|  | /* Floating point output for `printf'. | 
|  | Copyright (C) 1995-2016 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of the GNU C Library. | 
|  | Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* The gmp headers need some configuration frobs.  */ | 
|  | #define HAVE_ALLOCA 1 | 
|  |  | 
|  | #include <libioP.h> | 
|  | #include <alloca.h> | 
|  | #include <ctype.h> | 
|  | #include <float.h> | 
|  | #include <gmp-mparam.h> | 
|  | #include <gmp.h> | 
|  | #include <ieee754.h> | 
|  | #include <stdlib/gmp-impl.h> | 
|  | #include <stdlib/longlong.h> | 
|  | #include <stdlib/fpioconst.h> | 
|  | #include <locale/localeinfo.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <printf.h> | 
|  | #include <string.h> | 
|  | #include <unistd.h> | 
|  | #include <stdlib.h> | 
|  | #include <wchar.h> | 
|  | #include <stdbool.h> | 
|  | #include <rounding-mode.h> | 
|  |  | 
|  | #ifdef COMPILE_WPRINTF | 
|  | # define CHAR_T        wchar_t | 
|  | #else | 
|  | # define CHAR_T        char | 
|  | #endif | 
|  |  | 
|  | #include "_i18n_number.h" | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | # define NDEBUG			/* Undefine this for debugging assertions.  */ | 
|  | #endif | 
|  | #include <assert.h> | 
|  |  | 
|  | /* This defines make it possible to use the same code for GNU C library and | 
|  | the GNU I/O library.	 */ | 
|  | #define PUT(f, s, n) _IO_sputn (f, s, n) | 
|  | #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n)) | 
|  | /* We use this file GNU C library and GNU I/O library.	So make | 
|  | names equal.	 */ | 
|  | #undef putc | 
|  | #define putc(c, f) (wide \ | 
|  | ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f)) | 
|  | #define size_t     _IO_size_t | 
|  | #define FILE	     _IO_FILE | 
|  |  | 
|  | /* Macros for doing the actual output.  */ | 
|  |  | 
|  | #define outchar(ch)							      \ | 
|  | do									      \ | 
|  | {									      \ | 
|  | const int outc = (ch);						      \ | 
|  | if (putc (outc, fp) == EOF)					      \ | 
|  | {								      \ | 
|  | if (buffer_malloced)						      \ | 
|  | free (wbuffer);						      \ | 
|  | return -1;							      \ | 
|  | }								      \ | 
|  | ++done;								      \ | 
|  | } while (0) | 
|  |  | 
|  | #define PRINT(ptr, wptr, len)						      \ | 
|  | do									      \ | 
|  | {									      \ | 
|  | size_t outlen = (len);						      \ | 
|  | if (len > 20)							      \ | 
|  | {								      \ | 
|  | if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen)   \ | 
|  | {								      \ | 
|  | if (buffer_malloced)					      \ | 
|  | free (wbuffer);						      \ | 
|  | return -1;						      \ | 
|  | }								      \ | 
|  | ptr += outlen;						      \ | 
|  | done += outlen;						      \ | 
|  | }								      \ | 
|  | else								      \ | 
|  | {								      \ | 
|  | if (wide)							      \ | 
|  | while (outlen-- > 0)					      \ | 
|  | outchar (*wptr++);					      \ | 
|  | else								      \ | 
|  | while (outlen-- > 0)					      \ | 
|  | outchar (*ptr++);						      \ | 
|  | }								      \ | 
|  | } while (0) | 
|  |  | 
|  | #define PADN(ch, len)							      \ | 
|  | do									      \ | 
|  | {									      \ | 
|  | if (PAD (fp, ch, len) != len)					      \ | 
|  | {								      \ | 
|  | if (buffer_malloced)						      \ | 
|  | free (wbuffer);						      \ | 
|  | return -1;							      \ | 
|  | }								      \ | 
|  | done += len;							      \ | 
|  | }									      \ | 
|  | while (0) | 
|  |  | 
|  | /* We use the GNU MP library to handle large numbers. | 
|  |  | 
|  | An MP variable occupies a varying number of entries in its array.  We keep | 
|  | track of this number for efficiency reasons.  Otherwise we would always | 
|  | have to process the whole array.  */ | 
|  | #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size | 
|  |  | 
|  | #define MPN_ASSIGN(dst,src)						      \ | 
|  | memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t)) | 
|  | #define MPN_GE(u,v) \ | 
|  | (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0)) | 
|  |  | 
|  | extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size, | 
|  | int *expt, int *is_neg, | 
|  | double value); | 
|  | extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size, | 
|  | int *expt, int *is_neg, | 
|  | long double value); | 
|  | extern unsigned int __guess_grouping (unsigned int intdig_max, | 
|  | const char *grouping); | 
|  |  | 
|  |  | 
|  | static wchar_t *group_number (wchar_t *buf, wchar_t *bufend, | 
|  | unsigned int intdig_no, const char *grouping, | 
|  | wchar_t thousands_sep, int ngroups) | 
|  | internal_function; | 
|  |  | 
|  | struct hack_digit_param | 
|  | { | 
|  | /* Sign of the exponent.  */ | 
|  | int expsign; | 
|  | /* The type of output format that will be used: 'e'/'E' or 'f'.  */ | 
|  | int type; | 
|  | /* and the exponent.	*/ | 
|  | int exponent; | 
|  | /* The fraction of the floting-point value in question  */ | 
|  | MPN_VAR(frac); | 
|  | /* Scaling factor.  */ | 
|  | MPN_VAR(scale); | 
|  | /* Temporary bignum value.  */ | 
|  | MPN_VAR(tmp); | 
|  | }; | 
|  |  | 
|  | static wchar_t | 
|  | hack_digit (struct hack_digit_param *p) | 
|  | { | 
|  | mp_limb_t hi; | 
