|  | /* Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* | 
|  | *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h> | 
|  | */ | 
|  |  | 
|  | #ifndef _TGMATH_H | 
|  | #define _TGMATH_H	1 | 
|  |  | 
|  | /* Include the needed headers.  */ | 
|  | #include <math.h> | 
|  | #include <complex.h> | 
|  |  | 
|  |  | 
|  | /* Since `complex' is currently not really implemented in most C compilers | 
|  | and if it is implemented, the implementations differ.  This makes it | 
|  | quite difficult to write a generic implementation of this header.  We | 
|  | do not try this for now and instead concentrate only on GNU CC.  Once | 
|  | we have more information support for other compilers might follow.  */ | 
|  |  | 
|  | #if __GNUC_PREREQ (2, 7) | 
|  |  | 
|  | # ifdef __NO_LONG_DOUBLE_MATH | 
|  | #  define __tgml(fct) fct | 
|  | # else | 
|  | #  define __tgml(fct) fct ## l | 
|  | # endif | 
|  |  | 
|  | /* This is ugly but unless gcc gets appropriate builtins we have to do | 
|  | something like this.  Don't ask how it works.  */ | 
|  |  | 
|  | /* 1 if 'type' is a floating type, 0 if 'type' is an integer type. | 
|  | Allows for _Bool.  Expands to an integer constant expression.  */ | 
|  | # if __GNUC_PREREQ (3, 1) | 
|  | #  define __floating_type(type) \ | 
|  | (__builtin_classify_type ((type) 0) == 8 \ | 
|  | || (__builtin_classify_type ((type) 0) == 9 \ | 
|  | && __builtin_classify_type (__real__ ((type) 0)) == 8)) | 
|  | # else | 
|  | #  define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1)) | 
|  | # endif | 
|  |  | 
|  | /* The tgmath real type for T, where E is 0 if T is an integer type and | 
|  | 1 for a floating type.  */ | 
|  | # define __tgmath_real_type_sub(T, E) \ | 
|  | __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \ | 
|  | : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0)) | 
|  |  | 
|  | /* The tgmath real type of EXPR.  */ | 
|  | # define __tgmath_real_type(expr) \ | 
|  | __tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0),		      \ | 
|  | __floating_type (__typeof__ (expr))) | 
|  |  | 
|  |  | 
|  | /* We have two kinds of generic macros: to support functions which are | 
|  | only defined on real valued parameters and those which are defined | 
|  | for complex functions as well.  */ | 
|  | # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ | 
|  | (__extension__ ((sizeof (Val) == sizeof (double)			      \ | 
|  | || __builtin_classify_type (Val) != 8)		      \ | 
|  | ? (__tgmath_real_type (Val)) Fct (Val)		      \ | 
|  | : (sizeof (Val) == sizeof (float))			      \ | 
|  | ? (__tgmath_real_type (Val)) Fct##f (Val)		      \ | 
|  | : (__tgmath_real_type (Val)) __tgml(Fct) (Val))) | 
|  |  | 
|  | # define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \ | 
|  | (__extension__ ((sizeof (Val) == sizeof (double)			      \ | 
|  | || __builtin_classify_type (Val) != 8)		      \ | 
|  | ? (RetType) Fct (Val)				      \ | 
|  | : (sizeof (Val) == sizeof (float))			      \ | 
|  | ? (RetType) Fct##f (Val)				      \ | 
|  | : (RetType) __tgml(Fct) (Val))) | 
|  |  | 
|  | # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ | 
|  | (__extension__ ((sizeof (Val1) == sizeof (double)			      \ | 
|  | || __builtin_classify_type (Val1) != 8)		      \ | 
|  | ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \ | 
|  | : (sizeof (Val1) == sizeof (float))		      \ | 
|  | ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \ | 
|  | : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) | 
|  |  | 
|  | # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ | 
|  | (__extension__ (((sizeof (Val1) > sizeof (double)			      \ | 
|  | || sizeof (Val2) > sizeof (double))		      \ | 
|  | && __builtin_classify_type ((Val1) + (Val2)) == 8)      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | __tgml(Fct) (Val1, Val2)				      \ | 
|  | : (sizeof (Val1) == sizeof (double)		      \ | 
|  | || sizeof (Val2) == sizeof (double)		      \ | 
|  | || __builtin_classify_type (Val1) != 8		      \ | 
|  | || __builtin_classify_type (Val2) != 8)		      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Fct (Val1, Val2)					      \ | 
|  | : (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Fct##f (Val1, Val2))) | 
|  |  | 
|  | # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ | 
|  | (__extension__ (((sizeof (Val1) > sizeof (double)			      \ | 
|  | || sizeof (Val2) > sizeof (double))		      \ | 
|  | && __builtin_classify_type ((Val1) + (Val2)) == 8)      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | __tgml(Fct) (Val1, Val2, Val3)			      \ | 
|  | : (sizeof (Val1) == sizeof (double)		      \ | 
|  | || sizeof (Val2) == sizeof (double)		      \ | 
|  | || __builtin_classify_type (Val1) != 8		      \ | 
