[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-thin.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin.c
new file mode 100644
index 0000000..e811e44
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin.c
@@ -0,0 +1,2797 @@
+/*
+ * Copyright (C) 2011 Red Hat UK.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-thin-metadata.h"
+
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#define	DM_MSG_PREFIX	"thin"
+
+/*
+ * Tunable constants
+ */
+#define ENDIO_HOOK_POOL_SIZE 1024
+#define DEFERRED_SET_SIZE 64
+#define MAPPING_POOL_SIZE 1024
+#define PRISON_CELLS 1024
+#define COMMIT_PERIOD HZ
+
+/*
+ * The block size of the device holding pool data must be
+ * between 64KB and 1GB.
+ */
+#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
+#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
+
+/*
+ * Device id is restricted to 24 bits.
+ */
+#define MAX_DEV_ID ((1 << 24) - 1)
+
+/*
+ * How do we handle breaking sharing of data blocks?
+ * =================================================
+ *
+ * We use a standard copy-on-write btree to store the mappings for the
+ * devices (note I'm talking about copy-on-write of the metadata here, not
+ * the data).  When you take an internal snapshot you clone the root node
+ * of the origin btree.  After this there is no concept of an origin or a
+ * snapshot.  They are just two device trees that happen to point to the
+ * same data blocks.
+ *
+ * When we get a write in we decide if it's to a shared data block using
+ * some timestamp magic.  If it is, we have to break sharing.
+ *
+ * Let's say we write to a shared block in what was the origin.  The
+ * steps are:
+ *
+ * i) plug io further to this physical block. (see bio_prison code).
+ *
+ * ii) quiesce any read io to that shared data block.  Obviously
+ * including all devices that share this block.  (see deferred_set code)
+ *
+ * iii) copy the data block to a newly allocate block.  This step can be
+ * missed out if the io covers the block. (schedule_copy).
+ *
+ * iv) insert the new mapping into the origin's btree
+ * (process_prepared_mapping).  This act of inserting breaks some
+ * sharing of btree nodes between the two devices.  Breaking sharing only
+ * effects the btree of that specific device.  Btrees for the other
+ * devices that share the block never change.  The btree for the origin
+ * device as it was after the last commit is untouched, ie. we're using
+ * persistent data structures in the functional programming sense.
+ *
+ * v) unplug io to this physical block, including the io that triggered
+ * the breaking of sharing.
+ *
+ * Steps (ii) and (iii) occur in parallel.
+ *
+ * The metadata _doesn't_ need to be committed before the io continues.  We
+ * get away with this because the io is always written to a _new_ block.
+ * If there's a crash, then:
+ *
+ * - The origin mapping will point to the old origin block (the shared
+ * one).  This will contain the data as it was before the io that triggered
+ * the breaking of sharing came in.
+ *
+ * - The snap mapping still points to the old block.  As it would after
+ * the commit.
+ *
+ * The downside of this scheme is the timestamp magic isn't perfect, and
+ * will continue to think that data block in the snapshot device is shared
+ * even after the write to the origin has broken sharing.  I suspect data
+ * blocks will typically be shared by many different devices, so we're
+ * breaking sharing n + 1 times, rather than n, where n is the number of
+ * devices that reference this data block.  At the moment I think the
+ * benefits far, far outweigh the disadvantages.
+ */
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Sometimes we can't deal with a bio straight away.  We put them in prison
+ * where they can't cause any mischief.  Bios are put in a cell identified
+ * by a key, multiple bios can be in the same cell.  When the cell is
+ * subsequently unlocked the bios become available.
