[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/stack/build.info b/ap/lib/libssl/openssl-1.1.1o/crypto/stack/build.info
new file mode 100644
index 0000000..e587021
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/stack/build.info
@@ -0,0 +1,2 @@
+LIBS=../../libcrypto
+SOURCE[../../libcrypto]=stack.c
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/stack/stack.c b/ap/lib/libssl/openssl-1.1.1o/crypto/stack/stack.c
new file mode 100644
index 0000000..975515d
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/stack/stack.c
@@ -0,0 +1,413 @@
+/*
+ * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include "internal/cryptlib.h"
+#include "internal/numbers.h"
+#include <openssl/stack.h>
+#include <openssl/objects.h>
+#include <errno.h>
+#include <openssl/e_os2.h>      /* For ossl_inline */
+
+/*
+ * The initial number of nodes in the array.
+ */
+static const int min_nodes = 4;
+static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
+                             ? (int)(SIZE_MAX / sizeof(void *))
+                             : INT_MAX;
+
+struct stack_st {
+    int num;
+    const void **data;
+    int sorted;
+    int num_alloc;
+    OPENSSL_sk_compfunc comp;
+};
+
+OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
+{
+    OPENSSL_sk_compfunc old = sk->comp;
+
+    if (sk->comp != c)
+        sk->sorted = 0;
+    sk->comp = c;
+
+    return old;
+}
+
+OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
+{
+    OPENSSL_STACK *ret;
+
+    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
+        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
+        return NULL;
+    }
+
+    /* direct structure assignment */
+    *ret = *sk;
+
+    if (sk->num == 0) {
+        /* postpone |ret->data| allocation */
+        ret->data = NULL;
+        ret->num_alloc = 0;
+        return ret;
+    }
+    /* duplicate |sk->data| content */
+    if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
+        goto err;
+    memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
+    return ret;
+ err:
+    OPENSSL_sk_free(ret);
+    return NULL;
+}
+
+OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
+                             OPENSSL_sk_copyfunc copy_func,
+                             OPENSSL_sk_freefunc free_func)
+{
+    OPENSSL_STACK *ret;
+    int i;
+
+    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
+        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
+        return NULL;
+    }
+
+    /* direct structure assignment */
+    *ret = *sk;
+
+    if (sk->num == 0) {
+        /* postpone |ret| data allocation */
+        ret->data = NULL;
+        ret->num_alloc = 0;
+        return ret;
+    }
+
+    ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
+    ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
+    if (ret->data == NULL) {
+        OPENSSL_free(ret);
+        return NULL;
+    }
+
+    for (i = 0; i < ret->num; ++i) {
+        if (sk->data[i] == NULL)
+            continue;
+        if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
+            while (--i >= 0)
+                if (ret->data[i] != NULL)
+                    free_func((void *)ret->data[i]);
+            OPENSSL_sk_free(ret);
+            return NULL;
+        }
+    }
+    return ret;
+}
+
+OPENSSL_STACK *OPENSSL_sk_new_null(void)
+{
+    return OPENSSL_sk_new_reserve(NULL, 0);
+}
+
+OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
+{
+    return OPENSSL_sk_new_reserve(c, 0);
+}
+
+/*
+ * Calculate the array growth based on the target size.
+ *
+ * The growth fraction is a rational number and is defined by a numerator
+ * and a denominator.  According to Andrew Koenig in his paper "Why Are
+ * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
+ * than the golden ratio (1.618...).
+ *
+ * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
+ * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
+ * computation is more difficult.
+ *
+ * The limit to avoid overflow is spot on.  The modulo three correction term
+ * ensures that the limit is the largest number than can be expanded by the
+ * growth factor without exceeding the hard limit.
+ *
+ * Do not call it with |current| lower than 2, or it will infinitely loop.