|  | || __builtin_classify_type (Val2) != 8)		      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Fct (Val1, Val2, Val3)				      \ | 
|  | : (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Fct##f (Val1, Val2, Val3))) | 
|  |  | 
|  | # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ | 
|  | (__extension__ (((sizeof (Val1) > sizeof (double)			      \ | 
|  | || sizeof (Val2) > sizeof (double)		      \ | 
|  | || sizeof (Val3) > sizeof (double))		      \ | 
|  | && __builtin_classify_type ((Val1) + (Val2) + (Val3))   \ | 
|  | == 8)						      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0	      \ | 
|  | + (__tgmath_real_type (Val3)) 0))	      \ | 
|  | __tgml(Fct) (Val1, Val2, Val3)			      \ | 
|  | : (sizeof (Val1) == sizeof (double)		      \ | 
|  | || sizeof (Val2) == sizeof (double)		      \ | 
|  | || sizeof (Val3) == sizeof (double)		      \ | 
|  | || __builtin_classify_type (Val1) != 8		      \ | 
|  | || __builtin_classify_type (Val2) != 8		      \ | 
|  | || __builtin_classify_type (Val3) != 8)		      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0	      \ | 
|  | + (__tgmath_real_type (Val3)) 0))	      \ | 
|  | Fct (Val1, Val2, Val3)				      \ | 
|  | : (__typeof ((__tgmath_real_type (Val1)) 0		      \ | 
|  | + (__tgmath_real_type (Val2)) 0	      \ | 
|  | + (__tgmath_real_type (Val3)) 0))	      \ | 
|  | Fct##f (Val1, Val2, Val3))) | 
|  |  | 
|  | /* XXX This definition has to be changed as soon as the compiler understands | 
|  | the imaginary keyword.  */ | 
|  | # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ | 
|  | (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \ | 
|  | || __builtin_classify_type (__real__ (Val)) != 8)	      \ | 
|  | ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
|  | ? (__tgmath_real_type (Val)) Fct (Val)		      \ | 
|  | : (__tgmath_real_type (Val)) Cfct (Val))	      \ | 
|  | : (sizeof (__real__ (Val)) == sizeof (float))	      \ | 
|  | ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
|  | ? (__tgmath_real_type (Val)) Fct##f (Val)	      \ | 
|  | : (__tgmath_real_type (Val)) Cfct##f (Val))	      \ | 
|  | : ((sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
|  | ? (__tgmath_real_type (Val)) __tgml(Fct) (Val)	      \ | 
|  | : (__tgmath_real_type (Val)) __tgml(Cfct) (Val)))) | 
|  |  | 
|  | # define __TGMATH_UNARY_IMAG(Val, Cfct) \ | 
|  | (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \ | 
|  | || __builtin_classify_type (__real__ (Val)) != 8)	      \ | 
|  | ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \ | 
|  | + _Complex_I)) Cfct (Val)		      \ | 
|  | : (sizeof (__real__ (Val)) == sizeof (float))	      \ | 
|  | ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \ | 
|  | + _Complex_I)) Cfct##f (Val)	      \ | 
|  | : (__typeof__ ((__tgmath_real_type (Val)) 0	      \ | 
|  | + _Complex_I)) __tgml(Cfct) (Val))) | 
|  |  | 
|  | /* XXX This definition has to be changed as soon as the compiler understands | 
|  | the imaginary keyword.  */ | 
|  | # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ | 
|  | (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \ | 
|  | || __builtin_classify_type (__real__ (Val)) != 8)	      \ | 
|  | ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
|  | ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ | 
|  | Fct (Val)					      \ | 
|  | : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ | 
|  | Cfct (Val))					      \ | 
|  | : (sizeof (__real__ (Val)) == sizeof (float))	      \ | 
|  | ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
|  | ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ | 
|  | Fct##f (Val)					      \ | 
|  | : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ | 
|  | Cfct##f (Val))				      \ | 
|  | : ((sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
|  | ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ | 
|  | __tgml(Fct) (Val)				      \ | 
|  | : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ | 
|  | __tgml(Cfct) (Val)))) | 
|  |  | 
|  | /* XXX This definition has to be changed as soon as the compiler understands | 
|  | the imaginary keyword.  */ | 
|  | # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ | 
|  | (__extension__ (((sizeof (__real__ (Val1)) > sizeof (double)	      \ | 
|  | || sizeof (__real__ (Val2)) > sizeof (double))	      \ | 
|  | && __builtin_classify_type (__real__ (Val1)	      \ | 
|  | + __real__ (Val2)) == 8)    \ | 
|  | ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \ | 
|  | && sizeof (__real__ (Val2)) == sizeof (Val2))	      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0	      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | __tgml(Fct) (Val1, Val2)			      \ | 
|  | : (__typeof ((__tgmath_real_type (Val1)) 0	      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | __tgml(Cfct) (Val1, Val2))			      \ | 
