|  | /* Subroutines needed for unwinding stack frames for exception handling.  */ | 
|  | /* Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | Contributed by Jason Merrill <jason@cygnus.com>. | 
|  |  | 
|  | This file is part of the GNU C Library. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #ifdef _LIBC | 
|  | # include <shlib-compat.h> | 
|  | #endif | 
|  |  | 
|  | #if !defined _LIBC || SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_2_5) | 
|  |  | 
|  | #ifdef _LIBC | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <libc-lock.h> | 
|  | #include <dwarf2.h> | 
|  | #include <unwind.h> | 
|  | #define NO_BASE_OF_ENCODED_VALUE | 
|  | #include <unwind-pe.h> | 
|  | #include <unwind-dw2-fde.h> | 
|  | #else | 
|  | #ifndef _Unwind_Find_FDE | 
|  | #include "tconfig.h" | 
|  | #include "tsystem.h" | 
|  | #include "dwarf2.h" | 
|  | #include "unwind.h" | 
|  | #define NO_BASE_OF_ENCODED_VALUE | 
|  | #include "unwind-pe.h" | 
|  | #include "unwind-dw2-fde.h" | 
|  | #include "gthr.h" | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* The unseen_objects list contains objects that have been registered | 
|  | but not yet categorized in any way.  The seen_objects list has had | 
|  | it's pc_begin and count fields initialized at minimum, and is sorted | 
|  | by decreasing value of pc_begin.  */ | 
|  | static struct object *unseen_objects; | 
|  | static struct object *seen_objects; | 
|  |  | 
|  | #ifdef _LIBC | 
|  |  | 
|  | __libc_lock_define_initialized (static, object_mutex) | 
|  | #define init_object_mutex_once() | 
|  | #define __gthread_mutex_lock(m) __libc_lock_lock (*(m)) | 
|  | #define __gthread_mutex_unlock(m) __libc_lock_unlock (*(m)) | 
|  |  | 
|  | void __register_frame_info_bases (void *begin, struct object *ob, | 
|  | void *tbase, void *dbase); | 
|  | hidden_proto (__register_frame_info_bases) | 
|  | void __register_frame_info_table_bases (void *begin, | 
|  | struct object *ob, | 
|  | void *tbase, void *dbase); | 
|  | hidden_proto (__register_frame_info_table_bases) | 
|  | void *__deregister_frame_info_bases (void *begin); | 
|  | hidden_proto (__deregister_frame_info_bases) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #ifdef __GTHREAD_MUTEX_INIT | 
|  | static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT; | 
|  | #else | 
|  | static __gthread_mutex_t object_mutex; | 
|  | #endif | 
|  |  | 
|  | #ifdef __GTHREAD_MUTEX_INIT_FUNCTION | 
|  | static void | 
|  | init_object_mutex (void) | 
|  | { | 
|  | __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex); | 
|  | } | 
|  |  | 
|  | static void | 
|  | init_object_mutex_once (void) | 
|  | { | 
|  | static __gthread_once_t once = __GTHREAD_ONCE_INIT; | 
|  | __gthread_once (&once, init_object_mutex); | 
|  | } | 
|  | #else | 
|  | #define init_object_mutex_once() | 
|  | #endif | 
|  |  | 
|  | #endif /* _LIBC */ | 
|  |  | 
|  | /* Called from crtbegin.o to register the unwind info for an object.  */ | 
|  |  | 
|  | void | 
|  | __register_frame_info_bases (void *begin, struct object *ob, | 
|  | void *tbase, void *dbase) | 
|  | { | 
|  | /* If .eh_frame is empty, don't register at all.  */ | 
|  | if (*(uword *) begin == 0) | 
|  | return; | 
|  |  | 
|  | ob->pc_begin = (void *)-1; | 
|  | ob->tbase = tbase; | 
|  | ob->dbase = dbase; | 
|  | ob->u.single = begin; | 
|  | ob->s.i = 0; | 
|  | ob->s.b.encoding = DW_EH_PE_omit; | 
|  | #ifdef DWARF2_OBJECT_END_PTR_EXTENSION | 
|  | ob->fde_end = NULL; | 
|  | #endif | 
|  |  | 
|  | init_object_mutex_once (); | 
|  | __gthread_mutex_lock (&object_mutex); | 
|  |  | 
|  | ob->next = unseen_objects; | 
|  | unseen_objects = ob; | 
|  |  | 
|  | __gthread_mutex_unlock (&object_mutex); | 
|  | } | 
|  | hidden_def (__register_frame_info_bases) | 
|  |  | 
|  | void | 
|  | __register_frame_info (void *begin, struct object *ob) | 
|  | { | 
|  | __register_frame_info_bases (begin, ob, 0, 0); | 
|  | } | 
|  |  | 
|  | void | 
|  | __register_frame (void *begin) | 
|  | { | 
|  | struct object *ob; | 
|  |  | 
