| /* | 
 |  * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <openssl/e_os2.h> | 
 | #include <string.h> | 
 | #include <assert.h> | 
 |  | 
 | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, | 
 |                    size_t r); | 
 | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); | 
 |  | 
 | #if !defined(KECCAK1600_ASM) || !defined(SELFTEST) | 
 |  | 
 | /* | 
 |  * Choose some sensible defaults | 
 |  */ | 
 | #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \ | 
 |     !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) | 
 | # define KECCAK_2X      /* default to KECCAK_2X variant */ | 
 | #endif | 
 |  | 
 | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
 | # define KECCAK_COMPLEMENTING_TRANSFORM | 
 | #endif | 
 |  | 
 | #if defined(__x86_64__) || defined(__aarch64__) || \ | 
 |     defined(__mips64) || defined(__ia64) || \ | 
 |     (defined(__VMS) && !defined(__vax)) | 
 | /* | 
 |  * These are available even in ILP32 flavours, but even then they are | 
 |  * capable of performing 64-bit operations as efficiently as in *P64. | 
 |  * Since it's not given that we can use sizeof(void *), just shunt it. | 
 |  */ | 
 | # define BIT_INTERLEAVE (0) | 
 | #else | 
 | # define BIT_INTERLEAVE (sizeof(void *) < 8) | 
 | #endif | 
 |  | 
 | #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) | 
 |  | 
 | static uint64_t ROL64(uint64_t val, int offset) | 
 | { | 
 |     if (offset == 0) { | 
 |         return val; | 
 |     } else if (!BIT_INTERLEAVE) { | 
 |         return (val << offset) | (val >> (64-offset)); | 
 |     } else { | 
 |         uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; | 
 |  | 
 |         if (offset & 1) { | 
 |             uint32_t tmp = hi; | 
 |  | 
 |             offset >>= 1; | 
 |             hi = ROL32(lo, offset); | 
 |             lo = ROL32(tmp, offset + 1); | 
 |         } else { | 
 |             offset >>= 1; | 
 |             lo = ROL32(lo, offset); | 
 |             hi = ROL32(hi, offset); | 
 |         } | 
 |  | 
 |         return ((uint64_t)hi << 32) | lo; | 
 |     } | 
 | } | 
 |  | 
 | static const unsigned char rhotates[5][5] = { | 
 |     {  0,  1, 62, 28, 27 }, | 
 |     { 36, 44,  6, 55, 20 }, | 
 |     {  3, 10, 43, 25, 39 }, | 
 |     { 41, 45, 15, 21,  8 }, | 
 |     { 18,  2, 61, 56, 14 } | 
 | }; | 
 |  | 
 | static const uint64_t iotas[] = { | 
 |     BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, | 
 |     BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, | 
 |     BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, | 
 |     BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, | 
 |     BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, | 
 |     BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, | 
 |     BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, | 
 |     BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, | 
 |     BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, | 
 |     BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, | 
 |     BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, | 
 |     BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, | 
 |     BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, | 
 |     BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, | 
 |     BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, | 
 |     BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, | 
 |     BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, | 
 |     BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, | 
 |     BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, | 
 |     BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, | 
 |     BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, | 
 |     BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, | 
 |     BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, | 
 |     BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL | 
 | }; | 
 |  | 
 | #if defined(KECCAK_REF) | 
 | /* | 
 |  * This is straightforward or "maximum clarity" implementation aiming | 
 |  * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: | 
 |  * Permutation-Based Hash and Extendible-Output Functions" as much as | 
 |  * possible. With one caveat. Because of the way C stores matrices, | 
 |  * references to A[x,y] in the specification are presented as A[y][x]. | 
 |  * Implementation unrolls inner x-loops so that modulo 5 operations are | 
 |  * explicitly pre-computed. | 
 |  */ | 
 | static void Theta(uint64_t A[5][5]) | 
 | { | 
 |     uint64_t C[5], D[5]; | 
 |     size_t y; | 
 |  | 
 |     C[0] = A[0][0]; | 
 |     C[1] = A[0][1]; | 
 |     C[2] = A[0][2]; | 
 |     C[3] = A[0][3]; | 
 |     C[4] = A[0][4]; | 
 |  | 
 |     for (y = 1; y < 5; y++) { | 
 |         C[0] ^= A[y][0]; | 
 |         C[1] ^= A[y][1]; | 
 |         C[2] ^= A[y][2]; | 
 |         C[3] ^= A[y][3]; | 
 |         C[4] ^= A[y][4]; | 
 |     } | 
 |  | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     for (y = 0; y < 5; y++) { | 
 |         A[y][0] ^= D[0]; | 
 |         A[y][1] ^= D[1]; | 
 |         A[y][2] ^= D[2]; | 
 |         A[y][3] ^= D[3]; | 
 |         A[y][4] ^= D[4]; | 
 |     } | 
 | } | 
 |  | 
 | static void Rho(uint64_t A[5][5]) | 
 | { | 
 |     size_t y; | 
 |  | 
 |     for (y = 0; y < 5; y++) { | 
 |         A[y][0] = ROL64(A[y][0], rhotates[y][0]); | 
 |         A[y][1] = ROL64(A[y][1], rhotates[y][1]); | 
 |         A[y][2] = ROL64(A[y][2], rhotates[y][2]); | 
 |         A[y][3] = ROL64(A[y][3], rhotates[y][3]); | 
 |         A[y][4] = ROL64(A[y][4], rhotates[y][4]); | 
 |     } | 
 | } | 
 |  | 
 | static void Pi(uint64_t A[5][5]) | 
 | { | 
 |     uint64_t T[5][5]; | 
 |  | 
 |     /* | 
 |      * T = A | 
