| /* | 
 |  * UFC-crypt: ultra fast crypt(3) implementation | 
 |  * | 
 |  * Copyright (C) 1991-2016 Free Software Foundation, Inc. | 
 |  * | 
 |  * This library is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU Lesser General Public | 
 |  * License as published by the Free Software Foundation; either | 
 |  * version 2.1 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This library is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * Lesser General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU Lesser General Public | 
 |  * License along with this library; see the file COPYING.LIB.  If not, | 
 |  * see <http://www.gnu.org/licenses/>. | 
 |  * | 
 |  * @(#)crypt_util.c	2.56 12/20/96 | 
 |  * | 
 |  * Support routines | 
 |  * | 
 |  */ | 
 |  | 
 | #ifdef DEBUG | 
 | #include <stdio.h> | 
 | #endif | 
 | #include <atomic.h> | 
 | #include <string.h> | 
 |  | 
 | #ifndef STATIC | 
 | #define STATIC static | 
 | #endif | 
 |  | 
 | #include "crypt-private.h" | 
 |  | 
 | /* Prototypes for local functions.  */ | 
 | #ifndef __GNU_LIBRARY__ | 
 | void _ufc_clearmem (char *start, int cnt); | 
 | void _ufc_copymem (char *from, char *to, int cnt); | 
 | #endif | 
 | #ifdef _UFC_32_ | 
 | STATIC void shuffle_sb (long32 *k, ufc_long saltbits); | 
 | #else | 
 | STATIC void shuffle_sb (long64 *k, ufc_long saltbits); | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Permutation done once on the 56 bit | 
 |  *  key derived from the original 8 byte ASCII key. | 
 |  */ | 
 | static const int pc1[56] = { | 
 |   57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18, | 
 |   10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36, | 
 |   63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22, | 
 |   14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4 | 
 | }; | 
 |  | 
 | /* | 
 |  * How much to rotate each 28 bit half of the pc1 permutated | 
 |  *  56 bit key before using pc2 to give the i' key | 
 |  */ | 
 | static const int rots[16] = { | 
 |   1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 | 
 | }; | 
 |  | 
 | /* | 
 |  * Permutation giving the key | 
 |  * of the i' DES round | 
 |  */ | 
 | static const int pc2[48] = { | 
 |   14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10, | 
 |   23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2, | 
 |   41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, | 
 |   44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 | 
 | }; | 
 |  | 
 | /* | 
 |  * The E expansion table which selects | 
 |  * bits from the 32 bit intermediate result. | 
 |  */ | 
 | static const int esel[48] = { | 
 |   32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9, | 
 |    8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, | 
 |   16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, | 
 |   24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1 | 
 | }; | 
 |  | 
 | /* | 
 |  * Permutation done on the | 
 |  * result of sbox lookups | 
 |  */ | 
 | static const int perm32[32] = { | 
 |   16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10, | 
 |   2,   8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25 | 
 | }; | 
 |  | 
 | /* | 
 |  * The sboxes | 
 |  */ | 
 | static const int sbox[8][4][16]= { | 
 | 	{ { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 }, | 
 | 	  {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 }, | 
 | 	  {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 }, | 
 | 	  { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 } | 
 | 	}, | 
 |  | 
 | 	{ { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 }, | 
 | 	  {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 }, | 
 | 	  {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 }, | 