|  | /* If .eh_frame is empty, don't register at all.  */ | 
|  | if (*(uword *) begin == 0) | 
|  | return; | 
|  |  | 
|  | ob = (struct object *) malloc (sizeof (struct object)); | 
|  | __register_frame_info_bases (begin, ob, 0, 0); | 
|  | } | 
|  |  | 
|  | /* Similar, but BEGIN is actually a pointer to a table of unwind entries | 
|  | for different translation units.  Called from the file generated by | 
|  | collect2.  */ | 
|  |  | 
|  | void | 
|  | __register_frame_info_table_bases (void *begin, struct object *ob, | 
|  | void *tbase, void *dbase) | 
|  | { | 
|  | ob->pc_begin = (void *)-1; | 
|  | ob->tbase = tbase; | 
|  | ob->dbase = dbase; | 
|  | ob->u.array = begin; | 
|  | ob->s.i = 0; | 
|  | ob->s.b.from_array = 1; | 
|  | ob->s.b.encoding = DW_EH_PE_omit; | 
|  |  | 
|  | init_object_mutex_once (); | 
|  | __gthread_mutex_lock (&object_mutex); | 
|  |  | 
|  | ob->next = unseen_objects; | 
|  | unseen_objects = ob; | 
|  |  | 
|  | __gthread_mutex_unlock (&object_mutex); | 
|  | } | 
|  | hidden_def (__register_frame_info_table_bases) | 
|  |  | 
|  | void | 
|  | __register_frame_info_table (void *begin, struct object *ob) | 
|  | { | 
|  | __register_frame_info_table_bases (begin, ob, 0, 0); | 
|  | } | 
|  |  | 
|  | void | 
|  | __register_frame_table (void *begin) | 
|  | { | 
|  | struct object *ob = (struct object *) malloc (sizeof (struct object)); | 
|  | __register_frame_info_table_bases (begin, ob, 0, 0); | 
|  | } | 
|  |  | 
|  | /* Called from crtbegin.o to deregister the unwind info for an object.  */ | 
|  | /* ??? Glibc has for a while now exported __register_frame_info and | 
|  | __deregister_frame_info.  If we call __register_frame_info_bases | 
|  | from crtbegin (wherein it is declared weak), and this object does | 
|  | not get pulled from libgcc.a for other reasons, then the | 
|  | invocation of __deregister_frame_info will be resolved from glibc. | 
|  | Since the registration did not happen there, we'll abort. | 
|  |  | 
|  | Therefore, declare a new deregistration entry point that does the | 
|  | exact same thing, but will resolve to the same library as | 
|  | implements __register_frame_info_bases.  */ | 
|  |  | 
|  | void * | 
|  | __deregister_frame_info_bases (void *begin) | 
|  | { | 
|  | struct object **p; | 
|  | struct object *ob = 0; | 
|  |  | 
|  | /* If .eh_frame is empty, we haven't registered.  */ | 
|  | if (*(uword *) begin == 0) | 
|  | return ob; | 
|  |  | 
|  | init_object_mutex_once (); | 
|  | __gthread_mutex_lock (&object_mutex); | 
|  |  | 
|  | for (p = &unseen_objects; *p ; p = &(*p)->next) | 
|  | if ((*p)->u.single == begin) | 
|  | { | 
|  | ob = *p; | 
|  | *p = ob->next; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (p = &seen_objects; *p ; p = &(*p)->next) | 
|  | if ((*p)->s.b.sorted) | 
|  | { | 
|  | if ((*p)->u.sort->orig_data == begin) | 
|  | { | 
|  | ob = *p; | 
|  | *p = ob->next; | 
|  | free (ob->u.sort); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if ((*p)->u.single == begin) | 
|  | { | 
|  | ob = *p; | 
|  | *p = ob->next; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | __gthread_mutex_unlock (&object_mutex); | 
|  | abort (); | 
|  |  | 
|  | out: | 
|  | __gthread_mutex_unlock (&object_mutex); | 
|  | return (void *) ob; | 
|  | } | 
|  | hidden_def (__deregister_frame_info_bases) | 
|  |  | 
|  | void * | 
|  | __deregister_frame_info (void *begin) | 
|  | { | 
|  | return __deregister_frame_info_bases (begin); | 
|  | } | 
|  |  | 
|  | void | 
|  | __deregister_frame (void *begin) | 
|  | { | 
|  | /* If .eh_frame is empty, we haven't registered.  */ | 
|  | if (*(uword *) begin != 0) | 
|  | free (__deregister_frame_info_bases (begin)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Like base_of_encoded_value, but take the base from a struct object | 
|  | instead of an _Unwind_Context.  */ | 
|  |  | 
|  | static _Unwind_Ptr | 
|  | base_from_object (unsigned char encoding, struct object *ob) | 
|  | { | 
|  | if (encoding == DW_EH_PE_omit) | 
|  | return 0; | 
|  |  | 
|  | switch (encoding & 0x70) | 