 |      * A[y][x] = T[x][(3*y+x)%5] | 
 |      */ | 
 |     memcpy(T, A, sizeof(T)); | 
 |  | 
 |     A[0][0] = T[0][0]; | 
 |     A[0][1] = T[1][1]; | 
 |     A[0][2] = T[2][2]; | 
 |     A[0][3] = T[3][3]; | 
 |     A[0][4] = T[4][4]; | 
 |  | 
 |     A[1][0] = T[0][3]; | 
 |     A[1][1] = T[1][4]; | 
 |     A[1][2] = T[2][0]; | 
 |     A[1][3] = T[3][1]; | 
 |     A[1][4] = T[4][2]; | 
 |  | 
 |     A[2][0] = T[0][1]; | 
 |     A[2][1] = T[1][2]; | 
 |     A[2][2] = T[2][3]; | 
 |     A[2][3] = T[3][4]; | 
 |     A[2][4] = T[4][0]; | 
 |  | 
 |     A[3][0] = T[0][4]; | 
 |     A[3][1] = T[1][0]; | 
 |     A[3][2] = T[2][1]; | 
 |     A[3][3] = T[3][2]; | 
 |     A[3][4] = T[4][3]; | 
 |  | 
 |     A[4][0] = T[0][2]; | 
 |     A[4][1] = T[1][3]; | 
 |     A[4][2] = T[2][4]; | 
 |     A[4][3] = T[3][0]; | 
 |     A[4][4] = T[4][1]; | 
 | } | 
 |  | 
 | static void Chi(uint64_t A[5][5]) | 
 | { | 
 |     uint64_t C[5]; | 
 |     size_t y; | 
 |  | 
 |     for (y = 0; y < 5; y++) { | 
 |         C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); | 
 |         C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); | 
 |         C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); | 
 |         C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); | 
 |         C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); | 
 |  | 
 |         A[y][0] = C[0]; | 
 |         A[y][1] = C[1]; | 
 |         A[y][2] = C[2]; | 
 |         A[y][3] = C[3]; | 
 |         A[y][4] = C[4]; | 
 |     } | 
 | } | 
 |  | 
 | static void Iota(uint64_t A[5][5], size_t i) | 
 | { | 
 |     assert(i < (sizeof(iotas) / sizeof(iotas[0]))); | 
 |     A[0][0] ^= iotas[i]; | 
 | } | 
 |  | 
 | static void KeccakF1600(uint64_t A[5][5]) | 
 | { | 
 |     size_t i; | 
 |  | 
 |     for (i = 0; i < 24; i++) { | 
 |         Theta(A); | 
 |         Rho(A); | 
 |         Pi(A); | 
 |         Chi(A); | 
 |         Iota(A, i); | 
 |     } | 
 | } | 
 |  | 
 | #elif defined(KECCAK_1X) | 
 | /* | 
 |  * This implementation is optimization of above code featuring unroll | 
 |  * of even y-loops, their fusion and code motion. It also minimizes | 
 |  * temporary storage. Compiler would normally do all these things for | 
 |  * you, purpose of manual optimization is to provide "unobscured" | 
 |  * reference for assembly implementation [in case this approach is | 
 |  * chosen for implementation on some platform]. In the nutshell it's | 
 |  * equivalent of "plane-per-plane processing" approach discussed in | 
 |  * section 2.4 of "Keccak implementation overview". | 
 |  */ | 
 | static void Round(uint64_t A[5][5], size_t i) | 
 | { | 
 |     uint64_t C[5], E[2];        /* registers */ | 
 |     uint64_t D[5], T[2][5];     /* memory    */ | 
 |  | 
 |     assert(i < (sizeof(iotas) / sizeof(iotas[0]))); | 
 |  | 
 |     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; | 
 |     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; | 
 |     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; | 
 |     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; | 
 |     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; | 
 |  | 
 | #if defined(__arm__) | 
 |     D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; | 
 |     D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; | 
 |  | 
 |     T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ | 
 |     T[0][1] = A[0][1] ^ E[0]; /* D[1] */ | 
 |     T[0][2] = A[0][2] ^ C[1]; /* D[2] */ | 
 |     T[0][3] = A[0][3] ^ C[2]; /* D[3] */ | 
 |     T[0][4] = A[0][4] ^ E[1]; /* D[4] */ | 
 |  | 
 |     C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]);   /* D[3] */ | 
 |     C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]);   /* D[4] */ | 
 |     C[0] =       A[0][0] ^ C[0]; /* rotate by 0 */  /* D[0] */ | 
 |     C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]);   /* D[2] */ | 
 |     C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]);   /* D[1] */ | 
 | #else | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ | 
 |     T[0][1] = A[0][1] ^ D[1]; | 
 |     T[0][2] = A[0][2] ^ D[2]; | 
 |     T[0][3] = A[0][3] ^ D[3]; | 
 |     T[0][4] = A[0][4] ^ D[4]; | 
 |  | 
 |     C[0] =       A[0][0] ^ D[0]; /* rotate by 0 */ | 
 |     C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); | 
 |     C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); | 
 |     C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); | 
 |     C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); | 
 | #endif | 
 |     A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; | 
 |     A[0][1] = C[1] ^ (~C[2] & C[3]); | 
 |     A[0][2] = C[2] ^ (~C[3] & C[4]); | 
 |     A[0][3] = C[3] ^ (~C[4] & C[0]); | 
 |     A[0][4] = C[4] ^ (~C[0] & C[1]); | 
 |  | 
 |     T[1][0] = A[1][0] ^ (C[3] = D[0]); | 
 |     T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ | 
 |     T[1][2] = A[1][2] ^ (E[0] = D[2]); | 
 |     T[1][3] = A[1][3] ^ (E[1] = D[3]); | 
 |     T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ | 
 |  | 
 |     C[0] = ROL64(T[0][3],        rhotates[0][3]); | 
 |     C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]);   /* D[4] */ | 
 |     C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]);   /* D[0] */ | 
 |     C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]);   /* D[1] */ | 
 |     C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]);   /* D[2] */ | 
 |  | 
 |     A[1][0] = C[0] ^ (~C[1] & C[2]); | 
 |     A[1][1] = C[1] ^ (~C[2] & C[3]); | 
 |     A[1][2] = C[2] ^ (~C[3] & C[4]); | 
 |     A[1][3] = C[3] ^ (~C[4] & C[0]); | 
 |     A[1][4] = C[4] ^ (~C[0] & C[1]); | 
 |  | 
 |     C[0] = ROL64(T[0][1],        rhotates[0][1]); | 
 |     C[1] = ROL64(T[1][2],        rhotates[1][2]); | 