|  | : (sizeof (__real__ (Val1)) == sizeof (double)	      \ | 
|  | || sizeof (__real__ (Val2)) == sizeof (double)	      \ | 
|  | || __builtin_classify_type (__real__ (Val1)) != 8     \ | 
|  | || __builtin_classify_type (__real__ (Val2)) != 8)    \ | 
|  | ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \ | 
|  | && sizeof (__real__ (Val2)) == sizeof (Val2))	      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0	      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Fct (Val1, Val2)				      \ | 
|  | : (__typeof ((__tgmath_real_type (Val1)) 0	      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Cfct (Val1, Val2))				      \ | 
|  | : ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \ | 
|  | && sizeof (__real__ (Val2)) == sizeof (Val2))	      \ | 
|  | ? (__typeof ((__tgmath_real_type (Val1)) 0	      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Fct##f (Val1, Val2)				      \ | 
|  | : (__typeof ((__tgmath_real_type (Val1)) 0	      \ | 
|  | + (__tgmath_real_type (Val2)) 0))	      \ | 
|  | Cfct##f (Val1, Val2)))) | 
|  | #else | 
|  | # error "Unsupported compiler; you cannot use <tgmath.h>" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Unary functions defined for real and complex values.  */ | 
|  |  | 
|  |  | 
|  | /* Trigonometric functions.  */ | 
|  |  | 
|  | /* Arc cosine of X.  */ | 
|  | #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) | 
|  | /* Arc sine of X.  */ | 
|  | #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) | 
|  | /* Arc tangent of X.  */ | 
|  | #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) | 
|  | /* Arc tangent of Y/X.  */ | 
|  | #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) | 
|  |  | 
|  | /* Cosine of X.  */ | 
|  | #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) | 
|  | /* Sine of X.  */ | 
|  | #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) | 
|  | /* Tangent of X.  */ | 
|  | #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) | 
|  |  | 
|  |  | 
|  | /* Hyperbolic functions.  */ | 
|  |  | 
|  | /* Hyperbolic arc cosine of X.  */ | 
|  | #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) | 
|  | /* Hyperbolic arc sine of X.  */ | 
|  | #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) | 
|  | /* Hyperbolic arc tangent of X.  */ | 
|  | #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) | 
|  |  | 
|  | /* Hyperbolic cosine of X.  */ | 
|  | #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) | 
|  | /* Hyperbolic sine of X.  */ | 
|  | #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) | 
|  | /* Hyperbolic tangent of X.  */ | 
|  | #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) | 
|  |  | 
|  |  | 
|  | /* Exponential and logarithmic functions.  */ | 
|  |  | 
|  | /* Exponential function of X.  */ | 
|  | #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) | 
|  |  | 
|  | /* Break VALUE into a normalized fraction and an integral power of 2.  */ | 
|  | #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) | 
|  |  | 
|  | /* X times (two to the EXP power).  */ | 
|  | #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) | 
|  |  | 
|  | /* Natural logarithm of X.  */ | 
|  | #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) | 
|  |  | 
|  | /* Base-ten logarithm of X.  */ | 
|  | #ifdef __USE_GNU | 
|  | # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10) | 
|  | #else | 
|  | # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) | 
|  | #endif | 
|  |  | 
|  | /* Return exp(X) - 1.  */ | 
|  | #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) | 
|  |  | 
|  | /* Return log(1 + X).  */ | 
|  | #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) | 
|  |  | 
|  | /* Return the base 2 signed integral exponent of X.  */ | 
|  | #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) | 
|  |  | 
|  | /* Compute base-2 exponential of X.  */ | 
|  | #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) | 
|  |  | 
|  | /* Compute base-2 logarithm of X.  */ | 
|  | #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) | 
|  |  | 
|  |  | 
|  | /* Power functions.  */ | 
|  |  | 
|  | /* Return X to the Y power.  */ | 
|  | #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) | 
|  |  | 
|  | /* Return the square root of X.  */ | 
|  | #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) | 
|  |  | 
|  | /* Return `sqrt(X*X + Y*Y)'.  */ | 
|  | #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) | 
|  |  | 
|  | /* Return the cube root of X.  */ | 
|  | #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) | 
|  |  | 
|  |  | 
|  | /* Nearest integer, absolute value, and remainder functions.  */ | 
|  |  | 
|  | /* Smallest integral value not less than X.  */ | 
