[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit
Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/build/uClibc/libcrypt/Makefile b/ap/build/uClibc/libcrypt/Makefile
new file mode 100644
index 0000000..c8dc9b4
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/Makefile
@@ -0,0 +1,13 @@
+# Makefile for uClibc
+#
+# Copyright (C) 2000-2005 Erik Andersen <andersen@uclibc.org>
+#
+# Licensed under the LGPL v2.1, see the file COPYING.LIB in this tarball.
+#
+
+top_srcdir=../
+top_builddir=../
+include $(top_builddir)Rules.mak
+all: libs
+include Makefile.in
+include $(top_srcdir)Makerules
diff --git a/ap/build/uClibc/libcrypt/Makefile.in b/ap/build/uClibc/libcrypt/Makefile.in
new file mode 100644
index 0000000..94753f4
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/Makefile.in
@@ -0,0 +1,68 @@
+# Makefile for uClibc
+#
+# Copyright (C) 2000-2008 Erik Andersen <andersen@uclibc.org>
+#
+# Licensed under the LGPL v2.1, see the file COPYING.LIB in this tarball.
+#
+
+subdirs += libcrypt
+
+CFLAGS-libcrypt := -DNOT_IN_libc -DIS_IN_libcrypt $(SSP_ALL_CFLAGS)
+
+LDFLAGS-$(UCLIBC_FORMAT_DSBT_ELF)-libcrypt.so := -Wl,--dsbt-index=4
+LDFLAGS-libcrypt.so := $(LDFLAGS)
+
+LIBS-libcrypt.so := $(LIBS)
+
+libcrypt_FULL_NAME := libcrypt-$(VERSION).so
+
+libcrypt_DIR := $(top_srcdir)libcrypt
+libcrypt_OUT := $(top_builddir)libcrypt
+
+libcrypt_SRC-y :=
+libcrypt_SRC-$(UCLIBC_HAS_CRYPT_IMPL) += crypt.c des.c md5.c
+libcrypt_SRC-$(UCLIBC_HAS_SHA256_CRYPT_IMPL) += sha256.c sha256-crypt.c
+libcrypt_SRC-$(UCLIBC_HAS_SHA512_CRYPT_IMPL) += sha512.c sha512-crypt.c
+libcrypt_SRC-$(UCLIBC_HAS_CRYPT_STUB) += crypt_stub.c
+
+libcrypt_SRC := $(addprefix $(libcrypt_DIR)/,$(libcrypt_SRC-y))
+libcrypt_OBJ := $(patsubst $(libcrypt_DIR)/%.c,$(libcrypt_OUT)/%.o,$(libcrypt_SRC))
+
+ifeq ($(DOPIC),y)
+libcrypt-a-y := $(libcrypt_OBJ:.o=.os)
+else
+libcrypt-a-y := $(libcrypt_OBJ)
+endif
+libcrypt-so-y := $(libcrypt_OBJ:.o=.os)
+
+lib-a-$(UCLIBC_HAS_CRYPT) += $(top_builddir)lib/libcrypt.a
+lib-so-$(UCLIBC_HAS_CRYPT) += $(top_builddir)lib/libcrypt.so
+objclean-y += CLEAN_libcrypt
+
+ifeq ($(DOMULTI),n)
+ifeq ($(DOPIC),y)
+$(top_builddir)lib/libcrypt.so: $(top_builddir)lib/libcrypt.a $(libc.depend)
+else
+$(top_builddir)lib/libcrypt.so: $(libcrypt_OUT)/libcrypt_so.a $(libc.depend)
+endif
+ $(call link.so,$(libcrypt_FULL_NAME),$(ABI_VERSION))
+else
+$(top_builddir)lib/libcrypt.so: $(libcrypt_OUT)/libcrypt.oS | $(libc.depend)
+ $(call linkm.so,$(libcrypt_FULL_NAME),$(ABI_VERSION))
+endif
+
+$(libcrypt_OUT)/libcrypt_so.a: $(libcrypt-so-y)
+ $(Q)$(RM) $@
+ $(do_ar)
+
+$(libcrypt_OUT)/libcrypt.oS: $(libcrypt_SRC)
+ $(Q)$(RM) $@
+ $(compile-m)
+
+$(top_builddir)lib/libcrypt.a: $(libcrypt-a-y)
+ $(Q)$(INSTALL) -d $(dir $@)
+ $(Q)$(RM) $@
+ $(do_ar)
+
+CLEAN_libcrypt:
+ $(do_rm) $(addprefix $(libcrypt_OUT)/*., o os oS a)
diff --git a/ap/build/uClibc/libcrypt/crypt.c b/ap/build/uClibc/libcrypt/crypt.c
new file mode 100644
index 0000000..e5274a5
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/crypt.c
@@ -0,0 +1,31 @@
+/* vi: set sw=4 ts=4: */
+/*
+ * crypt() for uClibc
+ * Copyright (C) 2000-2006 by Erik Andersen <andersen@uclibc.org>
+ * Licensed under the LGPL v2.1, see the file COPYING.LIB in this tarball.
+ */
+
+#define __FORCE_GLIBC
+#include <unistd.h>
+#include <crypt.h>
+#include "libcrypt.h"
+
+char *crypt(const char *key, const char *salt)
+{
+ const unsigned char *ukey = (const unsigned char *)key;
+ const unsigned char *usalt = (const unsigned char *)salt;
+
+ if (salt[0] == '$' && salt[2] == '$') {
+ if (*++salt == '1')
+ return __md5_crypt(ukey, usalt);
+#ifdef __UCLIBC_HAS_SHA256_CRYPT_IMPL__
+ else if (*salt == '5')
+ return __sha256_crypt(ukey, usalt);
+#endif
+#ifdef __UCLIBC_HAS_SHA512_CRYPT_IMPL__
+ else if (*salt == '6')
+ return __sha512_crypt(ukey, usalt);
+#endif
+ }
+ return __des_crypt(ukey, usalt);
+}
diff --git a/ap/build/uClibc/libcrypt/crypt_stub.c b/ap/build/uClibc/libcrypt/crypt_stub.c
new file mode 100644
index 0000000..76645a0
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/crypt_stub.c
@@ -0,0 +1,30 @@
+/* vi: set sw=4 ts=4: */
+/*
+ * crypt() for uClibc
+ * Copyright (C) 2008 by Erik Andersen <andersen@uclibc.org>
+ * Licensed under the LGPL v2.1, see the file COPYING.LIB in this tarball.
+ */
+
+#define __FORCE_GLIBC
+#include <crypt.h>
+#include <unistd.h>
+#include "libcrypt.h"
+#include <syscall.h>
+
+char *crypt(const char *key attribute_unused, const char *salt attribute_unused)
+{
+ __set_errno(ENOSYS);
+ return NULL;
+}
+
+void
+setkey(const char *key attribute_unused)
+{
+ __set_errno(ENOSYS);
+}
+
+void
+encrypt(char *block attribute_unused, int flag attribute_unused)
+{
+ __set_errno(ENOSYS);
+}
diff --git a/ap/build/uClibc/libcrypt/des.c b/ap/build/uClibc/libcrypt/des.c
new file mode 100644
index 0000000..6af65b6
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/des.c
@@ -0,0 +1,739 @@
+/*
+ * FreeSec: libcrypt for NetBSD
+ *
+ * Copyright (c) 1994 David Burren
+ * All rights reserved.
+ *
+ * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
+ * this file should now *only* export crypt(), in order to make
+ * binaries of libcrypt exportable from the USA
+ *
+ * Adapted for FreeBSD-4.0 by Mark R V Murray
+ * this file should now *only* export crypt_des(), in order to make
+ * a module that can be optionally included in libcrypt.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the author nor the names of other contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * This is an original implementation of the DES and the crypt(3) interfaces
+ * by David Burren <davidb@werj.com.au>.
+ *
+ * An excellent reference on the underlying algorithm (and related
+ * algorithms) is:
+ *
+ * B. Schneier, Applied Cryptography: protocols, algorithms,
+ * and source code in C, John Wiley & Sons, 1994.
+ *
+ * Note that in that book's description of DES the lookups for the initial,
+ * pbox, and final permutations are inverted (this has been brought to the
+ * attention of the author). A list of errata for this book has been
+ * posted to the sci.crypt newsgroup by the author and is available for FTP.
+ *
+ * ARCHITECTURE ASSUMPTIONS:
+ * It is assumed that the 8-byte arrays passed by reference can be
+ * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
+ * alignment).
+ */
+
+#define __FORCE_GLIBC
+#include <sys/cdefs.h>
+#include <sys/types.h>
+#include <sys/param.h>
+#include <netinet/in.h>
+#include <pwd.h>
+#include <string.h>
+#include <crypt.h>
+#include "libcrypt.h"
+
+/* Re-entrantify me -- all this junk needs to be in
+ * struct crypt_data to make this really reentrant... */
+static u_char inv_key_perm[64];
+static u_char inv_comp_perm[56];
+static u_char un_pbox[32];
+static u_int32_t en_keysl[16], en_keysr[16];
+static u_int32_t de_keysl[16], de_keysr[16];
+static u_int32_t ip_maskl[8][256], ip_maskr[8][256];
+static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
+static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
+static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
+static u_int32_t saltbits;
+static u_int32_t old_salt;
+static u_int32_t old_rawkey0, old_rawkey1;
+
+
+/* Static stuff that stays resident and doesn't change after
+ * being initialized, and therefore doesn't need to be made
+ * reentrant. */
+static u_char init_perm[64], final_perm[64];
+static u_char m_sbox[4][4096];
+static u_int32_t psbox[4][256];
+
+
+
+
+/* A pile of data */
+static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+
+static const u_char IP[64] = {
+ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
+ 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
+ 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
+ 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
+};
+
+static const u_char key_perm[56] = {
+ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
+ 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
+ 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
+ 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
+};
+
+static const u_char key_shifts[16] = {
+ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
+};
+
+static const u_char comp_perm[48] = {
+ 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
+ 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
+ 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
+ 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
+};
+
+/*
+ * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
+ */
+
+static const u_char sbox[8][64] = {
+ {
+ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
+ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
+ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
+ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
+ },
+ {
+ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
+ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
+ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
+ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
+ },
+ {
+ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
+ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
+ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
+ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
+ },
+ {
+ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
+ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
+ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
+ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
+ },
+ {
+ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
+ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
+ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
+ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
+ },
+ {
+ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
+ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
+ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
+ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
+ },
+ {
+ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
+ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
+ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
+ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
+ },
+ {
+ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
+ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
+ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
+ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
+ }
+};
+
+static const u_char pbox[32] = {
+ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
+ 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
+};
+
+static const u_int32_t bits32[32] =
+{
+ 0x80000000, 0x40000000, 0x20000000, 0x10000000,
+ 0x08000000, 0x04000000, 0x02000000, 0x01000000,
+ 0x00800000, 0x00400000, 0x00200000, 0x00100000,
+ 0x00080000, 0x00040000, 0x00020000, 0x00010000,
+ 0x00008000, 0x00004000, 0x00002000, 0x00001000,
+ 0x00000800, 0x00000400, 0x00000200, 0x00000100,
+ 0x00000080, 0x00000040, 0x00000020, 0x00000010,
+ 0x00000008, 0x00000004, 0x00000002, 0x00000001
+};
+
+static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
+
+
+static int
+ascii_to_bin(char ch)
+{
+ if (ch > 'z')
+ return(0);
+ if (ch >= 'a')
+ return(ch - 'a' + 38);
+ if (ch > 'Z')
+ return(0);
+ if (ch >= 'A')
+ return(ch - 'A' + 12);
+ if (ch > '9')
+ return(0);
+ if (ch >= '.')