 | 	  { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 } | 
 | 	}, | 
 |  | 
 | 	{ { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 }, | 
 | 	  { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 }, | 
 | 	  { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 }, | 
 | 	  {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 } | 
 | 	}, | 
 |  | 
 | 	{ {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 }, | 
 | 	  { 13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 }, | 
 | 	  { 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 }, | 
 | 	  {  3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 } | 
 | 	}, | 
 |  | 
 | 	{ {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 }, | 
 | 	  { 14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 }, | 
 | 	  {  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14 }, | 
 | 	  { 11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 } | 
 | 	}, | 
 |  | 
 | 	{ { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 }, | 
 | 	  { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 }, | 
 | 	  {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 }, | 
 | 	  {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 } | 
 | 	}, | 
 |  | 
 | 	{ {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 }, | 
 | 	  { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 }, | 
 | 	  {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 }, | 
 | 	  {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 } | 
 | 	}, | 
 |  | 
 | 	{ { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 }, | 
 | 	  {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 }, | 
 | 	  {  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 }, | 
 | 	  {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 } | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * This is the initial | 
 |  * permutation matrix | 
 |  */ | 
 | static const int initial_perm[64] = { | 
 |   58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12, 4, | 
 |   62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16, 8, | 
 |   57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11, 3, | 
 |   61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15, 7 | 
 | }; | 
 |  | 
 | /* | 
 |  * This is the final | 
 |  * permutation matrix | 
 |  */ | 
 | static const int final_perm[64] = { | 
 |   40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31, | 
 |   38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29, | 
 |   36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27, | 
 |   34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25 | 
 | }; | 
 |  | 
 | #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') | 
 | #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') | 
 |  | 
 | static const ufc_long BITMASK[24] = { | 
 |   0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, | 
 |   0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, | 
 |   0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, | 
 |   0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008 | 
 | }; | 
 |  | 
 | static const unsigned char bytemask[8]  = { | 
 |   0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 | 
 | }; | 
 |  | 
 | static const ufc_long longmask[32] = { | 
 |   0x80000000, 0x40000000, 0x20000000, 0x10000000, | 
 |   0x08000000, 0x04000000, 0x02000000, 0x01000000, | 
 |   0x00800000, 0x00400000, 0x00200000, 0x00100000, | 
 |   0x00080000, 0x00040000, 0x00020000, 0x00010000, | 
 |   0x00008000, 0x00004000, 0x00002000, 0x00001000, | 
 |   0x00000800, 0x00000400, 0x00000200, 0x00000100, | 
 |   0x00000080, 0x00000040, 0x00000020, 0x00000010, | 
 |   0x00000008, 0x00000004, 0x00000002, 0x00000001 | 
 | }; | 
 |  | 
 | /* | 
 |  * do_pc1: permform pc1 permutation in the key schedule generation. | 
