| /* Extended regular expression matching and search library. | 
 |    Copyright (C) 2002-2016 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |    Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | static void re_string_construct_common (const char *str, int len, | 
 | 					re_string_t *pstr, | 
 | 					RE_TRANSLATE_TYPE trans, int icase, | 
 | 					const re_dfa_t *dfa) internal_function; | 
 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, | 
 | 					  const re_node_set *nodes, | 
 | 					  unsigned int hash) internal_function; | 
 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, | 
 | 					  const re_node_set *nodes, | 
 | 					  unsigned int context, | 
 | 					  unsigned int hash) internal_function; | 
 |  | 
 | /* Functions for string operation.  */ | 
 |  | 
 | /* This function allocate the buffers.  It is necessary to call | 
 |    re_string_reconstruct before using the object.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len, | 
 | 		    RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) | 
 | { | 
 |   reg_errcode_t ret; | 
 |   int init_buf_len; | 
 |  | 
 |   /* Ensure at least one character fits into the buffers.  */ | 
 |   if (init_len < dfa->mb_cur_max) | 
 |     init_len = dfa->mb_cur_max; | 
 |   init_buf_len = (len + 1 < init_len) ? len + 1: init_len; | 
 |   re_string_construct_common (str, len, pstr, trans, icase, dfa); | 
 |  | 
 |   ret = re_string_realloc_buffers (pstr, init_buf_len); | 
 |   if (BE (ret != REG_NOERROR, 0)) | 
 |     return ret; | 
 |  | 
 |   pstr->word_char = dfa->word_char; | 
 |   pstr->word_ops_used = dfa->word_ops_used; | 
 |   pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | 
 |   pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; | 
 |   pstr->valid_raw_len = pstr->valid_len; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* This function allocate the buffers, and initialize them.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_string_construct (re_string_t *pstr, const char *str, int len, | 
 | 		     RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) | 
 | { | 
 |   reg_errcode_t ret; | 
 |   memset (pstr, '\0', sizeof (re_string_t)); | 
 |   re_string_construct_common (str, len, pstr, trans, icase, dfa); | 
 |  | 
 |   if (len > 0) | 
 |     { | 
 |       ret = re_string_realloc_buffers (pstr, len + 1); | 
 |       if (BE (ret != REG_NOERROR, 0)) | 
 | 	return ret; | 
 |     } | 
 |   pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | 
 |  | 
 |   if (icase) | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (dfa->mb_cur_max > 1) | 
 | 	{ | 
 | 	  while (1) | 
 | 	    { | 
 | 	      ret = build_wcs_upper_buffer (pstr); | 
 | 	      if (BE (ret != REG_NOERROR, 0)) | 
 | 		return ret; | 
 | 	      if (pstr->valid_raw_len >= len) | 
 | 		break; | 
 | 	      if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) | 
 | 		break; | 
 | 	      ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | 
 | 	      if (BE (ret != REG_NOERROR, 0)) | 
 | 		return ret; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | #endif /* RE_ENABLE_I18N  */ | 
 | 	build_upper_buffer (pstr); | 
 |     } | 
 |   else | 
 |     { | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (dfa->mb_cur_max > 1) | 
 | 	build_wcs_buffer (pstr); | 
 |       else | 
 | #endif /* RE_ENABLE_I18N  */ | 
 | 	{ | 
 | 	  if (trans != NULL) | 
 | 	    re_string_translate_buffer (pstr); | 
 | 	  else | 
 | 	    { | 
 | 	      pstr->valid_len = pstr->bufs_len; | 
 | 	      pstr->valid_raw_len = pstr->bufs_len; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Helper functions for re_string_allocate, and re_string_construct.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_string_realloc_buffers (re_string_t *pstr, int new_buf_len) | 
 | { | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (pstr->mb_cur_max > 1) | 
 |     { | 
 |       wint_t *new_wcs; | 
 |  | 
 |       /* Avoid overflow in realloc.  */ | 
 |       const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int)); | 
 |       if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)) | 
 | 	return REG_ESPACE; | 
 |  | 
 |       new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); | 
 |       if (BE (new_wcs == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       pstr->wcs = new_wcs; | 
 |       if (pstr->offsets != NULL) | 
 | 	{ | 
 | 	  int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len); | 
 | 	  if (BE (new_offsets == NULL, 0)) | 
 | 	    return REG_ESPACE; | 
 | 	  pstr->offsets = new_offsets; | 
 | 	} | 
 |     } | 
 | #endif /* RE_ENABLE_I18N  */ | 
 |   if (pstr->mbs_allocated) | 
 |     { | 
 |       unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, | 
 | 					   new_buf_len); | 
 |       if (BE (new_mbs == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       pstr->mbs = new_mbs; | 
 |     } | 
 |   pstr->bufs_len = new_buf_len; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | internal_function | 
 | re_string_construct_common (const char *str, int len, re_string_t *pstr, | 
 | 			    RE_TRANSLATE_TYPE trans, int icase, | 
 | 			    const re_dfa_t *dfa) | 
 | { | 
 |   pstr->raw_mbs = (const unsigned char *) str; | 
 |   pstr->len = len; | 
 |   pstr->raw_len = len; | 
 |   pstr->trans = trans; | 
 |   pstr->icase = icase ? 1 : 0; | 
 |   pstr->mbs_allocated = (trans != NULL || icase); | 
 |   pstr->mb_cur_max = dfa->mb_cur_max; | 
 |   pstr->is_utf8 = dfa->is_utf8; | 
 |   pstr->map_notascii = dfa->map_notascii; | 
 |   pstr->stop = pstr->len; | 
 |   pstr->raw_stop = pstr->stop; | 
 | } | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |  | 
 | /* Build wide character buffer PSTR->WCS. | 
 |    If the byte sequence of the string are: | 
 |      <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> | 
 |    Then wide character buffer will be: | 
 |      <wc1>   , WEOF    , <wc2>   , WEOF    , <wc3> | 
 |    We use WEOF for padding, they indicate that the position isn't | 
 |    a first byte of a multibyte character. | 
 |  | 
 |    Note that this function assumes PSTR->VALID_LEN elements are already | 
 |    built and starts from PSTR->VALID_LEN.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | build_wcs_buffer (re_string_t *pstr) | 
 | { | 
 | #ifdef _LIBC | 
 |   unsigned char buf[MB_LEN_MAX]; | 
 |   assert (MB_LEN_MAX >= pstr->mb_cur_max); | 
 | #else | 
 |   unsigned char buf[64]; | 
 | #endif | 
 |   mbstate_t prev_st; | 
 |   int byte_idx, end_idx, remain_len; | 
 |   size_t mbclen; | 
 |  | 
 |   /* Build the buffers from pstr->valid_len to either pstr->len or | 
 |      pstr->bufs_len.  */ | 
 |   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | 
 |   for (byte_idx = pstr->valid_len; byte_idx < end_idx;) | 
 |     { | 
 |       wchar_t wc; | 
 |       const char *p; | 
 |  | 
 |       remain_len = end_idx - byte_idx; | 
 |       prev_st = pstr->cur_state; | 
 |       /* Apply the translation if we need.  */ | 
