| /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | /* __ieee754_log(x) | 
 |  * Return the logrithm of x | 
 |  * | 
 |  * Method : | 
 |  *   1. Argument Reduction: find k and f such that | 
 |  *			x = 2^k * (1+f), | 
 |  *	   where  sqrt(2)/2 < 1+f < sqrt(2) . | 
 |  * | 
 |  *   2. Approximation of log(1+f). | 
 |  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | 
 |  *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., | 
 |  *	     	 = 2s + s*R | 
 |  *      We use a special Reme algorithm on [0,0.1716] to generate | 
 |  * 	a polynomial of degree 14 to approximate R The maximum error | 
 |  *	of this polynomial approximation is bounded by 2**-58.45. In | 
 |  *	other words, | 
 |  *		        2      4      6      8      10      12      14 | 
 |  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s | 
 |  *  	(the values of Lg1 to Lg7 are listed in the program) | 
 |  *	and | 
 |  *	    |      2          14          |     -58.45 | 
 |  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2 | 
 |  *	    |                             | | 
 |  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | 
 |  *	In order to guarantee error in log below 1ulp, we compute log | 
 |  *	by | 
 |  *		log(1+f) = f - s*(f - R)	(if f is not too large) | 
 |  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy) | 
 |  * | 
 |  *	3. Finally,  log(x) = k*ln2 + log(1+f). | 
 |  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | 
 |  *	   Here ln2 is split into two floating point number: | 
 |  *			ln2_hi + ln2_lo, | 
 |  *	   where n*ln2_hi is always exact for |n| < 2000. | 
 |  * | 
 |  * Special cases: | 
 |  *	log(x) is NaN with signal if x < 0 (including -INF) ; | 
 |  *	log(+INF) is +INF; log(0) is -INF with signal; | 
 |  *	log(NaN) is that NaN with no signal. | 
 |  * | 
 |  * Accuracy: | 
 |  *	according to an error analysis, the error is always less than | 
 |  *	1 ulp (unit in the last place). | 
 |  * | 
 |  * Constants: | 
 |  * The hexadecimal values are the intended ones for the following | 
 |  * constants. The decimal values may be used, provided that the | 
 |  * compiler will convert from decimal to binary accurately enough | 
 |  * to produce the hexadecimal values shown. | 
 |  */ | 
 |  | 
 | #include "math.h" | 
 | #include "math_private.h" | 
 |  | 
 | static const double | 
 | ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */ | 
 | ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */ | 
 | two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */ | 
 | Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */ | 
 | Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */ | 
 | Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */ | 
 | Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */ | 
 | Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */ | 
 | Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */ | 
 | Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */ | 
 |  | 
 | static const double zero   =  0.0; | 
 |  | 
 | double attribute_hidden __ieee754_log(double x) | 
 | { | 
 | 	double hfsq,f,s,z,R,w,t1,t2,dk; | 
 | 	int32_t k,hx,i,j; | 
 | 	u_int32_t lx; | 
 |  | 
 | 	EXTRACT_WORDS(hx,lx,x); | 
 |  | 
 | 	k=0; | 
 | 	if (hx < 0x00100000) {			/* x < 2**-1022  */ | 
 | 	    if (((hx&0x7fffffff)|lx)==0) | 
 | 		return -two54/zero;		/* log(+-0)=-inf */ | 
 | 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */ | 
 | 	    k -= 54; x *= two54; /* subnormal number, scale up x */ | 
 | 	    GET_HIGH_WORD(hx,x); | 
 | 	} | 
 | 	if (hx >= 0x7ff00000) return x+x; | 
 | 	k += (hx>>20)-1023; | 
 | 	hx &= 0x000fffff; | 
 | 	i = (hx+0x95f64)&0x100000; | 
 | 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */ | 
 | 	k += (i>>20); | 
 | 	f = x-1.0; | 
 | 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */ | 
 | 	    if(f==zero) {if(k==0) return zero;  else {dk=(double)k; | 
 | 				 return dk*ln2_hi+dk*ln2_lo;} | 
 | 	    } | 
 | 	    R = f*f*(0.5-0.33333333333333333*f); | 
 | 	    if(k==0) return f-R; else {dk=(double)k; | 
 | 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);} | 
 | 	} | 
 |  	s = f/(2.0+f); | 
 | 	dk = (double)k; | 
 | 	z = s*s; | 
 | 	i = hx-0x6147a; | 
 | 	w = z*z; | 
 | 	j = 0x6b851-hx; | 
 | 	t1= w*(Lg2+w*(Lg4+w*Lg6)); | 
 | 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); | 
 | 	i |= j; | 
 | 	R = t2+t1; | 
 | 	if(i>0) { | 
 | 	    hfsq=0.5*f*f; | 
 | 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else | 
 | 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); | 
 | 	} else { | 
 | 	    if(k==0) return f-s*(f-R); else | 
 | 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * wrapper log(x) | 
 |  */ | 
 | #ifndef _IEEE_LIBM | 
 | double log(double x) | 
 | { | 
 | 	double z = __ieee754_log(x); | 
 | 	if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) | 
 | 		return z; | 
 | 	if (x == 0.0) | 
 | 		return __kernel_standard(x, x, 16); /* log(0) */ | 
 | 	return __kernel_standard(x, x, 17); /* log(x<0) */ | 
 | } | 
 | #else | 
 | strong_alias(__ieee754_log, log) | 
 | #endif | 
 | libm_hidden_def(log) |