 |     C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); | 
 |     C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); | 
 |     C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); | 
 |  | 
 |     A[2][0] = C[0] ^ (~C[1] & C[2]); | 
 |     A[2][1] = C[1] ^ (~C[2] & C[3]); | 
 |     A[2][2] = C[2] ^ (~C[3] & C[4]); | 
 |     A[2][3] = C[3] ^ (~C[4] & C[0]); | 
 |     A[2][4] = C[4] ^ (~C[0] & C[1]); | 
 |  | 
 |     C[0] = ROL64(T[0][4],        rhotates[0][4]); | 
 |     C[1] = ROL64(T[1][0],        rhotates[1][0]); | 
 |     C[2] = ROL64(T[1][1],        rhotates[2][1]); /* originally A[2][1] */ | 
 |     C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); | 
 |     C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); | 
 |  | 
 |     A[3][0] = C[0] ^ (~C[1] & C[2]); | 
 |     A[3][1] = C[1] ^ (~C[2] & C[3]); | 
 |     A[3][2] = C[2] ^ (~C[3] & C[4]); | 
 |     A[3][3] = C[3] ^ (~C[4] & C[0]); | 
 |     A[3][4] = C[4] ^ (~C[0] & C[1]); | 
 |  | 
 |     C[0] = ROL64(T[0][2],        rhotates[0][2]); | 
 |     C[1] = ROL64(T[1][3],        rhotates[1][3]); | 
 |     C[2] = ROL64(T[1][4],        rhotates[2][4]); /* originally A[2][4] */ | 
 |     C[3] = ROL64(T[0][0],        rhotates[3][0]); /* originally A[3][0] */ | 
 |     C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); | 
 |  | 
 |     A[4][0] = C[0] ^ (~C[1] & C[2]); | 
 |     A[4][1] = C[1] ^ (~C[2] & C[3]); | 
 |     A[4][2] = C[2] ^ (~C[3] & C[4]); | 
 |     A[4][3] = C[3] ^ (~C[4] & C[0]); | 
 |     A[4][4] = C[4] ^ (~C[0] & C[1]); | 
 | } | 
 |  | 
 | static void KeccakF1600(uint64_t A[5][5]) | 
 | { | 
 |     size_t i; | 
 |  | 
 |     for (i = 0; i < 24; i++) { | 
 |         Round(A, i); | 
 |     } | 
 | } | 
 |  | 
 | #elif defined(KECCAK_1X_ALT) | 
 | /* | 
 |  * This is variant of above KECCAK_1X that reduces requirement for | 
 |  * temporary storage even further, but at cost of more updates to A[][]. | 
 |  * It's less suitable if A[][] is memory bound, but better if it's | 
 |  * register bound. | 
 |  */ | 
 |  | 
 | static void Round(uint64_t A[5][5], size_t i) | 
 | { | 
 |     uint64_t C[5], D[5]; | 
 |  | 
 |     assert(i < (sizeof(iotas) / sizeof(iotas[0]))); | 
 |  | 
 |     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; | 
 |     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; | 
 |     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; | 
 |     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; | 
 |     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; | 
 |  | 
 |     D[1] = C[0] ^  ROL64(C[2], 1); | 
 |     D[2] = C[1] ^  ROL64(C[3], 1); | 
 |     D[3] = C[2] ^= ROL64(C[4], 1); | 
 |     D[4] = C[3] ^= ROL64(C[0], 1); | 
 |     D[0] = C[4] ^= ROL64(C[1], 1); | 
 |  | 
 |     A[0][1] ^= D[1]; | 
 |     A[1][1] ^= D[1]; | 
 |     A[2][1] ^= D[1]; | 
 |     A[3][1] ^= D[1]; | 
 |     A[4][1] ^= D[1]; | 
 |  | 
 |     A[0][2] ^= D[2]; | 
 |     A[1][2] ^= D[2]; | 
 |     A[2][2] ^= D[2]; | 
 |     A[3][2] ^= D[2]; | 
 |     A[4][2] ^= D[2]; | 
 |  | 
 |     A[0][3] ^= C[2]; | 
 |     A[1][3] ^= C[2]; | 
 |     A[2][3] ^= C[2]; | 
 |     A[3][3] ^= C[2]; | 
 |     A[4][3] ^= C[2]; | 
 |  | 
 |     A[0][4] ^= C[3]; | 
 |     A[1][4] ^= C[3]; | 
 |     A[2][4] ^= C[3]; | 
 |     A[3][4] ^= C[3]; | 
 |     A[4][4] ^= C[3]; | 
 |  | 
 |     A[0][0] ^= C[4]; | 
 |     A[1][0] ^= C[4]; | 
 |     A[2][0] ^= C[4]; | 
 |     A[3][0] ^= C[4]; | 
 |     A[4][0] ^= C[4]; | 
 |  | 
 |     C[1] = A[0][1]; | 
 |     C[2] = A[0][2]; | 
 |     C[3] = A[0][3]; | 
 |     C[4] = A[0][4]; | 
 |  | 
 |     A[0][1] = ROL64(A[1][1], rhotates[1][1]); | 
 |     A[0][2] = ROL64(A[2][2], rhotates[2][2]); | 
 |     A[0][3] = ROL64(A[3][3], rhotates[3][3]); | 
 |     A[0][4] = ROL64(A[4][4], rhotates[4][4]); | 
 |  | 
 |     A[1][1] = ROL64(A[1][4], rhotates[1][4]); | 
 |     A[2][2] = ROL64(A[2][3], rhotates[2][3]); | 
 |     A[3][3] = ROL64(A[3][2], rhotates[3][2]); | 
 |     A[4][4] = ROL64(A[4][1], rhotates[4][1]); | 
 |  | 
 |     A[1][4] = ROL64(A[4][2], rhotates[4][2]); | 
 |     A[2][3] = ROL64(A[3][4], rhotates[3][4]); | 
 |     A[3][2] = ROL64(A[2][1], rhotates[2][1]); | 
 |     A[4][1] = ROL64(A[1][3], rhotates[1][3]); | 
 |  | 
 |     A[4][2] = ROL64(A[2][4], rhotates[2][4]); | 
 |     A[3][4] = ROL64(A[4][3], rhotates[4][3]); | 
 |     A[2][1] = ROL64(A[1][2], rhotates[1][2]); | 
 |     A[1][3] = ROL64(A[3][1], rhotates[3][1]); | 
 |  | 
 |     A[2][4] = ROL64(A[4][0], rhotates[4][0]); | 
 |     A[4][3] = ROL64(A[3][0], rhotates[3][0]); | 
 |     A[1][2] = ROL64(A[2][0], rhotates[2][0]); | 
 |     A[3][1] = ROL64(A[1][0], rhotates[1][0]); | 
 |  | 
 |     A[1][0] = ROL64(C[3],    rhotates[0][3]); | 
 |     A[2][0] = ROL64(C[1],    rhotates[0][1]); | 
 |     A[3][0] = ROL64(C[4],    rhotates[0][4]); | 
 |     A[4][0] = ROL64(C[2],    rhotates[0][2]); | 
 |  | 
 |     C[0] = A[0][0]; | 
 |     C[1] = A[1][0]; | 
 |     D[0] = A[0][1]; | 
 |     D[1] = A[1][1]; | 
 |  | 
 |     A[0][0] ^= (~A[0][1] & A[0][2]); | 
 |     A[1][0] ^= (~A[1][1] & A[1][2]); | 
 |     A[0][1] ^= (~A[0][2] & A[0][3]); | 
 |     A[1][1] ^= (~A[1][2] & A[1][3]); | 
 |     A[0][2] ^= (~A[0][3] & A[0][4]); | 
 |     A[1][2] ^= (~A[1][3] & A[1][4]); | 
 |     A[0][3] ^= (~A[0][4] & C[0]); | 
 |     A[1][3] ^= (~A[1][4] & C[1]); | 
 |     A[0][4] ^= (~C[0]    & D[0]); | 
 |     A[1][4] ^= (~C[1]    & D[1]); | 
 |  | 
 |     C[2] = A[2][0]; | 
 |     C[3] = A[3][0]; | 
 |     D[2] = A[2][1]; | 
 |     D[3] = A[3][1]; | 
 |  | 
 |     A[2][0] ^= (~A[2][1] & A[2][2]); | 
 |     A[3][0] ^= (~A[3][1] & A[3][2]); | 
 |     A[2][1] ^= (~A[2][2] & A[2][3]); | 
 |     A[3][1] ^= (~A[3][2] & A[3][3]); | 
 |     A[2][2] ^= (~A[2][3] & A[2][4]); | 