 |  * | 
 |  * The first   index is the byte number in the 8 byte ASCII key | 
 |  *  -  second    -      -    the two 28 bits halfs of the result | 
 |  *  -  third     -   selects the 7 bits actually used of each byte | 
 |  * | 
 |  * The result is kept with 28 bit per 32 bit with the 4 most significant | 
 |  * bits zero. | 
 |  */ | 
 | static ufc_long do_pc1[8][2][128]; | 
 |  | 
 | /* | 
 |  * do_pc2: permform pc2 permutation in the key schedule generation. | 
 |  * | 
 |  * The first   index is the septet number in the two 28 bit intermediate values | 
 |  *  -  second    -    -  -  septet values | 
 |  * | 
 |  * Knowledge of the structure of the pc2 permutation is used. | 
 |  * | 
 |  * The result is kept with 28 bit per 32 bit with the 4 most significant | 
 |  * bits zero. | 
 |  */ | 
 | static ufc_long do_pc2[8][128]; | 
 |  | 
 | /* | 
 |  * eperm32tab: do 32 bit permutation and E selection | 
 |  * | 
 |  * The first index is the byte number in the 32 bit value to be permuted | 
 |  *  -  second  -   is the value of this byte | 
 |  *  -  third   -   selects the two 32 bit values | 
 |  * | 
 |  * The table is used and generated internally in init_des to speed it up | 
 |  */ | 
 | static ufc_long eperm32tab[4][256][2]; | 
 |  | 
 | /* | 
 |  * efp: undo an extra e selection and do final | 
 |  *      permutation giving the DES result. | 
 |  * | 
 |  *      Invoked 6 bit a time on two 48 bit values | 
 |  *      giving two 32 bit longs. | 
 |  */ | 
 | static ufc_long efp[16][64][2]; | 
 |  | 
 | /* Table with characters for base64 transformation.  */ | 
 | static const char b64t[64] = | 
 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | 
 |  | 
 | /* | 
 |  * For use by the old, non-reentrant routines | 
 |  * (crypt/encrypt/setkey) | 
 |  */ | 
 | struct crypt_data _ufc_foobar; | 
 |  | 
 | #ifdef __GNU_LIBRARY__ | 
 | #include <libc-lock.h> | 
 |  | 
 | __libc_lock_define_initialized (static, _ufc_tables_lock) | 
 | #endif | 
 |  | 
 | #ifdef DEBUG | 
 |  | 
 | void | 
 | _ufc_prbits (ufc_long *a, int n) | 
 | { | 
 |   ufc_long i, j, t, tmp; | 
 |   n /= 8; | 
 |   for(i = 0; i < n; i++) { | 
 |     tmp=0; | 
 |     for(j = 0; j < 8; j++) { | 
 |       t=8*i+j; | 
 |       tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0; | 
 |     } | 
 |     (void)printf("%02lx ", tmp); | 
 |   } | 
 |   printf(" "); | 
 | } | 
 |  | 
 | static void __attribute__ ((unused)) | 
 | _ufc_set_bits (ufc_long v, ufc_long *b) | 
 | { | 
 |   ufc_long i; | 
 |   *b = 0; | 
 |   for(i = 0; i < 24; i++) { | 
 |     if(v & longmask[8 + i]) | 
 |       *b |= BITMASK[i]; | 
 |   } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifndef __GNU_LIBRARY__ | 
 | /* | 
 |  * Silly rewrites of 'bzero'/'memset'. I do so | 
 |  * because some machines don't have | 
 |  * bzero and some don't have memset. | 
 |  */ | 
 |  | 
 | void | 
 | _ufc_clearmem (char *start, int cnt) | 
 | { | 
 |   while(cnt--) | 
 |     *start++ = '\0'; | 
 | } | 
 |  | 
 | void | 
 | _ufc_copymem (char *from, char *to, int cnt) | 
 | { | 
 |   while(cnt--) | 
 |     *to++ = *from++; | 
 | } | 
 | #else | 
 | #define _ufc_clearmem(start, cnt)   memset(start, 0, cnt) | 
 | #define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt) | 
 | #endif | 
 |  | 
 | /* lookup a 6 bit value in sbox */ | 
 |  | 
 | #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; | 
 |  | 
 | /* | 
 |  * Initialize unit - may be invoked directly | 
 |  * by fcrypt users. | 
 |  */ | 
 |  | 
 | void | 
 | __init_des_r (struct crypt_data * __restrict __data) | 
 | { | 
 |   int comes_from_bit; | 
 |   int bit, sg; | 
 |   ufc_long j; | 
 |   ufc_long mask1, mask2; | 
 |   int e_inverse[64]; | 
 |   static volatile int small_tables_initialized = 0; | 
