[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/build/uClibc/libm/e_exp.c b/ap/build/uClibc/libm/e_exp.c
new file mode 100644
index 0000000..abfb176
--- /dev/null
+++ b/ap/build/uClibc/libm/e_exp.c
@@ -0,0 +1,182 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ *   1. Argument reduction:
+ *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ *	Given x, find r and integer k such that
+ *
+ *               x = k*ln2 + r,  |r| <= 0.5*ln2.
+ *
+ *      Here r will be represented as r = hi-lo for better
+ *	accuracy.
+ *
+ *   2. Approximation of exp(r) by a special rational function on
+ *	the interval [0,0.34658]:
+ *	Write
+ *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ *      We use a special Reme algorithm on [0,0.34658] to generate
+ * 	a polynomial of degree 5 to approximate R. The maximum error
+ *	of this polynomial approximation is bounded by 2**-59. In
+ *	other words,
+ *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ *  	(where z=r*r, and the values of P1 to P5 are listed below)
+ *	and
+ *	    |                  5          |     -59
+ *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
+ *	    |                             |
+ *	The computation of exp(r) thus becomes
+ *                             2*r
+ *		exp(r) = 1 + -------
+ *		              R - r
+ *                                 r*R1(r)
+ *		       = 1 + r + ----------- (for better accuracy)
+ *		                  2 - R1(r)
+ *	where
+ *			         2       4             10
+ *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
+ *
+ *   3. Scale back to obtain exp(x):
+ *	From step 1, we have
+ *	   exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ *	exp(INF) is INF, exp(NaN) is NaN;
+ *	exp(-INF) is 0, and
+ *	for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ *	according to an error analysis, the error is always less than
+ *	1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ *	For IEEE double
+ *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
+ *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+static const double
+one	= 1.0,
+halF[2]	= {0.5,-0.5,},
+huge	= 1.0e+300,
+twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
+o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
+u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
+ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
+	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
+ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
+	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
+invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+double attribute_hidden __ieee754_exp(double x)	/* default IEEE double exp */
+{
+	double y;
+	double hi = 0.0;
+	double lo = 0.0;
+	double c;
+	double t;
+	int32_t k=0;
+	int32_t xsb;
+	u_int32_t hx;
+
+	GET_HIGH_WORD(hx,x);
+	xsb = (hx>>31)&1;		/* sign bit of x */
+	hx &= 0x7fffffff;		/* high word of |x| */
+
+    /* filter out non-finite argument */
+	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
+            if(hx>=0x7ff00000) {
+	        u_int32_t lx;
+		GET_LOW_WORD(lx,x);
+		if(((hx&0xfffff)|lx)!=0)
+		     return x+x; 		/* NaN */
+		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
+	    }
+	    if(x > o_threshold) return huge*huge; /* overflow */
+	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
+	}
+
+    /* argument reduction */
+	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
+	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
+		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
+	    } else {
+		k  = invln2*x+halF[xsb];
+		t  = k;
+		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
+		lo = t*ln2LO[0];
+	    }
+	    x  = hi - lo;
+	}
+	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
+	    if(huge+x>one) return one+x;/* trigger inexact */
+	}
+	else k = 0;
+
+    /* x is now in primary range */
+	t  = x*x;
+	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+	if(k==0) 	return one-((x*c)/(c-2.0)-x);
+	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
+	if(k >= -1021) {
+	    u_int32_t hy;
+	    GET_HIGH_WORD(hy,y);
+	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
+	    return y;
+	} else {
+	    u_int32_t hy;
+	    GET_HIGH_WORD(hy,y);
+	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
+	    return y*twom1000;
+	}
+}
+
+/*
+ * wrapper exp(x)
+ */
+#ifndef _IEEE_LIBM
+double exp(double x)
+{
+	static const double o_threshold =  7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
+	static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
+
+	double z = __ieee754_exp(x);
+	if (_LIB_VERSION == _IEEE_)
+		return z;
+	if (isfinite(x)) {
+		if (x > o_threshold)
+			return __kernel_standard(x, x, 6); /* exp overflow */
+		if (x < u_threshold)
+			return __kernel_standard(x, x, 7); /* exp underflow */
+	}
+	return z;
+}
+#else
+strong_alias(__ieee754_exp, exp)
+#endif
+libm_hidden_def(exp)