 |     A[3][2] ^= (~A[3][3] & A[3][4]); | 
 |     A[2][3] ^= (~A[2][4] & C[2]); | 
 |     A[3][3] ^= (~A[3][4] & C[3]); | 
 |     A[2][4] ^= (~C[2]    & D[2]); | 
 |     A[3][4] ^= (~C[3]    & D[3]); | 
 |  | 
 |     C[4] = A[4][0]; | 
 |     D[4] = A[4][1]; | 
 |  | 
 |     A[4][0] ^= (~A[4][1] & A[4][2]); | 
 |     A[4][1] ^= (~A[4][2] & A[4][3]); | 
 |     A[4][2] ^= (~A[4][3] & A[4][4]); | 
 |     A[4][3] ^= (~A[4][4] & C[4]); | 
 |     A[4][4] ^= (~C[4]    & D[4]); | 
 |     A[0][0] ^= iotas[i]; | 
 | } | 
 |  | 
 | static void KeccakF1600(uint64_t A[5][5]) | 
 | { | 
 |     size_t i; | 
 |  | 
 |     for (i = 0; i < 24; i++) { | 
 |         Round(A, i); | 
 |     } | 
 | } | 
 |  | 
 | #elif defined(KECCAK_2X) | 
 | /* | 
 |  * This implementation is variant of KECCAK_1X above with outer-most | 
 |  * round loop unrolled twice. This allows to take temporary storage | 
 |  * out of round procedure and simplify references to it by alternating | 
 |  * it with actual data (see round loop below). Originally it was meant | 
 |  * rather as reference for an assembly implementation, but it seems to | 
 |  * play best with compilers [as well as provide best instruction per | 
 |  * processed byte ratio at minimal round unroll factor]... | 
 |  */ | 
 | static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) | 
 | { | 
 |     uint64_t C[5], D[5]; | 
 |  | 
 |     assert(i < (sizeof(iotas) / sizeof(iotas[0]))); | 
 |  | 
 |     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; | 
 |     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; | 
 |     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; | 
 |     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; | 
 |     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; | 
 |  | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     C[0] =       A[0][0] ^ D[0]; /* rotate by 0 */ | 
 |     C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); | 
 |     C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); | 
 |     C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); | 
 |     C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; | 
 |     R[0][1] = C[1] ^ (~C[2] | C[3]); | 
 |     R[0][2] = C[2] ^ ( C[3] & C[4]); | 
 |     R[0][3] = C[3] ^ ( C[4] | C[0]); | 
 |     R[0][4] = C[4] ^ ( C[0] & C[1]); | 
 | #else | 
 |     R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; | 
 |     R[0][1] = C[1] ^ (~C[2] & C[3]); | 
 |     R[0][2] = C[2] ^ (~C[3] & C[4]); | 
 |     R[0][3] = C[3] ^ (~C[4] & C[0]); | 
 |     R[0][4] = C[4] ^ (~C[0] & C[1]); | 
 | #endif | 
 |  | 
 |     C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); | 
 |     C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); | 
 |     C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); | 
 |     C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); | 
 |     C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     R[1][0] = C[0] ^ (C[1] |  C[2]); | 
 |     R[1][1] = C[1] ^ (C[2] &  C[3]); | 
 |     R[1][2] = C[2] ^ (C[3] | ~C[4]); | 
 |     R[1][3] = C[3] ^ (C[4] |  C[0]); | 
 |     R[1][4] = C[4] ^ (C[0] &  C[1]); | 
 | #else | 
 |     R[1][0] = C[0] ^ (~C[1] & C[2]); | 
 |     R[1][1] = C[1] ^ (~C[2] & C[3]); | 
 |     R[1][2] = C[2] ^ (~C[3] & C[4]); | 
 |     R[1][3] = C[3] ^ (~C[4] & C[0]); | 
 |     R[1][4] = C[4] ^ (~C[0] & C[1]); | 
 | #endif | 
 |  | 
 |     C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); | 
 |     C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); | 
 |     C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); | 
 |     C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); | 
 |     C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     R[2][0] =  C[0] ^ ( C[1] | C[2]); | 
 |     R[2][1] =  C[1] ^ ( C[2] & C[3]); | 
 |     R[2][2] =  C[2] ^ (~C[3] & C[4]); | 
 |     R[2][3] = ~C[3] ^ ( C[4] | C[0]); | 
 |     R[2][4] =  C[4] ^ ( C[0] & C[1]); | 
 | #else | 
 |     R[2][0] = C[0] ^ (~C[1] & C[2]); | 
 |     R[2][1] = C[1] ^ (~C[2] & C[3]); | 
 |     R[2][2] = C[2] ^ (~C[3] & C[4]); | 
 |     R[2][3] = C[3] ^ (~C[4] & C[0]); | 
 |     R[2][4] = C[4] ^ (~C[0] & C[1]); | 
 | #endif | 
 |  | 
 |     C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); | 
 |     C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); | 
 |     C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); | 
 |     C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); | 
 |     C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     R[3][0] =  C[0] ^ ( C[1] & C[2]); | 
 |     R[3][1] =  C[1] ^ ( C[2] | C[3]); | 
 |     R[3][2] =  C[2] ^ (~C[3] | C[4]); | 
 |     R[3][3] = ~C[3] ^ ( C[4] & C[0]); | 
 |     R[3][4] =  C[4] ^ ( C[0] | C[1]); | 
 | #else | 
 |     R[3][0] = C[0] ^ (~C[1] & C[2]); | 
 |     R[3][1] = C[1] ^ (~C[2] & C[3]); | 
 |     R[3][2] = C[2] ^ (~C[3] & C[4]); | 
 |     R[3][3] = C[3] ^ (~C[4] & C[0]); | 
 |     R[3][4] = C[4] ^ (~C[0] & C[1]); | 
 | #endif | 
 |  | 
 |     C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); | 
 |     C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); | 
 |     C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); | 
 |     C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); | 
 |     C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     R[4][0] =  C[0] ^ (~C[1] & C[2]); | 
 |     R[4][1] = ~C[1] ^ ( C[2] | C[3]); | 
 |     R[4][2] =  C[2] ^ ( C[3] & C[4]); | 
 |     R[4][3] =  C[3] ^ ( C[4] | C[0]); | 
 |     R[4][4] =  C[4] ^ ( C[0] & C[1]); | 
 | #else | 
 |     R[4][0] = C[0] ^ (~C[1] & C[2]); | 
 |     R[4][1] = C[1] ^ (~C[2] & C[3]); | 
 |     R[4][2] = C[2] ^ (~C[3] & C[4]); | 
 |     R[4][3] = C[3] ^ (~C[4] & C[0]); | 
 |     R[4][4] = C[4] ^ (~C[0] & C[1]); | 
 | #endif | 
 | } | 
 |  | 