|  |  | 
|  | if (p->expsign != 0 && p->type == 'f' && p->exponent-- > 0) | 
|  | hi = 0; | 
|  | else if (p->scalesize == 0) | 
|  | { | 
|  | hi = p->frac[p->fracsize - 1]; | 
|  | p->frac[p->fracsize - 1] = __mpn_mul_1 (p->frac, p->frac, | 
|  | p->fracsize - 1, 10); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (p->fracsize < p->scalesize) | 
|  | hi = 0; | 
|  | else | 
|  | { | 
|  | hi = mpn_divmod (p->tmp, p->frac, p->fracsize, | 
|  | p->scale, p->scalesize); | 
|  | p->tmp[p->fracsize - p->scalesize] = hi; | 
|  | hi = p->tmp[0]; | 
|  |  | 
|  | p->fracsize = p->scalesize; | 
|  | while (p->fracsize != 0 && p->frac[p->fracsize - 1] == 0) | 
|  | --p->fracsize; | 
|  | if (p->fracsize == 0) | 
|  | { | 
|  | /* We're not prepared for an mpn variable with zero | 
|  | limbs.  */ | 
|  | p->fracsize = 1; | 
|  | return L'0' + hi; | 
|  | } | 
|  | } | 
|  |  | 
|  | mp_limb_t _cy = __mpn_mul_1 (p->frac, p->frac, p->fracsize, 10); | 
|  | if (_cy != 0) | 
|  | p->frac[p->fracsize++] = _cy; | 
|  | } | 
|  |  | 
|  | return L'0' + hi; | 
|  | } | 
|  |  | 
|  | int | 
|  | ___printf_fp (FILE *fp, | 
|  | const struct printf_info *info, | 
|  | const void *const *args) | 
|  | { | 
|  | /* The floating-point value to output.  */ | 
|  | union | 
|  | { | 
|  | double dbl; | 
|  | __long_double_t ldbl; | 
|  | } | 
|  | fpnum; | 
|  |  | 
|  | /* Locale-dependent representation of decimal point.	*/ | 
|  | const char *decimal; | 
|  | wchar_t decimalwc; | 
|  |  | 
|  | /* Locale-dependent thousands separator and grouping specification.  */ | 
|  | const char *thousands_sep = NULL; | 
|  | wchar_t thousands_sepwc = 0; | 
|  | const char *grouping; | 
|  |  | 
|  | /* "NaN" or "Inf" for the special cases.  */ | 
|  | const char *special = NULL; | 
|  | const wchar_t *wspecial = NULL; | 
|  |  | 
|  | /* We need just a few limbs for the input before shifting to the right | 
|  | position.	*/ | 
|  | mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB]; | 
|  | /* We need to shift the contents of fp_input by this amount of bits.	*/ | 
|  | int to_shift = 0; | 
|  |  | 
|  | struct hack_digit_param p; | 
|  | /* Sign of float number.  */ | 
|  | int is_neg = 0; | 
|  |  | 
|  | /* Counter for number of written characters.	*/ | 
|  | int done = 0; | 
|  |  | 
|  | /* General helper (carry limb).  */ | 
|  | mp_limb_t cy; | 
|  |  | 
|  | /* Nonzero if this is output on a wide character stream.  */ | 
|  | int wide = info->wide; | 
|  |  | 
|  | /* Buffer in which we produce the output.  */ | 
|  | wchar_t *wbuffer = NULL; | 
|  | /* Flag whether wbuffer is malloc'ed or not.  */ | 
|  | int buffer_malloced = 0; | 
|  |  | 
|  | p.expsign = 0; | 
|  |  | 
|  | /* Figure out the decimal point character.  */ | 
|  | if (info->extra == 0) | 
|  | { | 
|  | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); | 
|  | decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); | 
|  | } | 
|  | else | 
|  | { | 
|  | decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT); | 
|  | if (*decimal == '\0') | 
|  | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); | 
|  | decimalwc = _NL_CURRENT_WORD (LC_MONETARY, | 
|  | _NL_MONETARY_DECIMAL_POINT_WC); | 
|  | if (decimalwc == L'\0') | 
|  | decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, | 
|  | _NL_NUMERIC_DECIMAL_POINT_WC); | 
|  | } | 
|  | /* The decimal point character must not be zero.  */ | 
|  | assert (*decimal != '\0'); | 
|  | assert (decimalwc != L'\0'); | 
|  |  | 
|  | if (info->group) | 
|  | { | 
|  | if (info->extra == 0) | 
|  | grouping = _NL_CURRENT (LC_NUMERIC, GROUPING); | 
|  | else | 
|  | grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING); | 
|  |  | 
|  | if (*grouping <= 0 || *grouping == CHAR_MAX) | 
|  | grouping = NULL; | 
|  | else | 
|  | { | 
|  | /* Figure out the thousands separator character.  */ | 
|  | if (wide) | 
|  | { | 
|  | if (info->extra == 0) | 
|  | thousands_sepwc = | 
|  | _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC); | 
|  | else | 
|  | thousands_sepwc = | 
|  | _NL_CURRENT_WORD (LC_MONETARY, | 
|  | _NL_MONETARY_THOUSANDS_SEP_WC); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (info->extra == 0) | 
|  | thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP); | 
|  | else | 
|  | thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP); | 
|  | } | 
|  |  | 
|  | if ((wide && thousands_sepwc == L'\0') | 
|  | || (! wide && *thousands_sep == '\0')) | 
|  | grouping = NULL; | 
|  | else if (thousands_sepwc == L'\0') | 
|  | /* If we are printing multibyte characters and there is a | 
|  | multibyte representation for the thousands separator, | 
|  | we must ensure the wide character thousands separator | 
|  | is available, even if it is fake.  */ | 
|  | thousands_sepwc = 0xfffffffe; | 
|  | } | 
|  | } | 
|  | else | 
|  | grouping = NULL; | 
|  |  | 
|  | /* Fetch the argument value.	*/ | 
|  | #ifndef __NO_LONG_DOUBLE_MATH | 
|  | if (info->is_long_double && sizeof (long double) > sizeof (double)) | 
|  | { | 
|  | fpnum.ldbl = *(const long double *) args[0]; | 
|  |  | 
|  | /* Check for special values: not a number or infinity.  */ | 
|  | if (isnan (fpnum.ldbl)) | 
|  | { | 
