[Feature][ZXW-65]merged P49 base code

Change-Id: I3e09c0c3d47483bc645f02310380ecb7fc6f4041
diff --git a/ap/os/linux/linux-3.4.x/mm/kmemleak.bak b/ap/os/linux/linux-3.4.x/mm/kmemleak.bak
deleted file mode 100755
index c74827c..0000000
--- a/ap/os/linux/linux-3.4.x/mm/kmemleak.bak
+++ /dev/null
@@ -1,1882 +0,0 @@
-/*
- * mm/kmemleak.c
- *
- * Copyright (C) 2008 ARM Limited
- * Written by Catalin Marinas <catalin.marinas@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- *
- * For more information on the algorithm and kmemleak usage, please see
- * Documentation/kmemleak.txt.
- *
- * Notes on locking
- * ----------------
- *
- * The following locks and mutexes are used by kmemleak:
- *
- * - kmemleak_lock (rwlock): protects the object_list modifications and
- *   accesses to the object_tree_root. The object_list is the main list
- *   holding the metadata (struct kmemleak_object) for the allocated memory
- *   blocks. The object_tree_root is a priority search tree used to look-up
- *   metadata based on a pointer to the corresponding memory block.  The
- *   kmemleak_object structures are added to the object_list and
- *   object_tree_root in the create_object() function called from the
- *   kmemleak_alloc() callback and removed in delete_object() called from the
- *   kmemleak_free() callback
- * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
- *   the metadata (e.g. count) are protected by this lock. Note that some
- *   members of this structure may be protected by other means (atomic or
- *   kmemleak_lock). This lock is also held when scanning the corresponding
- *   memory block to avoid the kernel freeing it via the kmemleak_free()
- *   callback. This is less heavyweight than holding a global lock like
- *   kmemleak_lock during scanning
- * - scan_mutex (mutex): ensures that only one thread may scan the memory for
- *   unreferenced objects at a time. The gray_list contains the objects which
- *   are already referenced or marked as false positives and need to be
- *   scanned. This list is only modified during a scanning episode when the
- *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
- *   Note that the kmemleak_object.use_count is incremented when an object is
- *   added to the gray_list and therefore cannot be freed. This mutex also
- *   prevents multiple users of the "kmemleak" debugfs file together with
- *   modifications to the memory scanning parameters including the scan_thread
- *   pointer
- *
- * The kmemleak_object structures have a use_count incremented or decremented
- * using the get_object()/put_object() functions. When the use_count becomes
- * 0, this count can no longer be incremented and put_object() schedules the
- * kmemleak_object freeing via an RCU callback. All calls to the get_object()
- * function must be protected by rcu_read_lock() to avoid accessing a freed
- * structure.
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/list.h>
-#include <linux/sched.h>
-#include <linux/jiffies.h>
-#include <linux/delay.h>
-#include <linux/export.h>
-#include <linux/kthread.h>
-#include <linux/prio_tree.h>
-#include <linux/fs.h>
-#include <linux/debugfs.h>
-#include <linux/seq_file.h>
-#include <linux/cpumask.h>
-#include <linux/spinlock.h>
-#include <linux/mutex.h>
-#include <linux/rcupdate.h>
-#include <linux/stacktrace.h>
-#include <linux/cache.h>
-#include <linux/percpu.h>
-#include <linux/hardirq.h>
-#include <linux/mmzone.h>
-#include <linux/slab.h>
-#include <linux/thread_info.h>
-#include <linux/err.h>
-#include <linux/uaccess.h>
-#include <linux/string.h>
-#include <linux/nodemask.h>
-#include <linux/mm.h>
-#include <linux/workqueue.h>
-#include <linux/crc32.h>
-
-#include <asm/sections.h>
-#include <asm/processor.h>
-#include <linux/atomic.h>
-
-#include <linux/kmemcheck.h>
-#include <linux/kmemleak.h>
-#include <linux/memory_hotplug.h>
-
-/*
- * Kmemleak configuration and common defines.
- */
-#define MAX_TRACE		16	/* stack trace length */
-#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
-#define SECS_FIRST_SCAN		60	/* delay before the first scan */
-#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
-#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
-
-#define BYTES_PER_POINTER	sizeof(void *)
-
-/* GFP bitmask for kmemleak internal allocations */
-#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
-				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
-				 __GFP_NOWARN)
-
-/* scanning area inside a memory block */
-struct kmemleak_scan_area {
-	struct hlist_node node;
-	unsigned long start;
-	size_t size;
-};
-
-#define KMEMLEAK_GREY	0
-#define KMEMLEAK_BLACK	-1
-
-/*
- * Structure holding the metadata for each allocated memory block.
- * Modifications to such objects should be made while holding the
- * object->lock. Insertions or deletions from object_list, gray_list or
- * tree_node are already protected by the corresponding locks or mutex (see
- * the notes on locking above). These objects are reference-counted
- * (use_count) and freed using the RCU mechanism.
- */
-struct kmemleak_object {
-	spinlock_t lock;
-	unsigned long flags;		/* object status flags */
-	struct list_head object_list;
-	struct list_head gray_list;
-	struct prio_tree_node tree_node;
-	struct rcu_head rcu;		/* object_list lockless traversal */
-	/* object usage count; object freed when use_count == 0 */
-	atomic_t use_count;
-	unsigned long pointer;
-	size_t size;
-	/* minimum number of a pointers found before it is considered leak */
-	int min_count;
-	/* the total number of pointers found pointing to this object */
-	int count;
-	/* checksum for detecting modified objects */
-	u32 checksum;
-	/* memory ranges to be scanned inside an object (empty for all) */
-	struct hlist_head area_list;
-	unsigned long trace[MAX_TRACE];
-	unsigned int trace_len;
-	unsigned long jiffies;		/* creation timestamp */
-	pid_t pid;			/* pid of the current task */
-	char comm[TASK_COMM_LEN];	/* executable name */
-};
-
-/* flag representing the memory block allocation status */
-#define OBJECT_ALLOCATED	(1 << 0)
-/* flag set after the first reporting of an unreference object */
-#define OBJECT_REPORTED		(1 << 1)
-/* flag set to not scan the object */
-#define OBJECT_NO_SCAN		(1 << 2)
-
-/* number of bytes to print per line; must be 16 or 32 */
-#define HEX_ROW_SIZE		16
-/* number of bytes to print at a time (1, 2, 4, 8) */
-#define HEX_GROUP_SIZE		1
-/* include ASCII after the hex output */
-#define HEX_ASCII		1
-/* max number of lines to be printed */
-#define HEX_MAX_LINES		2
-
-/* the list of all allocated objects */
-static LIST_HEAD(object_list);
-/* the list of gray-colored objects (see color_gray comment below) */
-static LIST_HEAD(gray_list);
-/* prio search tree for object boundaries */
-static struct prio_tree_root object_tree_root;
-/* rw_lock protecting the access to object_list and prio_tree_root */
-static DEFINE_RWLOCK(kmemleak_lock);
-
-/* allocation caches for kmemleak internal data */
-static struct kmem_cache *object_cache;
-static struct kmem_cache *scan_area_cache;
-
-/* set if tracing memory operations is enabled */
-static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
-/* same as above but only for the kmemleak_free() callback */
-static int kmemleak_free_enabled;
-/* set in the late_initcall if there were no errors */
-static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
-/* enables or disables early logging of the memory operations */
-static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
-/* set if a kmemleak warning was issued */
-static atomic_t kmemleak_warning = ATOMIC_INIT(0);
-/* set if a fatal kmemleak error has occurred */
-static atomic_t kmemleak_error = ATOMIC_INIT(0);
-
-/* minimum and maximum address that may be valid pointers */
-static unsigned long min_addr = ULONG_MAX;
-static unsigned long max_addr;
-
-static struct task_struct *scan_thread;
-/* used to avoid reporting of recently allocated objects */
-static unsigned long jiffies_min_age;
-static unsigned long jiffies_last_scan;
-/* delay between automatic memory scannings */
-static signed long jiffies_scan_wait;
-/* enables or disables the task stacks scanning */
-static int kmemleak_stack_scan = 1;
-/* protects the memory scanning, parameters and debug/kmemleak file access */
-static DEFINE_MUTEX(scan_mutex);
-/* setting kmemleak=on, will set this var, skipping the disable */
-static int kmemleak_skip_disable;
-
-
-/*
- * Early object allocation/freeing logging. Kmemleak is initialized after the
- * kernel allocator. However, both the kernel allocator and kmemleak may
- * allocate memory blocks which need to be tracked. Kmemleak defines an
- * arbitrary buffer to hold the allocation/freeing information before it is
- * fully initialized.