+ return(ch - '.');
+ return(0);
+}
+
+static void
+des_init(void)
+{
+ static int des_initialised = 0;
+
+ int i, j, b, k, inbit, obit;
+ u_int32_t *p, *il, *ir, *fl, *fr;
+ const u_int32_t *bits28, *bits24;
+ u_char u_sbox[8][64];
+
+ if (des_initialised==1)
+ return;
+
+ old_rawkey0 = old_rawkey1 = 0L;
+ saltbits = 0L;
+ old_salt = 0L;
+ bits24 = (bits28 = bits32 + 4) + 4;
+
+ /*
+ * Invert the S-boxes, reordering the input bits.
+ */
+ for (i = 0; i < 8; i++)
+ for (j = 0; j < 64; j++) {
+ b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
+ u_sbox[i][j] = sbox[i][b];
+ }
+
+ /*
+ * Convert the inverted S-boxes into 4 arrays of 8 bits.
+ * Each will handle 12 bits of the S-box input.
+ */
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 64; i++)
+ for (j = 0; j < 64; j++)
+ m_sbox[b][(i << 6) | j] =
+ (u_char)((u_sbox[(b << 1)][i] << 4) |
+ u_sbox[(b << 1) + 1][j]);
+
+ /*
+ * Set up the initial & final permutations into a useful form, and
+ * initialise the inverted key permutation.
+ */
+ for (i = 0; i < 64; i++) {
+ init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
+ inv_key_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key permutation and initialise the inverted key
+ * compression permutation.
+ */
+ for (i = 0; i < 56; i++) {
+ inv_key_perm[key_perm[i] - 1] = (u_char)i;
+ inv_comp_perm[i] = 255;
+ }
+
+ /*
+ * Invert the key compression permutation.
+ */
+ for (i = 0; i < 48; i++) {
+ inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
+ }
+
+ /*
+ * Set up the OR-mask arrays for the initial and final permutations,
+ * and for the key initial and compression permutations.
+ */
+ for (k = 0; k < 8; k++) {
+ for (i = 0; i < 256; i++) {
+ *(il = &ip_maskl[k][i]) = 0L;
+ *(ir = &ip_maskr[k][i]) = 0L;
+ *(fl = &fp_maskl[k][i]) = 0L;
+ *(fr = &fp_maskr[k][i]) = 0L;
+ for (j = 0; j < 8; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j]) {
+ if ((obit = init_perm[inbit]) < 32)
+ *il |= bits32[obit];
+ else
+ *ir |= bits32[obit-32];
+ if ((obit = final_perm[inbit]) < 32)
+ *fl |= bits32[obit];
+ else
+ *fr |= bits32[obit - 32];
+ }
+ }
+ }
+ for (i = 0; i < 128; i++) {
+ *(il = &key_perm_maskl[k][i]) = 0L;
+ *(ir = &key_perm_maskr[k][i]) = 0L;
+ for (j = 0; j < 7; j++) {
+ inbit = 8 * k + j;
+ if (i & bits8[j + 1]) {
+ if ((obit = inv_key_perm[inbit]) == 255)
+ continue;
+ if (obit < 28)
+ *il |= bits28[obit];
+ else
+ *ir |= bits28[obit - 28];
+ }
+ }
+ *(il = &comp_maskl[k][i]) = 0L;
+ *(ir = &comp_maskr[k][i]) = 0L;
+ for (j = 0; j < 7; j++) {
+ inbit = 7 * k + j;
+ if (i & bits8[j + 1]) {
+ if ((obit=inv_comp_perm[inbit]) == 255)
+ continue;
+ if (obit < 24)
+ *il |= bits24[obit];
+ else
+ *ir |= bits24[obit - 24];
+ }
+ }
+ }
+ }
+
+ /*
+ * Invert the P-box permutation, and convert into OR-masks for
+ * handling the output of the S-box arrays setup above.
+ */
+ for (i = 0; i < 32; i++)
+ un_pbox[pbox[i] - 1] = (u_char)i;
+
+ for (b = 0; b < 4; b++)
+ for (i = 0; i < 256; i++) {
+ *(p = &psbox[b][i]) = 0L;
+ for (j = 0; j < 8; j++) {
+ if (i & bits8[j])
+ *p |= bits32[un_pbox[8 * b + j]];
+ }
+ }
+
+ des_initialised = 1;
+}
+
+
+static void
+setup_salt(u_int32_t salt)
+{
+ u_int32_t obit, saltbit;
+ int i;
+
+ if (salt == old_salt)
+ return;
+ old_salt = salt;
+
+ saltbits = 0L;
+ saltbit = 1;
+ obit = 0x800000;
+ for (i = 0; i < 24; i++) {
+ if (salt & saltbit)
+ saltbits |= obit;
+ saltbit <<= 1;
+ obit >>= 1;
+ }
+}
+
+
+static void
+des_setkey(const char *key)
+{
+ u_int32_t k0, k1, rawkey0, rawkey1;
+ int shifts, round;
+
+ des_init();
+
+ rawkey0 = ntohl(*(const u_int32_t *) key);
+ rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
+
+ if ((rawkey0 | rawkey1)
+ && rawkey0 == old_rawkey0
+ && rawkey1 == old_rawkey1) {
+ /*
+ * Already setup for this key.
+ * This optimisation fails on a zero key (which is weak and
+ * has bad parity anyway) in order to simplify the starting
+ * conditions.
+ */
+ return;
+ }
+ old_rawkey0 = rawkey0;
+ old_rawkey1 = rawkey1;
+
+ /*
+ * Do key permutation and split into two 28-bit subkeys.
+ */
+ k0 = key_perm_maskl[0][rawkey0 >> 25]
+ | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskl[4][rawkey1 >> 25]
+ | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
+ k1 = key_perm_maskr[0][rawkey0 >> 25]
+ | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
+ | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
+ | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
+ | key_perm_maskr[4][rawkey1 >> 25]
+ | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
+ | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
+ | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
+ /*
+ * Rotate subkeys and do compression permutation.
+ */
+ shifts = 0;
+ for (round = 0; round < 16; round++) {
+ u_int32_t t0, t1;
+
+ shifts += key_shifts[round];
+
+ t0 = (k0 << shifts) | (k0 >> (28 - shifts));
+ t1 = (k1 << shifts) | (k1 >> (28 - shifts));
+
+ de_keysl[15 - round] =
+ en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
+ | comp_maskl[1][(t0 >> 14) & 0x7f]
+ | comp_maskl[2][(t0 >> 7) & 0x7f]
+ | comp_maskl[3][t0 & 0x7f]
+ | comp_maskl[4][(t1 >> 21) & 0x7f]
+ | comp_maskl[5][(t1 >> 14) & 0x7f]
+ | comp_maskl[6][(t1 >> 7) & 0x7f]
+ | comp_maskl[7][t1 & 0x7f];
+
+ de_keysr[15 - round] =
+ en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
+ | comp_maskr[1][(t0 >> 14) & 0x7f]
+ | comp_maskr[2][(t0 >> 7) & 0x7f]
+ | comp_maskr[3][t0 & 0x7f]
+ | comp_maskr[4][(t1 >> 21) & 0x7f]
+ | comp_maskr[5][(t1 >> 14) & 0x7f]
+ | comp_maskr[6][(t1 >> 7) & 0x7f]
+ | comp_maskr[7][t1 & 0x7f];
+ }
+}
+
+
+static int
+do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
+{
+ /* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */
+ u_int32_t l, r, *kl, *kr, *kl1, *kr1;
+ u_int32_t f, r48l, r48r;
+ int round;
+
+ if (count == 0) {
+ return 1;
+ }
+ if (count > 0) {
+ /* Encrypting */
+ kl1 = en_keysl;
+ kr1 = en_keysr;
+ } else {
+ /* Decrypting */
+ count = -count;
+ kl1 = de_keysl;
+ kr1 = de_keysr;
+ }
+
+ /* Do initial permutation (IP). */
+ l = ip_maskl[0][l_in >> 24]
+ | ip_maskl[1][(l_in >> 16) & 0xff]
+ | ip_maskl[2][(l_in >> 8) & 0xff]
+ | ip_maskl[3][l_in & 0xff]
+ | ip_maskl[4][r_in >> 24]
+ | ip_maskl[5][(r_in >> 16) & 0xff]
+ | ip_maskl[6][(r_in >> 8) & 0xff]
+ | ip_maskl[7][r_in & 0xff];
+ r = ip_maskr[0][l_in >> 24]
+ | ip_maskr[1][(l_in >> 16) & 0xff]
+ | ip_maskr[2][(l_in >> 8) & 0xff]
+ | ip_maskr[3][l_in & 0xff]
+ | ip_maskr[4][r_in >> 24]
+ | ip_maskr[5][(r_in >> 16) & 0xff]
+ | ip_maskr[6][(r_in >> 8) & 0xff]
+ | ip_maskr[7][r_in & 0xff];
+
+ while (count--) {
+ /* Do each round. */
+ kl = kl1;
+ kr = kr1;
+ round = 16;
+ do {
+ /* Expand R to 48 bits (simulate the E-box). */
+ r48l = ((r & 0x00000001) << 23)
+ | ((r & 0xf8000000) >> 9)
+ | ((r & 0x1f800000) >> 11)
+ | ((r & 0x01f80000) >> 13)
+ | ((r & 0x001f8000) >> 15);
+ r48r = ((r & 0x0001f800) << 7)
+ | ((r & 0x00001f80) << 5)
+ | ((r & 0x000001f8) << 3)
+ | ((r & 0x0000001f) << 1)
+ | ((r & 0x80000000) >> 31);
+ /*
+ * Do salting for crypt() and friends, and
+ * XOR with the permuted key.
+ */
+ f = (r48l ^ r48r) & saltbits;
+ r48l ^= f ^ *kl++;
+ r48r ^= f ^ *kr++;
+ /*
+ * Do sbox lookups (which shrink it back to 32 bits)
+ * and do the pbox permutation at the same time.