 |  | 
 | #ifdef _UFC_32_ | 
 |   long32 *sb[4]; | 
 |   sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1; | 
 |   sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3; | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 |   long64 *sb[4]; | 
 |   sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1; | 
 |   sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3; | 
 | #endif | 
 |  | 
 |   if(small_tables_initialized == 0) { | 
 | #ifdef __GNU_LIBRARY__ | 
 |     __libc_lock_lock (_ufc_tables_lock); | 
 |     if(small_tables_initialized) | 
 |       goto small_tables_done; | 
 | #endif | 
 |  | 
 |     /* | 
 |      * Create the do_pc1 table used | 
 |      * to affect pc1 permutation | 
 |      * when generating keys | 
 |      */ | 
 |     _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1)); | 
 |     for(bit = 0; bit < 56; bit++) { | 
 |       comes_from_bit  = pc1[bit] - 1; | 
 |       mask1 = bytemask[comes_from_bit % 8 + 1]; | 
 |       mask2 = longmask[bit % 28 + 4]; | 
 |       for(j = 0; j < 128; j++) { | 
 | 	if(j & mask1) | 
 | 	  do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; | 
 |       } | 
 |     } | 
 |  | 
 |     /* | 
 |      * Create the do_pc2 table used | 
 |      * to affect pc2 permutation when | 
 |      * generating keys | 
 |      */ | 
 |     _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2)); | 
 |     for(bit = 0; bit < 48; bit++) { | 
 |       comes_from_bit  = pc2[bit] - 1; | 
 |       mask1 = bytemask[comes_from_bit % 7 + 1]; | 
 |       mask2 = BITMASK[bit % 24]; | 
 |       for(j = 0; j < 128; j++) { | 
 | 	if(j & mask1) | 
 | 	  do_pc2[comes_from_bit / 7][j] |= mask2; | 
 |       } | 
 |     } | 
 |  | 
 |     /* | 
 |      * Now generate the table used to do combined | 
 |      * 32 bit permutation and e expansion | 
 |      * | 
 |      * We use it because we have to permute 16384 32 bit | 
 |      * longs into 48 bit in order to initialize sb. | 
 |      * | 
 |      * Looping 48 rounds per permutation becomes | 
 |      * just too slow... | 
 |      * | 
 |      */ | 
 |  | 
 |     _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab)); | 
 |     for(bit = 0; bit < 48; bit++) { | 
 |       ufc_long mask1,comes_from; | 
 |       comes_from = perm32[esel[bit]-1]-1; | 
 |       mask1      = bytemask[comes_from % 8]; | 
 |       for(j = 256; j--;) { | 
 | 	if(j & mask1) | 
 | 	  eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24]; | 
 |       } | 
 |     } | 
 |  | 
 |     /* | 
 |      * Create an inverse matrix for esel telling | 
 |      * where to plug out bits if undoing it | 
 |      */ | 
 |     for(bit=48; bit--;) { | 
 |       e_inverse[esel[bit] - 1     ] = bit; | 
 |       e_inverse[esel[bit] - 1 + 32] = bit + 48; | 
 |     } | 
 |  | 
 |     /* | 
 |      * create efp: the matrix used to | 
 |      * undo the E expansion and effect final permutation | 
 |      */ | 
 |     _ufc_clearmem((char*)efp, (int)sizeof efp); | 
 |     for(bit = 0; bit < 64; bit++) { | 
 |       int o_bit, o_long; | 
 |       ufc_long word_value, mask1, mask2; | 
 |       int comes_from_f_bit, comes_from_e_bit; | 
 |       int comes_from_word, bit_within_word; | 
 |  | 
 |       /* See where bit i belongs in the two 32 bit long's */ | 
 |       o_long = bit / 32; /* 0..1  */ | 
 |       o_bit  = bit % 32; /* 0..31 */ | 
 |  | 
 |       /* | 
 |        * And find a bit in the e permutated value setting this bit. | 
 |        * | 
 |        * Note: the e selection may have selected the same bit several | 
 |        * times. By the initialization of e_inverse, we only look | 
 |        * for one specific instance. | 
 |        */ | 
 |       comes_from_f_bit = final_perm[bit] - 1;         /* 0..63 */ | 