- */
-
-/* kmemleak operation type for early logging */
-enum {
-	KMEMLEAK_ALLOC,
-	KMEMLEAK_ALLOC_PERCPU,
-	KMEMLEAK_FREE,
-	KMEMLEAK_FREE_PART,
-	KMEMLEAK_FREE_PERCPU,
-	KMEMLEAK_NOT_LEAK,
-	KMEMLEAK_IGNORE,
-	KMEMLEAK_SCAN_AREA,
-	KMEMLEAK_NO_SCAN
-};
-
-/*
- * Structure holding the information passed to kmemleak callbacks during the
- * early logging.
- */
-struct early_log {
-	int op_type;			/* kmemleak operation type */
-	const void *ptr;		/* allocated/freed memory block */
-	size_t size;			/* memory block size */
-	int min_count;			/* minimum reference count */
-	unsigned long trace[MAX_TRACE];	/* stack trace */
-	unsigned int trace_len;		/* stack trace length */
-};
-
-/* early logging buffer and current position */
-static struct early_log
-	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
-static int crt_early_log __initdata;
-
-static void kmemleak_disable(void);
-
-/*
- * Print a warning and dump the stack trace.
- */
-#define kmemleak_warn(x...)	do {		\
-	pr_warning(x);				\
-	dump_stack();				\
-	atomic_set(&kmemleak_warning, 1);	\
-} while (0)
-
-/*
- * Macro invoked when a serious kmemleak condition occurred and cannot be
- * recovered from. Kmemleak will be disabled and further allocation/freeing
- * tracing no longer available.
- */
-#define kmemleak_stop(x...)	do {	\
-	kmemleak_warn(x);		\
-	kmemleak_disable();		\
-} while (0)
-
-/*
- * Printing of the objects hex dump to the seq file. The number of lines to be
- * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
- * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
- * with the object->lock held.
- */
-static void hex_dump_object(struct seq_file *seq,
-			    struct kmemleak_object *object)
-{
-	const u8 *ptr = (const u8 *)object->pointer;
-	int i, len, remaining;
-	unsigned char linebuf[HEX_ROW_SIZE * 5];
-
-	/* limit the number of lines to HEX_MAX_LINES */
-	remaining = len =
-		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
-
-	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
-	for (i = 0; i < len; i += HEX_ROW_SIZE) {
-		int linelen = min(remaining, HEX_ROW_SIZE);
-
-		remaining -= HEX_ROW_SIZE;
-		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
-				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
-				   HEX_ASCII);
-		seq_printf(seq, "    %s\n", linebuf);
-	}
-}
-
-/*
- * Object colors, encoded with count and min_count:
- * - white - orphan object, not enough references to it (count < min_count)
- * - gray  - not orphan, not marked as false positive (min_count == 0) or
- *		sufficient references to it (count >= min_count)
- * - black - ignore, it doesn't contain references (e.g. text section)
- *		(min_count == -1). No function defined for this color.
- * Newly created objects don't have any color assigned (object->count == -1)
- * before the next memory scan when they become white.
- */
-static bool color_white(const struct kmemleak_object *object)
-{
-	return object->count != KMEMLEAK_BLACK &&
-		object->count < object->min_count;
-}
-
-static bool color_gray(const struct kmemleak_object *object)
-{
-	return object->min_count != KMEMLEAK_BLACK &&
-		object->count >= object->min_count;
-}
-
-/*
- * Objects are considered unreferenced only if their color is white, they have
- * not be deleted and have a minimum age to avoid false positives caused by
- * pointers temporarily stored in CPU registers.
- */
-static bool unreferenced_object(struct kmemleak_object *object)
-{
-	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
-		time_before_eq(object->jiffies + jiffies_min_age,
-			       jiffies_last_scan);
-}
-
-/*
- * Printing of the unreferenced objects information to the seq file. The
- * print_unreferenced function must be called with the object->lock held.
- */
-static void print_unreferenced(struct seq_file *seq,
-			       struct kmemleak_object *object)
-{
-	int i;
-	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
-
-	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
-		   object->pointer, object->size);
-	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
-		   object->comm, object->pid, object->jiffies,
-		   msecs_age / 1000, msecs_age % 1000);
-	hex_dump_object(seq, object);
-	seq_printf(seq, "  backtrace:\n");
-
-	for (i = 0; i < object->trace_len; i++) {
-		void *ptr = (void *)object->trace[i];
-		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
-	}
-}
-
-/*
- * Print the kmemleak_object information. This function is used mainly for
- * debugging special cases when kmemleak operations. It must be called with
- * the object->lock held.
- */
-static void dump_object_info(struct kmemleak_object *object)
-{
-	struct stack_trace trace;
-
-	trace.nr_entries = object->trace_len;
-	trace.entries = object->trace;
-
-	pr_notice("Object 0x%08lx (size %zu):\n",
-		  object->tree_node.start, object->size);
-	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
-		  object->comm, object->pid, object->jiffies);
-	pr_notice("  min_count = %d\n", object->min_count);
-	pr_notice("  count = %d\n", object->count);
-	pr_notice("  flags = 0x%lx\n", object->flags);
-	pr_notice("  checksum = %d\n", object->checksum);
-	pr_notice("  backtrace:\n");
-	print_stack_trace(&trace, 4);
-}
-
-/*
- * Look-up a memory block metadata (kmemleak_object) in the priority search
- * tree based on a pointer value. If alias is 0, only values pointing to the
- * beginning of the memory block are allowed. The kmemleak_lock must be held
- * when calling this function.
- */
-static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
-{
-	struct prio_tree_node *node;
-	struct prio_tree_iter iter;
-	struct kmemleak_object *object;
-
-	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
-	node = prio_tree_next(&iter);
-	if (node) {
-		object = prio_tree_entry(node, struct kmemleak_object,
-					 tree_node);
-		if (!alias && object->pointer != ptr) {
-			kmemleak_warn("Found object by alias at 0x%08lx\n",
-				      ptr);
-			dump_object_info(object);
-			object = NULL;
-		}
-	} else
-		object = NULL;
-
-	return object;
-}
-
-/*
- * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
- * that once an object's use_count reached 0, the RCU freeing was already
- * registered and the object should no longer be used. This function must be
- * called under the protection of rcu_read_lock().
- */
-static int get_object(struct kmemleak_object *object)
-{
-	return atomic_inc_not_zero(&object->use_count);
-}
-
-/*
- * RCU callback to free a kmemleak_object.
- */
-static void free_object_rcu(struct rcu_head *rcu)
-{
-	struct hlist_node *elem, *tmp;
-	struct kmemleak_scan_area *area;
-	struct kmemleak_object *object =
-		container_of(rcu, struct kmemleak_object, rcu);
-
-	/*
-	 * Once use_count is 0 (guaranteed by put_object), there is no other
-	 * code accessing this object, hence no need for locking.
-	 */
-	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
-		hlist_del(elem);
-		kmem_cache_free(scan_area_cache, area);
-	}
-	kmem_cache_free(object_cache, object);
-}
-
-/*
- * Decrement the object use_count. Once the count is 0, free the object using
- * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
- * delete_object() path, the delayed RCU freeing ensures that there is no
- * recursive call to the kernel allocator. Lock-less RCU object_list traversal
- * is also possible.
- */
-static void put_object(struct kmemleak_object *object)
-{
-	if (!atomic_dec_and_test(&object->use_count))
-		return;
-
-	/* should only get here after delete_object was called */
-	WARN_ON(object->flags & OBJECT_ALLOCATED);
-
-	call_rcu(&object->rcu, free_object_rcu);
-}
-
-/*
- * Look up an object in the prio search tree and increase its use_count.
