
 | } | 
 |  | 
 | static ssize_t poison_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	if (any_slab_objects(s)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	s->flags &= ~SLAB_POISON; | 
 | 	if (buf[0] == '1') { | 
 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 		s->flags |= SLAB_POISON; | 
 | 	} | 
 | 	calculate_sizes(s, -1); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(poison); | 
 |  | 
 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
 | } | 
 |  | 
 | static ssize_t store_user_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	if (any_slab_objects(s)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	s->flags &= ~SLAB_STORE_USER; | 
 | 	if (buf[0] == '1') { | 
 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 		s->flags |= SLAB_STORE_USER; | 
 | 	} | 
 | 	calculate_sizes(s, -1); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(store_user); | 
 |  | 
 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t validate_store(struct kmem_cache *s, | 
 | 			const char *buf, size_t length) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	if (buf[0] == '1') { | 
 | 		ret = validate_slab_cache(s); | 
 | 		if (ret >= 0) | 
 | 			ret = length; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | SLAB_ATTR(validate); | 
 |  | 
 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return -ENOSYS; | 
 | 	return list_locations(s, buf, TRACK_ALLOC); | 
 | } | 
 | SLAB_ATTR_RO(alloc_calls); | 
 |  | 
 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return -ENOSYS; | 
 | 	return list_locations(s, buf, TRACK_FREE); | 
 | } | 
 | SLAB_ATTR_RO(free_calls); | 
 | #endif /* CONFIG_SLUB_DEBUG */ | 
 |  | 
 | #ifdef CONFIG_FAILSLAB | 
 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | 
 | } | 
 |  | 
 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | 
 | 							size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_FAILSLAB; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_FAILSLAB; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(failslab); | 
 | #endif | 
 |  | 
 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t shrink_store(struct kmem_cache *s, | 
 | 			const char *buf, size_t length) | 
 | { | 
 | 	if (buf[0] == '1') { | 
 | 		int rc = kmem_cache_shrink(s); | 
 |  | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} else | 
 | 		return -EINVAL; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(shrink); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); | 
 | } | 
 |  | 
 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	unsigned long ratio; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &ratio); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (ratio <= 100) | 
 | 		s->remote_node_defrag_ratio = ratio * 10; | 
 |  | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(remote_node_defrag_ratio); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLUB_STATS | 
 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
 | { | 
 | 	unsigned long sum  = 0; | 
 | 	int cpu; | 
 | 	int len; | 
 | 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | 
 |  | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | 
 |  | 
 | 		data[cpu] = x; | 
 | 		sum += x; | 
 | 	} | 
 |  | 
 | 	len = sprintf(buf, "%lu", sum); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (data[cpu] && len < PAGE_SIZE - 20) | 
 | 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 
 | 	} | 
 | #endif | 
 | 	kfree(data); | 
 | 	return len + sprintf(buf + len, "\n"); | 
 | } | 
 |  | 
 | static void clear_stat(struct kmem_cache *s, enum stat_item si) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | 
 | } | 
 |  | 
 | #define STAT_ATTR(si, text) 					\ | 
 | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
 | {								\ | 
 | 	return show_stat(s, buf, si);				\ | 
 | }								\ | 
 | static ssize_t text##_store(struct kmem_cache *s,		\ | 
 | 				const char *buf, size_t length)	\ | 
 | {								\ | 
 | 	if (buf[0] != '0')					\ | 