 |       comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ | 
 |       comes_from_word  = comes_from_e_bit / 6;        /* 0..15 */ | 
 |       bit_within_word  = comes_from_e_bit % 6;        /* 0..5  */ | 
 |  | 
 |       mask1 = longmask[bit_within_word + 26]; | 
 |       mask2 = longmask[o_bit]; | 
 |  | 
 |       for(word_value = 64; word_value--;) { | 
 | 	if(word_value & mask1) | 
 | 	  efp[comes_from_word][word_value][o_long] |= mask2; | 
 |       } | 
 |     } | 
 |     atomic_write_barrier (); | 
 |     small_tables_initialized = 1; | 
 | #ifdef __GNU_LIBRARY__ | 
 | small_tables_done: | 
 |     __libc_lock_unlock(_ufc_tables_lock); | 
 | #endif | 
 |   } else | 
 |     atomic_read_barrier (); | 
 |  | 
 |   /* | 
 |    * Create the sb tables: | 
 |    * | 
 |    * For each 12 bit segment of an 48 bit intermediate | 
 |    * result, the sb table precomputes the two 4 bit | 
 |    * values of the sbox lookups done with the two 6 | 
 |    * bit halves, shifts them to their proper place, | 
 |    * sends them through perm32 and finally E expands | 
 |    * them so that they are ready for the next | 
 |    * DES round. | 
 |    * | 
 |    */ | 
 |  | 
 |   if (__data->sb0 + sizeof (__data->sb0) == __data->sb1 | 
 |       && __data->sb1 + sizeof (__data->sb1) == __data->sb2 | 
 |       && __data->sb2 + sizeof (__data->sb2) == __data->sb3) | 
 |     _ufc_clearmem(__data->sb0, | 
 | 		  (int)sizeof(__data->sb0) | 
 | 		  + (int)sizeof(__data->sb1) | 
 | 		  + (int)sizeof(__data->sb2) | 
 | 		  + (int)sizeof(__data->sb3)); | 
 |   else { | 
 |     _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0)); | 
 |     _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1)); | 
 |     _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2)); | 
 |     _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3)); | 
 |   } | 
 |  | 
 |   for(sg = 0; sg < 4; sg++) { | 
 |     int j1, j2; | 
 |     int s1, s2; | 
 |  | 
 |     for(j1 = 0; j1 < 64; j1++) { | 
 |       s1 = s_lookup(2 * sg, j1); | 
 |       for(j2 = 0; j2 < 64; j2++) { | 
 | 	ufc_long to_permute, inx; | 
 |  | 
 | 	s2         = s_lookup(2 * sg + 1, j2); | 
 | 	to_permute = (((ufc_long)s1 << 4)  | | 
 | 		      (ufc_long)s2) << (24 - 8 * (ufc_long)sg); | 
 |  | 
 | #ifdef _UFC_32_ | 
 | 	inx = ((j1 << 6)  | j2) << 1; | 
 | 	sb[sg][inx  ]  = eperm32tab[0][(to_permute >> 24) & 0xff][0]; | 
 | 	sb[sg][inx+1]  = eperm32tab[0][(to_permute >> 24) & 0xff][1]; | 
 | 	sb[sg][inx  ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; | 
 | 	sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; | 
 | 	sb[sg][inx  ] |= eperm32tab[2][(to_permute >>  8) & 0xff][0]; | 
 | 	sb[sg][inx+1] |= eperm32tab[2][(to_permute >>  8) & 0xff][1]; | 
 | 	sb[sg][inx  ] |= eperm32tab[3][(to_permute)       & 0xff][0]; | 
 | 	sb[sg][inx+1] |= eperm32tab[3][(to_permute)       & 0xff][1]; | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 | 	inx = ((j1 << 6)  | j2); | 
 | 	sb[sg][inx]  = | 
 | 	  ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | | 
 | 	   (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; | 
 | 	sb[sg][inx] |= | 
 | 	  ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | | 
 | 	   (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; | 
 | 	sb[sg][inx] |= | 
 | 	  ((long64)eperm32tab[2][(to_permute >>  8) & 0xff][0] << 32) | | 
 | 	   (long64)eperm32tab[2][(to_permute >>  8) & 0xff][1]; | 
 | 	sb[sg][inx] |= | 
 | 	  ((long64)eperm32tab[3][(to_permute)       & 0xff][0] << 32) | | 
 | 	   (long64)eperm32tab[3][(to_permute)       & 0xff][1]; | 
 | #endif | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   __data->current_saltbits = 0; | 
 |   __data->current_salt[0] = 0; | 
 |   __data->current_salt[1] = 0; | 
 |   __data->initialized++; | 