|  | { | 
|  | case DW_EH_PE_absptr: | 
|  | case DW_EH_PE_pcrel: | 
|  | case DW_EH_PE_aligned: | 
|  | return 0; | 
|  |  | 
|  | case DW_EH_PE_textrel: | 
|  | return (_Unwind_Ptr) ob->tbase; | 
|  | case DW_EH_PE_datarel: | 
|  | return (_Unwind_Ptr) ob->dbase; | 
|  | } | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | /* Return the FDE pointer encoding from the CIE.  */ | 
|  | /* ??? This is a subset of extract_cie_info from unwind-dw2.c.  */ | 
|  |  | 
|  | static int | 
|  | get_cie_encoding (struct dwarf_cie *cie) | 
|  | { | 
|  | const unsigned char *aug, *p; | 
|  | _Unwind_Ptr dummy; | 
|  | _Unwind_Word utmp; | 
|  | _Unwind_Sword stmp; | 
|  |  | 
|  | aug = cie->augmentation; | 
|  | if (aug[0] != 'z') | 
|  | return DW_EH_PE_absptr; | 
|  |  | 
|  | /* Skip the augmentation string.  */ | 
|  | p = aug + strlen ((const char *) aug) + 1; | 
|  | p = read_uleb128 (p, &utmp);		/* Skip code alignment.  */ | 
|  | p = read_sleb128 (p, &stmp);		/* Skip data alignment.  */ | 
|  | p++;					/* Skip return address column.  */ | 
|  |  | 
|  | aug++;				/* Skip 'z' */ | 
|  | p = read_uleb128 (p, &utmp);		/* Skip augmentation length.  */ | 
|  | while (1) | 
|  | { | 
|  | /* This is what we're looking for.  */ | 
|  | if (*aug == 'R') | 
|  | return *p; | 
|  | /* Personality encoding and pointer.  */ | 
|  | else if (*aug == 'P') | 
|  | { | 
|  | /* ??? Avoid dereferencing indirect pointers, since we're | 
|  | faking the base address.  Gotta keep DW_EH_PE_aligned | 
|  | intact, however.  */ | 
|  | p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy); | 
|  | } | 
|  | /* LSDA encoding.  */ | 
|  | else if (*aug == 'L') | 
|  | p++; | 
|  | /* Otherwise end of string, or unknown augmentation.  */ | 
|  | else | 
|  | return DW_EH_PE_absptr; | 
|  | aug++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | get_fde_encoding (struct dwarf_fde *f) | 
|  | { | 
|  | return get_cie_encoding (get_cie (f)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Sorting an array of FDEs by address. | 
|  | (Ideally we would have the linker sort the FDEs so we don't have to do | 
|  | it at run time. But the linkers are not yet prepared for this.)  */ | 
|  |  | 
|  | /* Return the Nth pc_begin value from FDE x.  */ | 
|  |  | 
|  | static inline _Unwind_Ptr | 
|  | get_pc_begin (fde *x, size_t n) | 
|  | { | 
|  | _Unwind_Ptr p; | 
|  | memcpy (&p, x->pc_begin + n * sizeof (_Unwind_Ptr), sizeof (_Unwind_Ptr)); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* Comparison routines.  Three variants of increasing complexity.  */ | 
|  |  | 
|  | static int | 
|  | fde_unencoded_compare (struct object *ob __attribute__((unused)), | 
|  | fde *x, fde *y) | 
|  | { | 
|  | _Unwind_Ptr x_ptr = get_pc_begin (x, 0); | 
|  | _Unwind_Ptr y_ptr = get_pc_begin (y, 0); | 
|  |  | 
|  | if (x_ptr > y_ptr) | 
|  | return 1; | 
|  | if (x_ptr < y_ptr) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | fde_single_encoding_compare (struct object *ob, fde *x, fde *y) | 
|  | { | 
|  | _Unwind_Ptr base, x_ptr, y_ptr; | 
|  |  | 
|  | base = base_from_object (ob->s.b.encoding, ob); | 
|  | read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr); | 
|  | read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr); | 
|  |  | 
|  | if (x_ptr > y_ptr) | 
|  | return 1; | 
|  | if (x_ptr < y_ptr) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y) | 
|  | { | 
|  | int x_encoding, y_encoding; | 
|  | _Unwind_Ptr x_ptr, y_ptr; | 
|  |  | 
|  | x_encoding = get_fde_encoding (x); | 
|  | read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob), | 
|  | x->pc_begin, &x_ptr); | 
|  |  | 
|  | y_encoding = get_fde_encoding (y); | 
|  | read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob), | 
|  | y->pc_begin, &y_ptr); | 
|  |  | 
|  | if (x_ptr > y_ptr) | 
|  | return 1; | 
|  | if (x_ptr < y_ptr) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef int (*fde_compare_t) (struct object *, fde *, fde *); | 
|  |  | 
|  |  | 
|  | /* This is a special mix of insertion sort and heap sort, optimized for | 