|  | is_neg = signbit (fpnum.ldbl); | 
|  | if (isupper (info->spec)) | 
|  | { | 
|  | special = "NAN"; | 
|  | wspecial = L"NAN"; | 
|  | } | 
|  | else | 
|  | { | 
|  | special = "nan"; | 
|  | wspecial = L"nan"; | 
|  | } | 
|  | } | 
|  | else if (isinf (fpnum.ldbl)) | 
|  | { | 
|  | is_neg = signbit (fpnum.ldbl); | 
|  | if (isupper (info->spec)) | 
|  | { | 
|  | special = "INF"; | 
|  | wspecial = L"INF"; | 
|  | } | 
|  | else | 
|  | { | 
|  | special = "inf"; | 
|  | wspecial = L"inf"; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | p.fracsize = __mpn_extract_long_double (fp_input, | 
|  | (sizeof (fp_input) / | 
|  | sizeof (fp_input[0])), | 
|  | &p.exponent, &is_neg, | 
|  | fpnum.ldbl); | 
|  | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG; | 
|  | } | 
|  | } | 
|  | else | 
|  | #endif	/* no long double */ | 
|  | { | 
|  | fpnum.dbl = *(const double *) args[0]; | 
|  |  | 
|  | /* Check for special values: not a number or infinity.  */ | 
|  | if (isnan (fpnum.dbl)) | 
|  | { | 
|  | is_neg = signbit (fpnum.dbl); | 
|  | if (isupper (info->spec)) | 
|  | { | 
|  | special = "NAN"; | 
|  | wspecial = L"NAN"; | 
|  | } | 
|  | else | 
|  | { | 
|  | special = "nan"; | 
|  | wspecial = L"nan"; | 
|  | } | 
|  | } | 
|  | else if (isinf (fpnum.dbl)) | 
|  | { | 
|  | is_neg = signbit (fpnum.dbl); | 
|  | if (isupper (info->spec)) | 
|  | { | 
|  | special = "INF"; | 
|  | wspecial = L"INF"; | 
|  | } | 
|  | else | 
|  | { | 
|  | special = "inf"; | 
|  | wspecial = L"inf"; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | p.fracsize = __mpn_extract_double (fp_input, | 
|  | (sizeof (fp_input) | 
|  | / sizeof (fp_input[0])), | 
|  | &p.exponent, &is_neg, fpnum.dbl); | 
|  | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (special) | 
|  | { | 
|  | int width = info->width; | 
|  |  | 
|  | if (is_neg || info->showsign || info->space) | 
|  | --width; | 
|  | width -= 3; | 
|  |  | 
|  | if (!info->left && width > 0) | 
|  | PADN (' ', width); | 
|  |  | 
|  | if (is_neg) | 
|  | outchar ('-'); | 
|  | else if (info->showsign) | 
|  | outchar ('+'); | 
|  | else if (info->space) | 
|  | outchar (' '); | 
|  |  | 
|  | PRINT (special, wspecial, 3); | 
|  |  | 
|  | if (info->left && width > 0) | 
|  | PADN (' ', width); | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* We need three multiprecision variables.  Now that we have the p.exponent | 
|  | of the number we can allocate the needed memory.  It would be more | 
|  | efficient to use variables of the fixed maximum size but because this | 
|  | would be really big it could lead to memory problems.  */ | 
|  | { | 
|  | mp_size_t bignum_size = ((abs (p.exponent) + BITS_PER_MP_LIMB - 1) | 
|  | / BITS_PER_MP_LIMB | 
|  | + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4)) | 
|  | * sizeof (mp_limb_t); | 
|  | p.frac = (mp_limb_t *) alloca (bignum_size); | 
|  | p.tmp = (mp_limb_t *) alloca (bignum_size); | 
|  | p.scale = (mp_limb_t *) alloca (bignum_size); | 
|  | } | 
|  |  | 
|  | /* We now have to distinguish between numbers with positive and negative | 
|  | exponents because the method used for the one is not applicable/efficient | 
|  | for the other.  */ | 
|  | p.scalesize = 0; | 
|  | if (p.exponent > 2) | 
|  | { | 
|  | /* |FP| >= 8.0.  */ | 
|  | int scaleexpo = 0; | 
|  | int explog = LDBL_MAX_10_EXP_LOG; | 
|  | int exp10 = 0; | 
|  | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; | 
|  | int cnt_h, cnt_l, i; | 
|  |  | 
|  | if ((p.exponent + to_shift) % BITS_PER_MP_LIMB == 0) | 
|  | { | 
|  | MPN_COPY_DECR (p.frac + (p.exponent + to_shift) / BITS_PER_MP_LIMB, | 
|  | fp_input, p.fracsize); | 
|  | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; | 
|  | } | 
|  | else | 
|  | { | 
|  | cy = __mpn_lshift (p.frac + | 
|  | (p.exponent + to_shift) / BITS_PER_MP_LIMB, | 
|  | fp_input, p.fracsize, | 
|  | (p.exponent + to_shift) % BITS_PER_MP_LIMB); | 
|  | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; | 
|  | if (cy) | 
|  | p.frac[p.fracsize++] = cy; | 
|  | } | 
|  | MPN_ZERO (p.frac, (p.exponent + to_shift) / BITS_PER_MP_LIMB); | 
|  |  | 
|  | assert (powers > &_fpioconst_pow10[0]); | 
|  | do | 
|  | { | 
|  | --powers; | 
|  |  | 
|  | /* The number of the product of two binary numbers with n and m | 
|  | bits respectively has m+n or m+n-1 bits.	*/ | 
|  | if (p.exponent >= scaleexpo + powers->p_expo - 1) | 
|  | { | 
|  | if (p.scalesize == 0) | 
|  | { | 
|  | #ifndef __NO_LONG_DOUBLE_MATH | 
|  | if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB | 
|  | && info->is_long_double) | 
|  | { | 
|  | #define _FPIO_CONST_SHIFT \ | 
|  | (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \ | 
|  | - _FPIO_CONST_OFFSET) | 
|  | /* 64bit const offset is not enough for | 
|  | IEEE quad long double.  */ | 
|  | p.tmpsize = powers->arraysize + _FPIO_CONST_SHIFT; | 
|  | memcpy (p.tmp + _FPIO_CONST_SHIFT, | 
|  | &__tens[powers->arrayoff], | 
|  | p.tmpsize * sizeof (mp_limb_t)); | 
|  | MPN_ZERO (p.tmp, _FPIO_CONST_SHIFT); | 
|  | /* Adjust p.exponent, as scaleexpo will be this much | 
|  | bigger too.  */ | 
|  | p.exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB; | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | p.tmpsize = powers->arraysize; | 