+ */
+static ossl_inline int compute_growth(int target, int current)
+{
+    const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
+
+    while (current < target) {
+        /* Check to see if we're at the hard limit */
+        if (current >= max_nodes)
+            return 0;
+
+        /* Expand the size by a factor of 3/2 if it is within range */
+        current = current < limit ? current + current / 2 : max_nodes;
+    }
+    return current;
+}
+
+/* internal STACK storage allocation */
+static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
+{
+    const void **tmpdata;
+    int num_alloc;
+
+    /* Check to see the reservation isn't exceeding the hard limit */
+    if (n > max_nodes - st->num)
+        return 0;
+
+    /* Figure out the new size */
+    num_alloc = st->num + n;
+    if (num_alloc < min_nodes)
+        num_alloc = min_nodes;
+
+    /* If |st->data| allocation was postponed */
+    if (st->data == NULL) {
+        /*
+         * At this point, |st->num_alloc| and |st->num| are 0;
+         * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
+         */
+        if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
+            CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
+            return 0;
+        }
+        st->num_alloc = num_alloc;
+        return 1;
+    }
+
+    if (!exact) {
+        if (num_alloc <= st->num_alloc)
+            return 1;
+        num_alloc = compute_growth(num_alloc, st->num_alloc);
+        if (num_alloc == 0)
+            return 0;
+    } else if (num_alloc == st->num_alloc) {
+        return 1;
+    }
+
+    tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
+    if (tmpdata == NULL)
+        return 0;
+
+    st->data = tmpdata;
+    st->num_alloc = num_alloc;
+    return 1;
+}
+
+OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
+{
+    OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
+
+    if (st == NULL)
+        return NULL;
+
+    st->comp = c;
+
+    if (n <= 0)
+        return st;
+
+    if (!sk_reserve(st, n, 1)) {
+        OPENSSL_sk_free(st);
+        return NULL;
+    }
+
+    return st;
+}
+
+int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
+{
+    if (st == NULL)
+        return 0;
+
+    if (n < 0)
+        return 1;
+    return sk_reserve(st, n, 1);
+}
+
+int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
+{
+    if (st == NULL || st->num == max_nodes)
+        return 0;
+
+    if (!sk_reserve(st, 1, 0))
+        return 0;
+
+    if ((loc >= st->num) || (loc < 0)) {
+        st->data[st->num] = data;
+    } else {
+        memmove(&st->data[loc + 1], &st->data[loc],
+                sizeof(st->data[0]) * (st->num - loc));
+        st->data[loc] = data;
+    }
+    st->num++;
+    st->sorted = 0;
+    return st->num;
+}
+
+static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
+{
+    const void *ret = st->data[loc];
+
+    if (loc != st->num - 1)
+         memmove(&st->data[loc], &st->data[loc + 1],
+                 sizeof(st->data[0]) * (st->num - loc - 1));
+    st->num--;
+
+    return (void *)ret;
+}
+
+void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
+{
+    int i;
+
+    for (i = 0; i < st->num; i++)
+        if (st->data[i] == p)
+            return internal_delete(st, i);
+    return NULL;
+}
+
+void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
+{
+    if (st == NULL || loc < 0 || loc >= st->num)
+        return NULL;
+
+    return internal_delete(st, loc);
+}
+
+static int internal_find(OPENSSL_STACK *st, const void *data,
+                         int ret_val_options)
+{
+    const void *r;
+    int i;
+
+    if (st == NULL || st->num == 0)
+        return -1;
+
+    if (st->comp == NULL) {
+        for (i = 0; i < st->num; i++)
+            if (st->data[i] == data)
+                return i;
+        return -1;
+    }
+
+    if (!st->sorted) {
+        if (st->num > 1)
+            qsort(st->data, st->num, sizeof(void *), st->comp);
+        st->sorted = 1; /* empty or single-element stack is considered sorted */
+    }
+    if (data == NULL)
+        return -1;
+    r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
+                        ret_val_options);
+
+    return r == NULL ? -1 : (int)((const void **)r - st->data);
+}
+
+int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
+{
+    return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
+}
+
+int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
+{
+    return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
+}
+
+int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
+{
+    if (st == NULL)
+        return -1;
+    return OPENSSL_sk_insert(st, data, st->num);
+}
+
+int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
+{
+    return OPENSSL_sk_insert(st, data, 0);
+}
+
+void *OPENSSL_sk_shift(OPENSSL_STACK *st)
+{
+    if (st == NULL || st->num == 0)
+        return NULL;
+    return internal_delete(st, 0);
+}
+
+void *OPENSSL_sk_pop(OPENSSL_STACK *st)
+{
+    if (st == NULL || st->num == 0)
+        return NULL;
+    return internal_delete(st, st->num - 1);
+}
+
+void OPENSSL_sk_zero(OPENSSL_STACK *st)
+{
+    if (st == NULL || st->num == 0)
+        return;
+    memset(st->data, 0, sizeof(*st->data) * st->num);
+    st->num = 0;
+}
+
+void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
+{
+    int i;
+
+    if (st == NULL)
+        return;
+    for (i = 0; i < st->num; i++)
+        if (st->data[i] != NULL)
+            func((char *)st->data[i]);
+    OPENSSL_sk_free(st);
+}
+
+void OPENSSL_sk_free(OPENSSL_STACK *st)
+{
+    if (st == NULL)
+        return;
+    OPENSSL_free(st->data);
+    OPENSSL_free(st);
+}
+
+int OPENSSL_sk_num(const OPENSSL_STACK *st)
+{
+    return st == NULL ? -1 : st->num;
+}
+
+void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
+{
+    if (st == NULL || i < 0 || i >= st->num)
+        return NULL;
+    return (void *)st->data[i];
+}
+
+void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
+{
+    if (st == NULL || i < 0 || i >= st->num)
+        return NULL;
+    st->data[i] = data;
+    st->sorted = 0;
+    return (void *)st->data[i];
+}
+
+void OPENSSL_sk_sort(OPENSSL_STACK *st)
+{
+    if (st != NULL && !st->sorted && st->comp != NULL) {
+        if (st->num > 1)
+            qsort(st->data, st->num, sizeof(void *), st->comp);
+        st->sorted = 1; /* empty or single-element stack is considered sorted */
+    }
+}
+
+int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
+{
+    return st == NULL ? 1 : st->sorted;
+}