+ */
+struct bio_prison;
+
+struct cell_key {
+	int virtual;
+	dm_thin_id dev;
+	dm_block_t block;
+};
+
+struct cell {
+	struct hlist_node list;
+	struct bio_prison *prison;
+	struct cell_key key;
+	struct bio *holder;
+	struct bio_list bios;
+};
+
+struct bio_prison {
+	spinlock_t lock;
+	mempool_t *cell_pool;
+
+	unsigned nr_buckets;
+	unsigned hash_mask;
+	struct hlist_head *cells;
+};
+
+static uint32_t calc_nr_buckets(unsigned nr_cells)
+{
+	uint32_t n = 128;
+
+	nr_cells /= 4;
+	nr_cells = min(nr_cells, 8192u);
+
+	while (n < nr_cells)
+		n <<= 1;
+
+	return n;
+}
+
+/*
+ * @nr_cells should be the number of cells you want in use _concurrently_.
+ * Don't confuse it with the number of distinct keys.
+ */
+static struct bio_prison *prison_create(unsigned nr_cells)
+{
+	unsigned i;
+	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
+	size_t len = sizeof(struct bio_prison) +
+		(sizeof(struct hlist_head) * nr_buckets);
+	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
+
+	if (!prison)
+		return NULL;
+
+	spin_lock_init(&prison->lock);
+	prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
+							sizeof(struct cell));
+	if (!prison->cell_pool) {
+		kfree(prison);
+		return NULL;
+	}
+
+	prison->nr_buckets = nr_buckets;
+	prison->hash_mask = nr_buckets - 1;
+	prison->cells = (struct hlist_head *) (prison + 1);
+	for (i = 0; i < nr_buckets; i++)
+		INIT_HLIST_HEAD(prison->cells + i);
+
+	return prison;
+}
+
+static void prison_destroy(struct bio_prison *prison)
+{
+	mempool_destroy(prison->cell_pool);
+	kfree(prison);
+}
+
+static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
+{
+	const unsigned long BIG_PRIME = 4294967291UL;
+	uint64_t hash = key->block * BIG_PRIME;
+
+	return (uint32_t) (hash & prison->hash_mask);
+}
+
+static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
+{
+	       return (lhs->virtual == rhs->virtual) &&
+		       (lhs->dev == rhs->dev) &&
+		       (lhs->block == rhs->block);
+}
+
+static struct cell *__search_bucket(struct hlist_head *bucket,
+				    struct cell_key *key)
+{
+	struct cell *cell;
+	struct hlist_node *tmp;
+
+	hlist_for_each_entry(cell, tmp, bucket, list)
+		if (keys_equal(&cell->key, key))
+			return cell;
+
+	return NULL;
+}
+
+/*
+ * This may block if a new cell needs allocating.  You must ensure that
+ * cells will be unlocked even if the calling thread is blocked.
+ *
+ * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
+ */
+static int bio_detain(struct bio_prison *prison, struct cell_key *key,
+		      struct bio *inmate, struct cell **ref)
+{
+	int r = 1;
+	unsigned long flags;
+	uint32_t hash = hash_key(prison, key);
+	struct cell *cell, *cell2;
+
+	BUG_ON(hash > prison->nr_buckets);
+
+	spin_lock_irqsave(&prison->lock, flags);
+
+	cell = __search_bucket(prison->cells + hash, key);
+	if (cell) {
+		bio_list_add(&cell->bios, inmate);
+		goto out;
+	}
+
+	/*
+	 * Allocate a new cell
+	 */
+	spin_unlock_irqrestore(&prison->lock, flags);
+	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
+	spin_lock_irqsave(&prison->lock, flags);
+
+	/*
+	 * We've been unlocked, so we have to double check that
+	 * nobody else has inserted this cell in the meantime.
+	 */
+	cell = __search_bucket(prison->cells + hash, key);
+	if (cell) {
+		mempool_free(cell2, prison->cell_pool);
+		bio_list_add(&cell->bios, inmate);
+		goto out;
+	}
+
+	/*
+	 * Use new cell.