- */
-static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
-{
-	unsigned long flags;
-	struct kmemleak_object *object = NULL;
-
-	rcu_read_lock();
-	read_lock_irqsave(&kmemleak_lock, flags);
-	if (ptr >= min_addr && ptr < max_addr)
-		object = lookup_object(ptr, alias);
-	read_unlock_irqrestore(&kmemleak_lock, flags);
-
-	/* check whether the object is still available */
-	if (object && !get_object(object))
-		object = NULL;
-	rcu_read_unlock();
-
-	return object;
-}
-
-/*
- * Save stack trace to the given array of MAX_TRACE size.
- */
-static int __save_stack_trace(unsigned long *trace)
-{
-	struct stack_trace stack_trace;
-
-	stack_trace.max_entries = MAX_TRACE;
-	stack_trace.nr_entries = 0;
-	stack_trace.entries = trace;
-	stack_trace.skip = 2;
-	save_stack_trace(&stack_trace);
-
-	return stack_trace.nr_entries;
-}
-
-/*
- * Create the metadata (struct kmemleak_object) corresponding to an allocated
- * memory block and add it to the object_list and object_tree_root.
- */
-static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
-					     int min_count, gfp_t gfp)
-{
-	unsigned long flags;
-	struct kmemleak_object *object;
-	struct prio_tree_node *node;
-
-	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
-	if (!object) {
-		pr_warning("Cannot allocate a kmemleak_object structure\n");
-		kmemleak_disable();
-		return NULL;
-	}
-
-	INIT_LIST_HEAD(&object->object_list);
-	INIT_LIST_HEAD(&object->gray_list);
-	INIT_HLIST_HEAD(&object->area_list);
-	spin_lock_init(&object->lock);
-	atomic_set(&object->use_count, 1);
-	object->flags = OBJECT_ALLOCATED;
-	object->pointer = ptr;
-	object->size = size;
-	object->min_count = min_count;
-	object->count = 0;			/* white color initially */
-	object->jiffies = jiffies;
-	object->checksum = 0;
-
-	/* task information */
-	if (in_irq()) {
-		object->pid = 0;
-		strncpy(object->comm, "hardirq", sizeof(object->comm));
-	} else if (in_softirq()) {
-		object->pid = 0;
-		strncpy(object->comm, "softirq", sizeof(object->comm));
-	} else {
-		object->pid = current->pid;
-		/*
-		 * There is a small chance of a race with set_task_comm(),
-		 * however using get_task_comm() here may cause locking
-		 * dependency issues with current->alloc_lock. In the worst
-		 * case, the command line is not correct.
-		 */
-		strncpy(object->comm, current->comm, sizeof(object->comm));
-	}
-
-	/* kernel backtrace */
-	object->trace_len = __save_stack_trace(object->trace);
-
-	INIT_PRIO_TREE_NODE(&object->tree_node);
-	object->tree_node.start = ptr;
-	object->tree_node.last = ptr + size - 1;
-
-	write_lock_irqsave(&kmemleak_lock, flags);
-
-	min_addr = min(min_addr, ptr);
-	max_addr = max(max_addr, ptr + size);
-	node = prio_tree_insert(&object_tree_root, &object->tree_node);
-	/*
-	 * The code calling the kernel does not yet have the pointer to the
-	 * memory block to be able to free it.  However, we still hold the
-	 * kmemleak_lock here in case parts of the kernel started freeing
-	 * random memory blocks.
-	 */
-	if (node != &object->tree_node) {
-		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
-			      "(already existing)\n", ptr);
-		object = lookup_object(ptr, 1);
-		spin_lock(&object->lock);
-		dump_object_info(object);
-		spin_unlock(&object->lock);
-
-		goto out;
-	}
-	list_add_tail_rcu(&object->object_list, &object_list);
-out:
-	write_unlock_irqrestore(&kmemleak_lock, flags);
-	return object;
-}
-
-/*
- * Remove the metadata (struct kmemleak_object) for a memory block from the
- * object_list and object_tree_root and decrement its use_count.
- */
-static void __delete_object(struct kmemleak_object *object)
-{
-	unsigned long flags;
-
-	write_lock_irqsave(&kmemleak_lock, flags);
-	prio_tree_remove(&object_tree_root, &object->tree_node);
-	list_del_rcu(&object->object_list);
-	write_unlock_irqrestore(&kmemleak_lock, flags);
-
-	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
-	WARN_ON(atomic_read(&object->use_count) < 2);
-
-	/*
-	 * Locking here also ensures that the corresponding memory block
-	 * cannot be freed when it is being scanned.
-	 */
-	spin_lock_irqsave(&object->lock, flags);
-	object->flags &= ~OBJECT_ALLOCATED;
-	spin_unlock_irqrestore(&object->lock, flags);
-	put_object(object);
-}
-
-/*
- * Look up the metadata (struct kmemleak_object) corresponding to ptr and
- * delete it.
- */
-static void delete_object_full(unsigned long ptr)
-{
-	struct kmemleak_object *object;
-
-	object = find_and_get_object(ptr, 0);
-	if (!object) {
-#ifdef DEBUG
-		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
-			      ptr);
-#endif
-		return;
-	}
-	__delete_object(object);
-	put_object(object);
-}
-
-/*
- * Look up the metadata (struct kmemleak_object) corresponding to ptr and
- * delete it. If the memory block is partially freed, the function may create
- * additional metadata for the remaining parts of the block.
- */
-static void delete_object_part(unsigned long ptr, size_t size)
-{
-	struct kmemleak_object *object;
-	unsigned long start, end;
-
-	object = find_and_get_object(ptr, 1);
-	if (!object) {
-#ifdef DEBUG
-		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
-			      "(size %zu)\n", ptr, size);
-#endif
-		return;
-	}
-	__delete_object(object);
-
-	/*
-	 * Create one or two objects that may result from the memory block
-	 * split. Note that partial freeing is only done by free_bootmem() and
-	 * this happens before kmemleak_init() is called. The path below is
-	 * only executed during early log recording in kmemleak_init(), so
-	 * GFP_KERNEL is enough.
-	 */
-	start = object->pointer;
-	end = object->pointer + object->size;
-	if (ptr > start)
-		create_object(start, ptr - start, object->min_count,
-			      GFP_KERNEL);
-	if (ptr + size < end)
-		create_object(ptr + size, end - ptr - size, object->min_count,
-			      GFP_KERNEL);
-
-	put_object(object);
-}
-
-static void __paint_it(struct kmemleak_object *object, int color)
-{
-	object->min_count = color;
-	if (color == KMEMLEAK_BLACK)
-		object->flags |= OBJECT_NO_SCAN;
-}
-
-static void paint_it(struct kmemleak_object *object, int color)
-{
-	unsigned long flags;
-
-	spin_lock_irqsave(&object->lock, flags);
-	__paint_it(object, color);
-	spin_unlock_irqrestore(&object->lock, flags);
-}
-
-static void paint_ptr(unsigned long ptr, int color)
-{
-	struct kmemleak_object *object;
-
-	object = find_and_get_object(ptr, 0);
-	if (!object) {
-		kmemleak_warn("Trying to color unknown object "
-			      "at 0x%08lx as %s\n", ptr,
-			      (color == KMEMLEAK_GREY) ? "Grey" :
-			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
-		return;
-	}
-	paint_it(object, color);
-	put_object(object);
-}
-
-/*
- * Mark an object permanently as gray-colored so that it can no longer be
- * reported as a leak. This is used in general to mark a false positive.
- */
-static void make_gray_object(unsigned long ptr)
-{
-	paint_ptr(ptr, KMEMLEAK_GREY);
-}
-
-/*
- * Mark the object as black-colored so that it is ignored from scans and
- * reporting.
- */
-static void make_black_object(unsigned long ptr)
-{
-	paint_ptr(ptr, KMEMLEAK_BLACK);
-}
-
-/*
- * Add a scanning area to the object. If at least one such area is added,
- * kmemleak will only scan these ranges rather than the whole memory block.