 | static void KeccakF1600(uint64_t A[5][5]) | 
 | { | 
 |     uint64_t T[5][5]; | 
 |     size_t i; | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     A[0][1] = ~A[0][1]; | 
 |     A[0][2] = ~A[0][2]; | 
 |     A[1][3] = ~A[1][3]; | 
 |     A[2][2] = ~A[2][2]; | 
 |     A[3][2] = ~A[3][2]; | 
 |     A[4][0] = ~A[4][0]; | 
 | #endif | 
 |  | 
 |     for (i = 0; i < 24; i += 2) { | 
 |         Round(T, A, i); | 
 |         Round(A, T, i + 1); | 
 |     } | 
 |  | 
 | #ifdef KECCAK_COMPLEMENTING_TRANSFORM | 
 |     A[0][1] = ~A[0][1]; | 
 |     A[0][2] = ~A[0][2]; | 
 |     A[1][3] = ~A[1][3]; | 
 |     A[2][2] = ~A[2][2]; | 
 |     A[3][2] = ~A[3][2]; | 
 |     A[4][0] = ~A[4][0]; | 
 | #endif | 
 | } | 
 |  | 
 | #else   /* define KECCAK_INPLACE to compile this code path */ | 
 | /* | 
 |  * This implementation is KECCAK_1X from above combined 4 times with | 
 |  * a twist that allows to omit temporary storage and perform in-place | 
 |  * processing. It's discussed in section 2.5 of "Keccak implementation | 
 |  * overview". It's likely to be best suited for processors with large | 
 |  * register bank... On the other hand processor with large register | 
 |  * bank can as well use KECCAK_1X_ALT, it would be as fast but much | 
 |  * more compact... | 
 |  */ | 
 | static void FourRounds(uint64_t A[5][5], size_t i) | 
 | { | 
 |     uint64_t B[5], C[5], D[5]; | 
 |  | 
 |     assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); | 
 |  | 
 |     /* Round 4*n */ | 
 |     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; | 
 |     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; | 
 |     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; | 
 |     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; | 
 |     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; | 
 |  | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */ | 
 |     B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); | 
 |     B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); | 
 |     B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); | 
 |     B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); | 
 |  | 
 |     C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; | 
 |     C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); | 
 |     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); | 
 |     B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); | 
 |     B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); | 
 |     B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); | 
 |  | 
 |     C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); | 
 |     B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); | 
 |     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); | 
 |     B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); | 
 |     B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); | 
 |  | 
 |     C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); | 
 |     B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); | 
 |     B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); | 
 |     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); | 
 |     B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); | 
 |  | 
 |     C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); | 
 |     B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); | 
 |     B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); | 
 |     B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); | 
 |     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); | 
 |  | 
 |     C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     /* Round 4*n+1 */ | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */ | 
 |     B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); | 
 |     B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); | 
 |     B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); | 
 |     B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); | 
 |  | 
 |     C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; | 
 |     C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); | 
 |     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); | 
 |     B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); | 
 |     B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); | 
 |     B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); | 
 |  | 
 |     C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); | 
 |     B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); | 
 |     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); | 
 |     B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); | 
 |     B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); | 
 |  | 
 |     C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); | 
 |     B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); | 
 |     B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); | 
 |     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); | 
 |     B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); | 
 |  | 
 |     C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); | 
 |     B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); | 
 |     B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); | 
 |     B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); | 
 |     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); | 
 |  | 
 |     C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     /* Round 4*n+2 */ | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */ | 
 |     B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); | 
 |     B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); | 
 |     B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); | 
