[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/libc/glibc/glibc-2.22/math/k_casinhf.c b/ap/libc/glibc/glibc-2.22/math/k_casinhf.c
new file mode 100644
index 0000000..04c1a21
--- /dev/null
+++ b/ap/libc/glibc/glibc-2.22/math/k_casinhf.c
@@ -0,0 +1,216 @@
+/* Return arc hyperbole sine for float value, with the imaginary part
+   of the result possibly adjusted for use in computing other
+   functions.
+   Copyright (C) 1997-2015 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+/* Return the complex inverse hyperbolic sine of finite nonzero Z,
+   with the imaginary part of the result subtracted from pi/2 if ADJ
+   is nonzero.  */
+
+__complex__ float
+__kernel_casinhf (__complex__ float x, int adj)
+{
+  __complex__ float res;
+  float rx, ix;
+  __complex__ float y;
+
+  /* Avoid cancellation by reducing to the first quadrant.  */
+  rx = fabsf (__real__ x);
+  ix = fabsf (__imag__ x);
+
+  if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON)
+    {
+      /* For large x in the first quadrant, x + csqrt (1 + x * x)
+	 is sufficiently close to 2 * x to make no significant
+	 difference to the result; avoid possible overflow from
+	 the squaring and addition.  */
+      __real__ y = rx;
+      __imag__ y = ix;
+
+      if (adj)
+	{
+	  float t = __real__ y;
+	  __real__ y = __copysignf (__imag__ y, __imag__ x);
+	  __imag__ y = t;
+	}
+
+      res = __clogf (y);
+      __real__ res += (float) M_LN2;
+    }
+  else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f)
+    {
+      float s = __ieee754_hypotf (1.0f, rx);
+
+      __real__ res = __ieee754_logf (rx + s);
+      if (adj)
+	__imag__ res = __ieee754_atan2f (s, __imag__ x);
+      else
+	__imag__ res = __ieee754_atan2f (ix, s);
+    }
+  else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f)
+    {
+      float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f));
+
+      __real__ res = __ieee754_logf (ix + s);
+      if (adj)
+	__imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x));
+      else
+	__imag__ res = __ieee754_atan2f (s, rx);
+    }
+  else if (ix > 1.0f && ix < 1.5f && rx < 0.5f)
+    {
+      if (rx < FLT_EPSILON * FLT_EPSILON)
+	{
+	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
+	  float s = __ieee754_sqrtf (ix2m1);
+
+	  __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f;
+	  if (adj)
+	    __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x));
+	  else
+	    __imag__ res = __ieee754_atan2f (s, rx);
+	}
+      else
+	{
+	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
+	  float rx2 = rx * rx;
+	  float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
+	  float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f);
+	  float dp = d + ix2m1;
+	  float dm = f / dp;
+	  float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f);
+	  float r2 = rx * ix / r1;
+
+	  __real__ res
+	    = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
+	  if (adj)
+	    __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2,
+								   __imag__ x));
+	  else
+	    __imag__ res = __ieee754_atan2f (ix + r2, rx + r1);
+	}
+    }
+  else if (ix == 1.0f && rx < 0.5f)
+    {
+      if (rx < FLT_EPSILON / 8.0f)
+	{
+	  __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f;
+	  if (adj)
+	    __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx),
+					     __copysignf (1.0f, __imag__ x));
+	  else
+	    __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx));
+	}
+      else
+	{
+	  float d = rx * __ieee754_sqrtf (4.0f + rx * rx);
+	  float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f);
+	  float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f);
+
+	  __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f;
+	  if (adj)
+	    __imag__ res = __ieee754_atan2f (rx + s1,
+					     __copysignf (1.0f + s2,
+							  __imag__ x));
+	  else
+	    __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1);
+	}
+    }
+  else if (ix < 1.0f && rx < 0.5f)
+    {
+      if (ix >= FLT_EPSILON)
+	{
+	  if (rx < FLT_EPSILON * FLT_EPSILON)
+	    {
+	      float onemix2 = (1.0f + ix) * (1.0f - ix);
+	      float s = __ieee754_sqrtf (onemix2);
+
+	      __real__ res = __log1pf (2.0f * rx / s) / 2.0f;
+	      if (adj)
+		__imag__ res = __ieee754_atan2f (s, __imag__ x);
+	      else
+		__imag__ res = __ieee754_atan2f (ix, s);
+	    }
+	  else
+	    {
+	      float onemix2 = (1.0f + ix) * (1.0f - ix);
+	      float rx2 = rx * rx;
+	      float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
+	      float d = __ieee754_sqrtf (onemix2 * onemix2 + f);
+	      float dp = d + onemix2;
+	      float dm = f / dp;
+	      float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f);
+	      float r2 = rx * ix / r1;
+
+	      __real__ res
+		= __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
+	      if (adj)
+		__imag__ res = __ieee754_atan2f (rx + r1,
+						 __copysignf (ix + r2,
+							      __imag__ x));
+	      else
+		__imag__ res = __ieee754_atan2f (ix + r2, rx + r1);
+	    }
+	}
+      else
+	{
+	  float s = __ieee754_hypotf (1.0f, rx);
+
+	  __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f;
+	  if (adj)
+	    __imag__ res = __ieee754_atan2f (s, __imag__ x);
+	  else
+	    __imag__ res = __ieee754_atan2f (ix, s);
+	}
+      if (__real__ res < FLT_MIN)
+	{
+	  volatile float force_underflow = __real__ res * __real__ res;
+	  (void) force_underflow;
+	}
+    }
+  else
+    {
+      __real__ y = (rx - ix) * (rx + ix) + 1.0f;
+      __imag__ y = 2.0f * rx * ix;
+
+      y = __csqrtf (y);
+
+      __real__ y += rx;
+      __imag__ y += ix;
+
+      if (adj)
+	{
+	  float t = __real__ y;
+	  __real__ y = __copysignf (__imag__ y, __imag__ x);
+	  __imag__ y = t;
+	}
+
+      res = __clogf (y);
+    }
+
+  /* Give results the correct sign for the original argument.  */
+  __real__ res = __copysignf (__real__ res, __real__ x);
+  __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x));
+
+  return res;
+}