|  | the data sets that actually occur. They look like | 
|  | 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130. | 
|  | I.e. a linearly increasing sequence (coming from functions in the text | 
|  | section), with additionally a few unordered elements (coming from functions | 
|  | in gnu_linkonce sections) whose values are higher than the values in the | 
|  | surrounding linear sequence (but not necessarily higher than the values | 
|  | at the end of the linear sequence!). | 
|  | The worst-case total run time is O(N) + O(n log (n)), where N is the | 
|  | total number of FDEs and n is the number of erratic ones.  */ | 
|  |  | 
|  | struct fde_accumulator | 
|  | { | 
|  | struct fde_vector *linear; | 
|  | struct fde_vector *erratic; | 
|  | }; | 
|  |  | 
|  | static int | 
|  | start_fde_sort (struct fde_accumulator *accu, size_t count) | 
|  | { | 
|  | size_t size; | 
|  | if (! count) | 
|  | return 0; | 
|  |  | 
|  | size = sizeof (struct fde_vector) + sizeof (fde *) * count; | 
|  | if ((accu->linear = (struct fde_vector *) malloc (size))) | 
|  | { | 
|  | accu->linear->count = 0; | 
|  | if ((accu->erratic = (struct fde_vector *) malloc (size))) | 
|  | accu->erratic->count = 0; | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | fde_insert (struct fde_accumulator *accu, fde *this_fde) | 
|  | { | 
|  | if (accu->linear) | 
|  | accu->linear->array[accu->linear->count++] = this_fde; | 
|  | } | 
|  |  | 
|  | /* Split LINEAR into a linear sequence with low values and an erratic | 
|  | sequence with high values, put the linear one (of longest possible | 
|  | length) into LINEAR and the erratic one into ERRATIC. This is O(N). | 
|  |  | 
|  | Because the longest linear sequence we are trying to locate within the | 
|  | incoming LINEAR array can be interspersed with (high valued) erratic | 
|  | entries.  We construct a chain indicating the sequenced entries. | 
|  | To avoid having to allocate this chain, we overlay it onto the space of | 
|  | the ERRATIC array during construction.  A final pass iterates over the | 
|  | chain to determine what should be placed in the ERRATIC array, and | 
|  | what is the linear sequence.  This overlay is safe from aliasing.  */ | 
|  |  | 
|  | static void | 
|  | fde_split (struct object *ob, fde_compare_t fde_compare, | 
|  | struct fde_vector *linear, struct fde_vector *erratic) | 
|  | { | 
|  | static fde *marker; | 
|  | size_t count = linear->count; | 
|  | fde **chain_end = ▮ | 
|  | size_t i, j, k; | 
|  |  | 
|  | /* This should optimize out, but it is wise to make sure this assumption | 
|  | is correct. Should these have different sizes, we cannot cast between | 
|  | them and the overlaying onto ERRATIC will not work.  */ | 
|  | if (sizeof (fde *) != sizeof (fde **)) | 
|  | abort (); | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | { | 
|  | fde **probe; | 
|  |  | 
|  | for (probe = chain_end; | 
|  | probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0; | 
|  | probe = chain_end) | 
|  | { | 
|  | chain_end = (fde **) erratic->array[probe - linear->array]; | 
|  | erratic->array[probe - linear->array] = NULL; | 
|  | } | 
|  | erratic->array[i] = (fde *) chain_end; | 
|  | chain_end = &linear->array[i]; | 
|  | } | 
|  |  | 
|  | /* Each entry in LINEAR which is part of the linear sequence we have | 
|  | discovered will correspond to a non-NULL entry in the chain we built in | 
|  | the ERRATIC array.  */ | 
|  | for (i = j = k = 0; i < count; i++) | 
|  | if (erratic->array[i]) | 
|  | linear->array[j++] = linear->array[i]; | 
|  | else | 
|  | erratic->array[k++] = linear->array[i]; | 
|  | linear->count = j; | 
|  | erratic->count = k; | 
|  | } | 
|  |  | 
|  | /* This is O(n log(n)).  BSD/OS defines heapsort in stdlib.h, so we must | 
|  | use a name that does not conflict.  */ | 
|  |  | 
|  | static void | 
|  | frame_heapsort (struct object *ob, fde_compare_t fde_compare, | 
|  | struct fde_vector *erratic) | 
|  | { | 
|  | /* For a description of this algorithm, see: | 