+	 */
+	cell = cell2;
+
+	cell->prison = prison;
+	memcpy(&cell->key, key, sizeof(cell->key));
+	cell->holder = inmate;
+	bio_list_init(&cell->bios);
+	hlist_add_head(&cell->list, prison->cells + hash);
+
+	r = 0;
+
+out:
+	spin_unlock_irqrestore(&prison->lock, flags);
+
+	*ref = cell;
+
+	return r;
+}
+
+/*
+ * @inmates must have been initialised prior to this call
+ */
+static void __cell_release(struct cell *cell, struct bio_list *inmates)
+{
+	struct bio_prison *prison = cell->prison;
+
+	hlist_del(&cell->list);
+
+	if (inmates) {
+		bio_list_add(inmates, cell->holder);
+		bio_list_merge(inmates, &cell->bios);
+	}
+
+	mempool_free(cell, prison->cell_pool);
+}
+
+static void cell_release(struct cell *cell, struct bio_list *bios)
+{
+	unsigned long flags;
+	struct bio_prison *prison = cell->prison;
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release(cell, bios);
+	spin_unlock_irqrestore(&prison->lock, flags);
+}
+
+/*
+ * There are a couple of places where we put a bio into a cell briefly
+ * before taking it out again.  In these situations we know that no other
+ * bio may be in the cell.  This function releases the cell, and also does
+ * a sanity check.
+ */
+static void __cell_release_singleton(struct cell *cell, struct bio *bio)
+{
+	BUG_ON(cell->holder != bio);
+	BUG_ON(!bio_list_empty(&cell->bios));
+
+	__cell_release(cell, NULL);
+}
+
+static void cell_release_singleton(struct cell *cell, struct bio *bio)
+{
+	unsigned long flags;
+	struct bio_prison *prison = cell->prison;
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release_singleton(cell, bio);
+	spin_unlock_irqrestore(&prison->lock, flags);
+}
+
+/*
+ * Sometimes we don't want the holder, just the additional bios.
+ */
+static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
+{
+	struct bio_prison *prison = cell->prison;
+
+	hlist_del(&cell->list);
+	bio_list_merge(inmates, &cell->bios);
+
+	mempool_free(cell, prison->cell_pool);
+}
+
+static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
+{
+	unsigned long flags;
+	struct bio_prison *prison = cell->prison;
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release_no_holder(cell, inmates);
+	spin_unlock_irqrestore(&prison->lock, flags);
+}
+
+static void cell_error(struct cell *cell)
+{
+	struct bio_prison *prison = cell->prison;
+	struct bio_list bios;
+	struct bio *bio;
+	unsigned long flags;
+
+	bio_list_init(&bios);
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release(cell, &bios);
+	spin_unlock_irqrestore(&prison->lock, flags);
+
+	while ((bio = bio_list_pop(&bios)))
+		bio_io_error(bio);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We use the deferred set to keep track of pending reads to shared blocks.
+ * We do this to ensure the new mapping caused by a write isn't performed
+ * until these prior reads have completed.  Otherwise the insertion of the
+ * new mapping could free the old block that the read bios are mapped to.
+ */
+
+struct deferred_set;
+struct deferred_entry {
+	struct deferred_set *ds;
+	unsigned count;
+	struct list_head work_items;
+};
+
+struct deferred_set {
+	spinlock_t lock;
+	unsigned current_entry;
+	unsigned sweeper;
+	struct deferred_entry entries[DEFERRED_SET_SIZE];
+};
+
+static void ds_init(struct deferred_set *ds)
+{
+	int i;
+
+	spin_lock_init(&ds->lock);
+	ds->current_entry = 0;
+	ds->sweeper = 0;
+	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
+		ds->entries[i].ds = ds;
+		ds->entries[i].count = 0;
+		INIT_LIST_HEAD(&ds->entries[i].work_items);
+	}
+}
+
+static struct deferred_entry *ds_inc(struct deferred_set *ds)
+{
+	unsigned long flags;
+	struct deferred_entry *entry;
+
+	spin_lock_irqsave(&ds->lock, flags);
+	entry = ds->entries + ds->current_entry;
+	entry->count++;
+	spin_unlock_irqrestore(&ds->lock, flags);
+
+	return entry;
+}
+
+static unsigned ds_next(unsigned index)
+{
+	return (index + 1) % DEFERRED_SET_SIZE;
+}
+
+static void __sweep(struct deferred_set *ds, struct list_head *head)
+{
+	while ((ds->sweeper != ds->current_entry) &&
+	       !ds->entries[ds->sweeper].count) {
+		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
+		ds->sweeper = ds_next(ds->sweeper);
+	}
+
+	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
+		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
+}
+
+static void ds_dec(struct deferred_entry *entry, struct list_head *head)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&entry->ds->lock, flags);
+	BUG_ON(!entry->count);
+	--entry->count;
+	__sweep(entry->ds, head);
+	spin_unlock_irqrestore(&entry->ds->lock, flags);
+}
+
+/*
+ * Returns 1 if deferred or 0 if no pending items to delay job.