|  | memcpy (p.tmp, &__tens[powers->arrayoff], | 
|  | p.tmpsize * sizeof (mp_limb_t)); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | cy = __mpn_mul (p.tmp, p.scale, p.scalesize, | 
|  | &__tens[powers->arrayoff | 
|  | + _FPIO_CONST_OFFSET], | 
|  | powers->arraysize - _FPIO_CONST_OFFSET); | 
|  | p.tmpsize = p.scalesize + | 
|  | powers->arraysize - _FPIO_CONST_OFFSET; | 
|  | if (cy == 0) | 
|  | --p.tmpsize; | 
|  | } | 
|  |  | 
|  | if (MPN_GE (p.frac, p.tmp)) | 
|  | { | 
|  | int cnt; | 
|  | MPN_ASSIGN (p.scale, p.tmp); | 
|  | count_leading_zeros (cnt, p.scale[p.scalesize - 1]); | 
|  | scaleexpo = (p.scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1; | 
|  | exp10 |= 1 << explog; | 
|  | } | 
|  | } | 
|  | --explog; | 
|  | } | 
|  | while (powers > &_fpioconst_pow10[0]); | 
|  | p.exponent = exp10; | 
|  |  | 
|  | /* Optimize number representations.  We want to represent the numbers | 
|  | with the lowest number of bytes possible without losing any | 
|  | bytes. Also the highest bit in the scaling factor has to be set | 
|  | (this is a requirement of the MPN division routines).  */ | 
|  | if (p.scalesize > 0) | 
|  | { | 
|  | /* Determine minimum number of zero bits at the end of | 
|  | both numbers.  */ | 
|  | for (i = 0; p.scale[i] == 0 && p.frac[i] == 0; i++) | 
|  | ; | 
|  |  | 
|  | /* Determine number of bits the scaling factor is misplaced.	*/ | 
|  | count_leading_zeros (cnt_h, p.scale[p.scalesize - 1]); | 
|  |  | 
|  | if (cnt_h == 0) | 
|  | { | 
|  | /* The highest bit of the scaling factor is already set.	So | 
|  | we only have to remove the trailing empty limbs.  */ | 
|  | if (i > 0) | 
|  | { | 
|  | MPN_COPY_INCR (p.scale, p.scale + i, p.scalesize - i); | 
|  | p.scalesize -= i; | 
|  | MPN_COPY_INCR (p.frac, p.frac + i, p.fracsize - i); | 
|  | p.fracsize -= i; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (p.scale[i] != 0) | 
|  | { | 
|  | count_trailing_zeros (cnt_l, p.scale[i]); | 
|  | if (p.frac[i] != 0) | 
|  | { | 
|  | int cnt_l2; | 
|  | count_trailing_zeros (cnt_l2, p.frac[i]); | 
|  | if (cnt_l2 < cnt_l) | 
|  | cnt_l = cnt_l2; | 
|  | } | 
|  | } | 
|  | else | 
|  | count_trailing_zeros (cnt_l, p.frac[i]); | 
|  |  | 
|  | /* Now shift the numbers to their optimal position.  */ | 
|  | if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l) | 
|  | { | 
|  | /* We cannot save any memory.	 So just roll both numbers | 
|  | so that the scaling factor has its highest bit set.  */ | 
|  |  | 
|  | (void) __mpn_lshift (p.scale, p.scale, p.scalesize, cnt_h); | 
|  | cy = __mpn_lshift (p.frac, p.frac, p.fracsize, cnt_h); | 
|  | if (cy != 0) | 
|  | p.frac[p.fracsize++] = cy; | 
|  | } | 
|  | else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l) | 
|  | { | 
|  | /* We can save memory by removing the trailing zero limbs | 
|  | and by packing the non-zero limbs which gain another | 
|  | free one. */ | 
|  |  | 
|  | (void) __mpn_rshift (p.scale, p.scale + i, p.scalesize - i, | 
|  | BITS_PER_MP_LIMB - cnt_h); | 
|  | p.scalesize -= i + 1; | 
|  | (void) __mpn_rshift (p.frac, p.frac + i, p.fracsize - i, | 
|  | BITS_PER_MP_LIMB - cnt_h); | 
|  | p.fracsize -= p.frac[p.fracsize - i - 1] == 0 ? i + 1 : i; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We can only save the memory of the limbs which are zero. | 
|  | The non-zero parts occupy the same number of limbs.  */ | 
|  |  | 
|  | (void) __mpn_rshift (p.scale, p.scale + (i - 1), | 
|  | p.scalesize - (i - 1), | 
|  | BITS_PER_MP_LIMB - cnt_h); | 
|  | p.scalesize -= i; | 
|  | (void) __mpn_rshift (p.frac, p.frac + (i - 1), | 
|  | p.fracsize - (i - 1), | 
|  | BITS_PER_MP_LIMB - cnt_h); | 
|  | p.fracsize -= | 
|  | p.frac[p.fracsize - (i - 1) - 1] == 0 ? i : i - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (p.exponent < 0) | 
|  | { | 
|  | /* |FP| < 1.0.  */ | 
|  | int exp10 = 0; | 
|  | int explog = LDBL_MAX_10_EXP_LOG; | 
|  | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; | 
|  |  | 
|  | /* Now shift the input value to its right place.	*/ | 
|  | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, to_shift); | 
|  | p.frac[p.fracsize++] = cy; | 
|  | assert (cy == 1 || (p.frac[p.fracsize - 2] == 0 && p.frac[0] == 0)); | 
|  |  | 
|  | p.expsign = 1; | 
|  | p.exponent = -p.exponent; | 
|  |  | 
|  | assert (powers != &_fpioconst_pow10[0]); | 
|  | do | 
|  | { | 
|  | --powers; | 
|  |  | 
|  | if (p.exponent >= powers->m_expo) | 
|  | { | 
|  | int i, incr, cnt_h, cnt_l; | 
|  | mp_limb_t topval[2]; | 
|  |  | 
|  | /* The __mpn_mul function expects the first argument to be | 
|  | bigger than the second.  */ | 
|  | if (p.fracsize < powers->arraysize - _FPIO_CONST_OFFSET) | 
|  | cy = __mpn_mul (p.tmp, &__tens[powers->arrayoff | 
|  | + _FPIO_CONST_OFFSET], | 
|  | powers->arraysize - _FPIO_CONST_OFFSET, | 
|  | p.frac, p.fracsize); | 
|  | else | 
|  | cy = __mpn_mul (p.tmp, p.frac, p.fracsize, | 
|  | &__tens[powers->arrayoff + _FPIO_CONST_OFFSET], | 
|  | powers->arraysize - _FPIO_CONST_OFFSET); | 
|  | p.tmpsize = p.fracsize + powers->arraysize - _FPIO_CONST_OFFSET; | 
|  | if (cy == 0) | 
|  | --p.tmpsize; | 
|  |  | 