|  | Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed., | 
|  | p. 60-61.  */ | 
|  | fde ** a = erratic->array; | 
|  | /* A portion of the array is called a "heap" if for all i>=0: | 
|  | If i and 2i+1 are valid indices, then a[i] >= a[2i+1]. | 
|  | If i and 2i+2 are valid indices, then a[i] >= a[2i+2].  */ | 
|  | #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0) | 
|  | size_t n = erratic->count; | 
|  | size_t m = n; | 
|  | size_t i; | 
|  |  | 
|  | while (m > 0) | 
|  | { | 
|  | /* Invariant: a[m..n-1] is a heap.  */ | 
|  | m--; | 
|  | for (i = m; 2*i+1 < n; ) | 
|  | { | 
|  | if (2*i+2 < n | 
|  | && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0 | 
|  | && fde_compare (ob, a[2*i+2], a[i]) > 0) | 
|  | { | 
|  | SWAP (a[i], a[2*i+2]); | 
|  | i = 2*i+2; | 
|  | } | 
|  | else if (fde_compare (ob, a[2*i+1], a[i]) > 0) | 
|  | { | 
|  | SWAP (a[i], a[2*i+1]); | 
|  | i = 2*i+1; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  | while (n > 1) | 
|  | { | 
|  | /* Invariant: a[0..n-1] is a heap.  */ | 
|  | n--; | 
|  | SWAP (a[0], a[n]); | 
|  | for (i = 0; 2*i+1 < n; ) | 
|  | { | 
|  | if (2*i+2 < n | 
|  | && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0 | 
|  | && fde_compare (ob, a[2*i+2], a[i]) > 0) | 
|  | { | 
|  | SWAP (a[i], a[2*i+2]); | 
|  | i = 2*i+2; | 
|  | } | 
|  | else if (fde_compare (ob, a[2*i+1], a[i]) > 0) | 
|  | { | 
|  | SWAP (a[i], a[2*i+1]); | 
|  | i = 2*i+1; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  | #undef SWAP | 
|  | } | 
|  |  | 
|  | /* Merge V1 and V2, both sorted, and put the result into V1.  */ | 
|  | static void | 
|  | fde_merge (struct object *ob, fde_compare_t fde_compare, | 
|  | struct fde_vector *v1, struct fde_vector *v2) | 
|  | { | 
|  | size_t i1, i2; | 
|  | fde * fde2; | 
|  |  | 
|  | i2 = v2->count; | 
|  | if (i2 > 0) | 
|  | { | 
|  | i1 = v1->count; | 
|  | do | 
|  | { | 
|  | i2--; | 
|  | fde2 = v2->array[i2]; | 
|  | while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0) | 
|  | { | 
|  | v1->array[i1+i2] = v1->array[i1-1]; | 
|  | i1--; | 
|  | } | 
|  | v1->array[i1+i2] = fde2; | 
|  | } | 
|  | while (i2 > 0); | 
|  | v1->count += v2->count; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count) | 
|  | { | 
|  | fde_compare_t fde_compare; | 
|  |  | 
|  | if (accu->linear->count != count) | 
|  | abort (); | 
|  |  | 
|  | if (ob->s.b.mixed_encoding) | 
|  | fde_compare = fde_mixed_encoding_compare; | 
|  | else if (ob->s.b.encoding == DW_EH_PE_absptr) | 
|  | fde_compare = fde_unencoded_compare; | 
|  | else | 
|  | fde_compare = fde_single_encoding_compare; | 
|  |  | 
|  | if (accu->erratic) | 
|  | { | 
|  | fde_split (ob, fde_compare, accu->linear, accu->erratic); | 
|  | if (accu->linear->count + accu->erratic->count != count) | 
|  | abort (); | 
|  | frame_heapsort (ob, fde_compare, accu->erratic); | 
|  | fde_merge (ob, fde_compare, accu->linear, accu->erratic); | 
|  | free (accu->erratic); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We've not managed to malloc an erratic array, | 
|  | so heap sort in the linear one.  */ | 
|  | frame_heapsort (ob, fde_compare, accu->linear); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Update encoding, mixed_encoding, and pc_begin for OB for the | 
|  | fde array beginning at THIS_FDE.  Return the number of fdes | 
|  | encountered along the way.  */ | 
|  |  | 
|  | static size_t | 
|  | classify_object_over_fdes (struct object *ob, fde *this_fde) | 
|  | { | 
|  | struct dwarf_cie *last_cie = 0; | 
|  | size_t count = 0; | 
|  | int encoding = DW_EH_PE_absptr; | 
|  | _Unwind_Ptr base = 0; | 
|  |  | 
|  | for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
|  | { | 
|  | struct dwarf_cie *this_cie; | 
|  | _Unwind_Ptr mask, pc_begin; | 
|  |  | 
|  | /* Skip CIEs.  */ | 
|  | if (this_fde->CIE_delta == 0) | 
|  | continue; | 
|  |  | 
|  | /* Determine the encoding for this FDE.  Note mixed encoded | 
|  | objects for later.  */ | 
|  | this_cie = get_cie (this_fde); | 
|  | if (this_cie != last_cie) | 
|  | { | 
|  | last_cie = this_cie; | 