- */
-static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
-{
-	unsigned long flags;
-	struct kmemleak_object *object;
-	struct kmemleak_scan_area *area;
-
-	object = find_and_get_object(ptr, 1);
-	if (!object) {
-		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
-			      ptr);
-		return;
-	}
-
-	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
-	if (!area) {
-		pr_warning("Cannot allocate a scan area\n");
-		goto out;
-	}
-
-	spin_lock_irqsave(&object->lock, flags);
-	if (size == SIZE_MAX) {
-		size = object->pointer + object->size - ptr;
-	} else if (ptr + size > object->pointer + object->size) {
-		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
-		dump_object_info(object);
-		kmem_cache_free(scan_area_cache, area);
-		goto out_unlock;
-	}
-
-	INIT_HLIST_NODE(&area->node);
-	area->start = ptr;
-	area->size = size;
-
-	hlist_add_head(&area->node, &object->area_list);
-out_unlock:
-	spin_unlock_irqrestore(&object->lock, flags);
-out:
-	put_object(object);
-}
-
-/*
- * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
- * pointer. Such object will not be scanned by kmemleak but references to it
- * are searched.
- */
-static void object_no_scan(unsigned long ptr)
-{
-	unsigned long flags;
-	struct kmemleak_object *object;
-
-	object = find_and_get_object(ptr, 0);
-	if (!object) {
-		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
-		return;
-	}
-
-	spin_lock_irqsave(&object->lock, flags);
-	object->flags |= OBJECT_NO_SCAN;
-	spin_unlock_irqrestore(&object->lock, flags);
-	put_object(object);
-}
-
-/*
- * Log an early kmemleak_* call to the early_log buffer. These calls will be
- * processed later once kmemleak is fully initialized.
- */
-static void __init log_early(int op_type, const void *ptr, size_t size,
-			     int min_count)
-{
-	unsigned long flags;
-	struct early_log *log;
-
-	if (atomic_read(&kmemleak_error)) {
-		/* kmemleak stopped recording, just count the requests */
-		crt_early_log++;
-		return;
-	}
-
-	if (crt_early_log >= ARRAY_SIZE(early_log)) {
-		kmemleak_disable();
-		return;
-	}
-
-	/*
-	 * There is no need for locking since the kernel is still in UP mode
-	 * at this stage. Disabling the IRQs is enough.
-	 */
-	local_irq_save(flags);
-	log = &early_log[crt_early_log];
-	log->op_type = op_type;
-	log->ptr = ptr;
-	log->size = size;
-	log->min_count = min_count;
-	log->trace_len = __save_stack_trace(log->trace);
-	crt_early_log++;
-	local_irq_restore(flags);
-}
-
-/*
- * Log an early allocated block and populate the stack trace.
- */
-static void early_alloc(struct early_log *log)
-{
-	struct kmemleak_object *object;
-	unsigned long flags;
-	int i;
-
-	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
-		return;
-
-	/*
-	 * RCU locking needed to ensure object is not freed via put_object().
-	 */
-	rcu_read_lock();
-	object = create_object((unsigned long)log->ptr, log->size,
-			       log->min_count, GFP_ATOMIC);
-	if (!object)
-		goto out;
-	spin_lock_irqsave(&object->lock, flags);
-	for (i = 0; i < log->trace_len; i++)
-		object->trace[i] = log->trace[i];
-	object->trace_len = log->trace_len;
-	spin_unlock_irqrestore(&object->lock, flags);
-out:
-	rcu_read_unlock();
-}
-
-/*
- * Log an early allocated block and populate the stack trace.
- */
-static void early_alloc_percpu(struct early_log *log)
-{
-	unsigned int cpu;
-	const void __percpu *ptr = log->ptr;
-
-	for_each_possible_cpu(cpu) {
-		log->ptr = per_cpu_ptr(ptr, cpu);
-		early_alloc(log);
-	}
-}
-
-/**
- * kmemleak_alloc - register a newly allocated object
- * @ptr:	pointer to beginning of the object
- * @size:	size of the object
- * @min_count:	minimum number of references to this object. If during memory
- *		scanning a number of references less than @min_count is found,
- *		the object is reported as a memory leak. If @min_count is 0,
- *		the object is never reported as a leak. If @min_count is -1,
- *		the object is ignored (not scanned and not reported as a leak)
- * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
- *
- * This function is called from the kernel allocators when a new object
- * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
- */
-void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
-			  gfp_t gfp)
-{
-	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
-
-	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
-		create_object((unsigned long)ptr, size, min_count, gfp);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
-}
-EXPORT_SYMBOL_GPL(kmemleak_alloc);
-
-/**
- * kmemleak_alloc_percpu - register a newly allocated __percpu object
- * @ptr:	__percpu pointer to beginning of the object
- * @size:	size of the object
- *
- * This function is called from the kernel percpu allocator when a new object
- * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
- * allocation.
- */
-void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
-{
-	unsigned int cpu;
-
-	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
-
-	/*
-	 * Percpu allocations are only scanned and not reported as leaks
-	 * (min_count is set to 0).
-	 */
-	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
-		for_each_possible_cpu(cpu)
-			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
-				      size, 0, GFP_KERNEL);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
-}
-EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
-
-/**
- * kmemleak_free - unregister a previously registered object
- * @ptr:	pointer to beginning of the object
- *
- * This function is called from the kernel allocators when an object (memory
- * block) is freed (kmem_cache_free, kfree, vfree etc.).
- */
-void __ref kmemleak_free(const void *ptr)
-{
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
-		delete_object_full((unsigned long)ptr);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_FREE, ptr, 0, 0);
-}
-EXPORT_SYMBOL_GPL(kmemleak_free);
-
-/**
- * kmemleak_free_part - partially unregister a previously registered object
- * @ptr:	pointer to the beginning or inside the object. This also
- *		represents the start of the range to be freed
- * @size:	size to be unregistered
- *
- * This function is called when only a part of a memory block is freed
- * (usually from the bootmem allocator).
- */
-void __ref kmemleak_free_part(const void *ptr, size_t size)
-{
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
-		delete_object_part((unsigned long)ptr, size);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
-}
-EXPORT_SYMBOL_GPL(kmemleak_free_part);
-
-/**
- * kmemleak_free_percpu - unregister a previously registered __percpu object
- * @ptr:	__percpu pointer to beginning of the object
- *
- * This function is called from the kernel percpu allocator when an object
- * (memory block) is freed (free_percpu).
- */
-void __ref kmemleak_free_percpu(const void __percpu *ptr)
-{
-	unsigned int cpu;
-
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
-		for_each_possible_cpu(cpu)
-			delete_object_full((unsigned long)per_cpu_ptr(ptr,
-								      cpu));
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
-}
-EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
-
-/**
- * kmemleak_not_leak - mark an allocated object as false positive
- * @ptr:	pointer to beginning of the object
- *
- * Calling this function on an object will cause the memory block to no longer
- * be reported as leak and always be scanned.
- */
-void __ref kmemleak_not_leak(const void *ptr)
-{
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
-		make_gray_object((unsigned long)ptr);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
-}
-EXPORT_SYMBOL(kmemleak_not_leak);
-
-/**
- * kmemleak_ignore - ignore an allocated object
- * @ptr:	pointer to beginning of the object
- *
- * Calling this function on an object will cause the memory block to be
- * ignored (not scanned and not reported as a leak). This is usually done when
- * it is known that the corresponding block is not a leak and does not contain
- * any references to other allocated memory blocks.
- */
-void __ref kmemleak_ignore(const void *ptr)
-{
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
-		make_black_object((unsigned long)ptr);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
-}
-EXPORT_SYMBOL(kmemleak_ignore);
-
-/**
- * kmemleak_scan_area - limit the range to be scanned in an allocated object
- * @ptr:	pointer to beginning or inside the object. This also
- *		represents the start of the scan area
- * @size:	size of the scan area
- * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
- *
- * This function is used when it is known that only certain parts of an object
- * contain references to other objects. Kmemleak will only scan these areas
- * reducing the number false negatives.
- */
-void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
-{
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
-		add_scan_area((unsigned long)ptr, size, gfp);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
-}
-EXPORT_SYMBOL(kmemleak_scan_area);
-
-/**
- * kmemleak_no_scan - do not scan an allocated object
- * @ptr:	pointer to beginning of the object
- *
- * This function notifies kmemleak not to scan the given memory block. Useful
- * in situations where it is known that the given object does not contain any
- * references to other objects. Kmemleak will not scan such objects reducing
- * the number of false negatives.