|  | count_leading_zeros (cnt_h, p.tmp[p.tmpsize - 1]); | 
|  | incr = (p.tmpsize - p.fracsize) * BITS_PER_MP_LIMB | 
|  | + BITS_PER_MP_LIMB - 1 - cnt_h; | 
|  |  | 
|  | assert (incr <= powers->p_expo); | 
|  |  | 
|  | /* If we increased the p.exponent by exactly 3 we have to test | 
|  | for overflow.	This is done by comparing with 10 shifted | 
|  | to the right position.	 */ | 
|  | if (incr == p.exponent + 3) | 
|  | { | 
|  | if (cnt_h <= BITS_PER_MP_LIMB - 4) | 
|  | { | 
|  | topval[0] = 0; | 
|  | topval[1] | 
|  | = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h); | 
|  | } | 
|  | else | 
|  | { | 
|  | topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4); | 
|  | topval[1] = 0; | 
|  | (void) __mpn_lshift (topval, topval, 2, | 
|  | BITS_PER_MP_LIMB - cnt_h); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We have to be careful when multiplying the last factor. | 
|  | If the result is greater than 1.0 be have to test it | 
|  | against 10.0.  If it is greater or equal to 10.0 the | 
|  | multiplication was not valid.  This is because we cannot | 
|  | determine the number of bits in the result in advance.  */ | 
|  | if (incr < p.exponent + 3 | 
|  | || (incr == p.exponent + 3 && | 
|  | (p.tmp[p.tmpsize - 1] < topval[1] | 
|  | || (p.tmp[p.tmpsize - 1] == topval[1] | 
|  | && p.tmp[p.tmpsize - 2] < topval[0])))) | 
|  | { | 
|  | /* The factor is right.  Adapt binary and decimal | 
|  | exponents.	 */ | 
|  | p.exponent -= incr; | 
|  | exp10 |= 1 << explog; | 
|  |  | 
|  | /* If this factor yields a number greater or equal to | 
|  | 1.0, we must not shift the non-fractional digits down. */ | 
|  | if (p.exponent < 0) | 
|  | cnt_h += -p.exponent; | 
|  |  | 
|  | /* Now we optimize the number representation.	 */ | 
|  | for (i = 0; p.tmp[i] == 0; ++i); | 
|  | if (cnt_h == BITS_PER_MP_LIMB - 1) | 
|  | { | 
|  | MPN_COPY (p.frac, p.tmp + i, p.tmpsize - i); | 
|  | p.fracsize = p.tmpsize - i; | 
|  | } | 
|  | else | 
|  | { | 
|  | count_trailing_zeros (cnt_l, p.tmp[i]); | 
|  |  | 
|  | /* Now shift the numbers to their optimal position.  */ | 
|  | if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l) | 
|  | { | 
|  | /* We cannot save any memory.	 Just roll the | 
|  | number so that the leading digit is in a | 
|  | separate limb.  */ | 
|  |  | 
|  | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, | 
|  | cnt_h + 1); | 
|  | p.fracsize = p.tmpsize + 1; | 
|  | p.frac[p.fracsize - 1] = cy; | 
|  | } | 
|  | else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l) | 
|  | { | 
|  | (void) __mpn_rshift (p.frac, p.tmp + i, p.tmpsize - i, | 
|  | BITS_PER_MP_LIMB - 1 - cnt_h); | 
|  | p.fracsize = p.tmpsize - i; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We can only save the memory of the limbs which | 
|  | are zero.	The non-zero parts occupy the same | 
|  | number of limbs.  */ | 
|  |  | 
|  | (void) __mpn_rshift (p.frac, p.tmp + (i - 1), | 
|  | p.tmpsize - (i - 1), | 
|  | BITS_PER_MP_LIMB - 1 - cnt_h); | 
|  | p.fracsize = p.tmpsize - (i - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | --explog; | 
|  | } | 
|  | while (powers != &_fpioconst_pow10[1] && p.exponent > 0); | 
|  | /* All factors but 10^-1 are tested now.	*/ | 
|  | if (p.exponent > 0) | 
|  | { | 
|  | int cnt_l; | 
|  |  | 
|  | cy = __mpn_mul_1 (p.tmp, p.frac, p.fracsize, 10); | 
|  | p.tmpsize = p.fracsize; | 
|  | assert (cy == 0 || p.tmp[p.tmpsize - 1] < 20); | 
|  |  | 
|  | count_trailing_zeros (cnt_l, p.tmp[0]); | 
|  | if (cnt_l < MIN (4, p.exponent)) | 
|  | { | 
|  | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, | 
|  | BITS_PER_MP_LIMB - MIN (4, p.exponent)); | 
|  | if (cy != 0) | 
|  | p.frac[p.tmpsize++] = cy; | 
|  | } | 
|  | else | 
|  | (void) __mpn_rshift (p.frac, p.tmp, p.tmpsize, MIN (4, p.exponent)); | 
|  | p.fracsize = p.tmpsize; | 
|  | exp10 |= 1; | 
|  | assert (p.frac[p.fracsize - 1] < 10); | 
|  | } | 
|  | p.exponent = exp10; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This is a special case.  We don't need a factor because the | 
|  | numbers are in the range of 1.0 <= |fp| < 8.0.  We simply | 
|  | shift it to the right place and divide it by 1.0 to get the | 
|  | leading digit.	 (Of course this division is not really made.)	*/ | 
|  | assert (0 <= p.exponent && p.exponent < 3 && | 
|  | p.exponent + to_shift < BITS_PER_MP_LIMB); | 
|  |  | 
|  | /* Now shift the input value to its right place.	*/ | 
|  | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, (p.exponent + to_shift)); | 
|  | p.frac[p.fracsize++] = cy; | 
|  | p.exponent = 0; | 
|  | } | 
|  |  | 
|  | { | 
|  | int width = info->width; | 
|  | wchar_t *wstartp, *wcp; | 
|  | size_t chars_needed; | 
|  | int expscale; | 
|  | int intdig_max, intdig_no = 0; | 
|  | int fracdig_min; | 
|  | int fracdig_max; | 
|  | int dig_max; | 
|  | int significant; | 
|  | int ngroups = 0; | 
|  | char spec = _tolower (info->spec); | 
|  |  | 
|  | if (spec == 'e') | 
|  | { | 
|  | p.type = info->spec; | 
|  | intdig_max = 1; | 
|  | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; | 
|  | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; | 
|  | /*	       d   .	 ddd	     e	 +-  ddd  */ | 
|  | dig_max = INT_MAX;		/* Unlimited.  */ | 