 |     B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); | 
 |  | 
 |     C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; | 
 |     C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); | 
 |     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); | 
 |     B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); | 
 |     B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); | 
 |     B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); | 
 |  | 
 |     C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); | 
 |     B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); | 
 |     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); | 
 |     B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); | 
 |     B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); | 
 |  | 
 |     C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); | 
 |     B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); | 
 |     B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); | 
 |     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); | 
 |     B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); | 
 |  | 
 |     C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); | 
 |     B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); | 
 |     B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); | 
 |     B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); | 
 |     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); | 
 |  | 
 |     C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); | 
 |     C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); | 
 |     C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); | 
 |     C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); | 
 |     C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     /* Round 4*n+3 */ | 
 |     D[0] = ROL64(C[1], 1) ^ C[4]; | 
 |     D[1] = ROL64(C[2], 1) ^ C[0]; | 
 |     D[2] = ROL64(C[3], 1) ^ C[1]; | 
 |     D[3] = ROL64(C[4], 1) ^ C[2]; | 
 |     D[4] = ROL64(C[0], 1) ^ C[3]; | 
 |  | 
 |     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */ | 
 |     B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); | 
 |     B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); | 
 |     B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); | 
 |     B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); | 
 |  | 
 |     /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; | 
 |     /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); | 
 |     /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); | 
 |     /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); | 
 |     /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); | 
 |     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); | 
 |     B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); | 
 |     B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); | 
 |     B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); | 
 |  | 
 |     /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); | 
 |     /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); | 
 |     /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); | 
 |     /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); | 
 |     /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); | 
 |     B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); | 
 |     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); | 
 |     B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); | 
 |     B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); | 
 |  | 
 |     /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); | 
 |     /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); | 
 |     /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); | 
 |     /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); | 
 |     /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); | 
 |     B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); | 
 |     B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); | 
 |     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); | 
 |     B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); | 
 |  | 
 |     /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); | 
 |     /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); | 
 |     /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); | 
 |     /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); | 
 |     /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); | 
 |  | 
 |     B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); | 
 |     B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); | 
 |     B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); | 
 |     B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); | 
 |     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); | 
 |  | 
 |     /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); | 
 |     /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); | 
 |     /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); | 
 |     /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); | 
 |     /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); | 
 | } | 
 |  | 
 | static void KeccakF1600(uint64_t A[5][5]) | 
 | { | 
 |     size_t i; | 
 |  | 
 |     for (i = 0; i < 24; i += 4) { | 
 |         FourRounds(A, i); | 
 |     } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static uint64_t BitInterleave(uint64_t Ai) | 
 | { | 
 |     if (BIT_INTERLEAVE) { | 
 |         uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; | 
 |         uint32_t t0, t1; | 
 |  | 
 |         t0 = lo & 0x55555555; | 
 |         t0 |= t0 >> 1;  t0 &= 0x33333333; | 