 |       if (BE (pstr->trans != NULL, 0)) | 
 | 	{ | 
 | 	  int i, ch; | 
 |  | 
 | 	  for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | 
 | 	    { | 
 | 	      ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; | 
 | 	      buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; | 
 | 	    } | 
 | 	  p = (const char *) buf; | 
 | 	} | 
 |       else | 
 | 	p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; | 
 |       mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); | 
 |       if (BE (mbclen == (size_t) -1 || mbclen == 0 | 
 | 	      || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len), 0)) | 
 | 	{ | 
 | 	  /* We treat these cases as a singlebyte character.  */ | 
 | 	  mbclen = 1; | 
 | 	  wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | 
 | 	  if (BE (pstr->trans != NULL, 0)) | 
 | 	    wc = pstr->trans[wc]; | 
 | 	  pstr->cur_state = prev_st; | 
 | 	} | 
 |       else if (BE (mbclen == (size_t) -2, 0)) | 
 | 	{ | 
 | 	  /* The buffer doesn't have enough space, finish to build.  */ | 
 | 	  pstr->cur_state = prev_st; | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       /* Write wide character and padding.  */ | 
 |       pstr->wcs[byte_idx++] = wc; | 
 |       /* Write paddings.  */ | 
 |       for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | 
 | 	pstr->wcs[byte_idx++] = WEOF; | 
 |     } | 
 |   pstr->valid_len = byte_idx; | 
 |   pstr->valid_raw_len = byte_idx; | 
 | } | 
 |  | 
 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, | 
 |    but for REG_ICASE.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | build_wcs_upper_buffer (re_string_t *pstr) | 
 | { | 
 |   mbstate_t prev_st; | 
 |   int src_idx, byte_idx, end_idx, remain_len; | 
 |   size_t mbclen; | 
 | #ifdef _LIBC | 
 |   char buf[MB_LEN_MAX]; | 
 |   assert (MB_LEN_MAX >= pstr->mb_cur_max); | 
 | #else | 
 |   char buf[64]; | 
 | #endif | 
 |  | 
 |   byte_idx = pstr->valid_len; | 
 |   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | 
 |  | 
 |   /* The following optimization assumes that ASCII characters can be | 
 |      mapped to wide characters with a simple cast.  */ | 
 |   if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) | 
 |     { | 
 |       while (byte_idx < end_idx) | 
 | 	{ | 
 | 	  wchar_t wc; | 
 |  | 
 | 	  if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) | 
 | 	      && mbsinit (&pstr->cur_state)) | 
 | 	    { | 
 | 	      /* In case of a singlebyte character.  */ | 
 | 	      pstr->mbs[byte_idx] | 
 | 		= toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); | 
 | 	      /* The next step uses the assumption that wchar_t is encoded | 
 | 		 ASCII-safe: all ASCII values can be converted like this.  */ | 
 | 	      pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; | 
 | 	      ++byte_idx; | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  remain_len = end_idx - byte_idx; | 
 | 	  prev_st = pstr->cur_state; | 
 | 	  mbclen = __mbrtowc (&wc, | 
 | 			      ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx | 
 | 			       + byte_idx), remain_len, &pstr->cur_state); | 
 | 	  if (BE (mbclen + 2 > 2, 1)) | 
 | 	    { | 
 | 	      wchar_t wcu = wc; | 
 | 	      if (__iswlower (wc)) | 
 | 		{ | 
 | 		  size_t mbcdlen; | 
 |  | 
 | 		  wcu = __towupper (wc); | 
 | 		  mbcdlen = __wcrtomb (buf, wcu, &prev_st); | 
 | 		  if (BE (mbclen == mbcdlen, 1)) | 
 | 		    memcpy (pstr->mbs + byte_idx, buf, mbclen); | 
 | 		  else | 
 | 		    { | 
 | 		      src_idx = byte_idx; | 
 | 		      goto offsets_needed; | 
 | 		    } | 
 | 		} | 
 | 	      else | 
 | 		memcpy (pstr->mbs + byte_idx, | 
 | 			pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); | 
 | 	      pstr->wcs[byte_idx++] = wcu; | 
 | 	      /* Write paddings.  */ | 
 | 	      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | 
 | 		pstr->wcs[byte_idx++] = WEOF; | 
 | 	    } | 
 | 	  else if (mbclen == (size_t) -1 || mbclen == 0 | 
 | 		   || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) | 
 | 	    { | 
 | 	      /* It is an invalid character, an incomplete character | 
 | 		 at the end of the string, or '\0'.  Just use the byte.  */ | 
 | 	      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | 
 | 	      pstr->mbs[byte_idx] = ch; | 
 | 	      /* And also cast it to wide char.  */ | 
 | 	      pstr->wcs[byte_idx++] = (wchar_t) ch; | 
 | 	      if (BE (mbclen == (size_t) -1, 0)) | 
 | 		pstr->cur_state = prev_st; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* The buffer doesn't have enough space, finish to build.  */ | 
 | 	      pstr->cur_state = prev_st; | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       pstr->valid_len = byte_idx; | 
 |       pstr->valid_raw_len = byte_idx; | 
 |       return REG_NOERROR; | 
 |     } | 
 |   else | 
 |     for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) | 
 |       { | 
 | 	wchar_t wc; | 
 | 	const char *p; | 
 |       offsets_needed: | 
 | 	remain_len = end_idx - byte_idx; | 
 | 	prev_st = pstr->cur_state; | 
 | 	if (BE (pstr->trans != NULL, 0)) | 
 | 	  { | 
 | 	    int i, ch; | 
 |  | 
 | 	    for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | 
 | 	      { | 
 | 		ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; | 
 | 		buf[i] = pstr->trans[ch]; | 
 | 	      } | 
 | 	    p = (const char *) buf; | 
 | 	  } | 
 | 	else | 
 | 	  p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; | 
 | 	mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); | 
 | 	if (BE (mbclen + 2 > 2, 1)) | 
 | 	  { | 
 | 	    wchar_t wcu = wc; | 
 | 	    if (__iswlower (wc)) | 
 | 	      { | 
 | 		size_t mbcdlen; | 
 |  | 
 | 		wcu = __towupper (wc); | 
 | 		mbcdlen = __wcrtomb ((char *) buf, wcu, &prev_st); | 
 | 		if (BE (mbclen == mbcdlen, 1)) | 
 | 		  memcpy (pstr->mbs + byte_idx, buf, mbclen); | 
 | 		else if (mbcdlen != (size_t) -1) | 
 | 		  { | 
 | 		    size_t i; | 
 |  | 
 | 		    if (byte_idx + mbcdlen > pstr->bufs_len) | 
 | 		      { | 
 | 			pstr->cur_state = prev_st; | 
 | 			break; | 
 | 		      } | 
 |  | 
 | 		    if (pstr->offsets == NULL) | 
 | 		      { | 
 | 			pstr->offsets = re_malloc (int, pstr->bufs_len); | 
 |  | 
 | 			if (pstr->offsets == NULL) | 
 | 			  return REG_ESPACE; | 
 | 		      } | 
 | 		    if (!pstr->offsets_needed) | 
 | 		      { | 
 | 			for (i = 0; i < (size_t) byte_idx; ++i) | 
 | 			  pstr->offsets[i] = i; | 
 | 			pstr->offsets_needed = 1; | 
 | 		      } | 
 |  | 
 | 		    memcpy (pstr->mbs + byte_idx, buf, mbcdlen); | 
 | 		    pstr->wcs[byte_idx] = wcu; | 
 | 		    pstr->offsets[byte_idx] = src_idx; | 
 | 		    for (i = 1; i < mbcdlen; ++i) | 
 | 		      { | 
 | 			pstr->offsets[byte_idx + i] | 
 | 			  = src_idx + (i < mbclen ? i : mbclen - 1); | 
 | 			pstr->wcs[byte_idx + i] = WEOF; | 
 | 		      } | 
 | 		    pstr->len += mbcdlen - mbclen; | 
 | 		    if (pstr->raw_stop > src_idx) | 
 | 		      pstr->stop += mbcdlen - mbclen; | 
 | 		    end_idx = (pstr->bufs_len > pstr->len) | 
 | 			      ? pstr->len : pstr->bufs_len; | 