|  | significant = 1;		/* Does not matter here.  */ | 
|  | } | 
|  | else if (spec == 'f') | 
|  | { | 
|  | p.type = 'f'; | 
|  | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; | 
|  | dig_max = INT_MAX;		/* Unlimited.  */ | 
|  | significant = 1;		/* Does not matter here.  */ | 
|  | if (p.expsign == 0) | 
|  | { | 
|  | intdig_max = p.exponent + 1; | 
|  | /* This can be really big!	*/  /* XXX Maybe malloc if too big? */ | 
|  | chars_needed = (size_t) p.exponent + 1 + 1 + (size_t) fracdig_max; | 
|  | } | 
|  | else | 
|  | { | 
|  | intdig_max = 1; | 
|  | chars_needed = 1 + 1 + (size_t) fracdig_max; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec); | 
|  | if ((p.expsign == 0 && p.exponent >= dig_max) | 
|  | || (p.expsign != 0 && p.exponent > 4)) | 
|  | { | 
|  | if ('g' - 'G' == 'e' - 'E') | 
|  | p.type = 'E' + (info->spec - 'G'); | 
|  | else | 
|  | p.type = isupper (info->spec) ? 'E' : 'e'; | 
|  | fracdig_max = dig_max - 1; | 
|  | intdig_max = 1; | 
|  | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | p.type = 'f'; | 
|  | intdig_max = p.expsign == 0 ? p.exponent + 1 : 0; | 
|  | fracdig_max = dig_max - intdig_max; | 
|  | /* We need space for the significant digits and perhaps | 
|  | for leading zeros when < 1.0.  The number of leading | 
|  | zeros can be as many as would be required for | 
|  | exponential notation with a negative two-digit | 
|  | p.exponent, which is 4.  */ | 
|  | chars_needed = (size_t) dig_max + 1 + 4; | 
|  | } | 
|  | fracdig_min = info->alt ? fracdig_max : 0; | 
|  | significant = 0;		/* We count significant digits.	 */ | 
|  | } | 
|  |  | 
|  | if (grouping) | 
|  | { | 
|  | /* Guess the number of groups we will make, and thus how | 
|  | many spaces we need for separator characters.  */ | 
|  | ngroups = __guess_grouping (intdig_max, grouping); | 
|  | /* Allocate one more character in case rounding increases the | 
|  | number of groups.  */ | 
|  | chars_needed += ngroups + 1; | 
|  | } | 
|  |  | 
|  | /* Allocate buffer for output.  We need two more because while rounding | 
|  | it is possible that we need two more characters in front of all the | 
|  | other output.  If the amount of memory we have to allocate is too | 
|  | large use `malloc' instead of `alloca'.  */ | 
|  | if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2 | 
|  | || chars_needed < fracdig_max, 0)) | 
|  | { | 
|  | /* Some overflow occurred.  */ | 
|  | __set_errno (ERANGE); | 
|  | return -1; | 
|  | } | 
|  | size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t); | 
|  | buffer_malloced = ! __libc_use_alloca (wbuffer_to_alloc); | 
|  | if (__builtin_expect (buffer_malloced, 0)) | 
|  | { | 
|  | wbuffer = (wchar_t *) malloc (wbuffer_to_alloc); | 
|  | if (wbuffer == NULL) | 
|  | /* Signal an error to the caller.  */ | 
|  | return -1; | 
|  | } | 
|  | else | 
|  | wbuffer = (wchar_t *) alloca (wbuffer_to_alloc); | 
|  | wcp = wstartp = wbuffer + 2;	/* Let room for rounding.  */ | 
|  |  | 
|  | /* Do the real work: put digits in allocated buffer.  */ | 
|  | if (p.expsign == 0 || p.type != 'f') | 
|  | { | 
|  | assert (p.expsign == 0 || intdig_max == 1); | 
|  | while (intdig_no < intdig_max) | 
|  | { | 
|  | ++intdig_no; | 
|  | *wcp++ = hack_digit (&p); | 
|  | } | 
|  | significant = 1; | 
|  | if (info->alt | 
|  | || fracdig_min > 0 | 
|  | || (fracdig_max > 0 && (p.fracsize > 1 || p.frac[0] != 0))) | 
|  | *wcp++ = decimalwc; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* |fp| < 1.0 and the selected p.type is 'f', so put "0." | 
|  | in the buffer.  */ | 
|  | *wcp++ = L'0'; | 
|  | --p.exponent; | 
|  | *wcp++ = decimalwc; | 
|  | } | 
|  |  | 
|  | /* Generate the needed number of fractional digits.	 */ | 
|  | int fracdig_no = 0; | 
|  | int added_zeros = 0; | 
|  | while (fracdig_no < fracdig_min + added_zeros | 
|  | || (fracdig_no < fracdig_max && (p.fracsize > 1 || p.frac[0] != 0))) | 
|  | { | 
|  | ++fracdig_no; | 
|  | *wcp = hack_digit (&p); | 
|  | if (*wcp++ != L'0') | 
|  | significant = 1; | 
|  | else if (significant == 0) | 
|  | { | 
|  | ++fracdig_max; | 
|  | if (fracdig_min > 0) | 
|  | ++added_zeros; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do rounding.  */ | 
|  | wchar_t last_digit = wcp[-1] != decimalwc ? wcp[-1] : wcp[-2]; | 
|  | wchar_t next_digit = hack_digit (&p); | 
|  | bool more_bits; | 
|  | if (next_digit != L'0' && next_digit != L'5') | 
|  | more_bits = true; | 
|  | else if (p.fracsize == 1 && p.frac[0] == 0) | 
|  | /* Rest of the number is zero.  */ | 
|  | more_bits = false; | 
|  | else if (p.scalesize == 0) | 
|  | { | 
|  | /* Here we have to see whether all limbs are zero since no | 
|  | normalization happened.  */ | 
|  | size_t lcnt = p.fracsize; | 
|  | while (lcnt >= 1 && p.frac[lcnt - 1] == 0) | 
|  | --lcnt; | 
|  | more_bits = lcnt > 0; | 
|  | } | 
|  | else | 
|  | more_bits = true; | 
|  | int rounding_mode = get_rounding_mode (); | 
|  | if (round_away (is_neg, (last_digit - L'0') & 1, next_digit >= L'5', | 
|  | more_bits, rounding_mode)) | 
|  | { | 
|  | wchar_t *wtp = wcp; | 
|  |  | 
|  | if (fracdig_no > 0) | 
|  | { | 
|  | /* Process fractional digits.  Terminate if not rounded or | 