 | 		return -EINVAL;					\ | 
 | 	clear_stat(s, si);					\ | 
 | 	return length;						\ | 
 | }								\ | 
 | SLAB_ATTR(text);						\ | 
 |  | 
 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
 | STAT_ATTR(FREE_FROZEN, free_frozen); | 
 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); | 
 | STAT_ATTR(FREE_SLAB, free_slab); | 
 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); | 
 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); | 
 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | 
 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); | 
 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | 
 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); | 
 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | 
 | #endif | 
 |  | 
 | static struct attribute *slab_attrs[] = { | 
 | 	&slab_size_attr.attr, | 
 | 	&object_size_attr.attr, | 
 | 	&objs_per_slab_attr.attr, | 
 | 	&order_attr.attr, | 
 | 	&min_partial_attr.attr, | 
 | 	&cpu_partial_attr.attr, | 
 | 	&objects_attr.attr, | 
 | 	&objects_partial_attr.attr, | 
 | 	&partial_attr.attr, | 
 | 	&cpu_slabs_attr.attr, | 
 | 	&ctor_attr.attr, | 
 | 	&aliases_attr.attr, | 
 | 	&align_attr.attr, | 
 | 	&hwcache_align_attr.attr, | 
 | 	&reclaim_account_attr.attr, | 
 | 	&destroy_by_rcu_attr.attr, | 
 | 	&shrink_attr.attr, | 
 | 	&reserved_attr.attr, | 
 | 	&slabs_cpu_partial_attr.attr, | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	&total_objects_attr.attr, | 
 | 	&slabs_attr.attr, | 
 | 	&sanity_checks_attr.attr, | 
 | 	&trace_attr.attr, | 
 | 	&red_zone_attr.attr, | 
 | 	&poison_attr.attr, | 
 | 	&store_user_attr.attr, | 
 | 	&validate_attr.attr, | 
 | 	&alloc_calls_attr.attr, | 
 | 	&free_calls_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	&cache_dma_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_NUMA | 
 | 	&remote_node_defrag_ratio_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	&alloc_fastpath_attr.attr, | 
 | 	&alloc_slowpath_attr.attr, | 
 | 	&free_fastpath_attr.attr, | 
 | 	&free_slowpath_attr.attr, | 
 | 	&free_frozen_attr.attr, | 
 | 	&free_add_partial_attr.attr, | 
 | 	&free_remove_partial_attr.attr, | 
 | 	&alloc_from_partial_attr.attr, | 
 | 	&alloc_slab_attr.attr, | 
 | 	&alloc_refill_attr.attr, | 
 | 	&alloc_node_mismatch_attr.attr, | 
 | 	&free_slab_attr.attr, | 
 | 	&cpuslab_flush_attr.attr, | 
 | 	&deactivate_full_attr.attr, | 
 | 	&deactivate_empty_attr.attr, | 
 | 	&deactivate_to_head_attr.attr, | 
 | 	&deactivate_to_tail_attr.attr, | 
 | 	&deactivate_remote_frees_attr.attr, | 
 | 	&deactivate_bypass_attr.attr, | 
 | 	&order_fallback_attr.attr, | 
 | 	&cmpxchg_double_fail_attr.attr, | 
 | 	&cmpxchg_double_cpu_fail_attr.attr, | 
 | 	&cpu_partial_alloc_attr.attr, | 
 | 	&cpu_partial_free_attr.attr, | 
 | 	&cpu_partial_node_attr.attr, | 
 | 	&cpu_partial_drain_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_FAILSLAB | 
 | 	&failslab_attr.attr, | 
 | #endif | 
 |  | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct attribute_group slab_attr_group = { | 
 | 	.attrs = slab_attrs, | 
 | }; | 
 |  | 
 | static ssize_t slab_attr_show(struct kobject *kobj, | 
 | 				struct attribute *attr, | 
 | 				char *buf) | 
 | { | 
 | 	struct slab_attribute *attribute; | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	attribute = to_slab_attr(attr); | 
 | 	s = to_slab(kobj); | 
 |  | 
 | 	if (!attribute->show) | 
 | 		return -EIO; | 
 |  | 
 | 	err = attribute->show(s, buf); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static ssize_t slab_attr_store(struct kobject *kobj, | 
 | 				struct attribute *attr, | 
 | 				const char *buf, size_t len) | 
 | { | 
 | 	struct slab_attribute *attribute; | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	attribute = to_slab_attr(attr); | 
 | 	s = to_slab(kobj); | 
 |  | 
 | 	if (!attribute->store) | 
 | 		return -EIO; | 
 |  | 
 | 	err = attribute->store(s, buf, len); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void kmem_cache_release(struct kobject *kobj) | 