 | 		    byte_idx += mbcdlen; | 
 | 		    src_idx += mbclen; | 
 | 		    continue; | 
 | 		  } | 
 | 		else | 
 | 		  memcpy (pstr->mbs + byte_idx, p, mbclen); | 
 | 	      } | 
 | 	    else | 
 | 	      memcpy (pstr->mbs + byte_idx, p, mbclen); | 
 |  | 
 | 	    if (BE (pstr->offsets_needed != 0, 0)) | 
 | 	      { | 
 | 		size_t i; | 
 | 		for (i = 0; i < mbclen; ++i) | 
 | 		  pstr->offsets[byte_idx + i] = src_idx + i; | 
 | 	      } | 
 | 	    src_idx += mbclen; | 
 |  | 
 | 	    pstr->wcs[byte_idx++] = wcu; | 
 | 	    /* Write paddings.  */ | 
 | 	    for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | 
 | 	      pstr->wcs[byte_idx++] = WEOF; | 
 | 	  } | 
 | 	else if (mbclen == (size_t) -1 || mbclen == 0 | 
 | 		 || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) | 
 | 	  { | 
 | 	    /* It is an invalid character or '\0'.  Just use the byte.  */ | 
 | 	    int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; | 
 |  | 
 | 	    if (BE (pstr->trans != NULL, 0)) | 
 | 	      ch = pstr->trans [ch]; | 
 | 	    pstr->mbs[byte_idx] = ch; | 
 |  | 
 | 	    if (BE (pstr->offsets_needed != 0, 0)) | 
 | 	      pstr->offsets[byte_idx] = src_idx; | 
 | 	    ++src_idx; | 
 |  | 
 | 	    /* And also cast it to wide char.  */ | 
 | 	    pstr->wcs[byte_idx++] = (wchar_t) ch; | 
 | 	    if (BE (mbclen == (size_t) -1, 0)) | 
 | 	      pstr->cur_state = prev_st; | 
 | 	  } | 
 | 	else | 
 | 	  { | 
 | 	    /* The buffer doesn't have enough space, finish to build.  */ | 
 | 	    pstr->cur_state = prev_st; | 
 | 	    break; | 
 | 	  } | 
 |       } | 
 |   pstr->valid_len = byte_idx; | 
 |   pstr->valid_raw_len = src_idx; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. | 
 |    Return the index.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc) | 
 | { | 
 |   mbstate_t prev_st; | 
 |   int rawbuf_idx; | 
 |   size_t mbclen; | 
 |   wint_t wc = WEOF; | 
 |  | 
 |   /* Skip the characters which are not necessary to check.  */ | 
 |   for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; | 
 |        rawbuf_idx < new_raw_idx;) | 
 |     { | 
 |       wchar_t wc2; | 
 |       int remain_len = pstr->raw_len - rawbuf_idx; | 
 |       prev_st = pstr->cur_state; | 
 |       mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, | 
 | 			  remain_len, &pstr->cur_state); | 
 |       if (BE ((ssize_t) mbclen <= 0, 0)) | 
 | 	{ | 
 | 	  /* We treat these cases as a single byte character.  */ | 
 | 	  if (mbclen == 0 || remain_len == 0) | 
 | 	    wc = L'\0'; | 
 | 	  else | 
 | 	    wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); | 
 | 	  mbclen = 1; | 
 | 	  pstr->cur_state = prev_st; | 
 | 	} | 
 |       else | 
 | 	wc = (wint_t) wc2; | 
 |       /* Then proceed the next character.  */ | 
 |       rawbuf_idx += mbclen; | 
 |     } | 
 |   *last_wc = wc; | 
 |   return rawbuf_idx; | 
 | } | 
 | #endif /* RE_ENABLE_I18N  */ | 
 |  | 
 | /* Build the buffer PSTR->MBS, and apply the translation if we need. | 
 |    This function is used in case of REG_ICASE.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | build_upper_buffer (re_string_t *pstr) | 
 | { | 
 |   int char_idx, end_idx; | 
 |   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | 
 |  | 
 |   for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) | 
 |     { | 
 |       int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; | 
 |       if (BE (pstr->trans != NULL, 0)) | 
 | 	ch = pstr->trans[ch]; | 
 |       if (islower (ch)) | 
 | 	pstr->mbs[char_idx] = toupper (ch); | 
 |       else | 
 | 	pstr->mbs[char_idx] = ch; | 
 |     } | 
 |   pstr->valid_len = char_idx; | 
 |   pstr->valid_raw_len = char_idx; | 
 | } | 
 |  | 
 | /* Apply TRANS to the buffer in PSTR.  */ | 
 |  | 
 | static void | 
 | internal_function | 
 | re_string_translate_buffer (re_string_t *pstr) | 
 | { | 
 |   int buf_idx, end_idx; | 
 |   end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | 
 |  | 
 |   for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) | 
 |     { | 
 |       int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; | 
 |       pstr->mbs[buf_idx] = pstr->trans[ch]; | 
 |     } | 
 |  | 
 |   pstr->valid_len = buf_idx; | 
 |   pstr->valid_raw_len = buf_idx; | 
 | } | 
 |  | 
 | /* This function re-construct the buffers. | 
 |    Concretely, convert to wide character in case of pstr->mb_cur_max > 1, | 
 |    convert to upper case in case of REG_ICASE, apply translation.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_string_reconstruct (re_string_t *pstr, int idx, int eflags) | 
 | { | 
 |   int offset = idx - pstr->raw_mbs_idx; | 
 |   if (BE (offset < 0, 0)) | 
 |     { | 
 |       /* Reset buffer.  */ | 
 | #ifdef RE_ENABLE_I18N | 
 |       if (pstr->mb_cur_max > 1) | 
 | 	memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | 
 | #endif /* RE_ENABLE_I18N */ | 
 |       pstr->len = pstr->raw_len; | 
 |       pstr->stop = pstr->raw_stop; | 
 |       pstr->valid_len = 0; | 
 |       pstr->raw_mbs_idx = 0; | 
 |       pstr->valid_raw_len = 0; | 
 |       pstr->offsets_needed = 0; | 
 |       pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | 
 | 			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF); | 
 |       if (!pstr->mbs_allocated) | 
 | 	pstr->mbs = (unsigned char *) pstr->raw_mbs; | 
 |       offset = idx; | 
 |     } | 
 |  | 
 |   if (BE (offset != 0, 1)) | 
 |     { | 
 |       /* Should the already checked characters be kept?  */ | 
 |       if (BE (offset < pstr->valid_raw_len, 1)) | 
 | 	{ | 
 | 	  /* Yes, move them to the front of the buffer.  */ | 
 | #ifdef RE_ENABLE_I18N | 
 | 	  if (BE (pstr->offsets_needed, 0)) | 
 | 	    { | 
 | 	      int low = 0, high = pstr->valid_len, mid; | 
 | 	      do | 
 | 		{ | 
 | 		  mid = (high + low) / 2; | 
 | 		  if (pstr->offsets[mid] > offset) | 
 | 		    high = mid; | 
 | 		  else if (pstr->offsets[mid] < offset) | 
 | 		    low = mid + 1; | 
 | 		  else | 
 | 		    break; | 
 | 		} | 
 | 	      while (low < high); | 
 | 	      if (pstr->offsets[mid] < offset) | 
 | 		++mid; | 
 | 	      pstr->tip_context = re_string_context_at (pstr, mid - 1, | 
 | 							eflags); | 
 | 	      /* This can be quite complicated, so handle specially | 
 | 		 only the common and easy case where the character with | 
 | 		 different length representation of lower and upper | 
 | 		 case is present at or after offset.  */ | 
 | 	      if (pstr->valid_len > offset | 
 | 		  && mid == offset && pstr->offsets[mid] == offset) | 
 | 		{ | 
 | 		  memmove (pstr->wcs, pstr->wcs + offset, | 
 | 			   (pstr->valid_len - offset) * sizeof (wint_t)); | 
 | 		  memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); | 
 | 		  pstr->valid_len -= offset; | 
 | 		  pstr->valid_raw_len -= offset; | 
 | 		  for (low = 0; low < pstr->valid_len; low++) | 
 | 		    pstr->offsets[low] = pstr->offsets[low + offset] - offset; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  /* Otherwise, just find out how long the partial multibyte | 