- */
-void __ref kmemleak_no_scan(const void *ptr)
-{
-	pr_debug("%s(0x%p)\n", __func__, ptr);
-
-	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
-		object_no_scan((unsigned long)ptr);
-	else if (atomic_read(&kmemleak_early_log))
-		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
-}
-EXPORT_SYMBOL(kmemleak_no_scan);
-
-/*
- * Update an object's checksum and return true if it was modified.
- */
-static bool update_checksum(struct kmemleak_object *object)
-{
-	u32 old_csum = object->checksum;
-
-	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
-		return false;
-
-	object->checksum = crc32(0, (void *)object->pointer, object->size);
-	return object->checksum != old_csum;
-}
-
-/*
- * Memory scanning is a long process and it needs to be interruptable. This
- * function checks whether such interrupt condition occurred.
- */
-static int scan_should_stop(void)
-{
-	if (!atomic_read(&kmemleak_enabled))
-		return 1;
-
-	/*
-	 * This function may be called from either process or kthread context,
-	 * hence the need to check for both stop conditions.
-	 */
-	if (current->mm)
-		return signal_pending(current);
-	else
-		return kthread_should_stop();
-
-	return 0;
-}
-
-/*
- * Scan a memory block (exclusive range) for valid pointers and add those
- * found to the gray list.
- */
-static void scan_block(void *_start, void *_end,
-		       struct kmemleak_object *scanned, int allow_resched)
-{
-	unsigned long *ptr;
-	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
-	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
-
-	for (ptr = start; ptr < end; ptr++) {
-		struct kmemleak_object *object;
-		unsigned long flags;
-		unsigned long pointer;
-
-		if (allow_resched)
-			cond_resched();
-		if (scan_should_stop())
-			break;
-
-		/* don't scan uninitialized memory */
-		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
-						  BYTES_PER_POINTER))
-			continue;
-
-		pointer = *ptr;
-
-		object = find_and_get_object(pointer, 1);
-		if (!object)
-			continue;
-		if (object == scanned) {
-			/* self referenced, ignore */
-			put_object(object);
-			continue;
-		}
-
-		/*
-		 * Avoid the lockdep recursive warning on object->lock being
-		 * previously acquired in scan_object(). These locks are
-		 * enclosed by scan_mutex.
-		 */
-		spin_lock_irqsave_nested(&object->lock, flags,
-					 SINGLE_DEPTH_NESTING);
-		if (!color_white(object)) {
-			/* non-orphan, ignored or new */
-			spin_unlock_irqrestore(&object->lock, flags);
-			put_object(object);
-			continue;
-		}
-
-		/*
-		 * Increase the object's reference count (number of pointers
-		 * to the memory block). If this count reaches the required
-		 * minimum, the object's color will become gray and it will be
-		 * added to the gray_list.
-		 */
-		object->count++;
-		if (color_gray(object)) {
-			list_add_tail(&object->gray_list, &gray_list);
-			spin_unlock_irqrestore(&object->lock, flags);
-			continue;
-		}
-
-		spin_unlock_irqrestore(&object->lock, flags);
-		put_object(object);
-	}
-}
-
-/*
- * Scan a memory block corresponding to a kmemleak_object. A condition is
- * that object->use_count >= 1.
- */
-static void scan_object(struct kmemleak_object *object)
-{
-	struct kmemleak_scan_area *area;
-	struct hlist_node *elem;
-	unsigned long flags;
-
-	/*
-	 * Once the object->lock is acquired, the corresponding memory block
-	 * cannot be freed (the same lock is acquired in delete_object).
-	 */
-	spin_lock_irqsave(&object->lock, flags);
-	if (object->flags & OBJECT_NO_SCAN)
-		goto out;
-	if (!(object->flags & OBJECT_ALLOCATED))
-		/* already freed object */
-		goto out;
-	if (hlist_empty(&object->area_list)) {
-		void *start = (void *)object->pointer;
-		void *end = (void *)(object->pointer + object->size);
-
-		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
-		       !(object->flags & OBJECT_NO_SCAN)) {
-			scan_block(start, min(start + MAX_SCAN_SIZE, end),
-				   object, 0);
-			start += MAX_SCAN_SIZE;
-
-			spin_unlock_irqrestore(&object->lock, flags);
-			cond_resched();
-			spin_lock_irqsave(&object->lock, flags);
-		}
-	} else
-		hlist_for_each_entry(area, elem, &object->area_list, node)
-			scan_block((void *)area->start,
-				   (void *)(area->start + area->size),
-				   object, 0);
-out:
-	spin_unlock_irqrestore(&object->lock, flags);
-}
-
-/*
- * Scan the objects already referenced (gray objects). More objects will be
- * referenced and, if there are no memory leaks, all the objects are scanned.
- */
-static void scan_gray_list(void)
-{
-	struct kmemleak_object *object, *tmp;
-
-	/*
-	 * The list traversal is safe for both tail additions and removals
-	 * from inside the loop. The kmemleak objects cannot be freed from
-	 * outside the loop because their use_count was incremented.
-	 */
-	object = list_entry(gray_list.next, typeof(*object), gray_list);
-	while (&object->gray_list != &gray_list) {
-		cond_resched();
-
-		/* may add new objects to the list */
-		if (!scan_should_stop())
-			scan_object(object);
-
-		tmp = list_entry(object->gray_list.next, typeof(*object),
-				 gray_list);
-
-		/* remove the object from the list and release it */
-		list_del(&object->gray_list);
-		put_object(object);
-
-		object = tmp;
-	}
-	WARN_ON(!list_empty(&gray_list));
-}
-
-/*
- * Scan data sections and all the referenced memory blocks allocated via the
- * kernel's standard allocators. This function must be called with the
- * scan_mutex held.
- */
-static void kmemleak_scan(void)
-{
-	unsigned long flags;
-	struct kmemleak_object *object;
-	int i;
-	int new_leaks = 0;
-
-	jiffies_last_scan = jiffies;
-
-	/* prepare the kmemleak_object's */
-	rcu_read_lock();
-	list_for_each_entry_rcu(object, &object_list, object_list) {
-		spin_lock_irqsave(&object->lock, flags);
-#ifdef DEBUG
-		/*
-		 * With a few exceptions there should be a maximum of
-		 * 1 reference to any object at this point.
-		 */
-		if (atomic_read(&object->use_count) > 1) {
-			pr_debug("object->use_count = %d\n",
-				 atomic_read(&object->use_count));
-			dump_object_info(object);
-		}
-#endif
-		/* reset the reference count (whiten the object) */
-		object->count = 0;
-		if (color_gray(object) && get_object(object))
-			list_add_tail(&object->gray_list, &gray_list);
-
-		spin_unlock_irqrestore(&object->lock, flags);
-	}
-	rcu_read_unlock();
-
-	/* data/bss scanning */
-	scan_block(_sdata, _edata, NULL, 1);
-	scan_block(__bss_start, __bss_stop, NULL, 1);
-
-#ifdef CONFIG_SMP
-	/* per-cpu sections scanning */
-	for_each_possible_cpu(i)
-		scan_block(__per_cpu_start + per_cpu_offset(i),
-			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
-#endif
-
-	/*
-	 * Struct page scanning for each node.
-	 */
-	lock_memory_hotplug();
-	for_each_online_node(i) {
-		pg_data_t *pgdat = NODE_DATA(i);
-		unsigned long start_pfn = pgdat->node_start_pfn;
-		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
-		unsigned long pfn;
-
-		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
-			struct page *page;
-
-			if (!pfn_valid(pfn))
-				continue;
-			page = pfn_to_page(pfn);
-			/* only scan if page is in use */
-			if (page_count(page) == 0)
-				continue;
-			scan_block(page, page + 1, NULL, 1);
-		}
-	}
-	unlock_memory_hotplug();
-
-	/*
-	 * Scanning the task stacks (may introduce false negatives).
-	 */
-	if (kmemleak_stack_scan) {
-		struct task_struct *p, *g;
-
-		read_lock(&tasklist_lock);
-		do_each_thread(g, p) {
-			scan_block(task_stack_page(p), task_stack_page(p) +
-				   THREAD_SIZE, NULL, 0);
-		} while_each_thread(g, p);
-		read_unlock(&tasklist_lock);
-	}
-
-	/*
-	 * Scan the objects already referenced from the sections scanned
-	 * above.
-	 */
-	scan_gray_list();
-
-	/*
-	 * Check for new or unreferenced objects modified since the previous
-	 * scan and color them gray until the next scan.