|  | encoding = get_cie_encoding (this_cie); | 
|  | base = base_from_object (encoding, ob); | 
|  | if (ob->s.b.encoding == DW_EH_PE_omit) | 
|  | ob->s.b.encoding = encoding; | 
|  | else if (ob->s.b.encoding != encoding) | 
|  | ob->s.b.mixed_encoding = 1; | 
|  | } | 
|  |  | 
|  | read_encoded_value_with_base (encoding, base, this_fde->pc_begin, | 
|  | &pc_begin); | 
|  |  | 
|  | /* Take care to ignore link-once functions that were removed. | 
|  | In these cases, the function address will be NULL, but if | 
|  | the encoding is smaller than a pointer a true NULL may not | 
|  | be representable.  Assume 0 in the representable bits is NULL.  */ | 
|  | mask = size_of_encoded_value (encoding); | 
|  | if (mask < sizeof (void *)) | 
|  | mask = (1L << (mask << 3)) - 1; | 
|  | else | 
|  | mask = -1; | 
|  |  | 
|  | if ((pc_begin & mask) == 0) | 
|  | continue; | 
|  |  | 
|  | count += 1; | 
|  | if ((void *) pc_begin < ob->pc_begin) | 
|  | ob->pc_begin = (void *) pc_begin; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde) | 
|  | { | 
|  | struct dwarf_cie *last_cie = 0; | 
|  | int encoding = ob->s.b.encoding; | 
|  | _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); | 
|  |  | 
|  | for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
|  | { | 
|  | struct dwarf_cie *this_cie; | 
|  |  | 
|  | /* Skip CIEs.  */ | 
|  | if (this_fde->CIE_delta == 0) | 
|  | continue; | 
|  |  | 
|  | if (ob->s.b.mixed_encoding) | 
|  | { | 
|  | /* Determine the encoding for this FDE.  Note mixed encoded | 
|  | objects for later.  */ | 
|  | this_cie = get_cie (this_fde); | 
|  | if (this_cie != last_cie) | 
|  | { | 
|  | last_cie = this_cie; | 
|  | encoding = get_cie_encoding (this_cie); | 
|  | base = base_from_object (encoding, ob); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (encoding == DW_EH_PE_absptr) | 
|  | { | 
|  | if (get_pc_begin (this_fde, 0) == 0) | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | _Unwind_Ptr pc_begin, mask; | 
|  |  | 
|  | read_encoded_value_with_base (encoding, base, this_fde->pc_begin, | 
|  | &pc_begin); | 
|  |  | 
|  | /* Take care to ignore link-once functions that were removed. | 
|  | In these cases, the function address will be NULL, but if | 
|  | the encoding is smaller than a pointer a true NULL may not | 
|  | be representable.  Assume 0 in the representable bits is NULL.  */ | 
|  | mask = size_of_encoded_value (encoding); | 
|  | if (mask < sizeof (void *)) | 
|  | mask = (1L << (mask << 3)) - 1; | 
|  | else | 
|  | mask = -1; | 
|  |  | 
|  | if ((pc_begin & mask) == 0) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | fde_insert (accu, this_fde); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set up a sorted array of pointers to FDEs for a loaded object.  We | 
|  | count up the entries before allocating the array because it's likely to | 
|  | be faster.  We can be called multiple times, should we have failed to | 
|  | allocate a sorted fde array on a previous occasion.  */ | 
|  |  | 
|  | static void | 
|  | init_object (struct object* ob) | 
|  | { | 
|  | struct fde_accumulator accu; | 
|  | size_t count; | 
|  |  | 
|  | count = ob->s.b.count; | 
|  | if (count == 0) | 
|  | { | 
|  | if (ob->s.b.from_array) | 
|  | { | 
|  | fde **p = ob->u.array; | 
|  | for (count = 0; *p; ++p) | 
|  | count += classify_object_over_fdes (ob, *p); | 
|  | } | 
|  | else | 
|  | count = classify_object_over_fdes (ob, ob->u.single); | 
|  |  | 
|  | /* The count field we have in the main struct object is somewhat | 
|  | limited, but should suffice for virtually all cases.  If the | 
|  | counted value doesn't fit, re-write a zero.  The worst that | 
|  | happens is that we re-count next time -- admittedly non-trivial | 
|  | in that this implies some 2M fdes, but at least we function.  */ | 
|  | ob->s.b.count = count; | 
|  | if (ob->s.b.count != count) | 
|  | ob->s.b.count = 0; | 
|  | } | 
|  |  | 
|  | if (!start_fde_sort (&accu, count)) | 
|  | return; | 
|  |  | 
|  | if (ob->s.b.from_array) | 
|  | { | 
|  | fde **p; | 
