| /* | 
 |  * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <openssl/crypto.h> | 
 | #include "modes_local.h" | 
 | #include <string.h> | 
 |  | 
 | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) | 
 | typedef size_t size_t_aX __attribute((__aligned__(1))); | 
 | #else | 
 | typedef size_t size_t_aX; | 
 | #endif | 
 |  | 
 | /* | 
 |  * The input and output encrypted as though 128bit cfb mode is being used. | 
 |  * The extra state information to record how much of the 128bit block we have | 
 |  * used is contained in *num; | 
 |  */ | 
 | void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out, | 
 |                            size_t len, const void *key, | 
 |                            unsigned char ivec[16], int *num, | 
 |                            int enc, block128_f block) | 
 | { | 
 |     unsigned int n; | 
 |     size_t l = 0; | 
 |  | 
 |     n = *num; | 
 |  | 
 |     if (enc) { | 
 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
 |         if (16 % sizeof(size_t) == 0) { /* always true actually */ | 
 |             do { | 
 |                 while (n && len) { | 
 |                     *(out++) = ivec[n] ^= *(in++); | 
 |                     --len; | 
 |                     n = (n + 1) % 16; | 
 |                 } | 
 | # if defined(STRICT_ALIGNMENT) | 
 |                 if (((size_t)in | (size_t)out | (size_t)ivec) % | 
 |                     sizeof(size_t) != 0) | 
 |                     break; | 
 | # endif | 
 |                 while (len >= 16) { | 
 |                     (*block) (ivec, ivec, key); | 
 |                     for (; n < 16; n += sizeof(size_t)) { | 
 |                         *(size_t_aX *)(out + n) = | 
 |                             *(size_t_aX *)(ivec + n) | 
 |                                 ^= *(size_t_aX *)(in + n); | 
 |                     } | 
 |                     len -= 16; | 
 |                     out += 16; | 
 |                     in += 16; | 
 |                     n = 0; | 
 |                 } | 
 |                 if (len) { | 
 |                     (*block) (ivec, ivec, key); | 
 |                     while (len--) { | 
 |                         out[n] = ivec[n] ^= in[n]; | 
 |                         ++n; | 
 |                     } | 
 |                 } | 
 |                 *num = n; | 
 |                 return; | 
 |             } while (0); | 
 |         } | 
 |         /* the rest would be commonly eliminated by x86* compiler */ | 
 | #endif | 
 |         while (l < len) { | 
 |             if (n == 0) { | 
 |                 (*block) (ivec, ivec, key); | 
 |             } | 
 |             out[l] = ivec[n] ^= in[l]; | 
 |             ++l; | 
 |             n = (n + 1) % 16; | 
 |         } | 
 |         *num = n; | 
 |     } else { | 
 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
 |         if (16 % sizeof(size_t) == 0) { /* always true actually */ | 
 |             do { | 
 |                 while (n && len) { | 
 |                     unsigned char c; | 
 |                     *(out++) = ivec[n] ^ (c = *(in++)); | 
 |                     ivec[n] = c; | 
 |                     --len; | 
 |                     n = (n + 1) % 16; | 
 |                 } | 
 | # if defined(STRICT_ALIGNMENT) | 
 |                 if (((size_t)in | (size_t)out | (size_t)ivec) % | 
 |                     sizeof(size_t) != 0) | 
 |                     break; | 
 | # endif | 
 |                 while (len >= 16) { | 
 |                     (*block) (ivec, ivec, key); | 
 |                     for (; n < 16; n += sizeof(size_t)) { | 
 |                         size_t t = *(size_t_aX *)(in + n); | 
 |                         *(size_t_aX *)(out + n) | 
 |                             = *(size_t_aX *)(ivec + n) ^ t; | 
 |                         *(size_t_aX *)(ivec + n) = t; | 
 |                     } | 
 |                     len -= 16; | 
 |                     out += 16; | 
 |                     in += 16; | 
 |                     n = 0; | 
 |                 } | 
 |                 if (len) { | 
 |                     (*block) (ivec, ivec, key); | 
 |                     while (len--) { | 
 |                         unsigned char c; | 
 |                         out[n] = ivec[n] ^ (c = in[n]); | 
 |                         ivec[n] = c; | 
 |                         ++n; | 
 |                     } | 
 |                 } | 
 |                 *num = n; | 
 |                 return; | 
 |             } while (0); | 
 |         } | 
 |         /* the rest would be commonly eliminated by x86* compiler */ | 
 | #endif | 
 |         while (l < len) { | 
 |             unsigned char c; | 
 |             if (n == 0) { | 
 |                 (*block) (ivec, ivec, key); | 
 |             } | 
 |             out[l] = ivec[n] ^ (c = in[l]); | 
 |             ivec[n] = c; | 
 |             ++l; | 
 |             n = (n + 1) % 16; | 
 |         } | 
 |         *num = n; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * This expects a single block of size nbits for both in and out. Note that | 
 |  * it corrupts any extra bits in the last byte of out | 
 |  */ | 
 | static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out, | 
 |                                int nbits, const void *key, | 
 |                                unsigned char ivec[16], int enc, | 
 |                                block128_f block) | 
 | { | 
 |     int n, rem, num; | 
 |     unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't | 
 |                                      * use) one byte off the end */ | 
 |  | 
 |     if (nbits <= 0 || nbits > 128) | 
 |         return; | 
 |  | 
 |     /* fill in the first half of the new IV with the current IV */ | 
 |     memcpy(ovec, ivec, 16); | 
 |     /* construct the new IV */ | 
 |     (*block) (ivec, ivec, key); | 
 |     num = (nbits + 7) / 8; | 
 |     if (enc)                    /* encrypt the input */ | 
 |         for (n = 0; n < num; ++n) | 
 |             out[n] = (ovec[16 + n] = in[n] ^ ivec[n]); | 
 |     else                        /* decrypt the input */ | 
 |         for (n = 0; n < num; ++n) | 
 |             out[n] = (ovec[16 + n] = in[n]) ^ ivec[n]; | 
 |     /* shift ovec left... */ | 
 |     rem = nbits % 8; | 
 |     num = nbits / 8; | 
 |     if (rem == 0) | 
 |         memcpy(ivec, ovec + num, 16); | 
 |     else | 
 |         for (n = 0; n < 16; ++n) | 
 |             ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem); | 
 |  | 
 |     /* it is not necessary to cleanse ovec, since the IV is not secret */ | 
 | } | 
 |  | 
 | /* N.B. This expects the input to be packed, MS bit first */ | 
 | void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out, | 
 |                              size_t bits, const void *key, | 
 |                              unsigned char ivec[16], int *num, | 
 |                              int enc, block128_f block) | 
 | { | 
 |     size_t n; | 
 |     unsigned char c[1], d[1]; | 
 |  | 
 |     for (n = 0; n < bits; ++n) { | 
 |         c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; | 
 |         cfbr_encrypt_block(c, d, 1, key, ivec, enc, block); | 
 |         out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) | | 
 |             ((d[0] & 0x80) >> (unsigned int)(n % 8)); | 
 |     } | 
 | } | 
 |  | 
 | void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out, | 
 |                              size_t length, const void *key, | 
 |                              unsigned char ivec[16], int *num, | 
 |                              int enc, block128_f block) | 
 | { | 
 |     size_t n; | 
 |  | 
 |     for (n = 0; n < length; ++n) | 
 |         cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block); | 
 | } |