-	 */
-	rcu_read_lock();
-	list_for_each_entry_rcu(object, &object_list, object_list) {
-		spin_lock_irqsave(&object->lock, flags);
-		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
-		    && update_checksum(object) && get_object(object)) {
-			/* color it gray temporarily */
-			object->count = object->min_count;
-			list_add_tail(&object->gray_list, &gray_list);
-		}
-		spin_unlock_irqrestore(&object->lock, flags);
-	}
-	rcu_read_unlock();
-
-	/*
-	 * Re-scan the gray list for modified unreferenced objects.
-	 */
-	scan_gray_list();
-
-	/*
-	 * If scanning was stopped do not report any new unreferenced objects.
-	 */
-	if (scan_should_stop())
-		return;
-
-	/*
-	 * Scanning result reporting.
-	 */
-	rcu_read_lock();
-	list_for_each_entry_rcu(object, &object_list, object_list) {
-		spin_lock_irqsave(&object->lock, flags);
-		if (unreferenced_object(object) &&
-		    !(object->flags & OBJECT_REPORTED)) {
-			object->flags |= OBJECT_REPORTED;
-			new_leaks++;
-		}
-		spin_unlock_irqrestore(&object->lock, flags);
-	}
-	rcu_read_unlock();
-
-	if (new_leaks)
-		pr_info("%d new suspected memory leaks (see "
-			"/sys/kernel/debug/kmemleak)\n", new_leaks);
-
-}
-
-/*
- * Thread function performing automatic memory scanning. Unreferenced objects
- * at the end of a memory scan are reported but only the first time.
- */
-static int kmemleak_scan_thread(void *arg)
-{
-	static int first_run = 1;
-
-	pr_info("Automatic memory scanning thread started\n");
-	set_user_nice(current, 10);
-
-	/*
-	 * Wait before the first scan to allow the system to fully initialize.
-	 */
-	if (first_run) {
-		first_run = 0;
-		ssleep(SECS_FIRST_SCAN);
-	}
-
-	while (!kthread_should_stop()) {
-		signed long timeout = jiffies_scan_wait;
-
-		mutex_lock(&scan_mutex);
-		kmemleak_scan();
-		mutex_unlock(&scan_mutex);
-
-		/* wait before the next scan */
-		while (timeout && !kthread_should_stop())
-			timeout = schedule_timeout_interruptible(timeout);
-	}
-
-	pr_info("Automatic memory scanning thread ended\n");
-
-	return 0;
-}
-
-/*
- * Start the automatic memory scanning thread. This function must be called
- * with the scan_mutex held.
- */
-static void start_scan_thread(void)
-{
-	if (scan_thread)
-		return;
-	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
-	if (IS_ERR(scan_thread)) {
-		pr_warning("Failed to create the scan thread\n");
-		scan_thread = NULL;
-	}
-}
-
-/*
- * Stop the automatic memory scanning thread. This function must be called
- * with the scan_mutex held.
- */
-static void stop_scan_thread(void)
-{
-	if (scan_thread) {
-		kthread_stop(scan_thread);
-		scan_thread = NULL;
-	}
-}
-
-/*
- * Iterate over the object_list and return the first valid object at or after
- * the required position with its use_count incremented. The function triggers
- * a memory scanning when the pos argument points to the first position.
- */
-static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
-{
-	struct kmemleak_object *object;
-	loff_t n = *pos;
-	int err;
-
-	err = mutex_lock_interruptible(&scan_mutex);
-	if (err < 0)
-		return ERR_PTR(err);
-
-	rcu_read_lock();
-	list_for_each_entry_rcu(object, &object_list, object_list) {
-		if (n-- > 0)
-			continue;
-		if (get_object(object))
-			goto out;
-	}
-	object = NULL;
-out:
-	return object;
-}
-
-/*
- * Return the next object in the object_list. The function decrements the
- * use_count of the previous object and increases that of the next one.
- */
-static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
-{
-	struct kmemleak_object *prev_obj = v;
-	struct kmemleak_object *next_obj = NULL;
-	struct list_head *n = &prev_obj->object_list;
-
-	++(*pos);
-
-	list_for_each_continue_rcu(n, &object_list) {
-		struct kmemleak_object *obj =
-			list_entry(n, struct kmemleak_object, object_list);
-		if (get_object(obj)) {
-			next_obj = obj;
-			break;
-		}
-	}
-
-	put_object(prev_obj);
-	return next_obj;
-}
-
-/*
- * Decrement the use_count of the last object required, if any.
- */
-static void kmemleak_seq_stop(struct seq_file *seq, void *v)
-{
-	if (!IS_ERR(v)) {
-		/*
-		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
-		 * waiting was interrupted, so only release it if !IS_ERR.
-		 */
-		rcu_read_unlock();
-		mutex_unlock(&scan_mutex);
-		if (v)
-			put_object(v);
-	}
-}
-
-/*
- * Print the information for an unreferenced object to the seq file.
- */
-static int kmemleak_seq_show(struct seq_file *seq, void *v)
-{
-	struct kmemleak_object *object = v;
-	unsigned long flags;
-
-	spin_lock_irqsave(&object->lock, flags);
-	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
-		print_unreferenced(seq, object);
-	spin_unlock_irqrestore(&object->lock, flags);
-	return 0;
-}
-
-static const struct seq_operations kmemleak_seq_ops = {
-	.start = kmemleak_seq_start,
-	.next  = kmemleak_seq_next,
-	.stop  = kmemleak_seq_stop,
-	.show  = kmemleak_seq_show,
-};
-
-static int kmemleak_open(struct inode *inode, struct file *file)
-{
-	return seq_open(file, &kmemleak_seq_ops);
-}
-
-static int kmemleak_release(struct inode *inode, struct file *file)
-{
-	return seq_release(inode, file);
-}
-
-static int dump_str_object_info(const char *str)
-{
-	unsigned long flags;
-	struct kmemleak_object *object;
-	unsigned long addr;
-
-	addr= simple_strtoul(str, NULL, 0);
-	object = find_and_get_object(addr, 0);
-	if (!object) {
-		pr_info("Unknown object at 0x%08lx\n", addr);
-		return -EINVAL;
-	}
-
-	spin_lock_irqsave(&object->lock, flags);
-	dump_object_info(object);
-	spin_unlock_irqrestore(&object->lock, flags);
-
-	put_object(object);
-	return 0;
-}
-
-/*
- * We use grey instead of black to ensure we can do future scans on the same
- * objects. If we did not do future scans these black objects could
- * potentially contain references to newly allocated objects in the future and
- * we'd end up with false positives.