 |         t0 |= t0 >> 2;  t0 &= 0x0f0f0f0f; | 
 |         t0 |= t0 >> 4;  t0 &= 0x00ff00ff; | 
 |         t0 |= t0 >> 8;  t0 &= 0x0000ffff; | 
 |  | 
 |         t1 = hi & 0x55555555; | 
 |         t1 |= t1 >> 1;  t1 &= 0x33333333; | 
 |         t1 |= t1 >> 2;  t1 &= 0x0f0f0f0f; | 
 |         t1 |= t1 >> 4;  t1 &= 0x00ff00ff; | 
 |         t1 |= t1 >> 8;  t1 <<= 16; | 
 |  | 
 |         lo &= 0xaaaaaaaa; | 
 |         lo |= lo << 1;  lo &= 0xcccccccc; | 
 |         lo |= lo << 2;  lo &= 0xf0f0f0f0; | 
 |         lo |= lo << 4;  lo &= 0xff00ff00; | 
 |         lo |= lo << 8;  lo >>= 16; | 
 |  | 
 |         hi &= 0xaaaaaaaa; | 
 |         hi |= hi << 1;  hi &= 0xcccccccc; | 
 |         hi |= hi << 2;  hi &= 0xf0f0f0f0; | 
 |         hi |= hi << 4;  hi &= 0xff00ff00; | 
 |         hi |= hi << 8;  hi &= 0xffff0000; | 
 |  | 
 |         Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); | 
 |     } | 
 |  | 
 |     return Ai; | 
 | } | 
 |  | 
 | static uint64_t BitDeinterleave(uint64_t Ai) | 
 | { | 
 |     if (BIT_INTERLEAVE) { | 
 |         uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; | 
 |         uint32_t t0, t1; | 
 |  | 
 |         t0 = lo & 0x0000ffff; | 
 |         t0 |= t0 << 8;  t0 &= 0x00ff00ff; | 
 |         t0 |= t0 << 4;  t0 &= 0x0f0f0f0f; | 
 |         t0 |= t0 << 2;  t0 &= 0x33333333; | 
 |         t0 |= t0 << 1;  t0 &= 0x55555555; | 
 |  | 
 |         t1 = hi << 16; | 
 |         t1 |= t1 >> 8;  t1 &= 0xff00ff00; | 
 |         t1 |= t1 >> 4;  t1 &= 0xf0f0f0f0; | 
 |         t1 |= t1 >> 2;  t1 &= 0xcccccccc; | 
 |         t1 |= t1 >> 1;  t1 &= 0xaaaaaaaa; | 
 |  | 
 |         lo >>= 16; | 
 |         lo |= lo << 8;  lo &= 0x00ff00ff; | 
 |         lo |= lo << 4;  lo &= 0x0f0f0f0f; | 
 |         lo |= lo << 2;  lo &= 0x33333333; | 
 |         lo |= lo << 1;  lo &= 0x55555555; | 
 |  | 
 |         hi &= 0xffff0000; | 
 |         hi |= hi >> 8;  hi &= 0xff00ff00; | 
 |         hi |= hi >> 4;  hi &= 0xf0f0f0f0; | 
 |         hi |= hi >> 2;  hi &= 0xcccccccc; | 
 |         hi |= hi >> 1;  hi &= 0xaaaaaaaa; | 
 |  | 
 |         Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); | 
 |     } | 
 |  | 
 |     return Ai; | 
 | } | 
 |  | 
 | /* | 
 |  * SHA3_absorb can be called multiple times, but at each invocation | 
 |  * largest multiple of |r| out of |len| bytes are processed. Then | 
 |  * remaining amount of bytes is returned. This is done to spare caller | 
 |  * trouble of calculating the largest multiple of |r|. |r| can be viewed | 
 |  * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, | 
 |  * 72, but can also be (1600 - 448)/8 = 144. All this means that message | 
 |  * padding and intermediate sub-block buffering, byte- or bitwise, is | 
 |  * caller's responsibility. | 
 |  */ | 
 | size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, | 
 |                    size_t r) | 
 | { | 
 |     uint64_t *A_flat = (uint64_t *)A; | 
 |     size_t i, w = r / 8; | 
 |  | 
 |     assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); | 
 |  | 
 |     while (len >= r) { | 
 |         for (i = 0; i < w; i++) { | 
 |             uint64_t Ai = (uint64_t)inp[0]       | (uint64_t)inp[1] << 8  | | 
 |                           (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | | 
 |                           (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | | 
 |                           (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; | 
 |             inp += 8; | 
 |  | 
 |             A_flat[i] ^= BitInterleave(Ai); | 
 |         } | 
 |         KeccakF1600(A); | 
 |         len -= r; | 
 |     } | 
 |  | 
 |     return len; | 
 | } | 
 |  | 
 | /* | 
 |  * SHA3_squeeze is called once at the end to generate |out| hash value | 
 |  * of |len| bytes. | 
 |  */ | 
 | void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) | 
 | { | 
 |     uint64_t *A_flat = (uint64_t *)A; | 
 |     size_t i, w = r / 8; | 
 |  | 
 |     assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); | 
 |  | 
 |     while (len != 0) { | 
 |         for (i = 0; i < w && len != 0; i++) { | 
 |             uint64_t Ai = BitDeinterleave(A_flat[i]); | 
 |  | 
 |             if (len < 8) { | 
 |                 for (i = 0; i < len; i++) { | 
 |                     *out++ = (unsigned char)Ai; | 
 |                     Ai >>= 8; | 
 |                 } | 
 |                 return; | 
 |             } | 
 |  | 
 |             out[0] = (unsigned char)(Ai); | 
 |             out[1] = (unsigned char)(Ai >> 8); | 
 |             out[2] = (unsigned char)(Ai >> 16); | 
 |             out[3] = (unsigned char)(Ai >> 24); | 
 |             out[4] = (unsigned char)(Ai >> 32); | 
 |             out[5] = (unsigned char)(Ai >> 40); | 
 |             out[6] = (unsigned char)(Ai >> 48); | 
 |             out[7] = (unsigned char)(Ai >> 56); | 
 |             out += 8; | 
 |             len -= 8; | 
 |         } | 
 |         if (len) | 
 |             KeccakF1600(A); | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef SELFTEST | 
 | /* | 
 |  * Post-padding one-shot implementations would look as following: | 
 |  * | 
 |  * SHA3_224     SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); | 
 |  * SHA3_256     SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); | 
 |  * SHA3_384     SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); | 
 |  * SHA3_512     SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); | 
 |  * SHAKE_128    SHA3_sponge(inp, len, out, d, (1600-256)/8); | 
 |  * SHAKE_256    SHA3_sponge(inp, len, out, d, (1600-512)/8); | 
 |  */ | 
 |  | 
 | void SHA3_sponge(const unsigned char *inp, size_t len, | 
 |                  unsigned char *out, size_t d, size_t r) | 
 | { | 