+ */
+ f = psbox[0][m_sbox[0][r48l >> 12]]
+ | psbox[1][m_sbox[1][r48l & 0xfff]]
+ | psbox[2][m_sbox[2][r48r >> 12]]
+ | psbox[3][m_sbox[3][r48r & 0xfff]];
+ /* Now that we've permuted things, complete f(). */
+ f ^= l;
+ l = r;
+ r = f;
+ } while (--round);
+ r = l;
+ l = f;
+ }
+ /* Do final permutation (inverse of IP). */
+ *l_out = fp_maskl[0][l >> 24]
+ | fp_maskl[1][(l >> 16) & 0xff]
+ | fp_maskl[2][(l >> 8) & 0xff]
+ | fp_maskl[3][l & 0xff]
+ | fp_maskl[4][r >> 24]
+ | fp_maskl[5][(r >> 16) & 0xff]
+ | fp_maskl[6][(r >> 8) & 0xff]
+ | fp_maskl[7][r & 0xff];
+ *r_out = fp_maskr[0][l >> 24]
+ | fp_maskr[1][(l >> 16) & 0xff]
+ | fp_maskr[2][(l >> 8) & 0xff]
+ | fp_maskr[3][l & 0xff]
+ | fp_maskr[4][r >> 24]
+ | fp_maskr[5][(r >> 16) & 0xff]
+ | fp_maskr[6][(r >> 8) & 0xff]
+ | fp_maskr[7][r & 0xff];
+ return(0);
+}
+
+
+#if 0
+static int
+des_cipher(const char *in, char *out, u_int32_t salt, int count)
+{
+ u_int32_t l_out, r_out, rawl, rawr;
+ int retval;
+ union {
+ u_int32_t *ui32;
+ const char *c;
+ } trans;
+
+ des_init();
+
+ setup_salt(salt);
+
+ trans.c = in;
+ rawl = ntohl(*trans.ui32++);
+ rawr = ntohl(*trans.ui32);
+
+ retval = do_des(rawl, rawr, &l_out, &r_out, count);
+
+ trans.c = out;
+ *trans.ui32++ = htonl(l_out);
+ *trans.ui32 = htonl(r_out);
+ return(retval);
+}
+#endif
+
+
+void
+setkey(const char *key)
+{
+ int i, j;
+ u_int32_t packed_keys[2];
+ u_char *p;
+
+ p = (u_char *) packed_keys;
+
+ for (i = 0; i < 8; i++) {
+ p[i] = 0;
+ for (j = 0; j < 8; j++)
+ if (*key++ & 1)
+ p[i] |= bits8[j];
+ }
+ des_setkey((char *)p);
+}
+
+
+void
+encrypt(char *block, int flag)
+{
+ u_int32_t io[2];
+ u_char *p;
+ int i, j;
+
+ des_init();
+
+ setup_salt(0L);
+ p = (u_char*)block;
+ for (i = 0; i < 2; i++) {
+ io[i] = 0L;
+ for (j = 0; j < 32; j++)
+ if (*p++ & 1)
+ io[i] |= bits32[j];
+ }
+ do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);
+ for (i = 0; i < 2; i++)
+ for (j = 0; j < 32; j++)
+ block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
+}
+
+char *__des_crypt(const unsigned char *key, const unsigned char *setting)
+{
+ u_int32_t count, salt, l, r0, r1, keybuf[2];
+ u_char *p, *q;
+ static char output[21];
+
+ des_init();
+
+ /*
+ * Copy the key, shifting each character up by one bit
+ * and padding with zeros.
+ */
+ q = (u_char *)keybuf;
+ while (q - (u_char *)keybuf - 8) {
+ *q++ = *key << 1;
+ if (*(q - 1))
+ key++;
+ }
+ des_setkey((char *)keybuf);
+
+#if 0
+ if (*setting == _PASSWORD_EFMT1) {
+ int i;
+ /*
+ * "new"-style:
+ * setting - underscore, 4 bytes of count, 4 bytes of salt
+ * key - unlimited characters
+ */
+ for (i = 1, count = 0L; i < 5; i++)
+ count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
+
+ for (i = 5, salt = 0L; i < 9; i++)
+ salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
+
+ while (*key) {
+ /*
+ * Encrypt the key with itself.
+ */
+ if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
+ return(NULL);
+ /*
+ * And XOR with the next 8 characters of the key.
+ */
+ q = (u_char *)keybuf;
+ while (q - (u_char *)keybuf - 8 && *key)
+ *q++ ^= *key++ << 1;
+
+ des_setkey((char *)keybuf);
+ }
+ strncpy(output, setting, 9);
+
+ /*
+ * Double check that we weren't given a short setting.
+ * If we were, the above code will probably have created
+ * wierd values for count and salt, but we don't really care.
+ * Just make sure the output string doesn't have an extra
+ * NUL in it.
+ */
+ output[9] = '\0';
+ p = (u_char *)output + strlen(output);
+ } else
+#endif
+ {
+ /*
+ * "old"-style:
+ * setting - 2 bytes of salt
+ * key - up to 8 characters
+ */
+ count = 25;
+
+ salt = (ascii_to_bin(setting[1]) << 6)
+ | ascii_to_bin(setting[0]);
+
+ output[0] = setting[0];
+ /*
+ * If the encrypted password that the salt was extracted from
+ * is only 1 character long, the salt will be corrupted. We
+ * need to ensure that the output string doesn't have an extra
+ * NUL in it!
+ */
+ output[1] = setting[1] ? setting[1] : output[0];
+
+ p = (u_char *)output + 2;
+ }
+ setup_salt(salt);
+ /*
+ * Do it.
+ */
+ if (do_des(0L, 0L, &r0, &r1, (int)count))
+ return(NULL);
+ /*
+ * Now encode the result...
+ */
+ l = (r0 >> 8);
+ *p++ = ascii64[(l >> 18) & 0x3f];
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+
+ l = (r0 << 16) | ((r1 >> 16) & 0xffff);
+ *p++ = ascii64[(l >> 18) & 0x3f];
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+
+ l = r1 << 2;
+ *p++ = ascii64[(l >> 12) & 0x3f];
+ *p++ = ascii64[(l >> 6) & 0x3f];
+ *p++ = ascii64[l & 0x3f];
+ *p = 0;
+
+ return(output);
+}
+
diff --git a/ap/build/uClibc/libcrypt/libcrypt.h b/ap/build/uClibc/libcrypt/libcrypt.h
new file mode 100644
index 0000000..67733d1
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/libcrypt.h
@@ -0,0 +1,25 @@
+/* prototypes for internal crypt functions
+ *
+ * Copyright (C) 2000-2006 by Erik Andersen <andersen@uclibc.org>
+ *
+ * Licensed under the LGPL v2.1, see the file COPYING.LIB in this tarball.
+ */
+
+#ifndef __LIBCRYPT_H__
+#define __LIBCRYPT_H__
+
+extern char *__md5_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden;
+extern char *__sha256_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden;
+extern char *__sha512_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden;
+extern char *__des_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden;
+
+extern char *__sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen) attribute_hidden;
+extern char *__sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen) attribute_hidden;
+
+/* shut up gcc-4.x signed warnings */
+#define strcpy(dst,src) strcpy((char*)dst,(char*)src)
+#define strlen(s) strlen((char*)s)
+#define strncat(dst,src,n) strncat((char*)dst,(char*)src,n)
+#define strncmp(s1,s2,n) strncmp((char*)s1,(char*)s2,n)
+
+#endif
diff --git a/ap/build/uClibc/libcrypt/md5.c b/ap/build/uClibc/libcrypt/md5.c
new file mode 100644
index 0000000..1af11ed
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/md5.c
@@ -0,0 +1,637 @@
+/*
+ * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
+ *
+ * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
+ * rights reserved.
+ *
+ * License to copy and use this software is granted provided that it
+ * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
+ * Algorithm" in all material mentioning or referencing this software
+ * or this function.
+ *
+ * License is also granted to make and use derivative works provided
+ * that such works are identified as "derived from the RSA Data
+ * Security, Inc. MD5 Message-Digest Algorithm" in all material
+ * mentioning or referencing the derived work.
+ *
+ * RSA Data Security, Inc. makes no representations concerning either
+ * the merchantability of this software or the suitability of this
+ * software for any particular purpose. It is provided "as is"
+ * without express or implied warranty of any kind.
+ *
+ * These notices must be retained in any copies of any part of this
+ * documentation and/or software.
+ *
+ * $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $
+ *
+ * This code is the same as the code published by RSA Inc. It has been
+ * edited for clarity and style only.
+ *
+ * ----------------------------------------------------------------------------
+ * The md5_crypt() function was taken from freeBSD's libcrypt and contains
+ * this license:
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
+ *
+ * $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $
+ *
+ * ----------------------------------------------------------------------------
+ * On April 19th, 2001 md5_crypt() was modified to make it reentrant
+ * by Erik Andersen <andersen@uclibc.org>
+ *
+ *
+ * June 28, 2001 Manuel Novoa III
+ *
+ * "Un-inlined" code using loops and static const tables in order to
+ * reduce generated code size (on i386 from approx 4k to approx 2.5k).
+ *
+ * June 29, 2001 Manuel Novoa III
+ *
+ * Completely removed static PADDING array.
+ *
+ * Reintroduced the loop unrolling in MD5_Transform and added the
+ * MD5_SIZE_OVER_SPEED option for configurability. Define below as:
+ * 0 fully unrolled loops
+ * 1 partially unrolled (4 ops per loop)
+ * 2 no unrolling -- introduces the need to swap 4 variables (slow)
+ * 3 no unrolling and all 4 loops merged into one with switch
+ * in each loop (glacial)
+ * On i386, sizes are roughly (-Os -fno-builtin):
+ * 0: 3k 1: 2.5k 2: 2.2k 3: 2k
+ *
+ *
+ * Since SuSv3 does not require crypt_r, modified again August 7, 2002
+ * by Erik Andersen to remove reentrance stuff...
+ */
+
+/*
+ * Valid values are 1 (fastest/largest) to 3 (smallest/slowest).
+ */
+#define MD5_SIZE_OVER_SPEED 3
+
+/**********************************************************************/
+
+#include <sys/types.h>
+#include <string.h>
+#include <unistd.h>
+#include <stdio.h>
+#include <crypt.h>
+#include <sys/cdefs.h>
+#include "libcrypt.h"
+
+/* MD5 context. */
+struct MD5Context {
+ u_int32_t state[4]; /* state (ABCD) */
+ u_int32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
+ unsigned char buffer[64]; /* input buffer */
+};
+
+static void __md5_Init (struct MD5Context *);
+static void __md5_Update (struct MD5Context *, const unsigned char *, unsigned int);
+static void __md5_Pad (struct MD5Context *);
+static void __md5_Final (unsigned char [16], struct MD5Context *);
+static void __md5_Transform __P((u_int32_t [4], const unsigned char [64]));
+
+
+#define MD5_MAGIC_STR "$1$"
+#define MD5_MAGIC_LEN (sizeof(MD5_MAGIC_STR) - 1)
+static const unsigned char __md5__magic[] = MD5_MAGIC_STR;
+static const unsigned char __md5_itoa64[] = /* 0 ... 63 => ascii - 64 */
+ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+
+
+#ifdef i386
+#define __md5_Encode memcpy
+#define __md5_Decode memcpy
+#else /* i386 */
+
+/*
+ * __md5_Encodes input (u_int32_t) into output (unsigned char). Assumes len is
+ * a multiple of 4.
+ */
+
+static void
+__md5_Encode (unsigned char *output, u_int32_t *input, unsigned int len)
+{
+ unsigned int i, j;
+
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ output[j] = (unsigned char)(input[i] & 0xff);
+ output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
+ output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
+ output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
+ }
+}
+
+/*
+ * __md5_Decodes input (unsigned char) into output (u_int32_t). Assumes len is
+ * a multiple of 4.