- */
-static void kmemleak_clear(void)
-{
-	struct kmemleak_object *object;
-	unsigned long flags;
-
-	rcu_read_lock();
-	list_for_each_entry_rcu(object, &object_list, object_list) {
-		spin_lock_irqsave(&object->lock, flags);
-		if ((object->flags & OBJECT_REPORTED) &&
-		    unreferenced_object(object))
-			__paint_it(object, KMEMLEAK_GREY);
-		spin_unlock_irqrestore(&object->lock, flags);
-	}
-	rcu_read_unlock();
-}
-
-/*
- * File write operation to configure kmemleak at run-time. The following
- * commands can be written to the /sys/kernel/debug/kmemleak file:
- *   off	- disable kmemleak (irreversible)
- *   stack=on	- enable the task stacks scanning
- *   stack=off	- disable the tasks stacks scanning
- *   scan=on	- start the automatic memory scanning thread
- *   scan=off	- stop the automatic memory scanning thread
- *   scan=...	- set the automatic memory scanning period in seconds (0 to
- *		  disable it)
- *   scan	- trigger a memory scan
- *   clear	- mark all current reported unreferenced kmemleak objects as
- *		  grey to ignore printing them
- *   dump=...	- dump information about the object found at the given address
- */
-static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
-			      size_t size, loff_t *ppos)
-{
-	char buf[64];
-	int buf_size;
-	int ret;
-
-	if (!atomic_read(&kmemleak_enabled))
-		return -EBUSY;
-
-	buf_size = min(size, (sizeof(buf) - 1));
-	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
-		return -EFAULT;
-	buf[buf_size] = 0;
-
-	ret = mutex_lock_interruptible(&scan_mutex);
-	if (ret < 0)
-		return ret;
-
-	if (strncmp(buf, "off", 3) == 0)
-		kmemleak_disable();
-	else if (strncmp(buf, "stack=on", 8) == 0)
-		kmemleak_stack_scan = 1;
-	else if (strncmp(buf, "stack=off", 9) == 0)
-		kmemleak_stack_scan = 0;
-	else if (strncmp(buf, "scan=on", 7) == 0)
-		start_scan_thread();
-	else if (strncmp(buf, "scan=off", 8) == 0)
-		stop_scan_thread();
-	else if (strncmp(buf, "scan=", 5) == 0) {
-		unsigned long secs;
-
-		ret = strict_strtoul(buf + 5, 0, &secs);
-		if (ret < 0)
-			goto out;
-		stop_scan_thread();
-		if (secs) {
-			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
-			start_scan_thread();
-		}
-	} else if (strncmp(buf, "scan", 4) == 0)
-		kmemleak_scan();
-	else if (strncmp(buf, "clear", 5) == 0)
-		kmemleak_clear();
-	else if (strncmp(buf, "dump=", 5) == 0)
-		ret = dump_str_object_info(buf + 5);
-	else
-		ret = -EINVAL;
-
-out:
-	mutex_unlock(&scan_mutex);
-	if (ret < 0)
-		return ret;
-
-	/* ignore the rest of the buffer, only one command at a time */
-	*ppos += size;
-	return size;
-}
-
-static const struct file_operations kmemleak_fops = {
-	.owner		= THIS_MODULE,
-	.open		= kmemleak_open,
-	.read		= seq_read,
-	.write		= kmemleak_write,
-	.llseek		= seq_lseek,
-	.release	= kmemleak_release,
-};
-
-/*
- * Stop the memory scanning thread and free the kmemleak internal objects if
- * no previous scan thread (otherwise, kmemleak may still have some useful
- * information on memory leaks).
- */
-static void kmemleak_do_cleanup(struct work_struct *work)
-{
-	struct kmemleak_object *object;
-	bool cleanup = scan_thread == NULL;
-
-	mutex_lock(&scan_mutex);
-	stop_scan_thread();
-
-	/*
-	 * Once the scan thread has stopped, it is safe to no longer track
-	 * object freeing. Ordering of the scan thread stopping and the memory
-	 * accesses below is guaranteed by the kthread_stop() function.
-	  */
-	kmemleak_free_enabled = 0;
-
-	if (cleanup) {
-		rcu_read_lock();
-		list_for_each_entry_rcu(object, &object_list, object_list)
-			delete_object_full(object->pointer);
-		rcu_read_unlock();
-	}
-	mutex_unlock(&scan_mutex);
-}
-
-static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
-
-/*
- * Disable kmemleak. No memory allocation/freeing will be traced once this
- * function is called. Disabling kmemleak is an irreversible operation.
- */
-static void kmemleak_disable(void)
-{
-	/* atomically check whether it was already invoked */
-	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
-		return;
-
-	/* stop any memory operation tracing */
-	atomic_set(&kmemleak_enabled, 0);
-
-	/* check whether it is too early for a kernel thread */
-	if (atomic_read(&kmemleak_initialized))
-		schedule_work(&cleanup_work);
-	else
-		kmemleak_free_enabled = 0;
-
-	pr_info("Kernel memory leak detector disabled\n");
-}
-
-/*
- * Allow boot-time kmemleak disabling (enabled by default).
- */
-static int kmemleak_boot_config(char *str)
-{
-	if (!str)
-		return -EINVAL;
-	if (strcmp(str, "off") == 0)
-		kmemleak_disable();
-	else if (strcmp(str, "on") == 0)
-		kmemleak_skip_disable = 1;
-	else
-		return -EINVAL;
-	return 0;
-}
-early_param("kmemleak", kmemleak_boot_config);
-
-static void __init print_log_trace(struct early_log *log)
-{
-	struct stack_trace trace;
-
-	trace.nr_entries = log->trace_len;
-	trace.entries = log->trace;
-
-	pr_notice("Early log backtrace:\n");
-	print_stack_trace(&trace, 2);
-}
-
-/*
- * Kmemleak initialization.
- */
-void __init kmemleak_init(void)
-{
-	int i;
-	unsigned long flags;
-
-#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
-	if (!kmemleak_skip_disable) {
-		atomic_set(&kmemleak_early_log, 0);
-		kmemleak_disable();
-		return;
-	}
-#endif
-
-	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
-	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
-
-	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
-	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
-	INIT_PRIO_TREE_ROOT(&object_tree_root);
-
-	if (crt_early_log >= ARRAY_SIZE(early_log))
-		pr_warning("Early log buffer exceeded (%d), please increase "
-			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
-
-	/* the kernel is still in UP mode, so disabling the IRQs is enough */
-	local_irq_save(flags);
-	atomic_set(&kmemleak_early_log, 0);
-	if (atomic_read(&kmemleak_error)) {
-		local_irq_restore(flags);
-		return;
-	} else {
-		atomic_set(&kmemleak_enabled, 1);
-		kmemleak_free_enabled = 1;
-	}
-	local_irq_restore(flags);
-
-	/*
-	 * This is the point where tracking allocations is safe. Automatic
-	 * scanning is started during the late initcall. Add the early logged
-	 * callbacks to the kmemleak infrastructure.
-	 */
-	for (i = 0; i < crt_early_log; i++) {
-		struct early_log *log = &early_log[i];
-
-		switch (log->op_type) {
-		case KMEMLEAK_ALLOC:
-			early_alloc(log);
-			break;
-		case KMEMLEAK_ALLOC_PERCPU:
-			early_alloc_percpu(log);
-			break;
-		case KMEMLEAK_FREE:
-			kmemleak_free(log->ptr);
-			break;
-		case KMEMLEAK_FREE_PART:
-			kmemleak_free_part(log->ptr, log->size);
-			break;
-		case KMEMLEAK_FREE_PERCPU:
-			kmemleak_free_percpu(log->ptr);
-			break;
-		case KMEMLEAK_NOT_LEAK:
-			kmemleak_not_leak(log->ptr);
-			break;
-		case KMEMLEAK_IGNORE:
-			kmemleak_ignore(log->ptr);
-			break;
-		case KMEMLEAK_SCAN_AREA:
-			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
-			break;
-		case KMEMLEAK_NO_SCAN:
-			kmemleak_no_scan(log->ptr);
-			break;
-		default:
-			kmemleak_warn("Unknown early log operation: %d\n",
-				      log->op_type);
-		}
-
-		if (atomic_read(&kmemleak_warning)) {
-			print_log_trace(log);
-			atomic_set(&kmemleak_warning, 0);
-		}
-	}
-}
-
-/*
- * Late initialization function.
- */
-static int __init kmemleak_late_init(void)
-{
-	struct dentry *dentry;
-
-	atomic_set(&kmemleak_initialized, 1);
-
-	if (atomic_read(&kmemleak_error)) {
-		/*
-		 * Some error occurred and kmemleak was disabled. There is a
-		 * small chance that kmemleak_disable() was called immediately
-		 * after setting kmemleak_initialized and we may end up with
-		 * two clean-up threads but serialized by scan_mutex.
-		 */
-		schedule_work(&cleanup_work);
-		return -ENOMEM;
-	}
-
-	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
-				     &kmemleak_fops);
-	if (!dentry)
-		pr_warning("Failed to create the debugfs kmemleak file\n");
-	mutex_lock(&scan_mutex);
-	start_scan_thread();
-	mutex_unlock(&scan_mutex);
-
-	pr_info("Kernel memory leak detector initialized\n");
-
-	return 0;
-}
-late_initcall(kmemleak_late_init);
diff --git a/ap/os/linux/linux-3.4.x/mm/mmap.c b/ap/os/linux/linux-3.4.x/mm/mmap.c
old mode 100644
new mode 100755
index cb6456d..88d133b
--- a/ap/os/linux/linux-3.4.x/mm/mmap.c
+++ b/ap/os/linux/linux-3.4.x/mm/mmap.c
@@ -39,6 +39,19 @@
 
 #include "internal.h"
 
+#ifdef CONFIG_SYSVIPC_CROSS_SHM
+#include <../ipc/shm_ctrl.h>
+extern void shm_mmap_pagetable(struct vm_area_struct *vma, struct file *file);
+extern void shm_unmap_page_range(struct mm_struct *mm, struct vm_area_struct *vma,
+			                      unsigned long addr, unsigned long end);
+#define kenter(FMT, ...) \
+	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
+#define kleave(FMT, ...) \
+	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
+#define kdebug(FMT, ...) \
+	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
+#endif
+
 #ifndef arch_mmap_check
 #define arch_mmap_check(addr, len, flags)	(0)
 #endif
@@ -1331,9 +1344,9 @@
 	/*
 	 * Can we just expand an old mapping?