+ */
+static int ds_add_work(struct deferred_set *ds, struct list_head *work)
+{
+	int r = 1;
+	unsigned long flags;
+	unsigned next_entry;
+
+	spin_lock_irqsave(&ds->lock, flags);
+	if ((ds->sweeper == ds->current_entry) &&
+	    !ds->entries[ds->current_entry].count)
+		r = 0;
+	else {
+		list_add(work, &ds->entries[ds->current_entry].work_items);
+		next_entry = ds_next(ds->current_entry);
+		if (!ds->entries[next_entry].count)
+			ds->current_entry = next_entry;
+	}
+	spin_unlock_irqrestore(&ds->lock, flags);
+
+	return r;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Key building.
+ */
+static void build_data_key(struct dm_thin_device *td,
+			   dm_block_t b, struct cell_key *key)
+{
+	key->virtual = 0;
+	key->dev = dm_thin_dev_id(td);
+	key->block = b;
+}
+
+static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
+			      struct cell_key *key)
+{
+	key->virtual = 1;
+	key->dev = dm_thin_dev_id(td);
+	key->block = b;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * A pool device ties together a metadata device and a data device.  It
+ * also provides the interface for creating and destroying internal
+ * devices.
+ */
+struct new_mapping;
+
+struct pool_features {
+	unsigned zero_new_blocks:1;
+	unsigned discard_enabled:1;
+	unsigned discard_passdown:1;
+};
+
+struct pool {
+	struct list_head list;
+	struct dm_target *ti;	/* Only set if a pool target is bound */
+
+	struct mapped_device *pool_md;
+	struct block_device *md_dev;
+	struct dm_pool_metadata *pmd;
+
+	uint32_t sectors_per_block;
+	unsigned block_shift;
+	dm_block_t offset_mask;
+	dm_block_t low_water_blocks;
+
+	struct pool_features pf;
+	unsigned low_water_triggered:1;	/* A dm event has been sent */
+	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
+
+	struct bio_prison *prison;
+	struct dm_kcopyd_client *copier;
+
+	struct workqueue_struct *wq;
+	struct work_struct worker;
+	struct delayed_work waker;
+
+	unsigned ref_count;
+	unsigned long last_commit_jiffies;
+
+	spinlock_t lock;
+	struct bio_list deferred_bios;
+	struct bio_list deferred_flush_bios;
+	struct list_head prepared_mappings;
+	struct list_head prepared_discards;
+
+	struct bio_list retry_on_resume_list;
+
+	struct deferred_set shared_read_ds;
+	struct deferred_set all_io_ds;
+
+	struct new_mapping *next_mapping;
+	mempool_t *mapping_pool;
+	mempool_t *endio_hook_pool;
+};
+
+/*
+ * Target context for a pool.
+ */
+struct pool_c {
+	struct dm_target *ti;
+	struct pool *pool;
+	struct dm_dev *data_dev;
+	struct dm_dev *metadata_dev;
+	struct dm_target_callbacks callbacks;
+
+	dm_block_t low_water_blocks;
+	struct pool_features pf;
+};
+
+/*
+ * Target context for a thin.