+ */
+
+static void
+__md5_Decode (u_int32_t *output, const unsigned char *input, unsigned int len)
+{
+ unsigned int i, j;
+
+ for (i = 0, j = 0; j < len; i++, j += 4)
+ output[i] = ((u_int32_t)input[j]) | (((u_int32_t)input[j+1]) << 8) |
+ (((u_int32_t)input[j+2]) << 16) | (((u_int32_t)input[j+3]) << 24);
+}
+#endif /* i386 */
+
+/* F, G, H and I are basic MD5 functions. */
+#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
+#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
+#define H(x, y, z) ((x) ^ (y) ^ (z))
+#define I(x, y, z) ((y) ^ ((x) | (~z)))
+
+/* ROTATE_LEFT rotates x left n bits. */
+#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
+
+/*
+ * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
+ * Rotation is separate from addition to prevent recomputation.
+ */
+#define FF(a, b, c, d, x, s, ac) { \
+ (a) += F ((b), (c), (d)) + (x) + (u_int32_t)(ac); \
+ (a) = ROTATE_LEFT ((a), (s)); \
+ (a) += (b); \
+ }
+#define GG(a, b, c, d, x, s, ac) { \
+ (a) += G ((b), (c), (d)) + (x) + (u_int32_t)(ac); \
+ (a) = ROTATE_LEFT ((a), (s)); \
+ (a) += (b); \
+ }
+#define HH(a, b, c, d, x, s, ac) { \
+ (a) += H ((b), (c), (d)) + (x) + (u_int32_t)(ac); \
+ (a) = ROTATE_LEFT ((a), (s)); \
+ (a) += (b); \
+ }
+#define II(a, b, c, d, x, s, ac) { \
+ (a) += I ((b), (c), (d)) + (x) + (u_int32_t)(ac); \
+ (a) = ROTATE_LEFT ((a), (s)); \
+ (a) += (b); \
+ }
+
+/* MD5 initialization. Begins an MD5 operation, writing a new context. */
+
+static void __md5_Init (struct MD5Context *context)
+{
+ context->count[0] = context->count[1] = 0;
+
+ /* Load magic initialization constants. */
+ context->state[0] = 0x67452301;
+ context->state[1] = 0xefcdab89;
+ context->state[2] = 0x98badcfe;
+ context->state[3] = 0x10325476;
+}
+
+/*
+ * MD5 block update operation. Continues an MD5 message-digest
+ * operation, processing another message block, and updating the
+ * context.
+ */
+
+static void __md5_Update ( struct MD5Context *context, const unsigned char *input, unsigned int inputLen)
+{
+ unsigned int i, idx, partLen;
+
+ /* Compute number of bytes mod 64 */
+ idx = (unsigned int)((context->count[0] >> 3) & 0x3F);
+
+ /* Update number of bits */
+ if ((context->count[0] += ((u_int32_t)inputLen << 3))
+ < ((u_int32_t)inputLen << 3))
+ context->count[1]++;
+ context->count[1] += ((u_int32_t)inputLen >> 29);
+
+ partLen = 64 - idx;
+
+ /* Transform as many times as possible. */
+ if (inputLen >= partLen) {
+ memcpy((void *)&context->buffer[idx], (const void *)input,
+ partLen);
+ __md5_Transform (context->state, context->buffer);
+
+ for (i = partLen; i + 63 < inputLen; i += 64)
+ __md5_Transform (context->state, &input[i]);
+
+ idx = 0;
+ }
+ else
+ i = 0;
+
+ /* Buffer remaining input */
+ memcpy ((void *)&context->buffer[idx], (const void *)&input[i],
+ inputLen-i);
+}
+
+/*
+ * MD5 padding. Adds padding followed by original length.
+ */
+
+static void __md5_Pad ( struct MD5Context *context)
+{
+ unsigned char bits[8];
+ unsigned int idx, padLen;
+ unsigned char PADDING[64];
+
+ memset(PADDING, 0, sizeof(PADDING));
+ PADDING[0] = 0x80;
+
+ /* Save number of bits */
+ __md5_Encode (bits, context->count, 8);
+
+ /* Pad out to 56 mod 64. */
+ idx = (unsigned int)((context->count[0] >> 3) & 0x3f);
+ padLen = (idx < 56) ? (56 - idx) : (120 - idx);
+ __md5_Update (context, PADDING, padLen);
+
+ /* Append length (before padding) */
+ __md5_Update (context, bits, 8);
+}
+
+/*
+ * MD5 finalization. Ends an MD5 message-digest operation, writing the
+ * the message digest and zeroizing the context.
+ */
+
+static void __md5_Final ( unsigned char digest[16], struct MD5Context *context)
+{
+ /* Do padding. */
+ __md5_Pad (context);
+
+ /* Store state in digest */
+ __md5_Encode (digest, context->state, 16);
+
+ /* Zeroize sensitive information. */
+ memset ((void *)context, 0, sizeof (*context));
+}
+
+/* MD5 basic transformation. Transforms state based on block. */
+
+static void __md5_Transform (u_int32_t state[4], const unsigned char block[64])
+{
+ u_int32_t a, b, c, d, x[16];
+#if MD5_SIZE_OVER_SPEED > 1
+ u_int32_t temp;
+ const char *ps;
+
+ static const char S[] = {
+ 7, 12, 17, 22,
+ 5, 9, 14, 20,
+ 4, 11, 16, 23,
+ 6, 10, 15, 21
+ };
+#endif /* MD5_SIZE_OVER_SPEED > 1 */
+
+#if MD5_SIZE_OVER_SPEED > 0
+ const u_int32_t *pc;
+ const char *pp;
+ int i;
+
+ static const u_int32_t C[] = {
+ /* round 1 */
+ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
+ 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
+ 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
+ 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
+ /* round 2 */
+ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
+ 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
+ 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
+ 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
+ /* round 3 */
+ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
+ 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
+ 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
+ 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
+ /* round 4 */
+ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
+ 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
+ 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
+ 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
+ };
+
+ static const char P[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
+ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
+ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
+ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
+ };
+
+#endif /* MD5_SIZE_OVER_SPEED > 0 */
+
+ __md5_Decode (x, block, 64);
+
+ a = state[0]; b = state[1]; c = state[2]; d = state[3];
+
+#if MD5_SIZE_OVER_SPEED > 2
+ pc = C; pp = P; ps = S - 4;
+
+ for ( i = 0 ; i < 64 ; i++ ) {
+ if ((i&0x0f) == 0) ps += 4;
+ temp = a;
+ switch (i>>4) {
+ case 0:
+ temp += F(b,c,d);
+ break;
+ case 1:
+ temp += G(b,c,d);
+ break;
+ case 2:
+ temp += H(b,c,d);
+ break;
+ case 3:
+ temp += I(b,c,d);
+ break;
+ }
+ temp += x[(int)(*pp++)] + *pc++;
+ temp = ROTATE_LEFT(temp, ps[i&3]);
+ temp += b;
+ a = d; d = c; c = b; b = temp;
+ }
+#elif MD5_SIZE_OVER_SPEED > 1
+ pc = C; pp = P; ps = S;
+
+ /* Round 1 */
+ for ( i = 0 ; i < 16 ; i++ ) {
+ FF (a, b, c, d, x[(int)(*pp++)], ps[i&0x3], *pc++);
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+
+ /* Round 2 */
+ ps += 4;
+ for ( ; i < 32 ; i++ ) {
+ GG (a, b, c, d, x[(int)(*pp++)], ps[i&0x3], *pc++);
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+ /* Round 3 */
+ ps += 4;
+ for ( ; i < 48 ; i++ ) {
+ HH (a, b, c, d, x[(int)(*pp++)], ps[i&0x3], *pc++);
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+
+ /* Round 4 */
+ ps += 4;
+ for ( ; i < 64 ; i++ ) {
+ II (a, b, c, d, x[(int)(*pp++)], ps[i&0x3], *pc++);
+ temp = d; d = c; c = b; b = a; a = temp;
+ }
+#elif MD5_SIZE_OVER_SPEED > 0
+ pc = C; pp = P;
+
+ /* Round 1 */
+ for ( i = 0 ; i < 4 ; i++ ) {
+ FF (a, b, c, d, x[(int)(*pp++)], 7, *pc++);
+ FF (d, a, b, c, x[(int)(*pp++)], 12, *pc++);
+ FF (c, d, a, b, x[(int)(*pp++)], 17, *pc++);
+ FF (b, c, d, a, x[(int)(*pp++)], 22, *pc++);
+ }
+
+ /* Round 2 */
+ for ( i = 0 ; i < 4 ; i++ ) {
+ GG (a, b, c, d, x[(int)(*pp++)], 5, *pc++);
+ GG (d, a, b, c, x[(int)(*pp++)], 9, *pc++);
+ GG (c, d, a, b, x[(int)(*pp++)], 14, *pc++);
+ GG (b, c, d, a, x[(int)(*pp++)], 20, *pc++);
+ }
+ /* Round 3 */
+ for ( i = 0 ; i < 4 ; i++ ) {
+ HH (a, b, c, d, x[(int)(*pp++)], 4, *pc++);
+ HH (d, a, b, c, x[(int)(*pp++)], 11, *pc++);
+ HH (c, d, a, b, x[(int)(*pp++)], 16, *pc++);
+ HH (b, c, d, a, x[(int)(*pp++)], 23, *pc++);
+ }
+
+ /* Round 4 */
+ for ( i = 0 ; i < 4 ; i++ ) {
+ II (a, b, c, d, x[(int)(*pp++)], 6, *pc++);
+ II (d, a, b, c, x[(int)(*pp++)], 10, *pc++);
+ II (c, d, a, b, x[(int)(*pp++)], 15, *pc++);
+ II (b, c, d, a, x[(int)(*pp++)], 21, *pc++);
+ }
+#else
+ /* Round 1 */
+#define S11 7
+#define S12 12
+#define S13 17
+#define S14 22
+ FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
+ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
+ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
+ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
+ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
+ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
+ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
+ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
+ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
+ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
+ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
+ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
+ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
+ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
+ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
+ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
+
+ /* Round 2 */
+#define S21 5
+#define S22 9
+#define S23 14
+#define S24 20
+ GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
+ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
+ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
+ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
+ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
+ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
+ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
+ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
+ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
+ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
+ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
+ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
+ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
+ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
+ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
+ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
+
+ /* Round 3 */
+#define S31 4
+#define S32 11
+#define S33 16
+#define S34 23
+ HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
+ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
+ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
+ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
+ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
+ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
+ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
+ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
+ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
+ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
+ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
+ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
+ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
+ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
+ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
+ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
+
+ /* Round 4 */
+#define S41 6
+#define S42 10
+#define S43 15
+#define S44 21
+ II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
+ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
+ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
+ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
+ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
+ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
+ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
+ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
+ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
+ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
+ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
+ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
+ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
+ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
+ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
+ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
+#endif
+
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+
+ /* Zeroize sensitive information. */
+ memset ((void *)x, 0, sizeof (x));
+}
+
+
+static void __md5_to64( char *s, unsigned long v, int n)
+{
+ while (--n >= 0) {
+ *s++ = __md5_itoa64[v&0x3f];
+ v >>= 6;
+ }
+}
+
+/*
+ * UNIX password
+ *
+ * Use MD5 for what it is best at...
