| /* Complex hyperbole tangent for long double. | 
 |    Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <complex.h> | 
 | #include <fenv.h> | 
 | #include <math.h> | 
 | #include <math_private.h> | 
 | #include <float.h> | 
 |  | 
 | /* To avoid spurious underflows, use this definition to treat IBM long | 
 |    double as approximating an IEEE-style format.  */ | 
 | #if LDBL_MANT_DIG == 106 | 
 | # undef LDBL_EPSILON | 
 | # define LDBL_EPSILON 0x1p-106L | 
 | #endif | 
 |  | 
 | __complex__ long double | 
 | __ctanhl (__complex__ long double x) | 
 | { | 
 |   __complex__ long double res; | 
 |  | 
 |   if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x))) | 
 |     { | 
 |       if (isinf (__real__ x)) | 
 | 	{ | 
 | 	  __real__ res = __copysignl (1.0, __real__ x); | 
 | 	  if (isfinite (__imag__ x) && fabsl (__imag__ x) > 1.0L) | 
 | 	    { | 
 | 	      long double sinix, cosix; | 
 | 	      __sincosl (__imag__ x, &sinix, &cosix); | 
 | 	      __imag__ res = __copysignl (0.0L, sinix * cosix); | 
 | 	    } | 
 | 	  else | 
 | 	    __imag__ res = __copysignl (0.0, __imag__ x); | 
 | 	} | 
 |       else if (__imag__ x == 0.0) | 
 | 	{ | 
 | 	  res = x; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  __real__ res = __nanl (""); | 
 | 	  __imag__ res = __nanl (""); | 
 |  | 
 | 	  if (isinf (__imag__ x)) | 
 | 	    feraiseexcept (FE_INVALID); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       long double sinix, cosix; | 
 |       long double den; | 
 |       const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2); | 
 |  | 
 |       /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) | 
 | 	 = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2).  */ | 
 |  | 
 |       if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN)) | 
 | 	{ | 
 | 	  __sincosl (__imag__ x, &sinix, &cosix); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  sinix = __imag__ x; | 
 | 	  cosix = 1.0; | 
 | 	} | 
 |  | 
 |       if (fabsl (__real__ x) > t) | 
 | 	{ | 
 | 	  /* Avoid intermediate overflow when the imaginary part of | 
 | 	     the result may be subnormal.  Ignoring negligible terms, | 
 | 	     the real part is +/- 1, the imaginary part is | 
 | 	     sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x).  */ | 
 | 	  long double exp_2t = __ieee754_expl (2 * t); | 
 |  | 
 | 	  __real__ res = __copysignl (1.0, __real__ x); | 
 | 	  __imag__ res = 4 * sinix * cosix; | 
 | 	  __real__ x = fabsl (__real__ x); | 
 | 	  __real__ x -= t; | 
 | 	  __imag__ res /= exp_2t; | 
 | 	  if (__real__ x > t) | 
 | 	    { | 
 | 	      /* Underflow (original real part of x has absolute value | 
 | 		 > 2t).  */ | 
 | 	      __imag__ res /= exp_2t; | 
 | 	    } | 
 | 	  else | 
 | 	    __imag__ res /= __ieee754_expl (2 * __real__ x); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  long double sinhrx, coshrx; | 
 | 	  if (fabsl (__real__ x) > LDBL_MIN) | 
 | 	    { | 
 | 	      sinhrx = __ieee754_sinhl (__real__ x); | 
 | 	      coshrx = __ieee754_coshl (__real__ x); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      sinhrx = __real__ x; | 
 | 	      coshrx = 1.0L; | 
 | 	    } | 
 |  | 
 | 	  if (fabsl (sinhrx) > fabsl (cosix) * LDBL_EPSILON) | 
 | 	    den = sinhrx * sinhrx + cosix * cosix; | 
 | 	  else | 
 | 	    den = cosix * cosix; | 
 | 	  __real__ res = sinhrx * coshrx / den; | 
 | 	  __imag__ res = sinix * cosix / den; | 
 | 	} | 
 |       math_check_force_underflow_complex (res); | 
 |     } | 
 |  | 
 |   return res; | 
 | } | 
 | weak_alias (__ctanhl, ctanhl) |