+ */
+struct thin_c {
+	struct dm_dev *pool_dev;
+	struct dm_dev *origin_dev;
+	dm_thin_id dev_id;
+
+	struct pool *pool;
+	struct dm_thin_device *td;
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * A global list of pools that uses a struct mapped_device as a key.
+ */
+static struct dm_thin_pool_table {
+	struct mutex mutex;
+	struct list_head pools;
+} dm_thin_pool_table;
+
+static void pool_table_init(void)
+{
+	mutex_init(&dm_thin_pool_table.mutex);
+	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
+}
+
+static void __pool_table_insert(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	list_add(&pool->list, &dm_thin_pool_table.pools);
+}
+
+static void __pool_table_remove(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	list_del(&pool->list);
+}
+
+static struct pool *__pool_table_lookup(struct mapped_device *md)
+{
+	struct pool *pool = NULL, *tmp;
+
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+
+	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
+		if (tmp->pool_md == md) {
+			pool = tmp;
+			break;
+		}
+	}
+
+	return pool;
+}
+
+static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
+{
+	struct pool *pool = NULL, *tmp;
+
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+
+	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
+		if (tmp->md_dev == md_dev) {
+			pool = tmp;
+			break;
+		}
+	}
+
+	return pool;
+}
+
+/*----------------------------------------------------------------*/
+
+struct endio_hook {
+	struct thin_c *tc;
+	struct deferred_entry *shared_read_entry;
+	struct deferred_entry *all_io_entry;
+	struct new_mapping *overwrite_mapping;
+};
+
+static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
+{
+	struct bio *bio;
+	struct bio_list bios;
+
+	bio_list_init(&bios);
+	bio_list_merge(&bios, master);
+	bio_list_init(master);
+
+	while ((bio = bio_list_pop(&bios))) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		if (h->tc == tc)
+			bio_endio(bio, DM_ENDIO_REQUEUE);
+		else
+			bio_list_add(master, bio);
+	}
+}
+
+static void requeue_io(struct thin_c *tc)
+{
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	__requeue_bio_list(tc, &pool->deferred_bios);
+	__requeue_bio_list(tc, &pool->retry_on_resume_list);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+/*
+ * This section of code contains the logic for processing a thin device's IO.
+ * Much of the code depends on pool object resources (lists, workqueues, etc)
+ * but most is exclusively called from the thin target rather than the thin-pool
+ * target.
+ */
+
+static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
+{
+	return bio->bi_sector >> tc->pool->block_shift;
+}
+
+static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
+{
+	struct pool *pool = tc->pool;
+
+	bio->bi_bdev = tc->pool_dev->bdev;
+	bio->bi_sector = (block << pool->block_shift) +
+		(bio->bi_sector & pool->offset_mask);
+}
+
+static void remap_to_origin(struct thin_c *tc, struct bio *bio)
+{
+	bio->bi_bdev = tc->origin_dev->bdev;
+}
+
+static void issue(struct thin_c *tc, struct bio *bio)
+{
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	/*
+	 * Batch together any FUA/FLUSH bios we find and then issue
+	 * a single commit for them in process_deferred_bios().
+	 */
+	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
+		spin_lock_irqsave(&pool->lock, flags);
+		bio_list_add(&pool->deferred_flush_bios, bio);
+		spin_unlock_irqrestore(&pool->lock, flags);
+	} else
+		generic_make_request(bio);
+}
+
+static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
+{
+	remap_to_origin(tc, bio);
+	issue(tc, bio);
+}
+
+static void remap_and_issue(struct thin_c *tc, struct bio *bio,
+			    dm_block_t block)
+{
+	remap(tc, bio, block);
+	issue(tc, bio);
+}
+
+/*
+ * wake_worker() is used when new work is queued and when pool_resume is
+ * ready to continue deferred IO processing.
+ */
+static void wake_worker(struct pool *pool)
+{
+	queue_work(pool->wq, &pool->worker);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Bio endio functions.