 | { | 
 | 	struct kmem_cache *s = to_slab(kobj); | 
 |  | 
 | 	kfree(s->name); | 
 | 	kfree(s); | 
 | } | 
 |  | 
 | static const struct sysfs_ops slab_sysfs_ops = { | 
 | 	.show = slab_attr_show, | 
 | 	.store = slab_attr_store, | 
 | }; | 
 |  | 
 | static struct kobj_type slab_ktype = { | 
 | 	.sysfs_ops = &slab_sysfs_ops, | 
 | 	.release = kmem_cache_release | 
 | }; | 
 |  | 
 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
 | { | 
 | 	struct kobj_type *ktype = get_ktype(kobj); | 
 |  | 
 | 	if (ktype == &slab_ktype) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct kset_uevent_ops slab_uevent_ops = { | 
 | 	.filter = uevent_filter, | 
 | }; | 
 |  | 
 | static struct kset *slab_kset; | 
 |  | 
 | #define ID_STR_LENGTH 64 | 
 |  | 
 | /* Create a unique string id for a slab cache: | 
 |  * | 
 |  * Format	:[flags-]size | 
 |  */ | 
 | static char *create_unique_id(struct kmem_cache *s) | 
 | { | 
 | 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
 | 	char *p = name; | 
 |  | 
 | 	BUG_ON(!name); | 
 |  | 
 | 	*p++ = ':'; | 
 | 	/* | 
 | 	 * First flags affecting slabcache operations. We will only | 
 | 	 * get here for aliasable slabs so we do not need to support | 
 | 	 * too many flags. The flags here must cover all flags that | 
 | 	 * are matched during merging to guarantee that the id is | 
 | 	 * unique. | 
 | 	 */ | 
 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 		*p++ = 'd'; | 
 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		*p++ = 'a'; | 
 | 	if (s->flags & SLAB_DEBUG_FREE) | 
 | 		*p++ = 'F'; | 
 | 	if (!(s->flags & SLAB_NOTRACK)) | 
 | 		*p++ = 't'; | 
 | 	if (p != name + 1) | 
 | 		*p++ = '-'; | 
 | 	p += sprintf(p, "%07d", s->size); | 
 | 	BUG_ON(p > name + ID_STR_LENGTH - 1); | 
 | 	return name; | 
 | } | 
 |  | 
 | static int sysfs_slab_add(struct kmem_cache *s) | 
 | { | 
 | 	int err; | 
 | 	const char *name; | 
 | 	int unmergeable; | 
 |  | 
 | 	if (slab_state < SYSFS) | 
 | 		/* Defer until later */ | 
 | 		return 0; | 
 |  | 
 | 	unmergeable = slab_unmergeable(s); | 
 | 	if (unmergeable) { | 
 | 		/* | 
 | 		 * Slabcache can never be merged so we can use the name proper. | 
 | 		 * This is typically the case for debug situations. In that | 
 | 		 * case we can catch duplicate names easily. | 
 | 		 */ | 
 | 		sysfs_remove_link(&slab_kset->kobj, s->name); | 
 | 		name = s->name; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Create a unique name for the slab as a target | 
 | 		 * for the symlinks. | 
 | 		 */ | 
 | 		name = create_unique_id(s); | 
 | 	} | 
 |  | 
 | 	s->kobj.kset = slab_kset; | 
 | 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); | 
 | 	if (err) { | 
 | 		kobject_put(&s->kobj); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
 | 	if (err) { | 
 | 		kobject_del(&s->kobj); | 
 | 		kobject_put(&s->kobj); | 
 | 		return err; | 
 | 	} | 
 | 	kobject_uevent(&s->kobj, KOBJ_ADD); | 
 | 	if (!unmergeable) { | 
 | 		/* Setup first alias */ | 
 | 		sysfs_slab_alias(s, s->name); | 
 | 		kfree(name); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sysfs_slab_remove(struct kmem_cache *s) | 
 | { | 
 | 	if (slab_state < SYSFS) | 
 | 		/* | 
 | 		 * Sysfs has not been setup yet so no need to remove the | 
 | 		 * cache from sysfs. | 
 | 		 */ | 
 | 		return; | 
 |  | 
 | 	kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
 | 	kobject_del(&s->kobj); | 
 | 	kobject_put(&s->kobj); | 
 | } | 
 |  | 
 | /* | 
 |  * Need to buffer aliases during bootup until sysfs becomes | 
 |  * available lest we lose that information. | 
 |  */ | 
 | struct saved_alias { | 
 | 	struct kmem_cache *s; | 
 | 	const char *name; | 
 | 	struct saved_alias *next; | 
 | }; | 
 |  | 
 | static struct saved_alias *alias_list; | 
 |  | 
 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
 | { | 
 | 	struct saved_alias *al; | 
 |  | 
 | 	if (slab_state == SYSFS) { | 
 | 		/* | 
 | 		 * If we have a leftover link then remove it. | 
