| /* Return arc hyperbole sine for double value, with the imaginary part | 
 |    of the result possibly adjusted for use in computing other | 
 |    functions. | 
 |    Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <complex.h> | 
 | #include <math.h> | 
 | #include <math_private.h> | 
 | #include <float.h> | 
 |  | 
 | /* Return the complex inverse hyperbolic sine of finite nonzero Z, | 
 |    with the imaginary part of the result subtracted from pi/2 if ADJ | 
 |    is nonzero.  */ | 
 |  | 
 | __complex__ double | 
 | __kernel_casinh (__complex__ double x, int adj) | 
 | { | 
 |   __complex__ double res; | 
 |   double rx, ix; | 
 |   __complex__ double y; | 
 |  | 
 |   /* Avoid cancellation by reducing to the first quadrant.  */ | 
 |   rx = fabs (__real__ x); | 
 |   ix = fabs (__imag__ x); | 
 |  | 
 |   if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON) | 
 |     { | 
 |       /* For large x in the first quadrant, x + csqrt (1 + x * x) | 
 | 	 is sufficiently close to 2 * x to make no significant | 
 | 	 difference to the result; avoid possible overflow from | 
 | 	 the squaring and addition.  */ | 
 |       __real__ y = rx; | 
 |       __imag__ y = ix; | 
 |  | 
 |       if (adj) | 
 | 	{ | 
 | 	  double t = __real__ y; | 
 | 	  __real__ y = __copysign (__imag__ y, __imag__ x); | 
 | 	  __imag__ y = t; | 
 | 	} | 
 |  | 
 |       res = __clog (y); | 
 |       __real__ res += M_LN2; | 
 |     } | 
 |   else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0) | 
 |     { | 
 |       double s = __ieee754_hypot (1.0, rx); | 
 |  | 
 |       __real__ res = __ieee754_log (rx + s); | 
 |       if (adj) | 
 | 	__imag__ res = __ieee754_atan2 (s, __imag__ x); | 
 |       else | 
 | 	__imag__ res = __ieee754_atan2 (ix, s); | 
 |     } | 
 |   else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5) | 
 |     { | 
 |       double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0)); | 
 |  | 
 |       __real__ res = __ieee754_log (ix + s); | 
 |       if (adj) | 
 | 	__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); | 
 |       else | 
 | 	__imag__ res = __ieee754_atan2 (s, rx); | 
 |     } | 
 |   else if (ix > 1.0 && ix < 1.5 && rx < 0.5) | 
 |     { | 
 |       if (rx < DBL_EPSILON * DBL_EPSILON) | 
 | 	{ | 
 | 	  double ix2m1 = (ix + 1.0) * (ix - 1.0); | 
 | 	  double s = __ieee754_sqrt (ix2m1); | 
 |  | 
 | 	  __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2 (s, rx); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  double ix2m1 = (ix + 1.0) * (ix - 1.0); | 
 | 	  double rx2 = rx * rx; | 
 | 	  double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); | 
 | 	  double d = __ieee754_sqrt (ix2m1 * ix2m1 + f); | 
 | 	  double dp = d + ix2m1; | 
 | 	  double dm = f / dp; | 
 | 	  double r1 = __ieee754_sqrt ((dm + rx2) / 2.0); | 
 | 	  double r2 = rx * ix / r1; | 
 |  | 
 | 	  __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2, | 
 | 								 __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); | 
 | 	} | 
 |     } | 
 |   else if (ix == 1.0 && rx < 0.5) | 
 |     { | 
 |       if (rx < DBL_EPSILON / 8.0) | 
 | 	{ | 
 | 	  __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx), | 
 | 					    __copysign (1.0, __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx)); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  double d = rx * __ieee754_sqrt (4.0 + rx * rx); | 
 | 	  double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0); | 
 | 	  double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0); | 
 |  | 
 | 	  __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2, | 
 | 								 __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1); | 
 | 	} | 
 |     } | 
 |   else if (ix < 1.0 && rx < 0.5) | 
 |     { | 
 |       if (ix >= DBL_EPSILON) | 
 | 	{ | 
 | 	  if (rx < DBL_EPSILON * DBL_EPSILON) | 
 | 	    { | 
 | 	      double onemix2 = (1.0 + ix) * (1.0 - ix); | 
 | 	      double s = __ieee754_sqrt (onemix2); | 
 |  | 
 | 	      __real__ res = __log1p (2.0 * rx / s) / 2.0; | 
 | 	      if (adj) | 
 | 		__imag__ res = __ieee754_atan2 (s, __imag__ x); | 
 | 	      else | 
 | 		__imag__ res = __ieee754_atan2 (ix, s); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      double onemix2 = (1.0 + ix) * (1.0 - ix); | 
 | 	      double rx2 = rx * rx; | 
 | 	      double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); | 
 | 	      double d = __ieee754_sqrt (onemix2 * onemix2 + f); | 
 | 	      double dp = d + onemix2; | 
 | 	      double dm = f / dp; | 
 | 	      double r1 = __ieee754_sqrt ((dp + rx2) / 2.0); | 
 | 	      double r2 = rx * ix / r1; | 
 |  | 
 | 	      __real__ res | 
 | 		= __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0; | 
 | 	      if (adj) | 
 | 		__imag__ res = __ieee754_atan2 (rx + r1, | 
 | 						__copysign (ix + r2, | 
 | 							    __imag__ x)); | 
 | 	      else | 
 | 		__imag__ res = __ieee754_atan2 (ix + r2, rx + r1); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  double s = __ieee754_hypot (1.0, rx); | 
 |  | 
 | 	  __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2 (s, __imag__ x); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2 (ix, s); | 
 | 	} | 
 |       math_check_force_underflow_nonneg (__real__ res); | 
 |     } | 
 |   else | 
 |     { | 
 |       __real__ y = (rx - ix) * (rx + ix) + 1.0; | 
 |       __imag__ y = 2.0 * rx * ix; | 
 |  | 
 |       y = __csqrt (y); | 
 |  | 
 |       __real__ y += rx; | 
 |       __imag__ y += ix; | 
 |  | 
 |       if (adj) | 
 | 	{ | 
 | 	  double t = __real__ y; | 
 | 	  __real__ y = __copysign (__imag__ y, __imag__ x); | 
 | 	  __imag__ y = t; | 
 | 	} | 
 |  | 
 |       res = __clog (y); | 
 |     } | 
 |  | 
 |   /* Give results the correct sign for the original argument.  */ | 
 |   __real__ res = __copysign (__real__ res, __real__ x); | 
 |   __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x)); | 
 |  | 
 |   return res; | 
 | } |