+ */
+struct new_mapping {
+	struct list_head list;
+
+	unsigned quiesced:1;
+	unsigned prepared:1;
+	unsigned pass_discard:1;
+
+	struct thin_c *tc;
+	dm_block_t virt_block;
+	dm_block_t data_block;
+	struct cell *cell, *cell2;
+	int err;
+
+	/*
+	 * If the bio covers the whole area of a block then we can avoid
+	 * zeroing or copying.  Instead this bio is hooked.  The bio will
+	 * still be in the cell, so care has to be taken to avoid issuing
+	 * the bio twice.
+	 */
+	struct bio *bio;
+	bio_end_io_t *saved_bi_end_io;
+};
+
+static void __maybe_add_mapping(struct new_mapping *m)
+{
+	struct pool *pool = m->tc->pool;
+
+	if (m->quiesced && m->prepared) {
+		list_add(&m->list, &pool->prepared_mappings);
+		wake_worker(pool);
+	}
+}
+
+static void copy_complete(int read_err, unsigned long write_err, void *context)
+{
+	unsigned long flags;
+	struct new_mapping *m = context;
+	struct pool *pool = m->tc->pool;
+
+	m->err = read_err || write_err ? -EIO : 0;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	m->prepared = 1;
+	__maybe_add_mapping(m);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+static void overwrite_endio(struct bio *bio, int err)
+{
+	unsigned long flags;
+	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+	struct new_mapping *m = h->overwrite_mapping;
+	struct pool *pool = m->tc->pool;
+
+	m->err = err;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	m->prepared = 1;
+	__maybe_add_mapping(m);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Workqueue.
+ */
+
+/*
+ * Prepared mapping jobs.
+ */
+
+/*
+ * This sends the bios in the cell back to the deferred_bios list.
+ */
+static void cell_defer(struct thin_c *tc, struct cell *cell,
+		       dm_block_t data_block)
+{
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	cell_release(cell, &pool->deferred_bios);
+	spin_unlock_irqrestore(&tc->pool->lock, flags);
+
+	wake_worker(pool);
+}
+
+/*
+ * Same as cell_defer above, except it omits one particular detainee,
+ * a write bio that covers the block and has already been processed.
+ */
+static void cell_defer_except(struct thin_c *tc, struct cell *cell)
+{
+	struct bio_list bios;
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	bio_list_init(&bios);
+
+	spin_lock_irqsave(&pool->lock, flags);
+	cell_release_no_holder(cell, &pool->deferred_bios);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	wake_worker(pool);
+}
+
+static void process_prepared_mapping(struct new_mapping *m)
+{
+	struct thin_c *tc = m->tc;
+	struct bio *bio;
+	int r;
+
+	bio = m->bio;
+	if (bio)
+		bio->bi_end_io = m->saved_bi_end_io;
+
+	if (m->err) {
+		cell_error(m->cell);
+		goto out;
+	}
+
+	/*
+	 * Commit the prepared block into the mapping btree.
+	 * Any I/O for this block arriving after this point will get
+	 * remapped to it directly.
+	 */
+	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
+	if (r) {
+		DMERR("dm_thin_insert_block() failed");
+		cell_error(m->cell);
+		goto out;
+	}
+
+	/*
+	 * Release any bios held while the block was being provisioned.
+	 * If we are processing a write bio that completely covers the block,
+	 * we already processed it so can ignore it now when processing
+	 * the bios in the cell.
+	 */
+	if (bio) {
+		cell_defer_except(tc, m->cell);
+		bio_endio(bio, 0);
+	} else
+		cell_defer(tc, m->cell, m->data_block);
+
+out:
+	list_del(&m->list);
+	mempool_free(m, tc->pool->mapping_pool);
+}
+
+static void process_prepared_discard(struct new_mapping *m)
+{
+	int r;
+	struct thin_c *tc = m->tc;
+
+	r = dm_thin_remove_block(tc->td, m->virt_block);
+	if (r)
+		DMERR("dm_thin_remove_block() failed");
+
+	/*
+	 * Pass the discard down to the underlying device?