 | 		     character at offset is and fill it with WEOF/255.  */ | 
 | 		  pstr->len = pstr->raw_len - idx + offset; | 
 | 		  pstr->stop = pstr->raw_stop - idx + offset; | 
 | 		  pstr->offsets_needed = 0; | 
 | 		  while (mid > 0 && pstr->offsets[mid - 1] == offset) | 
 | 		    --mid; | 
 | 		  while (mid < pstr->valid_len) | 
 | 		    if (pstr->wcs[mid] != WEOF) | 
 | 		      break; | 
 | 		    else | 
 | 		      ++mid; | 
 | 		  if (mid == pstr->valid_len) | 
 | 		    pstr->valid_len = 0; | 
 | 		  else | 
 | 		    { | 
 | 		      pstr->valid_len = pstr->offsets[mid] - offset; | 
 | 		      if (pstr->valid_len) | 
 | 			{ | 
 | 			  for (low = 0; low < pstr->valid_len; ++low) | 
 | 			    pstr->wcs[low] = WEOF; | 
 | 			  memset (pstr->mbs, 255, pstr->valid_len); | 
 | 			} | 
 | 		    } | 
 | 		  pstr->valid_raw_len = pstr->valid_len; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | #endif | 
 | 	    { | 
 | 	      pstr->tip_context = re_string_context_at (pstr, offset - 1, | 
 | 							eflags); | 
 | #ifdef RE_ENABLE_I18N | 
 | 	      if (pstr->mb_cur_max > 1) | 
 | 		memmove (pstr->wcs, pstr->wcs + offset, | 
 | 			 (pstr->valid_len - offset) * sizeof (wint_t)); | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 	      if (BE (pstr->mbs_allocated, 0)) | 
 | 		memmove (pstr->mbs, pstr->mbs + offset, | 
 | 			 pstr->valid_len - offset); | 
 | 	      pstr->valid_len -= offset; | 
 | 	      pstr->valid_raw_len -= offset; | 
 | #if defined DEBUG && DEBUG | 
 | 	      assert (pstr->valid_len > 0); | 
 | #endif | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* No, skip all characters until IDX.  */ | 
 | 	  int prev_valid_len = pstr->valid_len; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 | 	  if (BE (pstr->offsets_needed, 0)) | 
 | 	    { | 
 | 	      pstr->len = pstr->raw_len - idx + offset; | 
 | 	      pstr->stop = pstr->raw_stop - idx + offset; | 
 | 	      pstr->offsets_needed = 0; | 
 | 	    } | 
 | #endif | 
 | 	  pstr->valid_len = 0; | 
 | #ifdef RE_ENABLE_I18N | 
 | 	  if (pstr->mb_cur_max > 1) | 
 | 	    { | 
 | 	      int wcs_idx; | 
 | 	      wint_t wc = WEOF; | 
 |  | 
 | 	      if (pstr->is_utf8) | 
 | 		{ | 
 | 		  const unsigned char *raw, *p, *end; | 
 |  | 
 | 		  /* Special case UTF-8.  Multi-byte chars start with any | 
 | 		     byte other than 0x80 - 0xbf.  */ | 
 | 		  raw = pstr->raw_mbs + pstr->raw_mbs_idx; | 
 | 		  end = raw + (offset - pstr->mb_cur_max); | 
 | 		  if (end < pstr->raw_mbs) | 
 | 		    end = pstr->raw_mbs; | 
 | 		  p = raw + offset - 1; | 
 | #ifdef _LIBC | 
 | 		  /* We know the wchar_t encoding is UCS4, so for the simple | 
 | 		     case, ASCII characters, skip the conversion step.  */ | 
 | 		  if (isascii (*p) && BE (pstr->trans == NULL, 1)) | 
 | 		    { | 
 | 		      memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | 
 | 		      /* pstr->valid_len = 0; */ | 
 | 		      wc = (wchar_t) *p; | 
 | 		    } | 
 | 		  else | 
 | #endif | 
 | 		    for (; p >= end; --p) | 
 | 		      if ((*p & 0xc0) != 0x80) | 
 | 			{ | 
 | 			  mbstate_t cur_state; | 
 | 			  wchar_t wc2; | 
 | 			  int mlen = raw + pstr->len - p; | 
 | 			  unsigned char buf[6]; | 
 | 			  size_t mbclen; | 
 |  | 
 | 			  const unsigned char *pp = p; | 
 | 			  if (BE (pstr->trans != NULL, 0)) | 
 | 			    { | 
 | 			      int i = mlen < 6 ? mlen : 6; | 
 | 			      while (--i >= 0) | 
 | 				buf[i] = pstr->trans[p[i]]; | 
 | 			      pp = buf; | 
 | 			    } | 
 | 			  /* XXX Don't use mbrtowc, we know which conversion | 
 | 			     to use (UTF-8 -> UCS4).  */ | 
 | 			  memset (&cur_state, 0, sizeof (cur_state)); | 
 | 			  mbclen = __mbrtowc (&wc2, (const char *) pp, mlen, | 
 | 					      &cur_state); | 
 | 			  if (raw + offset - p <= mbclen | 
 | 			      && mbclen < (size_t) -2) | 
 | 			    { | 
 | 			      memset (&pstr->cur_state, '\0', | 
 | 				      sizeof (mbstate_t)); | 
 | 			      pstr->valid_len = mbclen - (raw + offset - p); | 
 | 			      wc = wc2; | 
 | 			    } | 
 | 			  break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	      if (wc == WEOF) | 
 | 		pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; | 
 | 	      if (wc == WEOF) | 
 | 		pstr->tip_context | 
 | 		  = re_string_context_at (pstr, prev_valid_len - 1, eflags); | 
 | 	      else | 
 | 		pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) | 
 | 				      && IS_WIDE_WORD_CHAR (wc)) | 
 | 				     ? CONTEXT_WORD | 
 | 				     : ((IS_WIDE_NEWLINE (wc) | 
 | 					 && pstr->newline_anchor) | 
 | 					? CONTEXT_NEWLINE : 0)); | 
 | 	      if (BE (pstr->valid_len, 0)) | 
 | 		{ | 
 | 		  for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) | 
 | 		    pstr->wcs[wcs_idx] = WEOF; | 
 | 		  if (pstr->mbs_allocated) | 
 | 		    memset (pstr->mbs, 255, pstr->valid_len); | 
 | 		} | 
 | 	      pstr->valid_raw_len = pstr->valid_len; | 
 | 	    } | 
 | 	  else | 
 | #endif /* RE_ENABLE_I18N */ | 
 | 	    { | 
 | 	      int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; | 
 | 	      pstr->valid_raw_len = 0; | 
 | 	      if (pstr->trans) | 
 | 		c = pstr->trans[c]; | 
 | 	      pstr->tip_context = (bitset_contain (pstr->word_char, c) | 
 | 				   ? CONTEXT_WORD | 
 | 				   : ((IS_NEWLINE (c) && pstr->newline_anchor) | 
 | 				      ? CONTEXT_NEWLINE : 0)); | 
 | 	    } | 
 | 	} | 
 |       if (!BE (pstr->mbs_allocated, 0)) | 
 | 	pstr->mbs += offset; | 
 |     } | 
 |   pstr->raw_mbs_idx = idx; | 
 |   pstr->len -= offset; | 
 |   pstr->stop -= offset; | 
 |  | 
 |   /* Then build the buffers.  */ | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (pstr->mb_cur_max > 1) | 
 |     { | 
 |       if (pstr->icase) | 
 | 	{ | 
 | 	  reg_errcode_t ret = build_wcs_upper_buffer (pstr); | 
 | 	  if (BE (ret != REG_NOERROR, 0)) | 
 | 	    return ret; | 
 | 	} | 
 |       else | 
 | 	build_wcs_buffer (pstr); | 
 |     } | 
 |   else | 
 | #endif /* RE_ENABLE_I18N */ | 
 |     if (BE (pstr->mbs_allocated, 0)) | 
 |       { | 
 | 	if (pstr->icase) | 
 | 	  build_upper_buffer (pstr); | 
 | 	else if (pstr->trans != NULL) | 
 | 	  re_string_translate_buffer (pstr); | 
 |       } | 
 |     else | 
 |       pstr->valid_len = pstr->len; | 
 |  | 
 |   pstr->cur_idx = 0; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static unsigned char | 
 | internal_function __attribute ((pure)) | 
 | re_string_peek_byte_case (const re_string_t *pstr, int idx) | 
 | { | 
 |   int ch, off; | 
 |  | 
 |   /* Handle the common (easiest) cases first.  */ | 
 |   if (BE (!pstr->mbs_allocated, 1)) | 
 |     return re_string_peek_byte (pstr, idx); | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (pstr->mb_cur_max > 1 | 
 |       && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) | 
 |     return re_string_peek_byte (pstr, idx); | 
 | #endif | 
 |  | 
 |   off = pstr->cur_idx + idx; | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (pstr->offsets_needed) | 
 |     off = pstr->offsets[off]; | 
 | #endif | 