 | } | 
 |  | 
 | void | 
 | __init_des (void) | 
 | { | 
 |   __init_des_r(&_ufc_foobar); | 
 | } | 
 |  | 
 | /* | 
 |  * Process the elements of the sb table permuting the | 
 |  * bits swapped in the expansion by the current salt. | 
 |  */ | 
 |  | 
 | #ifdef _UFC_32_ | 
 | STATIC void | 
 | shuffle_sb (long32 *k, ufc_long saltbits) | 
 | { | 
 |   ufc_long j; | 
 |   long32 x; | 
 |   for(j=4096; j--;) { | 
 |     x = (k[0] ^ k[1]) & (long32)saltbits; | 
 |     *k++ ^= x; | 
 |     *k++ ^= x; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef _UFC_64_ | 
 | STATIC void | 
 | shuffle_sb (long64 *k, ufc_long saltbits) | 
 | { | 
 |   ufc_long j; | 
 |   long64 x; | 
 |   for(j=4096; j--;) { | 
 |     x = ((*k >> 32) ^ *k) & (long64)saltbits; | 
 |     *k++ ^= (x << 32) | x; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Return false iff C is in the specified alphabet for crypt salt. | 
 |  */ | 
 |  | 
 | static bool | 
 | bad_for_salt (char c) | 
 | { | 
 |   switch (c) | 
 |     { | 
 |     case '0' ... '9': | 
 |     case 'A' ... 'Z': | 
 |     case 'a' ... 'z': | 
 |     case '.': case '/': | 
 |       return false; | 
 |  | 
 |     default: | 
 |       return true; | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the unit for a new salt | 
 |  * Hopefully we'll not see a new salt in each crypt call. | 
 |  * Return false if an unexpected character was found in s[0] or s[1]. | 
 |  */ | 
 |  | 
 | bool | 
 | _ufc_setup_salt_r (const char *s, struct crypt_data * __restrict __data) | 
 | { | 
 |   ufc_long i, j, saltbits; | 
 |   char s0, s1; | 
 |  | 
 |   if(__data->initialized == 0) | 
 |     __init_des_r(__data); | 
 |  | 
 |   s0 = s[0]; | 
 |   if(bad_for_salt (s0)) | 
 |     return false; | 
 |  | 
 |   s1 = s[1]; | 
 |   if(bad_for_salt (s1)) | 
 |     return false; | 
 |  | 
 |   if(s0 == __data->current_salt[0] && s1 == __data->current_salt[1]) | 
 |     return true; | 
 |  | 
 |   __data->current_salt[0] = s0; | 
 |   __data->current_salt[1] = s1; | 
 |  | 
 |   /* | 
 |    * This is the only crypt change to DES: | 
 |    * entries are swapped in the expansion table | 
 |    * according to the bits set in the salt. | 
 |    */ | 
 |   saltbits = 0; | 
 |   for(i = 0; i < 2; i++) { | 
 |     long c=ascii_to_bin(s[i]); | 
 |     for(j = 0; j < 6; j++) { | 
 |       if((c >> j) & 0x1) | 
 | 	saltbits |= BITMASK[6 * i + j]; | 
 |     } | 
 |   } | 
 |  | 
 |   /* | 
 |    * Permute the sb table values | 
 |    * to reflect the changed e | 
 |    * selection table | 
 |    */ | 
 | #ifdef _UFC_32_ | 
 | #define LONGG long32* | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 | #define LONGG long64* | 
 | #endif | 
 |  | 
 |   shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits); | 
 |   shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits); | 
 |   shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits); | 
 |   shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits); | 
 |  | 
 |   __data->current_saltbits = saltbits; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void | 
 | _ufc_mk_keytab_r (const char *key, struct crypt_data * __restrict __data) | 
 | { | 
 |   ufc_long v1, v2, *k1; | 
 |   int i; | 
 | #ifdef _UFC_32_ | 
 |   long32 v, *k2; | 
 |   k2 = (long32*)__data->keysched; | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 |   long64 v, *k2; | 
 |   k2 = (long64*)__data->keysched; | 
 | #endif | 
 |  | 
 |   v1 = v2 = 0; k1 = &do_pc1[0][0][0]; | 
 |   for(i = 8; i--;) { | 
 |     v1 |= k1[*key   & 0x7f]; k1 += 128; | 
 |     v2 |= k1[*key++ & 0x7f]; k1 += 128; | 
 |   } | 
 |  | 
 |   for(i = 0; i < 16; i++) { | 
 |     k1 = &do_pc2[0][0]; | 
 |  | 
 |     v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); | 