|  | radix character is reached.  */ | 
|  | int removed = 0; | 
|  | while (*--wtp != decimalwc && *wtp == L'9') | 
|  | { | 
|  | *wtp = L'0'; | 
|  | ++removed; | 
|  | } | 
|  | if (removed == fracdig_min && added_zeros > 0) | 
|  | --added_zeros; | 
|  | if (*wtp != decimalwc) | 
|  | /* Round up.  */ | 
|  | (*wtp)++; | 
|  | else if (__builtin_expect (spec == 'g' && p.type == 'f' && info->alt | 
|  | && wtp == wstartp + 1 | 
|  | && wstartp[0] == L'0', | 
|  | 0)) | 
|  | /* This is a special case: the rounded number is 1.0, | 
|  | the format is 'g' or 'G', and the alternative format | 
|  | is selected.  This means the result must be "1.".  */ | 
|  | --added_zeros; | 
|  | } | 
|  |  | 
|  | if (fracdig_no == 0 || *wtp == decimalwc) | 
|  | { | 
|  | /* Round the integer digits.  */ | 
|  | if (*(wtp - 1) == decimalwc) | 
|  | --wtp; | 
|  |  | 
|  | while (--wtp >= wstartp && *wtp == L'9') | 
|  | *wtp = L'0'; | 
|  |  | 
|  | if (wtp >= wstartp) | 
|  | /* Round up.  */ | 
|  | (*wtp)++; | 
|  | else | 
|  | /* It is more critical.  All digits were 9's.  */ | 
|  | { | 
|  | if (p.type != 'f') | 
|  | { | 
|  | *wstartp = '1'; | 
|  | p.exponent += p.expsign == 0 ? 1 : -1; | 
|  |  | 
|  | /* The above p.exponent adjustment could lead to 1.0e-00, | 
|  | e.g. for 0.999999999.  Make sure p.exponent 0 always | 
|  | uses + sign.  */ | 
|  | if (p.exponent == 0) | 
|  | p.expsign = 0; | 
|  | } | 
|  | else if (intdig_no == dig_max) | 
|  | { | 
|  | /* This is the case where for p.type %g the number fits | 
|  | really in the range for %f output but after rounding | 
|  | the number of digits is too big.	 */ | 
|  | *--wstartp = decimalwc; | 
|  | *--wstartp = L'1'; | 
|  |  | 
|  | if (info->alt || fracdig_no > 0) | 
|  | { | 
|  | /* Overwrite the old radix character.  */ | 
|  | wstartp[intdig_no + 2] = L'0'; | 
|  | ++fracdig_no; | 
|  | } | 
|  |  | 
|  | fracdig_no += intdig_no; | 
|  | intdig_no = 1; | 
|  | fracdig_max = intdig_max - intdig_no; | 
|  | ++p.exponent; | 
|  | /* Now we must print the p.exponent.	*/ | 
|  | p.type = isupper (info->spec) ? 'E' : 'e'; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We can simply add another another digit before the | 
|  | radix.  */ | 
|  | *--wstartp = L'1'; | 
|  | ++intdig_no; | 
|  | } | 
|  |  | 
|  | /* While rounding the number of digits can change. | 
|  | If the number now exceeds the limits remove some | 
|  | fractional digits.  */ | 
|  | if (intdig_no + fracdig_no > dig_max) | 
|  | { | 
|  | wcp -= intdig_no + fracdig_no - dig_max; | 
|  | fracdig_no -= intdig_no + fracdig_no - dig_max; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now remove unnecessary '0' at the end of the string.  */ | 
|  | while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L'0') | 
|  | { | 
|  | --wcp; | 
|  | --fracdig_no; | 
|  | } | 
|  | /* If we eliminate all fractional digits we perhaps also can remove | 
|  | the radix character.  */ | 
|  | if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc) | 
|  | --wcp; | 
|  |  | 
|  | if (grouping) | 
|  | { | 
|  | /* Rounding might have changed the number of groups.  We allocated | 
|  | enough memory but we need here the correct number of groups.  */ | 
|  | if (intdig_no != intdig_max) | 
|  | ngroups = __guess_grouping (intdig_no, grouping); | 
|  |  | 
|  | /* Add in separator characters, overwriting the same buffer.  */ | 
|  | wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc, | 
|  | ngroups); | 
|  | } | 
|  |  | 
|  | /* Write the p.exponent if it is needed.  */ | 
|  | if (p.type != 'f') | 
|  | { | 
|  | if (__glibc_unlikely (p.expsign != 0 && p.exponent == 4 && spec == 'g')) | 
|  | { | 
|  | /* This is another special case.  The p.exponent of the number is | 
|  | really smaller than -4, which requires the 'e'/'E' format. | 
|  | But after rounding the number has an p.exponent of -4.  */ | 
|  | assert (wcp >= wstartp + 1); | 
|  | assert (wstartp[0] == L'1'); | 
|  | __wmemcpy (wstartp, L"0.0001", 6); | 
|  | wstartp[1] = decimalwc; | 
|  | if (wcp >= wstartp + 2) | 
|  | { | 
|  | __wmemset (wstartp + 6, L'0', wcp - (wstartp + 2)); | 
|  | wcp += 4; | 
|  | } | 
|  | else | 
|  | wcp += 5; | 
|  | } | 
|  | else | 
|  | { | 
|  | *wcp++ = (wchar_t) p.type; | 
|  | *wcp++ = p.expsign ? L'-' : L'+'; | 
|  |  | 
|  | /* Find the magnitude of the p.exponent.	*/ | 
|  | expscale = 10; | 
|  | while (expscale <= p.exponent) | 
|  | expscale *= 10; | 
|  |  | 
|  | if (p.exponent < 10) | 
|  | /* Exponent always has at least two digits.  */ | 
|  | *wcp++ = L'0'; | 
|  | else | 
|  | do | 
|  | { | 
|  | expscale /= 10; | 
|  | *wcp++ = L'0' + (p.exponent / expscale); | 
|  | p.exponent %= expscale; | 
|  | } | 
|  | while (expscale > 10); | 
|  | *wcp++ = L'0' + p.exponent; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compute number of characters which must be filled with the padding | 
|  | character.  */ | 
|  | if (is_neg || info->showsign || info->space) | 
|  | --width; | 
|  | width -= wcp - wstartp; | 
|  |  | 
|  | if (!info->left && info->pad != '0' && width > 0) | 
|  | PADN (info->pad, width); | 
|  |  | 
|  | if (is_neg) | 
|  | outchar ('-'); | 
|  | else if (info->showsign) | 