 |  | 
 |   ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I | 
 |      this function returns CAPITAL LETTER I instead of first byte of | 
 |      DOTLESS SMALL LETTER I.  The latter would confuse the parser, | 
 |      since peek_byte_case doesn't advance cur_idx in any way.  */ | 
 |   if (pstr->offsets_needed && !isascii (ch)) | 
 |     return re_string_peek_byte (pstr, idx); | 
 | #endif | 
 |  | 
 |   return ch; | 
 | } | 
 |  | 
 | static unsigned char | 
 | internal_function | 
 | re_string_fetch_byte_case (re_string_t *pstr) | 
 | { | 
 |   if (BE (!pstr->mbs_allocated, 1)) | 
 |     return re_string_fetch_byte (pstr); | 
 |  | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (pstr->offsets_needed) | 
 |     { | 
 |       int off, ch; | 
 |  | 
 |       /* For tr_TR.UTF-8 [[:islower:]] there is | 
 | 	 [[: CAPITAL LETTER I WITH DOT lower:]] in mbs.  Skip | 
 | 	 in that case the whole multi-byte character and return | 
 | 	 the original letter.  On the other side, with | 
 | 	 [[: DOTLESS SMALL LETTER I return [[:I, as doing | 
 | 	 anything else would complicate things too much.  */ | 
 |  | 
 |       if (!re_string_first_byte (pstr, pstr->cur_idx)) | 
 | 	return re_string_fetch_byte (pstr); | 
 |  | 
 |       off = pstr->offsets[pstr->cur_idx]; | 
 |       ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | 
 |  | 
 |       if (! isascii (ch)) | 
 | 	return re_string_fetch_byte (pstr); | 
 |  | 
 |       re_string_skip_bytes (pstr, | 
 | 			    re_string_char_size_at (pstr, pstr->cur_idx)); | 
 |       return ch; | 
 |     } | 
 | #endif | 
 |  | 
 |   return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; | 
 | } | 
 |  | 
 | static void | 
 | internal_function | 
 | re_string_destruct (re_string_t *pstr) | 
 | { | 
 | #ifdef RE_ENABLE_I18N | 
 |   re_free (pstr->wcs); | 
 |   re_free (pstr->offsets); | 
 | #endif /* RE_ENABLE_I18N  */ | 
 |   if (pstr->mbs_allocated) | 
 |     re_free (pstr->mbs); | 
 | } | 
 |  | 
 | /* Return the context at IDX in INPUT.  */ | 
 |  | 
 | static unsigned int | 
 | internal_function | 
 | re_string_context_at (const re_string_t *input, int idx, int eflags) | 
 | { | 
 |   int c; | 
 |   if (BE (idx < 0, 0)) | 
 |     /* In this case, we use the value stored in input->tip_context, | 
 |        since we can't know the character in input->mbs[-1] here.  */ | 
 |     return input->tip_context; | 
 |   if (BE (idx == input->len, 0)) | 
 |     return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF | 
 | 	    : CONTEXT_NEWLINE | CONTEXT_ENDBUF); | 
 | #ifdef RE_ENABLE_I18N | 
 |   if (input->mb_cur_max > 1) | 
 |     { | 
 |       wint_t wc; | 
 |       int wc_idx = idx; | 
 |       while(input->wcs[wc_idx] == WEOF) | 
 | 	{ | 
 | #if defined DEBUG && DEBUG | 
 | 	  /* It must not happen.  */ | 
 | 	  assert (wc_idx >= 0); | 
 | #endif | 
 | 	  --wc_idx; | 
 | 	  if (wc_idx < 0) | 
 | 	    return input->tip_context; | 
 | 	} | 
 |       wc = input->wcs[wc_idx]; | 
 |       if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) | 
 | 	return CONTEXT_WORD; | 
 |       return (IS_WIDE_NEWLINE (wc) && input->newline_anchor | 
 | 	      ? CONTEXT_NEWLINE : 0); | 
 |     } | 
 |   else | 
 | #endif | 
 |     { | 
 |       c = re_string_byte_at (input, idx); | 
 |       if (bitset_contain (input->word_char, c)) | 
 | 	return CONTEXT_WORD; | 
 |       return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; | 
 |     } | 
 | } | 
 |  | 
 | /* Functions for set operation.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_alloc (re_node_set *set, int size) | 
 | { | 
 |   set->alloc = size; | 
 |   set->nelem = 0; | 
 |   set->elems = re_malloc (int, size); | 
 |   if (BE (set->elems == NULL, 0)) | 
 |     return REG_ESPACE; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_init_1 (re_node_set *set, int elem) | 
 | { | 
 |   set->alloc = 1; | 
 |   set->nelem = 1; | 
 |   set->elems = re_malloc (int, 1); | 
 |   if (BE (set->elems == NULL, 0)) | 
 |     { | 
 |       set->alloc = set->nelem = 0; | 
 |       return REG_ESPACE; | 
 |     } | 
 |   set->elems[0] = elem; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_init_2 (re_node_set *set, int elem1, int elem2) | 
 | { | 
 |   set->alloc = 2; | 
 |   set->elems = re_malloc (int, 2); | 
 |   if (BE (set->elems == NULL, 0)) | 
 |     return REG_ESPACE; | 
 |   if (elem1 == elem2) | 
 |     { | 
 |       set->nelem = 1; | 
 |       set->elems[0] = elem1; | 
 |     } | 
 |   else | 
 |     { | 
 |       set->nelem = 2; | 
 |       if (elem1 < elem2) | 
 | 	{ | 
 | 	  set->elems[0] = elem1; | 
 | 	  set->elems[1] = elem2; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  set->elems[0] = elem2; | 
 | 	  set->elems[1] = elem1; | 
 | 	} | 
 |     } | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) | 
 | { | 
 |   dest->nelem = src->nelem; | 
 |   if (src->nelem > 0) | 
 |     { | 
 |       dest->alloc = dest->nelem; | 
 |       dest->elems = re_malloc (int, dest->alloc); | 
 |       if (BE (dest->elems == NULL, 0)) | 
 | 	{ | 
 | 	  dest->alloc = dest->nelem = 0; | 
 | 	  return REG_ESPACE; | 
 | 	} | 
 |       memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); | 
 |     } | 
 |   else | 
 |     re_node_set_init_empty (dest); | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to | 
 |    DEST. Return value indicate the error code or REG_NOERROR if succeeded. | 
 |    Note: We assume dest->elems is NULL, when dest->alloc is 0.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, | 
 | 			   const re_node_set *src2) | 
 | { | 
 |   int i1, i2, is, id, delta, sbase; | 
 |   if (src1->nelem == 0 || src2->nelem == 0) | 
 |     return REG_NOERROR; | 
 |  | 
 |   /* We need dest->nelem + 2 * elems_in_intersection; this is a | 
 |      conservative estimate.  */ | 
 |   if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) | 
 |     { | 
 |       int new_alloc = src1->nelem + src2->nelem + dest->alloc; | 
 |       int *new_elems = re_realloc (dest->elems, int, new_alloc); | 
 |       if (BE (new_elems == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       dest->elems = new_elems; | 
 |       dest->alloc = new_alloc; | 
 |     } | 
 |  | 
 |   /* Find the items in the intersection of SRC1 and SRC2, and copy | 
 |      into the top of DEST those that are not already in DEST itself.  */ | 
 |   sbase = dest->nelem + src1->nelem + src2->nelem; | 
 |   i1 = src1->nelem - 1; | 
 |   i2 = src2->nelem - 1; | 
 |   id = dest->nelem - 1; | 
 |   for (;;) | 
 |     { | 
 |       if (src1->elems[i1] == src2->elems[i2]) | 
 | 	{ | 
 | 	  /* Try to find the item in DEST.  Maybe we could binary search?  */ | 
 | 	  while (id >= 0 && dest->elems[id] > src1->elems[i1]) | 
 | 	    --id; | 
 |  | 
 | 	  if (id < 0 || dest->elems[id] != src1->elems[i1]) | 
 | 	    dest->elems[--sbase] = src1->elems[i1]; | 
 |  | 
 | 	  if (--i1 < 0 || --i2 < 0) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       /* Lower the highest of the two items.  */ | 