+ */
+
+char *__md5_crypt(const unsigned char *pw, const unsigned char *salt)
+{
+ /* Static stuff */
+ /* "$1$" + salt_up_to_8_chars + "$" + 22_bytes_of_hash + NUL */
+ static char passwd[3 + 8 + 1 + 22 + 1];
+
+ const unsigned char *sp, *ep;
+ char *p;
+ unsigned char final[17]; /* final[16] exists only to aid in looping */
+ int sl,pl,i,pw_len;
+ struct MD5Context ctx,ctx1;
+ unsigned long l;
+
+ /* Refine the Salt first */
+ sp = salt;
+
+ /* If it starts with the magic string, then skip that */
+ if(!strncmp(sp,__md5__magic,MD5_MAGIC_LEN))
+ sp += MD5_MAGIC_LEN;
+
+ /* It stops at the first '$', max 8 chars */
+ for(ep=sp;*ep && *ep != '$' && ep < (sp+8);ep++)
+ continue;
+
+ /* get the length of the true salt */
+ sl = ep - sp;
+
+ __md5_Init(&ctx);
+
+ /* The password first, since that is what is most unknown */
+ pw_len = strlen(pw);
+ __md5_Update(&ctx,pw,pw_len);
+
+ /* Then our magic string */
+ __md5_Update(&ctx,__md5__magic,MD5_MAGIC_LEN);
+
+ /* Then the raw salt */
+ __md5_Update(&ctx,sp,sl);
+
+ /* Then just as many characters of the MD5(pw,salt,pw) */
+ __md5_Init(&ctx1);
+ __md5_Update(&ctx1,pw,pw_len);
+ __md5_Update(&ctx1,sp,sl);
+ __md5_Update(&ctx1,pw,pw_len);
+ __md5_Final(final,&ctx1);
+ for(pl = pw_len; pl > 0; pl -= 16)
+ __md5_Update(&ctx,final,pl>16 ? 16 : pl);
+
+ /* Don't leave anything around in vm they could use. */
+ memset(final,0,sizeof final);
+
+ /* Then something really weird... */
+ for (i = pw_len; i ; i >>= 1) {
+ __md5_Update(&ctx, ((i&1) ? final : (const unsigned char *) pw), 1);
+ }
+
+ /* Now make the output string */
+ strcpy(passwd,__md5__magic); /* 3 bytes */
+ strncpy(passwd+MD5_MAGIC_LEN,(char*)sp,sl); /* 8 or less */
+ passwd[MD5_MAGIC_LEN+sl] = '$';
+
+ __md5_Final(final,&ctx);
+
+ /*
+ * and now, just to make sure things don't run too fast
+ * On a 60 Mhz Pentium this takes 34 msec, so you would
+ * need 30 seconds to build a 1000 entry dictionary...
+ */
+ for(i=0;i<1000;i++) {
+ __md5_Init(&ctx1);
+ if(i & 1)
+ __md5_Update(&ctx1,pw,pw_len);
+ else
+ __md5_Update(&ctx1,final,16);
+
+ if(i % 3)
+ __md5_Update(&ctx1,sp,sl);
+
+ if(i % 7)
+ __md5_Update(&ctx1,pw,pw_len);
+
+ if(i & 1)
+ __md5_Update(&ctx1,final,16);
+ else
+ __md5_Update(&ctx1,pw,pw_len);
+ __md5_Final(final,&ctx1);
+ }
+
+ /* Add 5*4+2 = 22 bytes of hash, + NUL byte. */
+ p = passwd + MD5_MAGIC_LEN + sl + 1;
+ final[16] = final[5];
+ for ( i=0 ; i < 5 ; i++ ) {
+ l = (final[i]<<16) | (final[i+6]<<8) | final[i+12];
+ __md5_to64(p,l,4);
+ p += 4;
+ }
+ l = final[11];
+ __md5_to64(p,l,2);
+ p += 2;
+ *p = '\0';
+
+ /* Don't leave anything around in vm they could use. */
+ memset(final,0,sizeof final);
+
+ return passwd;
+}
+
diff --git a/ap/build/uClibc/libcrypt/sha256-crypt.c b/ap/build/uClibc/libcrypt/sha256-crypt.c
new file mode 100644
index 0000000..4422148
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/sha256-crypt.c
@@ -0,0 +1,326 @@
+/* One way encryption based on SHA256 sum.
+ Copyright (C) 2007, 2009 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <assert.h>
+#include <errno.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/param.h>
+
+#include "sha256.h"
+#include "libcrypt.h"
+
+/* Define our magic string to mark salt for SHA256 "encryption"
+ replacement. */
+static const char sha256_salt_prefix[] = "$5$";
+
+/* Prefix for optional rounds specification. */
+static const char sha256_rounds_prefix[] = "rounds=";
+
+/* Maximum salt string length. */
+#define SALT_LEN_MAX 16
+/* Default number of rounds if not explicitly specified. */
+#define ROUNDS_DEFAULT 5000
+/* Minimum number of rounds. */
+#define ROUNDS_MIN 1000
+/* Maximum number of rounds. */
+#define ROUNDS_MAX 999999999
+
+/* Table with characters for base64 transformation. */
+static const char b64t[64] =
+"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+
+#define B64_FROM_24BIT(b2, b1, b0, steps) \
+ { \
+ int n = (steps); \
+ unsigned int w = ((b2) << 16) | ((b1) << 8) | (b0); \
+ while (n-- > 0 && buflen > 0) \
+ { \
+ *cp++ = b64t[w & 0x3f]; \
+ --buflen; \
+ w >>= 6; \
+ } \
+ }
+
+char *
+__sha256_crypt_r (const char *key,
+ const char *salt,
+ char *buffer,
+ int buflen)
+{
+ unsigned char alt_result[32]
+ __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
+ unsigned char temp_result[32]
+ __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
+ size_t salt_len;
+ size_t key_len;
+ size_t cnt;
+ char *cp;
+ char *copied_key = NULL;
+ char *copied_salt = NULL;
+ char *p_bytes;
+ char *s_bytes;
+ /* Default number of rounds. */
+ size_t rounds = ROUNDS_DEFAULT;
+ bool rounds_custom = false;
+
+ /* Find beginning of salt string. The prefix should normally always
+ be present. Just in case it is not. */
+ if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
+ /* Skip salt prefix. */
+ salt += sizeof (sha256_salt_prefix) - 1;
+
+ if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
+ == 0)
+ {
+ const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
+ char *endp;
+ unsigned long int srounds = strtoul (num, &endp, 10);
+ if (*endp == '$')
+ {
+ salt = endp + 1;
+ rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
+ rounds_custom = true;
+ }
+ }
+
+ salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
+ key_len = strlen (key);
+
+ if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
+ {
+ char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
+ key = copied_key =
+ memcpy (tmp + __alignof__ (uint32_t)
+ - (tmp - (char *) 0) % __alignof__ (uint32_t),
+ key, key_len);
+ assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0);
+ }
+
+ if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
+ {
+ char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
+ salt = copied_salt =
+ memcpy (tmp + __alignof__ (uint32_t)
+ - (tmp - (char *) 0) % __alignof__ (uint32_t),
+ salt, salt_len);
+ assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
+ }
+
+ struct sha256_ctx ctx;
+ struct sha256_ctx alt_ctx;
+
+ /* Prepare for the real work. */
+ __sha256_init_ctx (&ctx);
+
+ /* Add the key string. */
+ __sha256_process_bytes (key, key_len, &ctx);
+
+ /* The last part is the salt string. This must be at most 16
+ characters and it ends at the first `$' character. */
+ __sha256_process_bytes (salt, salt_len, &ctx);
+
+
+ /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
+ final result will be added to the first context. */
+ __sha256_init_ctx (&alt_ctx);
+
+ /* Add key. */
+ __sha256_process_bytes (key, key_len, &alt_ctx);
+
+ /* Add salt. */
+ __sha256_process_bytes (salt, salt_len, &alt_ctx);
+
+ /* Add key again. */
+ __sha256_process_bytes (key, key_len, &alt_ctx);
+
+ /* Now get result of this (32 bytes) and add it to the other
+ context. */
+ __sha256_finish_ctx (&alt_ctx, alt_result);
+
+ /* Add for any character in the key one byte of the alternate sum. */
+ for (cnt = key_len; cnt > 32; cnt -= 32)
+ __sha256_process_bytes (alt_result, 32, &ctx);
+ __sha256_process_bytes (alt_result, cnt, &ctx);
+
+ /* Take the binary representation of the length of the key and for every
+ 1 add the alternate sum, for every 0 the key. */
+ for (cnt = key_len; cnt > 0; cnt >>= 1)
+ if ((cnt & 1) != 0)
+ __sha256_process_bytes (alt_result, 32, &ctx);
+ else
+ __sha256_process_bytes (key, key_len, &ctx);
+
+ /* Create intermediate result. */
+ __sha256_finish_ctx (&ctx, alt_result);
+
+ /* Start computation of P byte sequence. */
+ __sha256_init_ctx (&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < key_len; ++cnt)
+ __sha256_process_bytes (key, key_len, &alt_ctx);
+
+ /* Finish the digest. */
+ __sha256_finish_ctx (&alt_ctx, temp_result);
+
+ /* Create byte sequence P. */
+ cp = p_bytes = alloca (key_len);
+ for (cnt = key_len; cnt >= 32; cnt -= 32)
+ cp = mempcpy (cp, temp_result, 32);
+ memcpy (cp, temp_result, cnt);
+
+ /* Start computation of S byte sequence. */
+ __sha256_init_ctx (&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
+ __sha256_process_bytes (salt, salt_len, &alt_ctx);
+
+ /* Finish the digest. */
+ __sha256_finish_ctx (&alt_ctx, temp_result);
+
+ /* Create byte sequence S. */
+ cp = s_bytes = alloca (salt_len);
+ for (cnt = salt_len; cnt >= 32; cnt -= 32)
+ cp = mempcpy (cp, temp_result, 32);
+ memcpy (cp, temp_result, cnt);
+
+ /* Repeatedly run the collected hash value through SHA256 to burn
+ CPU cycles. */
+ for (cnt = 0; cnt < rounds; ++cnt)
+ {
+ /* New context. */
+ __sha256_init_ctx (&ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ __sha256_process_bytes (p_bytes, key_len, &ctx);
+ else
+ __sha256_process_bytes (alt_result, 32, &ctx);
+
+ /* Add salt for numbers not divisible by 3. */
+ if (cnt % 3 != 0)
+ __sha256_process_bytes (s_bytes, salt_len, &ctx);
+
+ /* Add key for numbers not divisible by 7. */
+ if (cnt % 7 != 0)
+ __sha256_process_bytes (p_bytes, key_len, &ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ __sha256_process_bytes (alt_result, 32, &ctx);
+ else
+ __sha256_process_bytes (p_bytes, key_len, &ctx);
+
+ /* Create intermediate result. */
+ __sha256_finish_ctx (&ctx, alt_result);
+ }
+
+ /* Now we can construct the result string. It consists of three
+ parts. */
+ cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
+ buflen -= sizeof (sha256_salt_prefix) - 1;
+
+ if (rounds_custom)
+ {
+ int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
+ sha256_rounds_prefix, rounds);
+ cp += n;
+ buflen -= n;
+ }
+
+ cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
+ buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
+
+ if (buflen > 0)
+ {
+ *cp++ = '$';
+ --buflen;
+ }
+
+ B64_FROM_24BIT (alt_result[0], alt_result[10], alt_result[20], 4);
+ B64_FROM_24BIT (alt_result[21], alt_result[1], alt_result[11], 4);
+ B64_FROM_24BIT (alt_result[12], alt_result[22], alt_result[2], 4);
+ B64_FROM_24BIT (alt_result[3], alt_result[13], alt_result[23], 4);
+ B64_FROM_24BIT (alt_result[24], alt_result[4], alt_result[14], 4);
+ B64_FROM_24BIT (alt_result[15], alt_result[25], alt_result[5], 4);
+ B64_FROM_24BIT (alt_result[6], alt_result[16], alt_result[26], 4);
+ B64_FROM_24BIT (alt_result[27], alt_result[7], alt_result[17], 4);