 |     v  = k1[(v1 >> 21) & 0x7f]; k1 += 128; | 
 |     v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; | 
 |     v |= k1[(v1 >>  7) & 0x7f]; k1 += 128; | 
 |     v |= k1[(v1      ) & 0x7f]; k1 += 128; | 
 |  | 
 | #ifdef _UFC_32_ | 
 |     *k2++ = (v | 0x00008000); | 
 |     v = 0; | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 |     v = (v << 32); | 
 | #endif | 
 |  | 
 |     v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); | 
 |     v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; | 
 |     v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; | 
 |     v |= k1[(v2 >>  7) & 0x7f]; k1 += 128; | 
 |     v |= k1[(v2      ) & 0x7f]; | 
 |  | 
 | #ifdef _UFC_32_ | 
 |     *k2++ = (v | 0x00008000); | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 |     *k2++ = v | 0x0000800000008000l; | 
 | #endif | 
 |   } | 
 |  | 
 |   __data->direction = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Undo an extra E selection and do final permutations | 
 |  */ | 
 |  | 
 | void | 
 | _ufc_dofinalperm_r (ufc_long *res, struct crypt_data * __restrict __data) | 
 | { | 
 |   ufc_long v1, v2, x; | 
 |   ufc_long l1,l2,r1,r2; | 
 |  | 
 |   l1 = res[0]; l2 = res[1]; | 
 |   r1 = res[2]; r2 = res[3]; | 
 |  | 
 |   x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x; | 
 |   x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x; | 
 |  | 
 |   v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; | 
 |  | 
 |   v1 |= efp[15][ r2         & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; | 
 |   v1 |= efp[14][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; | 
 |   v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; | 
 |   v1 |= efp[12][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; | 
 |  | 
 |   v1 |= efp[11][ r1         & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; | 
 |   v1 |= efp[10][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; | 
 |   v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; | 
 |   v1 |= efp[ 8][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; | 
 |  | 
 |   v1 |= efp[ 7][ l2         & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; | 
 |   v1 |= efp[ 6][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; | 
 |   v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; | 
 |   v1 |= efp[ 4][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; | 
 |  | 
 |   v1 |= efp[ 3][ l1         & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; | 
 |   v1 |= efp[ 2][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; | 
 |   v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; | 
 |   v1 |= efp[ 0][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; | 
 |  | 
 |   res[0] = v1; res[1] = v2; | 
 | } | 
 |  | 
 | /* | 
 |  * crypt only: convert from 64 bit to 11 bit ASCII | 
 |  * prefixing with the salt | 
 |  */ | 
 |  | 
 | void | 
 | _ufc_output_conversion_r (ufc_long v1, ufc_long v2, const char *salt, | 
 | 			  struct crypt_data * __restrict __data) | 
 | { | 
 |   int i, s, shf; | 
 |  | 
 |   __data->crypt_3_buf[0] = salt[0]; | 
 |   __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0]; | 
 |  | 
 |   for(i = 0; i < 5; i++) { | 
 |     shf = (26 - 6 * i); /* to cope with MSC compiler bug */ | 
 |     __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f); | 
 |   } | 
 |  | 
 |   s  = (v2 & 0xf) << 2; | 
 |   v2 = (v2 >> 2) | ((v1 & 0x3) << 30); | 
 |  | 
 |   for(i = 5; i < 10; i++) { | 
 |     shf = (56 - 6 * i); | 
 |     __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f); | 
 |   } | 
 |  | 
 |   __data->crypt_3_buf[12] = bin_to_ascii(s); | 
 |   __data->crypt_3_buf[13] = 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * UNIX encrypt function. Takes a bitvector | 