|  | for (p = ob->u.array; *p; ++p) | 
|  | add_fdes (ob, &accu, *p); | 
|  | } | 
|  | else | 
|  | add_fdes (ob, &accu, ob->u.single); | 
|  |  | 
|  | end_fde_sort (ob, &accu, count); | 
|  |  | 
|  | /* Save the original fde pointer, since this is the key by which the | 
|  | DSO will deregister the object.  */ | 
|  | accu.linear->orig_data = ob->u.single; | 
|  | ob->u.sort = accu.linear; | 
|  |  | 
|  | ob->s.b.sorted = 1; | 
|  | } | 
|  |  | 
|  | /* A linear search through a set of FDEs for the given PC.  This is | 
|  | used when there was insufficient memory to allocate and sort an | 
|  | array.  */ | 
|  |  | 
|  | static fde * | 
|  | linear_search_fdes (struct object *ob, fde *this_fde, void *pc) | 
|  | { | 
|  | struct dwarf_cie *last_cie = 0; | 
|  | int encoding = ob->s.b.encoding; | 
|  | _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); | 
|  |  | 
|  | for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) | 
|  | { | 
|  | struct dwarf_cie *this_cie; | 
|  | _Unwind_Ptr pc_begin, pc_range; | 
|  |  | 
|  | /* Skip CIEs.  */ | 
|  | if (this_fde->CIE_delta == 0) | 
|  | continue; | 
|  |  | 
|  | if (ob->s.b.mixed_encoding) | 
|  | { | 
|  | /* Determine the encoding for this FDE.  Note mixed encoded | 
|  | objects for later.  */ | 
|  | this_cie = get_cie (this_fde); | 
|  | if (this_cie != last_cie) | 
|  | { | 
|  | last_cie = this_cie; | 
|  | encoding = get_cie_encoding (this_cie); | 
|  | base = base_from_object (encoding, ob); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (encoding == DW_EH_PE_absptr) | 
|  | { | 
|  | pc_begin = get_pc_begin (this_fde, 0); | 
|  | pc_range = get_pc_begin (this_fde, 1); | 
|  | if (pc_begin == 0) | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | _Unwind_Ptr mask; | 
|  | const unsigned char *p; | 
|  |  | 
|  | p = read_encoded_value_with_base (encoding, base, | 
|  | this_fde->pc_begin, &pc_begin); | 
|  | read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
|  |  | 
|  | /* Take care to ignore link-once functions that were removed. | 
|  | In these cases, the function address will be NULL, but if | 
|  | the encoding is smaller than a pointer a true NULL may not | 
|  | be representable.  Assume 0 in the representable bits is NULL.  */ | 
|  | mask = size_of_encoded_value (encoding); | 
|  | if (mask < sizeof (void *)) | 
|  | mask = (1L << (mask << 3)) - 1; | 
|  | else | 
|  | mask = -1; | 
|  |  | 
|  | if ((pc_begin & mask) == 0) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((_Unwind_Ptr) pc - pc_begin < pc_range) | 
|  | return this_fde; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Binary search for an FDE containing the given PC.  Here are three | 
|  | implementations of increasing complexity.  */ | 
|  |  | 
|  | static fde * | 
|  | binary_search_unencoded_fdes (struct object *ob, void *pc) | 
|  | { | 
|  | struct fde_vector *vec = ob->u.sort; | 
|  | size_t lo, hi; | 
|  |  | 
|  | for (lo = 0, hi = vec->count; lo < hi; ) | 
|  | { | 
|  | size_t i = (lo + hi) / 2; | 
|  | fde *f = vec->array[i]; | 
|  | void *pc_begin; | 
|  | uaddr pc_range; | 
|  |  | 
|  | pc_begin = (void *) get_pc_begin (f, 0); | 
|  | pc_range = (uaddr) get_pc_begin (f, 1); | 
|  |  | 
|  | if (pc < pc_begin) | 
|  | hi = i; | 
|  | else if (pc >= pc_begin + pc_range) | 
|  | lo = i + 1; | 
|  | else | 
|  | return f; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static fde * | 
|  | binary_search_single_encoding_fdes (struct object *ob, void *pc) | 
|  | { | 
|  | struct fde_vector *vec = ob->u.sort; | 
|  | int encoding = ob->s.b.encoding; | 
|  | _Unwind_Ptr base = base_from_object (encoding, ob); | 
|  | size_t lo, hi; | 
|  |  | 
|  | for (lo = 0, hi = vec->count; lo < hi; ) | 
|  | { | 
|  | size_t i = (lo + hi) / 2; | 
|  | fde *f = vec->array[i]; | 
|  | _Unwind_Ptr pc_begin, pc_range; | 
|  | const unsigned char *p; | 
|  |  | 
|  | p = read_encoded_value_with_base (encoding, base, f->pc_begin, | 
|  | &pc_begin); | 
|  | read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
|  |  | 