 |       else if (src1->elems[i1] < src2->elems[i2]) | 
 | 	{ | 
 | 	  if (--i2 < 0) | 
 | 	    break; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (--i1 < 0) | 
 | 	    break; | 
 | 	} | 
 |     } | 
 |  | 
 |   id = dest->nelem - 1; | 
 |   is = dest->nelem + src1->nelem + src2->nelem - 1; | 
 |   delta = is - sbase + 1; | 
 |  | 
 |   /* Now copy.  When DELTA becomes zero, the remaining | 
 |      DEST elements are already in place; this is more or | 
 |      less the same loop that is in re_node_set_merge.  */ | 
 |   dest->nelem += delta; | 
 |   if (delta > 0 && id >= 0) | 
 |     for (;;) | 
 |       { | 
 | 	if (dest->elems[is] > dest->elems[id]) | 
 | 	  { | 
 | 	    /* Copy from the top.  */ | 
 | 	    dest->elems[id + delta--] = dest->elems[is--]; | 
 | 	    if (delta == 0) | 
 | 	      break; | 
 | 	  } | 
 | 	else | 
 | 	  { | 
 | 	    /* Slide from the bottom.  */ | 
 | 	    dest->elems[id + delta] = dest->elems[id]; | 
 | 	    if (--id < 0) | 
 | 	      break; | 
 | 	  } | 
 |       } | 
 |  | 
 |   /* Copy remaining SRC elements.  */ | 
 |   memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int)); | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to | 
 |    DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, | 
 | 			const re_node_set *src2) | 
 | { | 
 |   int i1, i2, id; | 
 |   if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) | 
 |     { | 
 |       dest->alloc = src1->nelem + src2->nelem; | 
 |       dest->elems = re_malloc (int, dest->alloc); | 
 |       if (BE (dest->elems == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (src1 != NULL && src1->nelem > 0) | 
 | 	return re_node_set_init_copy (dest, src1); | 
 |       else if (src2 != NULL && src2->nelem > 0) | 
 | 	return re_node_set_init_copy (dest, src2); | 
 |       else | 
 | 	re_node_set_init_empty (dest); | 
 |       return REG_NOERROR; | 
 |     } | 
 |   for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) | 
 |     { | 
 |       if (src1->elems[i1] > src2->elems[i2]) | 
 | 	{ | 
 | 	  dest->elems[id++] = src2->elems[i2++]; | 
 | 	  continue; | 
 | 	} | 
 |       if (src1->elems[i1] == src2->elems[i2]) | 
 | 	++i2; | 
 |       dest->elems[id++] = src1->elems[i1++]; | 
 |     } | 
 |   if (i1 < src1->nelem) | 
 |     { | 
 |       memcpy (dest->elems + id, src1->elems + i1, | 
 | 	     (src1->nelem - i1) * sizeof (int)); | 
 |       id += src1->nelem - i1; | 
 |     } | 
 |   else if (i2 < src2->nelem) | 
 |     { | 
 |       memcpy (dest->elems + id, src2->elems + i2, | 
 | 	     (src2->nelem - i2) * sizeof (int)); | 
 |       id += src2->nelem - i2; | 
 |     } | 
 |   dest->nelem = id; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Calculate the union set of the sets DEST and SRC. And store it to | 
 |    DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */ | 
 |  | 
 | static reg_errcode_t | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_merge (re_node_set *dest, const re_node_set *src) | 
 | { | 
 |   int is, id, sbase, delta; | 
 |   if (src == NULL || src->nelem == 0) | 
 |     return REG_NOERROR; | 
 |   if (dest->alloc < 2 * src->nelem + dest->nelem) | 
 |     { | 
 |       int new_alloc = 2 * (src->nelem + dest->alloc); | 
 |       int *new_buffer = re_realloc (dest->elems, int, new_alloc); | 
 |       if (BE (new_buffer == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       dest->elems = new_buffer; | 
 |       dest->alloc = new_alloc; | 
 |     } | 
 |  | 
 |   if (BE (dest->nelem == 0, 0)) | 
 |     { | 
 |       dest->nelem = src->nelem; | 
 |       memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); | 
 |       return REG_NOERROR; | 
 |     } | 
 |  | 
 |   /* Copy into the top of DEST the items of SRC that are not | 
 |      found in DEST.  Maybe we could binary search in DEST?  */ | 
 |   for (sbase = dest->nelem + 2 * src->nelem, | 
 |        is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) | 
 |     { | 
 |       if (dest->elems[id] == src->elems[is]) | 
 | 	is--, id--; | 
 |       else if (dest->elems[id] < src->elems[is]) | 
 | 	dest->elems[--sbase] = src->elems[is--]; | 
 |       else /* if (dest->elems[id] > src->elems[is]) */ | 
 | 	--id; | 
 |     } | 
 |  | 
 |   if (is >= 0) | 
 |     { | 
 |       /* If DEST is exhausted, the remaining items of SRC must be unique.  */ | 
 |       sbase -= is + 1; | 
 |       memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int)); | 
 |     } | 
 |  | 
 |   id = dest->nelem - 1; | 
 |   is = dest->nelem + 2 * src->nelem - 1; | 
 |   delta = is - sbase + 1; | 
 |   if (delta == 0) | 
 |     return REG_NOERROR; | 
 |  | 
 |   /* Now copy.  When DELTA becomes zero, the remaining | 
 |      DEST elements are already in place.  */ | 
 |   dest->nelem += delta; | 
 |   for (;;) | 
 |     { | 
 |       if (dest->elems[is] > dest->elems[id]) | 
 | 	{ | 
 | 	  /* Copy from the top.  */ | 
 | 	  dest->elems[id + delta--] = dest->elems[is--]; | 
 | 	  if (delta == 0) | 
 | 	    break; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* Slide from the bottom.  */ | 
 | 	  dest->elems[id + delta] = dest->elems[id]; | 
 | 	  if (--id < 0) | 
 | 	    { | 
 | 	      /* Copy remaining SRC elements.  */ | 
 | 	      memcpy (dest->elems, dest->elems + sbase, | 
 | 		      delta * sizeof (int)); | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | /* Insert the new element ELEM to the re_node_set* SET. | 
 |    SET should not already have ELEM. | 
 |    return -1 if an error is occured, return 1 otherwise.  */ | 
 |  | 
 | static int | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_insert (re_node_set *set, int elem) | 
 | { | 
 |   int idx; | 
 |   /* In case the set is empty.  */ | 
 |   if (set->alloc == 0) | 
 |     { | 
 |       if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1)) | 
 | 	return 1; | 
 |       else | 
 | 	return -1; | 
 |     } | 
 |  | 
 |   if (BE (set->nelem, 0) == 0) | 
 |     { | 
 |       /* We already guaranteed above that set->alloc != 0.  */ | 
 |       set->elems[0] = elem; | 
 |       ++set->nelem; | 
 |       return 1; | 
 |     } | 
 |  | 
 |   /* Realloc if we need.  */ | 
 |   if (set->alloc == set->nelem) | 
 |     { | 
 |       int *new_elems; | 
 |       set->alloc = set->alloc * 2; | 
 |       new_elems = re_realloc (set->elems, int, set->alloc); | 
 |       if (BE (new_elems == NULL, 0)) | 
 | 	return -1; | 
 |       set->elems = new_elems; | 
 |     } | 
 |  | 
 |   /* Move the elements which follows the new element.  Test the | 
 |      first element separately to skip a check in the inner loop.  */ | 
 |   if (elem < set->elems[0]) | 
 |     { | 
 |       idx = 0; | 
 |       for (idx = set->nelem; idx > 0; idx--) | 
 | 	set->elems[idx] = set->elems[idx - 1]; | 
 |     } | 
 |   else | 
 |     { | 
 |       for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) | 
 | 	set->elems[idx] = set->elems[idx - 1]; | 
 |     } | 
 |  | 
 |   /* Insert the new element.  */ | 