+ B64_FROM_24BIT (alt_result[18], alt_result[28], alt_result[8], 4);
+ B64_FROM_24BIT (alt_result[9], alt_result[19], alt_result[29], 4);
+ B64_FROM_24BIT (0, alt_result[31], alt_result[30], 3);
+ if (buflen <= 0)
+ {
+ __set_errno (ERANGE);
+ buffer = NULL;
+ }
+ else
+ *cp = '\0'; /* Terminate the string. */
+
+ /* Clear the buffer for the intermediate result so that people
+ attaching to processes or reading core dumps cannot get any
+ information. We do it in this way to clear correct_words[]
+ inside the SHA256 implementation as well. */
+ __sha256_init_ctx (&ctx);
+ __sha256_finish_ctx (&ctx, alt_result);
+ memset (&ctx, '\0', sizeof (ctx));
+ memset (&alt_ctx, '\0', sizeof (alt_ctx));
+
+ memset (temp_result, '\0', sizeof (temp_result));
+ memset (p_bytes, '\0', key_len);
+ memset (s_bytes, '\0', salt_len);
+ if (copied_key != NULL)
+ memset (copied_key, '\0', key_len);
+ if (copied_salt != NULL)
+ memset (copied_salt, '\0', salt_len);
+
+ return buffer;
+}
+
+static char *buffer;
+
+/* This entry point is equivalent to the `crypt' function in Unix
+ libcs. */
+char *
+__sha256_crypt (const unsigned char *key, const unsigned char *salt)
+{
+ /* We don't want to have an arbitrary limit in the size of the
+ password. We can compute an upper bound for the size of the
+ result in advance and so we can prepare the buffer we pass to
+ `sha256_crypt_r'. */
+ static int buflen;
+ int needed = (sizeof (sha256_salt_prefix) - 1
+ + sizeof (sha256_rounds_prefix) + 9 + 1
+ + strlen (salt) + 1 + 43 + 1);
+
+ if (buflen < needed)
+ {
+ char *new_buffer = (char *) realloc (buffer, needed);
+ if (new_buffer == NULL)
+ return NULL;
+
+ buffer = new_buffer;
+ buflen = needed;
+ }
+
+ return __sha256_crypt_r ((const char *) key, (const char *) salt, buffer, buflen);
+}
diff --git a/ap/build/uClibc/libcrypt/sha256.c b/ap/build/uClibc/libcrypt/sha256.c
new file mode 100644
index 0000000..e652a67
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/sha256.c
@@ -0,0 +1,294 @@
+/* Functions to compute SHA256 message digest of files or memory blocks.
+ according to the definition of SHA256 in FIPS 180-2.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+/* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#include <endian.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+
+#include "sha256.h"
+
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+# ifdef _LIBC
+# include <byteswap.h>
+# define SWAP(n) bswap_32 (n)
+# else
+# define SWAP(n) \
+ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
+# endif
+#else
+# define SWAP(n) (n)
+#endif
+
+
+/* This array contains the bytes used to pad the buffer to the next
+ 64-byte boundary. (FIPS 180-2:5.1.1) */
+static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
+
+
+/* Constants for SHA256 from FIPS 180-2:4.2.2. */
+static const uint32_t K[64] =
+ {
+ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
+ 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
+ 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
+ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
+ 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
+ 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
+ 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
+ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
+ 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
+ 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
+ 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
+ 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
+ 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
+ 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
+ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
+ 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+ };
+
+
+/* Process LEN bytes of BUFFER, accumulating context into CTX.
+ It is assumed that LEN % 64 == 0. */
+static void
+sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
+{
+ const uint32_t *words = buffer;
+ size_t nwords = len / sizeof (uint32_t);
+ uint32_t a = ctx->H[0];
+ uint32_t b = ctx->H[1];
+ uint32_t c = ctx->H[2];
+ uint32_t d = ctx->H[3];
+ uint32_t e = ctx->H[4];
+ uint32_t f = ctx->H[5];
+ uint32_t g = ctx->H[6];
+ uint32_t h = ctx->H[7];
+
+ /* First increment the byte count. FIPS 180-2 specifies the possible
+ length of the file up to 2^64 bits. Here we only compute the
+ number of bytes. Do a double word increment. */
+ ctx->total[0] += len;
+ if (ctx->total[0] < len)
+ ++ctx->total[1];
+
+ /* Process all bytes in the buffer with 64 bytes in each round of
+ the loop. */
+ while (nwords > 0)
+ {
+ uint32_t W[64];
+ uint32_t a_save = a;
+ uint32_t b_save = b;
+ uint32_t c_save = c;
+ uint32_t d_save = d;
+ uint32_t e_save = e;
+ uint32_t f_save = f;
+ uint32_t g_save = g;
+ uint32_t h_save = h;
+
+ /* Operators defined in FIPS 180-2:4.1.2. */
+#define Ch(x, y, z) ((x & y) ^ (~x & z))
+#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
+#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
+#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
+#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
+#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
+
+ /* It is unfortunate that C does not provide an operator for
+ cyclic rotation. Hope the C compiler is smart enough. */
+#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
+
+ /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
+ for (unsigned int t = 0; t < 16; ++t)
+ {
+ W[t] = SWAP (*words);
+ ++words;
+ }
+ for (unsigned int t = 16; t < 64; ++t)
+ W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
+
+ /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
+ for (unsigned int t = 0; t < 64; ++t)
+ {
+ uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
+ uint32_t T2 = S0 (a) + Maj (a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+ }
+
+ /* Add the starting values of the context according to FIPS 180-2:6.2.2
+ step 4. */
+ a += a_save;
+ b += b_save;
+ c += c_save;
+ d += d_save;
+ e += e_save;
+ f += f_save;
+ g += g_save;
+ h += h_save;
+
+ /* Prepare for the next round. */
+ nwords -= 16;
+ }
+
+ /* Put checksum in context given as argument. */
+ ctx->H[0] = a;
+ ctx->H[1] = b;
+ ctx->H[2] = c;
+ ctx->H[3] = d;
+ ctx->H[4] = e;
+ ctx->H[5] = f;
+ ctx->H[6] = g;
+ ctx->H[7] = h;
+}
+
+
+/* Initialize structure containing state of computation.
+ (FIPS 180-2:5.3.2) */
+void
+__sha256_init_ctx (struct sha256_ctx *ctx)
+{
+ ctx->H[0] = 0x6a09e667;
+ ctx->H[1] = 0xbb67ae85;
+ ctx->H[2] = 0x3c6ef372;
+ ctx->H[3] = 0xa54ff53a;
+ ctx->H[4] = 0x510e527f;
+ ctx->H[5] = 0x9b05688c;
+ ctx->H[6] = 0x1f83d9ab;
+ ctx->H[7] = 0x5be0cd19;
+
+ ctx->total[0] = ctx->total[1] = 0;
+ ctx->buflen = 0;
+}
+
+
+/* Process the remaining bytes in the internal buffer and the usual
+ prolog according to the standard and write the result to RESBUF.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+void *
+__sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
+{
+ /* Take yet unprocessed bytes into account. */
+ uint32_t bytes = ctx->buflen;
+ size_t pad;
+
+ /* Now count remaining bytes. */
+ ctx->total[0] += bytes;
+ if (ctx->total[0] < bytes)
+ ++ctx->total[1];
+
+ pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
+ memcpy (&ctx->buffer[bytes], fillbuf, pad);
+
+ /* Put the 64-bit file length in *bits* at the end of the buffer. */
+ *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
+ *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
+ (ctx->total[0] >> 29));
+
+ /* Process last bytes. */
+ sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
+
+ /* Put result from CTX in first 32 bytes following RESBUF. */
+ for (unsigned int i = 0; i < 8; ++i)
+ ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
+
+ return resbuf;
+}
+
+
+void
+__sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
+{
+ /* When we already have some bits in our internal buffer concatenate
+ both inputs first. */
+ if (ctx->buflen != 0)
+ {
+ size_t left_over = ctx->buflen;
+ size_t add = 128 - left_over > len ? len : 128 - left_over;
+
+ memcpy (&ctx->buffer[left_over], buffer, add);
+ ctx->buflen += add;
+
+ if (ctx->buflen > 64)
+ {
+ sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
+
+ ctx->buflen &= 63;
+ /* The regions in the following copy operation cannot overlap. */
+ memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
+ ctx->buflen);
+ }
+
+ buffer = (const char *) buffer + add;
+ len -= add;
+ }
+
+ /* Process available complete blocks. */
+ if (len >= 64)
+ {
+#if __GNUC__ >= 2
+# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
+#else
+# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
+#endif
+ if (UNALIGNED_P (buffer))
+ while (len > 64)
+ {
+ sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
+ buffer = (const char *) buffer + 64;
+ len -= 64;
+ }
+ else
+ {
+ sha256_process_block (buffer, len & ~63, ctx);
+ buffer = (const char *) buffer + (len & ~63);
+ len &= 63;
+ }
+ }
+
+ /* Move remaining bytes into internal buffer. */
+ if (len > 0)
+ {
+ size_t left_over = ctx->buflen;
+
+ memcpy (&ctx->buffer[left_over], buffer, len);
+ left_over += len;
+ if (left_over >= 64)
+ {
+ sha256_process_block (ctx->buffer, 64, ctx);
+ left_over -= 64;
+ memcpy (ctx->buffer, &ctx->buffer[64], left_over);
+ }
+ ctx->buflen = left_over;
+ }
+}
diff --git a/ap/build/uClibc/libcrypt/sha256.h b/ap/build/uClibc/libcrypt/sha256.h
new file mode 100644
index 0000000..291674f
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/sha256.h
@@ -0,0 +1,58 @@
+/* Declaration of functions and data types used for SHA256 sum computing
+ library functions.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#ifndef _SHA256_H
+#define _SHA256_H 1
+
+#include <limits.h>
+#include <stdint.h>
+#include <stdio.h>
+
+
+/* Structure to save state of computation between the single steps. */
+struct sha256_ctx
+{
+ uint32_t H[8];
+
+ uint32_t total[2];
+ uint32_t buflen;
+ char buffer[128] __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
+};
+
+/* Initialize structure containing state of computation.