 | 		 */ | 
 | 		sysfs_remove_link(&slab_kset->kobj, name); | 
 | 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
 | 	} | 
 |  | 
 | 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
 | 	if (!al) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	al->s = s; | 
 | 	al->name = name; | 
 | 	al->next = alias_list; | 
 | 	alias_list = al; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init slab_sysfs_init(void) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	down_write(&slub_lock); | 
 |  | 
 | 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 
 | 	if (!slab_kset) { | 
 | 		up_write(&slub_lock); | 
 | 		printk(KERN_ERR "Cannot register slab subsystem.\n"); | 
 | 		return -ENOSYS; | 
 | 	} | 
 |  | 
 | 	slab_state = SYSFS; | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		err = sysfs_slab_add(s); | 
 | 		if (err) | 
 | 			printk(KERN_ERR "SLUB: Unable to add boot slab %s" | 
 | 						" to sysfs\n", s->name); | 
 | 	} | 
 |  | 
 | 	while (alias_list) { | 
 | 		struct saved_alias *al = alias_list; | 
 |  | 
 | 		alias_list = alias_list->next; | 
 | 		err = sysfs_slab_alias(al->s, al->name); | 
 | 		if (err) | 
 | 			printk(KERN_ERR "SLUB: Unable to add boot slab alias" | 
 | 					" %s to sysfs\n", s->name); | 
 | 		kfree(al); | 
 | 	} | 
 |  | 
 | 	up_write(&slub_lock); | 
 | 	resiliency_test(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(slab_sysfs_init); | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | /* | 
 |  * The /proc/slabinfo ABI | 
 |  */ | 
 | #ifdef CONFIG_SLABINFO | 
 | static void print_slabinfo_header(struct seq_file *m) | 
 | { | 
 | 	seq_puts(m, "slabinfo - version: 2.1\n"); | 
 | 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> " | 
 | 		 "<objperslab> <pagesperslab>"); | 
 | 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
 | 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | static void *s_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	loff_t n = *pos; | 
 |  | 
 | 	down_read(&slub_lock); | 
 | 	if (!n) | 
 | 		print_slabinfo_header(m); | 
 |  | 
 | 	return seq_list_start(&slab_caches, *pos); | 
 | } | 
 |  | 
 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	return seq_list_next(p, &slab_caches, pos); | 
 | } | 
 |  | 
 | static void s_stop(struct seq_file *m, void *p) | 
 | { | 
 | 	up_read(&slub_lock); | 
 | } | 
 |  | 
 | static int s_show(struct seq_file *m, void *p) | 
 | { | 
 | 	unsigned long nr_partials = 0; | 
 | 	unsigned long nr_slabs = 0; | 
 | 	unsigned long nr_inuse = 0; | 
 | 	unsigned long nr_objs = 0; | 
 | 	unsigned long nr_free = 0; | 
 | 	struct kmem_cache *s; | 
 | 	int node; | 
 |  | 
 | 	s = list_entry(p, struct kmem_cache, list); | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		nr_partials += n->nr_partial; | 
 | 		nr_slabs += atomic_long_read(&n->nr_slabs); | 
 | 		nr_objs += atomic_long_read(&n->total_objects); | 
 | 		nr_free += count_partial(n, count_free); | 
 | 	} | 
 |  | 
 | 	nr_inuse = nr_objs - nr_free; | 
 |  | 
 | 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | 
 | 		   nr_objs, s->size, oo_objects(s->oo), | 
 | 		   (1 << oo_order(s->oo))); | 
 | 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); | 
 | 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | 
 | 		   0UL); | 
 | 	seq_putc(m, '\n'); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations slabinfo_op = { | 
 | 	.start = s_start, | 
 | 	.next = s_next, | 
 | 	.stop = s_stop, | 
 | 	.show = s_show, | 
 | }; | 
 |  | 
 | static int slabinfo_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &slabinfo_op); | 
 | } | 
 |  | 
 | static const struct file_operations proc_slabinfo_operations = { | 
 | 	.open		= slabinfo_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static int __init slab_proc_init(void) | 
 | { | 
 | 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); | 
 | 	return 0; | 
 | } | 
 | module_init(slab_proc_init); | 
 | #endif /* CONFIG_SLABINFO */ |