[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/build/uClibc/libm/e_cosh.c b/ap/build/uClibc/libm/e_cosh.c
new file mode 100644
index 0000000..1eb5b83
--- /dev/null
+++ b/ap/build/uClibc/libm/e_cosh.c
@@ -0,0 +1,97 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_cosh(x)
+ * Method :
+ * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+ *	1. Replace x by |x| (cosh(x) = cosh(-x)).
+ *	2.
+ *		                                        [ exp(x) - 1 ]^2
+ *	    0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
+ *			       			           2*exp(x)
+ *
+ *		                                  exp(x) +  1/exp(x)
+ *	    ln2/2    <= x <= 22     :  cosh(x) := -------------------
+ *			       			          2
+ *	    22       <= x <= lnovft :  cosh(x) := exp(x)/2
+ *	    lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
+ *	    ln2ovft  <  x	    :  cosh(x) := huge*huge (overflow)
+ *
+ * Special cases:
+ *	cosh(x) is |x| if x is +INF, -INF, or NaN.
+ *	only cosh(0)=1 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+static const double one = 1.0, half=0.5, huge = 1.0e300;
+
+double attribute_hidden __ieee754_cosh(double x)
+{
+	double t,w;
+	int32_t ix;
+	u_int32_t lx;
+
+    /* High word of |x|. */
+	GET_HIGH_WORD(ix,x);
+	ix &= 0x7fffffff;
+
+    /* x is INF or NaN */
+	if(ix>=0x7ff00000) return x*x;
+
+    /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+	if(ix<0x3fd62e43) {
+	    t = expm1(fabs(x));
+	    w = one+t;
+	    if (ix<0x3c800000) return w;	/* cosh(tiny) = 1 */
+	    return one+(t*t)/(w+w);
+	}
+
+    /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+	if (ix < 0x40360000) {
+		t = __ieee754_exp(fabs(x));
+		return half*t+half/t;
+	}
+
+    /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+	if (ix < 0x40862E42)  return half*__ieee754_exp(fabs(x));
+
+    /* |x| in [log(maxdouble), overflowthresold] */
+	GET_LOW_WORD(lx,x);
+	if (ix<0x408633CE ||
+	      ((ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d))) {
+	    w = __ieee754_exp(half*fabs(x));
+	    t = half*w;
+	    return t*w;
+	}
+
+    /* |x| > overflowthresold, cosh(x) overflow */
+	return huge*huge;
+}
+
+/*
+ * wrapper cosh(x)
+ */
+#ifndef _IEEE_LIBM
+double cosh(double x)
+{
+	double z = __ieee754_cosh(x);
+	if (_LIB_VERSION == _IEEE_ || isnan(x))
+		return z;
+	if (fabs(x) > 7.10475860073943863426e+02)
+		return __kernel_standard(x, x, 5); /* cosh overflow */
+	return z;
+}
+#else
+strong_alias(__ieee754_cosh, cosh)
+#endif
+libm_hidden_def(cosh)