+ (FIPS 180-2: 5.3.2) */
+extern void __sha256_init_ctx (struct sha256_ctx *ctx) attribute_hidden;
+
+/* Starting with the result of former calls of this function (or the
+ initialization function update the context for the next LEN bytes
+ starting at BUFFER.
+ It is NOT required that LEN is a multiple of 64. */
+extern void __sha256_process_bytes (const void *buffer, size_t len,
+ struct sha256_ctx *ctx) attribute_hidden;
+
+/* Process the remaining bytes in the buffer and put result from CTX
+ in first 32 bytes following RESBUF.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+extern void *__sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
+ attribute_hidden;
+
+#endif /* sha256.h */
diff --git a/ap/build/uClibc/libcrypt/sha512-crypt.c b/ap/build/uClibc/libcrypt/sha512-crypt.c
new file mode 100644
index 0000000..0321be0
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/sha512-crypt.c
@@ -0,0 +1,339 @@
+/* One way encryption based on SHA512 sum.
+ Copyright (C) 2007, 2009 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#include <assert.h>
+#include <errno.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/param.h>
+
+#include "sha512.h"
+#include "libcrypt.h"
+
+/* Define our magic string to mark salt for SHA512 "encryption"
+ replacement. */
+static const char sha512_salt_prefix[] = "$6$";
+
+/* Prefix for optional rounds specification. */
+static const char sha512_rounds_prefix[] = "rounds=";
+
+/* Maximum salt string length. */
+#define SALT_LEN_MAX 16
+/* Default number of rounds if not explicitly specified. */
+#define ROUNDS_DEFAULT 5000
+/* Minimum number of rounds. */
+#define ROUNDS_MIN 1000
+/* Maximum number of rounds. */
+#define ROUNDS_MAX 999999999
+
+/* Table with characters for base64 transformation. */
+static const char b64t[64] =
+"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+
+#define B64_FROM_24BIT(b2, b1, b0, steps) \
+ { \
+ int n = (steps); \
+ unsigned int w = ((b2) << 16) | ((b1) << 8) | (b0); \
+ while (n-- > 0 && buflen > 0) \
+ { \
+ *cp++ = b64t[w & 0x3f]; \
+ --buflen; \
+ w >>= 6; \
+ } \
+ }
+
+char *
+__sha512_crypt_r (const char *key,
+ const char *salt,
+ char *buffer,
+ int buflen)
+{
+ unsigned char alt_result[64]
+ __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
+ unsigned char temp_result[64]
+ __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
+ size_t salt_len;
+ size_t key_len;
+ size_t cnt;
+ char *cp;
+ char *copied_key = NULL;
+ char *copied_salt = NULL;
+ char *p_bytes;
+ char *s_bytes;
+ /* Default number of rounds. */
+ size_t rounds = ROUNDS_DEFAULT;
+ bool rounds_custom = false;
+
+ /* Find beginning of salt string. The prefix should normally always
+ be present. Just in case it is not. */
+ if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
+ /* Skip salt prefix. */
+ salt += sizeof (sha512_salt_prefix) - 1;
+
+ if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
+ == 0)
+ {
+ const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
+ char *endp;
+ unsigned long int srounds = strtoul (num, &endp, 10);
+ if (*endp == '$')
+ {
+ salt = endp + 1;
+ rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
+ rounds_custom = true;
+ }
+ }
+
+ salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
+ key_len = strlen (key);
+
+ if ((key - (char *) 0) % __alignof__ (uint64_t) != 0)
+ {
+ char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t));
+ key = copied_key =
+ memcpy (tmp + __alignof__ (uint64_t)
+ - (tmp - (char *) 0) % __alignof__ (uint64_t),
+ key, key_len);
+ assert ((key - (char *) 0) % __alignof__ (uint64_t) == 0);
+ }
+
+ if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0)
+ {
+ char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t));
+ salt = copied_salt =
+ memcpy (tmp + __alignof__ (uint64_t)
+ - (tmp - (char *) 0) % __alignof__ (uint64_t),
+ salt, salt_len);
+ assert ((salt - (char *) 0) % __alignof__ (uint64_t) == 0);
+ }
+
+ struct sha512_ctx ctx;
+ struct sha512_ctx alt_ctx;
+
+ /* Prepare for the real work. */
+ __sha512_init_ctx (&ctx);
+
+ /* Add the key string. */
+ __sha512_process_bytes (key, key_len, &ctx);
+
+ /* The last part is the salt string. This must be at most 16
+ characters and it ends at the first `$' character. */
+ __sha512_process_bytes (salt, salt_len, &ctx);
+
+
+ /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
+ final result will be added to the first context. */
+ __sha512_init_ctx (&alt_ctx);
+
+ /* Add key. */
+ __sha512_process_bytes (key, key_len, &alt_ctx);
+
+ /* Add salt. */
+ __sha512_process_bytes (salt, salt_len, &alt_ctx);
+
+ /* Add key again. */
+ __sha512_process_bytes (key, key_len, &alt_ctx);
+
+ /* Now get result of this (64 bytes) and add it to the other
+ context. */
+ __sha512_finish_ctx (&alt_ctx, alt_result);
+
+ /* Add for any character in the key one byte of the alternate sum. */
+ for (cnt = key_len; cnt > 64; cnt -= 64)
+ __sha512_process_bytes (alt_result, 64, &ctx);
+
+ __sha512_process_bytes (alt_result, cnt, &ctx);
+
+ /* Take the binary representation of the length of the key and for every
+ 1 add the alternate sum, for every 0 the key. */
+ for (cnt = key_len; cnt > 0; cnt >>= 1)
+ if ((cnt & 1) != 0)
+ __sha512_process_bytes (alt_result, 64, &ctx);
+ else
+ __sha512_process_bytes (key, key_len, &ctx);
+
+ /* Create intermediate result. */
+ __sha512_finish_ctx (&ctx, alt_result);
+
+ /* Start computation of P byte sequence. */
+ __sha512_init_ctx (&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < key_len; ++cnt)
+ __sha512_process_bytes (key, key_len, &alt_ctx);
+
+ /* Finish the digest. */
+ __sha512_finish_ctx (&alt_ctx, temp_result);
+
+ /* Create byte sequence P. */
+ cp = p_bytes = alloca (key_len);
+ for (cnt = key_len; cnt >= 64; cnt -= 64)
+ cp = mempcpy (cp, temp_result, 64);
+ memcpy (cp, temp_result, cnt);
+
+ /* Start computation of S byte sequence. */
+ __sha512_init_ctx (&alt_ctx);
+
+ /* For every character in the password add the entire password. */
+ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
+ __sha512_process_bytes (salt, salt_len, &alt_ctx);
+
+ /* Finish the digest. */
+ __sha512_finish_ctx (&alt_ctx, temp_result);
+
+ /* Create byte sequence S. */
+ cp = s_bytes = alloca (salt_len);
+ for (cnt = salt_len; cnt >= 64; cnt -= 64)
+ cp = mempcpy (cp, temp_result, 64);
+ memcpy (cp, temp_result, cnt);
+
+ /* Repeatedly run the collected hash value through SHA512 to burn
+ CPU cycles. */
+ for (cnt = 0; cnt < rounds; ++cnt)
+ {
+ /* New context. */
+ __sha512_init_ctx (&ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ __sha512_process_bytes (p_bytes, key_len, &ctx);
+ else
+ __sha512_process_bytes (alt_result, 64, &ctx);
+
+ /* Add salt for numbers not divisible by 3. */
+ if (cnt % 3 != 0)
+ __sha512_process_bytes (s_bytes, salt_len, &ctx);
+
+ /* Add key for numbers not divisible by 7. */
+ if (cnt % 7 != 0)
+ __sha512_process_bytes (p_bytes, key_len, &ctx);
+
+ /* Add key or last result. */
+ if ((cnt & 1) != 0)
+ __sha512_process_bytes (alt_result, 64, &ctx);
+ else
+ __sha512_process_bytes (p_bytes, key_len, &ctx);
+
+ /* Create intermediate result. */
+ __sha512_finish_ctx (&ctx, alt_result);
+ }
+
+ /* Now we can construct the result string. It consists of three
+ parts. */
+ cp = stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen));
+ buflen -= sizeof (sha512_salt_prefix) - 1;
+
+ if (rounds_custom)
+ {
+ int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
+ sha512_rounds_prefix, rounds);
+ cp += n;
+ buflen -= n;
+ }
+
+ cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
+ buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
+
+ if (buflen > 0)
+ {
+ *cp++ = '$';
+ --buflen;
+ }
+
+ B64_FROM_24BIT (alt_result[0], alt_result[21], alt_result[42], 4);
+ B64_FROM_24BIT (alt_result[22], alt_result[43], alt_result[1], 4);
+ B64_FROM_24BIT (alt_result[44], alt_result[2], alt_result[23], 4);
+ B64_FROM_24BIT (alt_result[3], alt_result[24], alt_result[45], 4);
+ B64_FROM_24BIT (alt_result[25], alt_result[46], alt_result[4], 4);
+ B64_FROM_24BIT (alt_result[47], alt_result[5], alt_result[26], 4);
+ B64_FROM_24BIT (alt_result[6], alt_result[27], alt_result[48], 4);
+ B64_FROM_24BIT (alt_result[28], alt_result[49], alt_result[7], 4);
+ B64_FROM_24BIT (alt_result[50], alt_result[8], alt_result[29], 4);
+ B64_FROM_24BIT (alt_result[9], alt_result[30], alt_result[51], 4);
+ B64_FROM_24BIT (alt_result[31], alt_result[52], alt_result[10], 4);
+ B64_FROM_24BIT (alt_result[53], alt_result[11], alt_result[32], 4);
+ B64_FROM_24BIT (alt_result[12], alt_result[33], alt_result[54], 4);
+ B64_FROM_24BIT (alt_result[34], alt_result[55], alt_result[13], 4);
+ B64_FROM_24BIT (alt_result[56], alt_result[14], alt_result[35], 4);
+ B64_FROM_24BIT (alt_result[15], alt_result[36], alt_result[57], 4);
+ B64_FROM_24BIT (alt_result[37], alt_result[58], alt_result[16], 4);
+ B64_FROM_24BIT (alt_result[59], alt_result[17], alt_result[38], 4);
+ B64_FROM_24BIT (alt_result[18], alt_result[39], alt_result[60], 4);
+ B64_FROM_24BIT (alt_result[40], alt_result[61], alt_result[19], 4);
+ B64_FROM_24BIT (alt_result[62], alt_result[20], alt_result[41], 4);
+ B64_FROM_24BIT (0, 0, alt_result[63], 2);
+
+ if (buflen <= 0)
+ {
+ __set_errno (ERANGE);
+ buffer = NULL;
+ }
+ else
+ *cp = '\0'; /* Terminate the string. */
+
+ /* Clear the buffer for the intermediate result so that people
+ attaching to processes or reading core dumps cannot get any
+ information. We do it in this way to clear correct_words[]
+ inside the SHA512 implementation as well. */
+ __sha512_init_ctx (&ctx);
+ __sha512_finish_ctx (&ctx, alt_result);
+ memset (&ctx, '\0', sizeof (ctx));
+ memset (&alt_ctx, '\0', sizeof (alt_ctx));
+
+ memset (temp_result, '\0', sizeof (temp_result));
+ memset (p_bytes, '\0', key_len);
+ memset (s_bytes, '\0', salt_len);
+ if (copied_key != NULL)
+ memset (copied_key, '\0', key_len);
+ if (copied_salt != NULL)
+ memset (copied_salt, '\0', salt_len);
+
+ return buffer;
+}
+
+static char *buffer;
+
+/* This entry point is equivalent to the `crypt' function in Unix
+ libcs. */
+char *
+__sha512_crypt (const unsigned char *key, const unsigned char *salt)
+{
+ /* We don't want to have an arbitrary limit in the size of the
+ password. We can compute an upper bound for the size of the
+ result in advance and so we can prepare the buffer we pass to
+ `sha512_crypt_r'. */
+ static int buflen;
+ int needed = (sizeof (sha512_salt_prefix) - 1
+ + sizeof (sha512_rounds_prefix) + 9 + 1
+ + strlen (salt) + 1 + 86 + 1);
+
+ if (buflen < needed)
+ {
+ char *new_buffer = (char *) realloc (buffer, needed);
+ if (new_buffer == NULL)
+ return NULL;
+
+ buffer = new_buffer;
+ buflen = needed;
+ }
+
+ return __sha512_crypt_r ((const char *) key, (const char *) salt, buffer, buflen);
+}
diff --git a/ap/build/uClibc/libcrypt/sha512.c b/ap/build/uClibc/libcrypt/sha512.c
new file mode 100644
index 0000000..04e0a06
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/sha512.c
@@ -0,0 +1,326 @@
+/* Functions to compute SHA512 message digest of files or memory blocks.