 	 */
-	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
-	if (vma)
-		goto out;
+    vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
+    if (vma)
+	    goto out;
 
 	/*
 	 * Determine the object being mapped and call the appropriate
@@ -1420,6 +1433,14 @@
 			mm->locked_vm += (len >> PAGE_SHIFT);
 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
 		make_pages_present(addr, addr + len);
+	
+#ifdef CONFIG_SYSVIPC_CROSS_SHM 
+	/*Get real phy pgae*/
+	if (file && (file->f_flags == SHM_REMOTE_ATTR_YES))
+	{		
+		shm_mmap_pagetable(vma, file);		
+	}
+#endif
 	return addr;
 
 unmap_and_free_vma:
@@ -2125,6 +2146,138 @@
 	return __split_vma(mm, vma, addr, new_below);
 }
 
+#ifdef CONFIG_SYSVIPC_CROSS_SHM
+/*
+ * delete a VMA from its owning mm_struct and address space
+ */
+static void shm_delete_vma_from_mm(struct vm_area_struct *vma)
+{
+	struct address_space *mapping;
+	struct mm_struct *mm = vma->vm_mm;
+
+	mm->map_count--;
+	if (mm->mmap_cache == vma)
+		mm->mmap_cache = NULL;
+
+	/* remove the VMA from the mapping */
+	if (vma->vm_file) {
+		mapping = vma->vm_file->f_mapping;
+
+		mutex_lock(&mapping->i_mmap_mutex);
+		flush_dcache_mmap_lock(mapping);
+		vma_prio_tree_remove(vma, &mapping->i_mmap);
+		flush_dcache_mmap_unlock(mapping);
+		mutex_unlock(&mapping->i_mmap_mutex);
+	}
+
+	/* remove from the MM's tree and list */
+	rb_erase(&vma->vm_rb, &mm->mm_rb);
+
+	if (vma->vm_prev)
+		vma->vm_prev->vm_next = vma->vm_next;
+	else
+		mm->mmap = vma->vm_next;
+
+	if (vma->vm_next)
+		vma->vm_next->vm_prev = vma->vm_prev;
+}
+
+/*
+ * destroy a VMA record
+ */
+static void shm_delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
+{
+	if (vma->vm_ops && vma->vm_ops->close)
+		vma->vm_ops->close(vma);
+	if (vma->vm_file) {
+		fput(vma->vm_file);
+		if (vma->vm_flags & VM_EXECUTABLE)
+			removed_exe_file_vma(mm);
+	}
+	mpol_put(vma_policy(vma));
+	kmem_cache_free(vm_area_cachep, vma);
+}
+
+/*
+ * release a mapping
+ * - the chunk to be unmapped must be backed by a single
+ *   VMA, though it need not cover the whole VMA
+ */
+int shm_ctrl_do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
+{
+	int ret = 0;
+	struct vm_area_struct *vma;
+	unsigned long end;
+
+	len = PAGE_ALIGN(len);
+	if (len == 0)
+		return -EINVAL;
+
+	end = start + len;
+
+	/* find the first potentially overlapping VMA */
+	vma = find_vma(mm, start);
+	if (!vma) {
+		static int limit = 0;
+		if (limit < 5) {
+			printk(KERN_WARNING
+			       "munmap of memory not mmapped by process %d"
+			       " (%s): 0x%lx-0x%lx\n",
+			       current->pid, current->comm,
+			       start, start + len - 1);
+			limit++;
+		}
+		return -EINVAL;
+	}
+
+	/* we're allowed to split an anonymous VMA but not a file-backed one */
+	if (vma->vm_file) {
+		do {
+			if (start > vma->vm_start) {
+				kleave(" = -EINVAL [miss]");
+				return -EINVAL;
+			}
+			if (end == vma->vm_end)
+				goto erase_whole_vma;
+			vma = vma->vm_next;
+		} while (vma);
+		kleave(" = -EINVAL [split file]");
+		return -EINVAL;
+	} else {
+		/* the chunk must be a subset of the VMA found */
+		if (start == vma->vm_start && end == vma->vm_end)
+			goto erase_whole_vma;
+		if (start < vma->vm_start || end > vma->vm_end) {
+			kleave(" = -EINVAL [superset]");
+			return -EINVAL;
+		}
+		if (start & ~PAGE_MASK) {
+			kleave(" = -EINVAL [unaligned start]");
+			return -EINVAL;
+		}
+		if (end != vma->vm_end && end & ~PAGE_MASK) {
+			kleave(" = -EINVAL [unaligned split]");
+			return -EINVAL;
+		}
+		if (start != vma->vm_start && end != vma->vm_end) {
+			ret = split_vma(mm, vma, start, 1);
+			if (ret < 0) {
+				kleave(" = %d [split]", ret);
+				return ret;
+			}
+		}
+		return ret;
+	}
+
+erase_whole_vma:
+	shm_unmap_page_range(mm, vma, start, end);
+	shm_delete_vma_from_mm(vma);
+	shm_delete_vma(mm, vma);
+	return 0;
+}
+EXPORT_SYMBOL(shm_ctrl_do_munmap);
+#endif
+
 /* Munmap is split into 2 main parts -- this part which finds
  * what needs doing, and the areas themselves, which do the
  * work.  This now handles partial unmappings.
@@ -2185,6 +2338,13 @@
 			return error;
 	}
 	vma = prev? prev->vm_next: mm->mmap;
+		
+#ifdef CONFIG_SYSVIPC_CROSS_SHM
+	if (vma->vm_file && (vma->vm_file->f_flags == SHM_REMOTE_ATTR_YES)) {
+		shm_ctrl_do_munmap(mm, start, len);
+		return 0;
+	}
+#endif
 
 	/*
 	 * unlock any mlock()ed ranges before detaching vmas
@@ -2361,6 +2521,22 @@
 	struct vm_area_struct *vma;
 	unsigned long nr_accounted = 0;
 
+#ifdef CONFIG_SYSVIPC_CROSS_SHM
+	struct vm_area_struct *vma_shm;
+
+	vma_shm = mm->mmap;
+	while (vma_shm) {		
+		if ((vma_shm->vm_file) && 
+		   (vma_shm->vm_file->f_flags == SHM_REMOTE_ATTR_YES)) {
+			vma = vma_shm->vm_next;
+			shm_ctrl_do_munmap(mm, vma_shm->vm_start, (vma_shm->vm_end - vma_shm->vm_start));
+			vma_shm = vma;
+			continue;
+		}
+		else
+		   	vma_shm = vma_shm->vm_next;
+	}
+#endif
 	/* mm's last user has gone, and its about to be pulled down */
 	mmu_notifier_release(mm);
 
diff --git a/ap/os/linux/linux-3.4.x/mm/slob.c b/ap/os/linux/linux-3.4.x/mm/slob.c
index 5e6b4d7..f26c8d4 100755
--- a/ap/os/linux/linux-3.4.x/mm/slob.c
+++ b/ap/os/linux/linux-3.4.x/mm/slob.c
@@ -898,8 +898,16 @@
 		}else
 			panic("mem out!!");
 		slob_free_general(mem, sp);
-	} else
+	} else {
+		struct page *page;
+		unsigned int order;
+		page = &sp->page;
+		order = get_order(page->private);
+		raw_spin_lock_irqsave(&g_slob_kmalloc_spin_lock, flags);
+		g_slob_kmalloc_pages -= (1 << order);
+		raw_spin_unlock_irqrestore(&g_slob_kmalloc_spin_lock, flags);
 		put_page(&sp->page);
+    }
 #else
 	sp = slob_page(block);
 	if (is_slob_page(sp)) {