 |   set->elems[idx] = elem; | 
 |   ++set->nelem; | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Insert the new element ELEM to the re_node_set* SET. | 
 |    SET should not already have any element greater than or equal to ELEM. | 
 |    Return -1 if an error is occured, return 1 otherwise.  */ | 
 |  | 
 | static int | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_node_set_insert_last (re_node_set *set, int elem) | 
 | { | 
 |   /* Realloc if we need.  */ | 
 |   if (set->alloc == set->nelem) | 
 |     { | 
 |       int *new_elems; | 
 |       set->alloc = (set->alloc + 1) * 2; | 
 |       new_elems = re_realloc (set->elems, int, set->alloc); | 
 |       if (BE (new_elems == NULL, 0)) | 
 | 	return -1; | 
 |       set->elems = new_elems; | 
 |     } | 
 |  | 
 |   /* Insert the new element.  */ | 
 |   set->elems[set->nelem++] = elem; | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Compare two node sets SET1 and SET2. | 
 |    return 1 if SET1 and SET2 are equivalent, return 0 otherwise.  */ | 
 |  | 
 | static int | 
 | internal_function __attribute ((pure)) | 
 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) | 
 | { | 
 |   int i; | 
 |   if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) | 
 |     return 0; | 
 |   for (i = set1->nelem ; --i >= 0 ; ) | 
 |     if (set1->elems[i] != set2->elems[i]) | 
 |       return 0; | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise.  */ | 
 |  | 
 | static int | 
 | internal_function __attribute ((pure)) | 
 | re_node_set_contains (const re_node_set *set, int elem) | 
 | { | 
 |   unsigned int idx, right, mid; | 
 |   if (set->nelem <= 0) | 
 |     return 0; | 
 |  | 
 |   /* Binary search the element.  */ | 
 |   idx = 0; | 
 |   right = set->nelem - 1; | 
 |   while (idx < right) | 
 |     { | 
 |       mid = (idx + right) / 2; | 
 |       if (set->elems[mid] < elem) | 
 | 	idx = mid + 1; | 
 |       else | 
 | 	right = mid; | 
 |     } | 
 |   return set->elems[idx] == elem ? idx + 1 : 0; | 
 | } | 
 |  | 
 | static void | 
 | internal_function | 
 | re_node_set_remove_at (re_node_set *set, int idx) | 
 | { | 
 |   if (idx < 0 || idx >= set->nelem) | 
 |     return; | 
 |   --set->nelem; | 
 |   for (; idx < set->nelem; idx++) | 
 |     set->elems[idx] = set->elems[idx + 1]; | 
 | } | 
 |  | 
 |  | 
 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. | 
 |    Or return -1, if an error will be occured.  */ | 
 |  | 
 | static int | 
 | internal_function | 
 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) | 
 | { | 
 |   int type = token.type; | 
 |   if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) | 
 |     { | 
 |       size_t new_nodes_alloc = dfa->nodes_alloc * 2; | 
 |       int *new_nexts, *new_indices; | 
 |       re_node_set *new_edests, *new_eclosures; | 
 |       re_token_t *new_nodes; | 
 |  | 
 |       /* Avoid overflows in realloc.  */ | 
 |       const size_t max_object_size = MAX (sizeof (re_token_t), | 
 | 					  MAX (sizeof (re_node_set), | 
 | 					       sizeof (int))); | 
 |       if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0)) | 
 | 	return -1; | 
 |  | 
 |       new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); | 
 |       if (BE (new_nodes == NULL, 0)) | 
 | 	return -1; | 
 |       dfa->nodes = new_nodes; | 
 |       new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc); | 
 |       new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc); | 
 |       new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); | 
 |       new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); | 
 |       if (BE (new_nexts == NULL || new_indices == NULL | 
 | 	      || new_edests == NULL || new_eclosures == NULL, 0)) | 
 | 	return -1; | 
 |       dfa->nexts = new_nexts; | 
 |       dfa->org_indices = new_indices; | 
 |       dfa->edests = new_edests; | 
 |       dfa->eclosures = new_eclosures; | 
 |       dfa->nodes_alloc = new_nodes_alloc; | 
 |     } | 
 |   dfa->nodes[dfa->nodes_len] = token; | 
 |   dfa->nodes[dfa->nodes_len].constraint = 0; | 
 | #ifdef RE_ENABLE_I18N | 
 |   dfa->nodes[dfa->nodes_len].accept_mb = | 
 |     (type == OP_PERIOD && dfa->mb_cur_max > 1) || type == COMPLEX_BRACKET; | 
 | #endif | 
 |   dfa->nexts[dfa->nodes_len] = -1; | 
 |   re_node_set_init_empty (dfa->edests + dfa->nodes_len); | 
 |   re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); | 
 |   return dfa->nodes_len++; | 
 | } | 
 |  | 
 | static inline unsigned int | 
 | internal_function | 
 | calc_state_hash (const re_node_set *nodes, unsigned int context) | 
 | { | 
 |   unsigned int hash = nodes->nelem + context; | 
 |   int i; | 
 |   for (i = 0 ; i < nodes->nelem ; i++) | 
 |     hash += nodes->elems[i]; | 
 |   return hash; | 
 | } | 
 |  | 
 | /* Search for the state whose node_set is equivalent to NODES. | 
 |    Return the pointer to the state, if we found it in the DFA. | 
 |    Otherwise create the new one and return it.  In case of an error | 
 |    return NULL and set the error code in ERR. | 
 |    Note: - We assume NULL as the invalid state, then it is possible that | 
 | 	   return value is NULL and ERR is REG_NOERROR. | 
 | 	 - We never return non-NULL value in case of any errors, it is for | 
 | 	   optimization.  */ | 
 |  | 
 | static re_dfastate_t * | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, | 
 | 		  const re_node_set *nodes) | 
 | { | 
 |   unsigned int hash; | 
 |   re_dfastate_t *new_state; | 
 |   struct re_state_table_entry *spot; | 
 |   int i; | 
 |   if (BE (nodes->nelem == 0, 0)) | 
 |     { | 
 |       *err = REG_NOERROR; | 
 |       return NULL; | 
 |     } | 
 |   hash = calc_state_hash (nodes, 0); | 
 |   spot = dfa->state_table + (hash & dfa->state_hash_mask); | 
 |  | 
 |   for (i = 0 ; i < spot->num ; i++) | 
 |     { | 
 |       re_dfastate_t *state = spot->array[i]; | 
 |       if (hash != state->hash) | 
 | 	continue; | 
 |       if (re_node_set_compare (&state->nodes, nodes)) | 
 | 	return state; | 
 |     } | 
 |  | 
 |   /* There are no appropriate state in the dfa, create the new one.  */ | 
 |   new_state = create_ci_newstate (dfa, nodes, hash); | 
 |   if (BE (new_state == NULL, 0)) | 
 |     *err = REG_ESPACE; | 
 |  | 
 |   return new_state; | 
 | } | 
 |  | 
 | /* Search for the state whose node_set is equivalent to NODES and | 
 |    whose context is equivalent to CONTEXT. | 
 |    Return the pointer to the state, if we found it in the DFA. | 
 |    Otherwise create the new one and return it.  In case of an error | 
 |    return NULL and set the error code in ERR. | 
 |    Note: - We assume NULL as the invalid state, then it is possible that | 
 | 	   return value is NULL and ERR is REG_NOERROR. | 
 | 	 - We never return non-NULL value in case of any errors, it is for | 
 | 	   optimization.  */ | 
 |  | 
 | static re_dfastate_t * | 
 | internal_function __attribute_warn_unused_result__ | 
 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, | 