+ according to the definition of SHA512 in FIPS 180-2.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+/* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#include <endian.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+
+#include "sha512.h"
+
+#if __BYTE_ORDER == __LITTLE_ENDIAN
+# ifdef _LIBC
+# include <byteswap.h>
+# define SWAP(n) bswap_64 (n)
+# else
+# define SWAP(n) \
+ (((n) << 56) \
+ | (((n) & 0xff00) << 40) \
+ | (((n) & 0xff0000) << 24) \
+ | (((n) & 0xff000000) << 8) \
+ | (((n) >> 8) & 0xff000000) \
+ | (((n) >> 24) & 0xff0000) \
+ | (((n) >> 40) & 0xff00) \
+ | ((n) >> 56))
+# endif
+#else
+# define SWAP(n) (n)
+#endif
+
+
+/* This array contains the bytes used to pad the buffer to the next
+ 64-byte boundary. (FIPS 180-2:5.1.2) */
+static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
+
+
+/* Constants for SHA512 from FIPS 180-2:4.2.3. */
+static const uint64_t K[80] =
+ {
+ UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),
+ UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),
+ UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),
+ UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),
+ UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),
+ UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),
+ UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),
+ UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),
+ UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),
+ UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),
+ UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),
+ UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),
+ UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),
+ UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),
+ UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),
+ UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),
+ UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),
+ UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),
+ UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),
+ UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),
+ UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),
+ UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),
+ UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),
+ UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),
+ UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),
+ UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),
+ UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),
+ UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),
+ UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),
+ UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),
+ UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),
+ UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),
+ UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),
+ UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),
+ UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),
+ UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),
+ UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),
+ UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),
+ UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),
+ UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)
+ };
+
+
+/* Process LEN bytes of BUFFER, accumulating context into CTX.
+ It is assumed that LEN % 128 == 0. */
+static void
+sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
+{
+ const uint64_t *words = buffer;
+ size_t nwords = len / sizeof (uint64_t);
+ uint64_t a = ctx->H[0];
+ uint64_t b = ctx->H[1];
+ uint64_t c = ctx->H[2];
+ uint64_t d = ctx->H[3];
+ uint64_t e = ctx->H[4];
+ uint64_t f = ctx->H[5];
+ uint64_t g = ctx->H[6];
+ uint64_t h = ctx->H[7];
+
+ /* First increment the byte count. FIPS 180-2 specifies the possible
+ length of the file up to 2^128 bits. Here we only compute the
+ number of bytes. Do a double word increment. */
+ ctx->total[0] += len;
+ if (ctx->total[0] < len)
+ ++ctx->total[1];
+
+ /* Process all bytes in the buffer with 128 bytes in each round of
+ the loop. */
+ while (nwords > 0)
+ {
+ uint64_t W[80];
+ uint64_t a_save = a;
+ uint64_t b_save = b;
+ uint64_t c_save = c;
+ uint64_t d_save = d;
+ uint64_t e_save = e;
+ uint64_t f_save = f;
+ uint64_t g_save = g;
+ uint64_t h_save = h;
+
+ /* Operators defined in FIPS 180-2:4.1.2. */
+#define Ch(x, y, z) ((x & y) ^ (~x & z))
+#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
+#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))
+#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))
+#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))
+#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))
+
+ /* It is unfortunate that C does not provide an operator for
+ cyclic rotation. Hope the C compiler is smart enough. */
+#define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))
+
+ /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
+ for (unsigned int t = 0; t < 16; ++t)
+ {
+ W[t] = SWAP (*words);
+ ++words;
+ }
+ for (unsigned int t = 16; t < 80; ++t)
+ W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
+
+ /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
+ for (unsigned int t = 0; t < 80; ++t)
+ {
+ uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
+ uint64_t T2 = S0 (a) + Maj (a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+ }
+
+ /* Add the starting values of the context according to FIPS 180-2:6.3.2
+ step 4. */
+ a += a_save;
+ b += b_save;
+ c += c_save;
+ d += d_save;
+ e += e_save;
+ f += f_save;
+ g += g_save;
+ h += h_save;
+
+ /* Prepare for the next round. */
+ nwords -= 16;
+ }
+
+ /* Put checksum in context given as argument. */
+ ctx->H[0] = a;
+ ctx->H[1] = b;
+ ctx->H[2] = c;
+ ctx->H[3] = d;
+ ctx->H[4] = e;
+ ctx->H[5] = f;
+ ctx->H[6] = g;
+ ctx->H[7] = h;
+}
+
+
+/* Initialize structure containing state of computation.
+ (FIPS 180-2:5.3.3) */
+void
+__sha512_init_ctx (struct sha512_ctx *ctx)
+{
+ ctx->H[0] = UINT64_C (0x6a09e667f3bcc908);
+ ctx->H[1] = UINT64_C (0xbb67ae8584caa73b);
+ ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b);
+ ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1);
+ ctx->H[4] = UINT64_C (0x510e527fade682d1);
+ ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f);
+ ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b);
+ ctx->H[7] = UINT64_C (0x5be0cd19137e2179);
+
+ ctx->total[0] = ctx->total[1] = 0;
+ ctx->buflen = 0;
+}
+
+
+/* Process the remaining bytes in the internal buffer and the usual
+ prolog according to the standard and write the result to RESBUF.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 32 bits value. */
+void *
+__sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
+{
+ /* Take yet unprocessed bytes into account. */
+ uint64_t bytes = ctx->buflen;
+ size_t pad;
+
+ /* Now count remaining bytes. */
+ ctx->total[0] += bytes;
+ if (ctx->total[0] < bytes)
+ ++ctx->total[1];
+
+ pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
+ memcpy (&ctx->buffer[bytes], fillbuf, pad);
+
+ /* Put the 128-bit file length in *bits* at the end of the buffer. */
+ *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3);
+ *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
+ (ctx->total[0] >> 61));
+
+ /* Process last bytes. */
+ sha512_process_block (ctx->buffer, bytes + pad + 16, ctx);
+
+ /* Put result from CTX in first 64 bytes following RESBUF. */
+ for (unsigned int i = 0; i < 8; ++i)
+ ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]);
+
+ return resbuf;
+}
+
+
+void
+__sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
+{
+ /* When we already have some bits in our internal buffer concatenate
+ both inputs first. */
+ if (ctx->buflen != 0)
+ {
+ size_t left_over = ctx->buflen;
+ size_t add = 256 - left_over > len ? len : 256 - left_over;
+
+ memcpy (&ctx->buffer[left_over], buffer, add);
+ ctx->buflen += add;
+
+ if (ctx->buflen > 128)
+ {
+ sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
+
+ ctx->buflen &= 127;
+ /* The regions in the following copy operation cannot overlap. */
+ memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127],
+ ctx->buflen);
+ }
+
+ buffer = (const char *) buffer + add;
+ len -= add;
+ }
+
+ /* Process available complete blocks. */
+ if (len >= 128)
+ {
+#if __GNUC__ >= 2
+# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)
+#else
+# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)
+#endif
+ if (UNALIGNED_P (buffer))
+ while (len > 128)
+ {
+ sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128,
+ ctx);
+ buffer = (const char *) buffer + 128;
+ len -= 128;
+ }
+ else
+ {
+ sha512_process_block (buffer, len & ~127, ctx);
+ buffer = (const char *) buffer + (len & ~127);
+ len &= 127;
+ }
+ }
+
+ /* Move remaining bytes into internal buffer. */
+ if (len > 0)
+ {
+ size_t left_over = ctx->buflen;
+
+ memcpy (&ctx->buffer[left_over], buffer, len);
+ left_over += len;
+ if (left_over >= 128)
+ {
+ sha512_process_block (ctx->buffer, 128, ctx);
+ left_over -= 128;
+ memcpy (ctx->buffer, &ctx->buffer[128], left_over);
+ }
+ ctx->buflen = left_over;
+ }
+}
diff --git a/ap/build/uClibc/libcrypt/sha512.h b/ap/build/uClibc/libcrypt/sha512.h
new file mode 100644
index 0000000..5777827
--- /dev/null
+++ b/ap/build/uClibc/libcrypt/sha512.h
@@ -0,0 +1,58 @@
+/* Declaration of functions and data types used for SHA512 sum computing
+ library functions.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#ifndef _SHA512_H
+#define _SHA512_H 1
+
+#include <limits.h>
+#include <stdint.h>
+#include <stdio.h>
+
+
+/* Structure to save state of computation between the single steps. */
+struct sha512_ctx
+{
+ uint64_t H[8];
+
+ uint64_t total[2];
+ uint64_t buflen;
+ char buffer[256] __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
+};
+
+/* Initialize structure containing state of computation.
+ (FIPS 180-2: 5.3.3) */
+extern void __sha512_init_ctx (struct sha512_ctx *ctx) attribute_hidden;
+
+/* Starting with the result of former calls of this function (or the
+ initialization function update the context for the next LEN bytes
+ starting at BUFFER.
+ It is NOT required that LEN is a multiple of 128. */
+extern void __sha512_process_bytes (const void *buffer, size_t len,
+ struct sha512_ctx *ctx) attribute_hidden;
+
+/* Process the remaining bytes in the buffer and put result from CTX
+ in first 64 bytes following RESBUF.
+
+ IMPORTANT: On some systems it is required that RESBUF is correctly
+ aligned for a 64 bits value. */
+extern void *__sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
+ attribute_hidden;
+
+#endif /* sha512.h */