 |  * represented by one byte per bit and | 
 |  * encrypt/decrypt according to edflag | 
 |  */ | 
 |  | 
 | void | 
 | __encrypt_r (char *__block, int __edflag, | 
 | 	     struct crypt_data * __restrict __data) | 
 | { | 
 |   ufc_long l1, l2, r1, r2, res[4]; | 
 |   int i; | 
 | #ifdef _UFC_32_ | 
 |   long32 *kt; | 
 |   kt = (long32*)__data->keysched; | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 |   long64 *kt; | 
 |   kt = (long64*)__data->keysched; | 
 | #endif | 
 |  | 
 |   /* | 
 |    * Undo any salt changes to E expansion | 
 |    */ | 
 |   _ufc_setup_salt_r("..", __data); | 
 |  | 
 |   /* | 
 |    * Reverse key table if | 
 |    * changing operation (encrypt/decrypt) | 
 |    */ | 
 |   if((__edflag == 0) != (__data->direction == 0)) { | 
 |     for(i = 0; i < 8; i++) { | 
 | #ifdef _UFC_32_ | 
 |       long32 x; | 
 |       x = kt[2 * (15-i)]; | 
 |       kt[2 * (15-i)] = kt[2 * i]; | 
 |       kt[2 * i] = x; | 
 |  | 
 |       x = kt[2 * (15-i) + 1]; | 
 |       kt[2 * (15-i) + 1] = kt[2 * i + 1]; | 
 |       kt[2 * i + 1] = x; | 
 | #endif | 
 | #ifdef _UFC_64_ | 
 |       long64 x; | 
 |       x = kt[15-i]; | 
 |       kt[15-i] = kt[i]; | 
 |       kt[i] = x; | 
 | #endif | 
 |       } | 
 |     __data->direction = __edflag; | 
 |   } | 
 |  | 
 |   /* | 
 |    * Do initial permutation + E expansion | 
 |    */ | 
 |   i = 0; | 
 |   for(l1 = 0; i < 24; i++) { | 
 |     if(__block[initial_perm[esel[i]-1]-1]) | 
 |       l1 |= BITMASK[i]; | 
 |   } | 
 |   for(l2 = 0; i < 48; i++) { | 
 |     if(__block[initial_perm[esel[i]-1]-1]) | 
 |       l2 |= BITMASK[i-24]; | 
 |   } | 
 |  | 
 |   i = 0; | 
 |   for(r1 = 0; i < 24; i++) { | 
 |     if(__block[initial_perm[esel[i]-1+32]-1]) | 
 |       r1 |= BITMASK[i]; | 
 |   } | 
 |   for(r2 = 0; i < 48; i++) { | 
 |     if(__block[initial_perm[esel[i]-1+32]-1]) | 
 |       r2 |= BITMASK[i-24]; | 
 |   } | 
 |  | 
 |   /* | 
 |    * Do DES inner loops + final conversion | 
 |    */ | 
 |   res[0] = l1; res[1] = l2; | 
 |   res[2] = r1; res[3] = r2; | 
 |   _ufc_doit_r((ufc_long)1, __data, &res[0]); | 
 |  | 
 |   /* | 
 |    * Do final permutations | 
 |    */ | 
 |   _ufc_dofinalperm_r(res, __data); | 
 |  | 
 |   /* | 
 |    * And convert to bit array | 
 |    */ | 
 |   l1 = res[0]; r1 = res[1]; | 
 |   for(i = 0; i < 32; i++) { | 
 |     *__block++ = (l1 & longmask[i]) != 0; | 
 |   } | 
 |   for(i = 0; i < 32; i++) { | 
 |     *__block++ = (r1 & longmask[i]) != 0; | 
 |   } | 
 | } | 
 | weak_alias (__encrypt_r, encrypt_r) | 
 |  | 
 | void | 
 | encrypt (char *__block, int __edflag) | 
 | { | 
 |   __encrypt_r(__block, __edflag, &_ufc_foobar); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * UNIX setkey function. Take a 64 bit DES | 
 |  * key and setup the machinery. | 
 |  */ | 
 |  | 
 | void | 
 | __setkey_r (const char *__key, struct crypt_data * __restrict __data) | 
 | { | 
 |   int i,j; | 
 |   unsigned char c; | 
 |   unsigned char ktab[8]; | 
 |  | 
 |   _ufc_setup_salt_r("..", __data); /* be sure we're initialized */ | 
 |  | 
 |   for(i = 0; i < 8; i++) { | 
 |     for(j = 0, c = 0; j < 8; j++) | 
 |       c = c << 1 | *__key++; | 
 |     ktab[i] = c >> 1; | 
 |   } | 
 |   _ufc_mk_keytab_r((char *) ktab, __data); | 
 | } | 
 | weak_alias (__setkey_r, setkey_r) | 
 |  | 
 | void | 
 | setkey (const char *__key) | 
 | { | 
 |   __setkey_r(__key, &_ufc_foobar); | 
 | } | 
 |  | 
 | void | 
 | __b64_from_24bit (char **cp, int *buflen, | 
 | 		  unsigned int b2, unsigned int b1, unsigned int b0, | 
 | 		  int n) | 
 | { | 
 |   unsigned int w = (b2 << 16) | (b1 << 8) | b0; | 
 |   while (n-- > 0 && (*buflen) > 0) | 
 |     { | 
 |       *(*cp)++ = b64t[w & 0x3f]; | 
 |       --(*buflen); | 
 |       w >>= 6; | 
 |     } | 
 | } |