|  | outchar ('+'); | 
|  | else if (info->space) | 
|  | outchar (' '); | 
|  |  | 
|  | if (!info->left && info->pad == '0' && width > 0) | 
|  | PADN ('0', width); | 
|  |  | 
|  | { | 
|  | char *buffer = NULL; | 
|  | char *buffer_end = NULL; | 
|  | char *cp = NULL; | 
|  | char *tmpptr; | 
|  |  | 
|  | if (! wide) | 
|  | { | 
|  | /* Create the single byte string.  */ | 
|  | size_t decimal_len; | 
|  | size_t thousands_sep_len; | 
|  | wchar_t *copywc; | 
|  | size_t factor = (info->i18n | 
|  | ? _NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MB_CUR_MAX) | 
|  | : 1); | 
|  |  | 
|  | decimal_len = strlen (decimal); | 
|  |  | 
|  | if (thousands_sep == NULL) | 
|  | thousands_sep_len = 0; | 
|  | else | 
|  | thousands_sep_len = strlen (thousands_sep); | 
|  |  | 
|  | size_t nbuffer = (2 + chars_needed * factor + decimal_len | 
|  | + ngroups * thousands_sep_len); | 
|  | if (__glibc_unlikely (buffer_malloced)) | 
|  | { | 
|  | buffer = (char *) malloc (nbuffer); | 
|  | if (buffer == NULL) | 
|  | { | 
|  | /* Signal an error to the caller.  */ | 
|  | free (wbuffer); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else | 
|  | buffer = (char *) alloca (nbuffer); | 
|  | buffer_end = buffer + nbuffer; | 
|  |  | 
|  | /* Now copy the wide character string.  Since the character | 
|  | (except for the decimal point and thousands separator) must | 
|  | be coming from the ASCII range we can esily convert the | 
|  | string without mapping tables.  */ | 
|  | for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc) | 
|  | if (*copywc == decimalwc) | 
|  | cp = (char *) __mempcpy (cp, decimal, decimal_len); | 
|  | else if (*copywc == thousands_sepwc) | 
|  | cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len); | 
|  | else | 
|  | *cp++ = (char) *copywc; | 
|  | } | 
|  |  | 
|  | tmpptr = buffer; | 
|  | if (__glibc_unlikely (info->i18n)) | 
|  | { | 
|  | #ifdef COMPILE_WPRINTF | 
|  | wstartp = _i18n_number_rewrite (wstartp, wcp, | 
|  | wbuffer + wbuffer_to_alloc); | 
|  | wcp = wbuffer + wbuffer_to_alloc; | 
|  | assert ((uintptr_t) wbuffer <= (uintptr_t) wstartp); | 
|  | assert ((uintptr_t) wstartp | 
|  | < (uintptr_t) wbuffer + wbuffer_to_alloc); | 
|  | #else | 
|  | tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end); | 
|  | cp = buffer_end; | 
|  | assert ((uintptr_t) buffer <= (uintptr_t) tmpptr); | 
|  | assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr); | 
|  |  | 
|  | /* Free the memory if necessary.  */ | 
|  | if (__glibc_unlikely (buffer_malloced)) | 
|  | { | 
|  | free (buffer); | 
|  | free (wbuffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (info->left && width > 0) | 
|  | PADN (info->pad, width); | 
|  | } | 
|  | return done; | 
|  | } | 
|  | ldbl_hidden_def (___printf_fp, __printf_fp) | 
|  | ldbl_strong_alias (___printf_fp, __printf_fp) | 
|  |  | 
|  | /* Return the number of extra grouping characters that will be inserted | 
|  | into a number with INTDIG_MAX integer digits.  */ | 
|  |  | 
|  | unsigned int | 
|  | __guess_grouping (unsigned int intdig_max, const char *grouping) | 
|  | { | 
|  | unsigned int groups; | 
|  |  | 
|  | /* We treat all negative values like CHAR_MAX.  */ | 
|  |  | 
|  | if (*grouping == CHAR_MAX || *grouping <= 0) | 
|  | /* No grouping should be done.  */ | 
|  | return 0; | 
|  |  | 
|  | groups = 0; | 
|  | while (intdig_max > (unsigned int) *grouping) | 
|  | { | 
|  | ++groups; | 
|  | intdig_max -= *grouping++; | 
|  |  | 
|  | if (*grouping == CHAR_MAX | 
|  | #if CHAR_MIN < 0 | 
|  | || *grouping < 0 | 
|  | #endif | 
|  | ) | 
|  | /* No more grouping should be done.  */ | 
|  | break; | 
|  | else if (*grouping == 0) | 
|  | { | 
|  | /* Same grouping repeats.  */ | 
|  | groups += (intdig_max - 1) / grouping[-1]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return groups; | 
|  | } | 
|  |  | 
|  | /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND). | 
|  | There is guaranteed enough space past BUFEND to extend it. | 
|  | Return the new end of buffer.  */ | 
|  |  | 
|  | static wchar_t * | 
|  | internal_function | 
|  | group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no, | 
|  | const char *grouping, wchar_t thousands_sep, int ngroups) | 
|  | { | 
|  | wchar_t *p; | 
|  |  | 
|  | if (ngroups == 0) | 
|  | return bufend; | 
|  |  | 
|  | /* Move the fractional part down.  */ | 
|  | __wmemmove (buf + intdig_no + ngroups, buf + intdig_no, | 
|  | bufend - (buf + intdig_no)); | 
|  |  | 
|  | p = buf + intdig_no + ngroups - 1; | 
|  | do | 
|  | { | 
|  | unsigned int len = *grouping++; | 
|  | do | 
|  | *p-- = buf[--intdig_no]; | 
|  | while (--len > 0); | 
|  | *p-- = thousands_sep; | 
|  |  | 
|  | if (*grouping == CHAR_MAX | 
|  | #if CHAR_MIN < 0 | 
|  | || *grouping < 0 | 
|  | #endif | 
|  | ) | 
|  | /* No more grouping should be done.  */ | 
|  | break; | 
|  | else if (*grouping == 0) | 
|  | /* Same grouping repeats.  */ | 
|  | --grouping; | 
|  | } while (intdig_no > (unsigned int) *grouping); | 
|  |  | 
|  | /* Copy the remaining ungrouped digits.  */ | 
|  | do | 
|  | *p-- = buf[--intdig_no]; | 
|  | while (p > buf); | 
|  |  | 
|  | return bufend + ngroups; | 
|  | } |