 |     uint64_t A[5][5]; | 
 |  | 
 |     memset(A, 0, sizeof(A)); | 
 |     SHA3_absorb(A, inp, len, r); | 
 |     SHA3_squeeze(A, out, d, r); | 
 | } | 
 |  | 
 | # include <stdio.h> | 
 |  | 
 | int main() | 
 | { | 
 |     /* | 
 |      * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing | 
 |      */ | 
 |     unsigned char test[168] = { '\xf3', '\x3' }; | 
 |     unsigned char out[512]; | 
 |     size_t i; | 
 |     static const unsigned char result[512] = { | 
 |         0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, | 
 |         0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, | 
 |         0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, | 
 |         0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, | 
 |         0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, | 
 |         0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, | 
 |         0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, | 
 |         0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, | 
 |         0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, | 
 |         0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, | 
 |         0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, | 
 |         0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, | 
 |         0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, | 
 |         0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, | 
 |         0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, | 
 |         0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, | 
 |         0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, | 
 |         0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, | 
 |         0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, | 
 |         0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, | 
 |         0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, | 
 |         0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, | 
 |         0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, | 
 |         0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, | 
 |         0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, | 
 |         0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, | 
 |         0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, | 
 |         0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, | 
 |         0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, | 
 |         0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, | 
 |         0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, | 
 |         0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, | 
 |         0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, | 
 |         0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, | 
 |         0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, | 
 |         0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, | 
 |         0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, | 
 |         0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, | 
 |         0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, | 
 |         0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, | 
 |         0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, | 
 |         0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, | 
 |         0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, | 
 |         0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, | 
 |         0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, | 
 |         0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, | 
 |         0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, | 
 |         0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, | 
 |         0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, | 
 |         0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, | 
 |         0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, | 
 |         0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, | 
 |         0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, | 
 |         0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, | 
 |         0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, | 
 |         0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, | 
 |         0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, | 
 |         0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, | 
 |         0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, | 
 |         0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, | 
 |         0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, | 
 |         0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, | 
 |         0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, | 
 |         0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 | 
 |     }; | 
 |  | 
 |     test[167] = '\x80'; | 
 |     SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); | 
 |  | 
 |     /* | 
 |      * Rationale behind keeping output [formatted as below] is that | 
 |      * one should be able to redirect it to a file, then copy-n-paste | 
 |      * final "output val" from official example to another file, and | 
 |      * compare the two with diff(1). | 
 |      */ | 
 |     for (i = 0; i < sizeof(out);) { | 
 |         printf("%02X", out[i]); | 
 |         printf(++i % 16 && i != sizeof(out) ? " " : "\n"); | 
 |     } | 
 |  | 
 |     if (memcmp(out,result,sizeof(out))) { | 
 |         fprintf(stderr,"failure\n"); | 
 |         return 1; | 
 |     } else { | 
 |         fprintf(stderr,"success\n"); | 
 |         return 0; | 
 |     } | 
 | } | 
 | #endif |