|  | if ((_Unwind_Ptr) pc < pc_begin) | 
|  | hi = i; | 
|  | else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) | 
|  | lo = i + 1; | 
|  | else | 
|  | return f; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static fde * | 
|  | binary_search_mixed_encoding_fdes (struct object *ob, void *pc) | 
|  | { | 
|  | struct fde_vector *vec = ob->u.sort; | 
|  | size_t lo, hi; | 
|  |  | 
|  | for (lo = 0, hi = vec->count; lo < hi; ) | 
|  | { | 
|  | size_t i = (lo + hi) / 2; | 
|  | fde *f = vec->array[i]; | 
|  | _Unwind_Ptr pc_begin, pc_range; | 
|  | const unsigned char *p; | 
|  | int encoding; | 
|  |  | 
|  | encoding = get_fde_encoding (f); | 
|  | p = read_encoded_value_with_base (encoding, | 
|  | base_from_object (encoding, ob), | 
|  | f->pc_begin, &pc_begin); | 
|  | read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); | 
|  |  | 
|  | if ((_Unwind_Ptr) pc < pc_begin) | 
|  | hi = i; | 
|  | else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) | 
|  | lo = i + 1; | 
|  | else | 
|  | return f; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static fde * | 
|  | search_object (struct object* ob, void *pc) | 
|  | { | 
|  | /* If the data hasn't been sorted, try to do this now.  We may have | 
|  | more memory available than last time we tried.  */ | 
|  | if (! ob->s.b.sorted) | 
|  | { | 
|  | init_object (ob); | 
|  |  | 
|  | /* Despite the above comment, the normal reason to get here is | 
|  | that we've not processed this object before.  A quick range | 
|  | check is in order.  */ | 
|  | if (pc < ob->pc_begin) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (ob->s.b.sorted) | 
|  | { | 
|  | if (ob->s.b.mixed_encoding) | 
|  | return binary_search_mixed_encoding_fdes (ob, pc); | 
|  | else if (ob->s.b.encoding == DW_EH_PE_absptr) | 
|  | return binary_search_unencoded_fdes (ob, pc); | 
|  | else | 
|  | return binary_search_single_encoding_fdes (ob, pc); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Long slow labourious linear search, cos we've no memory.  */ | 
|  | if (ob->s.b.from_array) | 
|  | { | 
|  | fde **p; | 
|  | for (p = ob->u.array; *p ; p++) | 
|  | { | 
|  | fde *f = linear_search_fdes (ob, *p, pc); | 
|  | if (f) | 
|  | return f; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | else | 
|  | return linear_search_fdes (ob, ob->u.single, pc); | 
|  | } | 
|  | } | 
|  |  | 
|  | fde * | 
|  | _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases) | 
|  | { | 
|  | struct object *ob; | 
|  | fde *f = NULL; | 
|  |  | 
|  | init_object_mutex_once (); | 
|  | __gthread_mutex_lock (&object_mutex); | 
|  |  | 
|  | /* Linear search through the classified objects, to find the one | 
|  | containing the pc.  Note that pc_begin is sorted descending, and | 
|  | we expect objects to be non-overlapping.  */ | 
|  | for (ob = seen_objects; ob; ob = ob->next) | 
|  | if (pc >= ob->pc_begin) | 
|  | { | 
|  | f = search_object (ob, pc); | 
|  | if (f) | 
|  | goto fini; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Classify and search the objects we've not yet processed.  */ | 
|  | while ((ob = unseen_objects)) | 
|  | { | 
|  | struct object **p; | 
|  |  | 
|  | unseen_objects = ob->next; | 
|  | f = search_object (ob, pc); | 
|  |  | 
|  | /* Insert the object into the classified list.  */ | 
|  | for (p = &seen_objects; *p ; p = &(*p)->next) | 
|  | if ((*p)->pc_begin < ob->pc_begin) | 
|  | break; | 
|  | ob->next = *p; | 
|  | *p = ob; | 
|  |  | 
|  | if (f) | 
|  | goto fini; | 
|  | } | 
|  |  | 
|  | fini: | 
|  | __gthread_mutex_unlock (&object_mutex); | 
|  |  | 
|  | if (f) | 
|  | { | 
|  | int encoding; | 
|  | _Unwind_Ptr func; | 
|  |  | 
|  | bases->tbase = ob->tbase; | 
|  | bases->dbase = ob->dbase; | 
|  |  | 
|  | encoding = ob->s.b.encoding; | 
|  | if (ob->s.b.mixed_encoding) | 
|  | encoding = get_fde_encoding (f); | 
|  | read_encoded_value_with_base (encoding, base_from_object (encoding, ob), | 
|  | f->pc_begin, &func); | 
|  | bases->func = (void *) func; | 
|  | } | 
|  |  | 
|  | return f; | 
|  | } | 
|  |  | 
|  | #endif |