|  | #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) | 
|  |  | 
|  | /* Absolute value of X.  */ | 
|  | #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs) | 
|  |  | 
|  | /* Largest integer not greater than X.  */ | 
|  | #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) | 
|  |  | 
|  | /* Floating-point modulo remainder of X/Y.  */ | 
|  | #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) | 
|  |  | 
|  | /* Round X to integral valuein floating-point format using current | 
|  | rounding direction, but do not raise inexact exception.  */ | 
|  | #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) | 
|  |  | 
|  | /* Round X to nearest integral value, rounding halfway cases away from | 
|  | zero.  */ | 
|  | #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) | 
|  |  | 
|  | /* Round X to the integral value in floating-point format nearest but | 
|  | not larger in magnitude.  */ | 
|  | #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) | 
|  |  | 
|  | /* Compute remainder of X and Y and put in *QUO a value with sign of x/y | 
|  | and magnitude congruent `mod 2^n' to the magnitude of the integral | 
|  | quotient x/y, with n >= 3.  */ | 
|  | #define remquo(Val1, Val2, Val3) \ | 
|  | __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) | 
|  |  | 
|  | /* Round X to nearest integral value according to current rounding | 
|  | direction.  */ | 
|  | #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint) | 
|  | #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint) | 
|  |  | 
|  | /* Round X to nearest integral value, rounding halfway cases away from | 
|  | zero.  */ | 
|  | #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround) | 
|  | #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround) | 
|  |  | 
|  |  | 
|  | /* Return X with its signed changed to Y's.  */ | 
|  | #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) | 
|  |  | 
|  | /* Error and gamma functions.  */ | 
|  | #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) | 
|  | #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) | 
|  | #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) | 
|  | #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) | 
|  |  | 
|  |  | 
|  | /* Return the integer nearest X in the direction of the | 
|  | prevailing rounding mode.  */ | 
|  | #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) | 
|  |  | 
|  | /* Return X + epsilon if X < Y, X - epsilon if X > Y.  */ | 
|  | #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) | 
|  | #define nexttoward(Val1, Val2) \ | 
|  | __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward) | 
|  |  | 
|  | /* Return the remainder of integer divison X / Y with infinite precision.  */ | 
|  | #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) | 
|  |  | 
|  | /* Return X times (2 to the Nth power).  */ | 
|  | #ifdef __USE_MISC | 
|  | # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb) | 
|  | #endif | 
|  |  | 
|  | /* Return X times (2 to the Nth power).  */ | 
|  | #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) | 
|  |  | 
|  | /* Return X times (2 to the Nth power).  */ | 
|  | #define scalbln(Val1, Val2) \ | 
|  | __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) | 
|  |  | 
|  | /* Return the binary exponent of X, which must be nonzero.  */ | 
|  | #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb) | 
|  |  | 
|  |  | 
|  | /* Return positive difference between X and Y.  */ | 
|  | #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) | 
|  |  | 
|  | /* Return maximum numeric value from X and Y.  */ | 
|  | #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) | 
|  |  | 
|  | /* Return minimum numeric value from X and Y.  */ | 
|  | #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) | 
|  |  | 
|  |  | 
|  | /* Multiply-add function computed as a ternary operation.  */ | 
|  | #define fma(Val1, Val2, Val3) \ | 
|  | __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) | 
|  |  | 
|  |  | 
|  | /* Absolute value, conjugates, and projection.  */ | 
|  |  | 
|  | /* Argument value of Z.  */ | 
|  | #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg) | 
|  |  | 
|  | /* Complex conjugate of Z.  */ | 
|  | #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj) | 
|  |  | 
|  | /* Projection of Z onto the Riemann sphere.  */ | 
|  | #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj) | 
|  |  | 
|  |  | 
|  | /* Decomposing complex values.  */ | 
|  |  | 
|  | /* Imaginary part of Z.  */ | 
|  | #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag) | 
|  |  | 
|  | /* Real part of Z.  */ | 
|  | #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal) | 
|  |  | 
|  | #endif /* tgmath.h */ |