 | 			  const re_node_set *nodes, unsigned int context) | 
 | { | 
 |   unsigned int hash; | 
 |   re_dfastate_t *new_state; | 
 |   struct re_state_table_entry *spot; | 
 |   int i; | 
 |   if (nodes->nelem == 0) | 
 |     { | 
 |       *err = REG_NOERROR; | 
 |       return NULL; | 
 |     } | 
 |   hash = calc_state_hash (nodes, context); | 
 |   spot = dfa->state_table + (hash & dfa->state_hash_mask); | 
 |  | 
 |   for (i = 0 ; i < spot->num ; i++) | 
 |     { | 
 |       re_dfastate_t *state = spot->array[i]; | 
 |       if (state->hash == hash | 
 | 	  && state->context == context | 
 | 	  && re_node_set_compare (state->entrance_nodes, nodes)) | 
 | 	return state; | 
 |     } | 
 |   /* There are no appropriate state in `dfa', create the new one.  */ | 
 |   new_state = create_cd_newstate (dfa, nodes, context, hash); | 
 |   if (BE (new_state == NULL, 0)) | 
 |     *err = REG_ESPACE; | 
 |  | 
 |   return new_state; | 
 | } | 
 |  | 
 | /* Finish initialization of the new state NEWSTATE, and using its hash value | 
 |    HASH put in the appropriate bucket of DFA's state table.  Return value | 
 |    indicates the error code if failed.  */ | 
 |  | 
 | static reg_errcode_t | 
 | __attribute_warn_unused_result__ | 
 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, | 
 | 		unsigned int hash) | 
 | { | 
 |   struct re_state_table_entry *spot; | 
 |   reg_errcode_t err; | 
 |   int i; | 
 |  | 
 |   newstate->hash = hash; | 
 |   err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     return REG_ESPACE; | 
 |   for (i = 0; i < newstate->nodes.nelem; i++) | 
 |     { | 
 |       int elem = newstate->nodes.elems[i]; | 
 |       if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) | 
 | 	if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0) | 
 | 	  return REG_ESPACE; | 
 |     } | 
 |  | 
 |   spot = dfa->state_table + (hash & dfa->state_hash_mask); | 
 |   if (BE (spot->alloc <= spot->num, 0)) | 
 |     { | 
 |       int new_alloc = 2 * spot->num + 2; | 
 |       re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, | 
 | 					      new_alloc); | 
 |       if (BE (new_array == NULL, 0)) | 
 | 	return REG_ESPACE; | 
 |       spot->array = new_array; | 
 |       spot->alloc = new_alloc; | 
 |     } | 
 |   spot->array[spot->num++] = newstate; | 
 |   return REG_NOERROR; | 
 | } | 
 |  | 
 | static void | 
 | free_state (re_dfastate_t *state) | 
 | { | 
 |   re_node_set_free (&state->non_eps_nodes); | 
 |   re_node_set_free (&state->inveclosure); | 
 |   if (state->entrance_nodes != &state->nodes) | 
 |     { | 
 |       re_node_set_free (state->entrance_nodes); | 
 |       re_free (state->entrance_nodes); | 
 |     } | 
 |   re_node_set_free (&state->nodes); | 
 |   re_free (state->word_trtable); | 
 |   re_free (state->trtable); | 
 |   re_free (state); | 
 | } | 
 |  | 
 | /* Create the new state which is independ of contexts. | 
 |    Return the new state if succeeded, otherwise return NULL.  */ | 
 |  | 
 | static re_dfastate_t * | 
 | internal_function __attribute_warn_unused_result__ | 
 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | 
 | 		    unsigned int hash) | 
 | { | 
 |   int i; | 
 |   reg_errcode_t err; | 
 |   re_dfastate_t *newstate; | 
 |  | 
 |   newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | 
 |   if (BE (newstate == NULL, 0)) | 
 |     return NULL; | 
 |   err = re_node_set_init_copy (&newstate->nodes, nodes); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |       re_free (newstate); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   newstate->entrance_nodes = &newstate->nodes; | 
 |   for (i = 0 ; i < nodes->nelem ; i++) | 
 |     { | 
 |       re_token_t *node = dfa->nodes + nodes->elems[i]; | 
 |       re_token_type_t type = node->type; | 
 |       if (type == CHARACTER && !node->constraint) | 
 | 	continue; | 
 | #ifdef RE_ENABLE_I18N | 
 |       newstate->accept_mb |= node->accept_mb; | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |       /* If the state has the halt node, the state is a halt state.  */ | 
 |       if (type == END_OF_RE) | 
 | 	newstate->halt = 1; | 
 |       else if (type == OP_BACK_REF) | 
 | 	newstate->has_backref = 1; | 
 |       else if (type == ANCHOR || node->constraint) | 
 | 	newstate->has_constraint = 1; | 
 |     } | 
 |   err = register_state (dfa, newstate, hash); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |       free_state (newstate); | 
 |       newstate = NULL; | 
 |     } | 
 |   return newstate; | 
 | } | 
 |  | 
 | /* Create the new state which is depend on the context CONTEXT. | 
 |    Return the new state if succeeded, otherwise return NULL.  */ | 
 |  | 
 | static re_dfastate_t * | 
 | internal_function __attribute_warn_unused_result__ | 
 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | 
 | 		    unsigned int context, unsigned int hash) | 
 | { | 
 |   int i, nctx_nodes = 0; | 
 |   reg_errcode_t err; | 
 |   re_dfastate_t *newstate; | 
 |  | 
 |   newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | 
 |   if (BE (newstate == NULL, 0)) | 
 |     return NULL; | 
 |   err = re_node_set_init_copy (&newstate->nodes, nodes); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |       re_free (newstate); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   newstate->context = context; | 
 |   newstate->entrance_nodes = &newstate->nodes; | 
 |  | 
 |   for (i = 0 ; i < nodes->nelem ; i++) | 
 |     { | 
 |       re_token_t *node = dfa->nodes + nodes->elems[i]; | 
 |       re_token_type_t type = node->type; | 
 |       unsigned int constraint = node->constraint; | 
 |  | 
 |       if (type == CHARACTER && !constraint) | 
 | 	continue; | 
 | #ifdef RE_ENABLE_I18N | 
 |       newstate->accept_mb |= node->accept_mb; | 
 | #endif /* RE_ENABLE_I18N */ | 
 |  | 
 |       /* If the state has the halt node, the state is a halt state.  */ | 
 |       if (type == END_OF_RE) | 
 | 	newstate->halt = 1; | 
 |       else if (type == OP_BACK_REF) | 
 | 	newstate->has_backref = 1; | 
 |  | 
 |       if (constraint) | 
 | 	{ | 
 | 	  if (newstate->entrance_nodes == &newstate->nodes) | 
 | 	    { | 
 | 	      newstate->entrance_nodes = re_malloc (re_node_set, 1); | 
 | 	      if (BE (newstate->entrance_nodes == NULL, 0)) | 
 | 		{ | 
 | 		  free_state (newstate); | 
 | 		  return NULL; | 
 | 		} | 
 | 	      if (re_node_set_init_copy (newstate->entrance_nodes, nodes) | 
 | 		  != REG_NOERROR) | 
 | 		return NULL; | 
 | 	      nctx_nodes = 0; | 
 | 	      newstate->has_constraint = 1; | 
 | 	    } | 
 |  | 
 | 	  if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) | 
 | 	    { | 
 | 	      re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); | 
 | 	      ++nctx_nodes; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   err = register_state (dfa, newstate, hash); | 
 |   if (BE (err != REG_NOERROR, 0)) | 
 |     { | 
 |       free_state (newstate); | 
 |       newstate = NULL; | 
 |     } | 
 |   return  newstate; | 
 | } |