+	 */
+	if (m->pass_discard)
+		remap_and_issue(tc, m->bio, m->data_block);
+	else
+		bio_endio(m->bio, 0);
+
+	cell_defer_except(tc, m->cell);
+	cell_defer_except(tc, m->cell2);
+	mempool_free(m, tc->pool->mapping_pool);
+}
+
+static void process_prepared(struct pool *pool, struct list_head *head,
+			     void (*fn)(struct new_mapping *))
+{
+	unsigned long flags;
+	struct list_head maps;
+	struct new_mapping *m, *tmp;
+
+	INIT_LIST_HEAD(&maps);
+	spin_lock_irqsave(&pool->lock, flags);
+	list_splice_init(head, &maps);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	list_for_each_entry_safe(m, tmp, &maps, list)
+		fn(m);
+}
+
+/*
+ * Deferred bio jobs.
+ */
+static int io_overlaps_block(struct pool *pool, struct bio *bio)
+{
+	return !(bio->bi_sector & pool->offset_mask) &&
+		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
+
+}
+
+static int io_overwrites_block(struct pool *pool, struct bio *bio)
+{
+	return (bio_data_dir(bio) == WRITE) &&
+		io_overlaps_block(pool, bio);
+}
+
+static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
+			       bio_end_io_t *fn)
+{
+	*save = bio->bi_end_io;
+	bio->bi_end_io = fn;
+}
+
+static int ensure_next_mapping(struct pool *pool)
+{
+	if (pool->next_mapping)
+		return 0;
+
+	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
+
+	return pool->next_mapping ? 0 : -ENOMEM;
+}
+
+static struct new_mapping *get_next_mapping(struct pool *pool)
+{
+	struct new_mapping *r = pool->next_mapping;
+
+	BUG_ON(!pool->next_mapping);
+
+	pool->next_mapping = NULL;
+
+	return r;
+}
+
+static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
+			  struct dm_dev *origin, dm_block_t data_origin,
+			  dm_block_t data_dest,
+			  struct cell *cell, struct bio *bio)
+{
+	int r;
+	struct pool *pool = tc->pool;
+	struct new_mapping *m = get_next_mapping(pool);
+
+	INIT_LIST_HEAD(&m->list);
+	m->quiesced = 0;
+	m->prepared = 0;
+	m->tc = tc;
+	m->virt_block = virt_block;
+	m->data_block = data_dest;
+	m->cell = cell;
+	m->err = 0;
+	m->bio = NULL;
+
+	if (!ds_add_work(&pool->shared_read_ds, &m->list))
+		m->quiesced = 1;
+
+	/*
+	 * IO to pool_dev remaps to the pool target's data_dev.
+	 *
+	 * If the whole block of data is being overwritten, we can issue the
+	 * bio immediately. Otherwise we use kcopyd to clone the data first.
+	 */
+	if (io_overwrites_block(pool, bio)) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		h->overwrite_mapping = m;
+		m->bio = bio;
+		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
+		remap_and_issue(tc, bio, data_dest);
+	} else {
+		struct dm_io_region from, to;
+
+		from.bdev = origin->bdev;
+		from.sector = data_origin * pool->sectors_per_block;
+		from.count = pool->sectors_per_block;
+
+		to.bdev = tc->pool_dev->bdev;
+		to.sector = data_dest * pool->sectors_per_block;
+		to.count = pool->sectors_per_block;
+
+		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
+				   0, copy_complete, m);
+		if (r < 0) {
+			mempool_free(m, pool->mapping_pool);
+			DMERR("dm_kcopyd_copy() failed");
+			cell_error(cell);
+		}
+	}
+}
+
+static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
+				   dm_block_t data_origin, dm_block_t data_dest,
+				   struct cell *cell, struct bio *bio)
+{
+	schedule_copy(tc, virt_block, tc->pool_dev,
+		      data_origin, data_dest, cell, bio);
+}
+
+static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
+				   dm_block_t data_dest,
+				   struct cell *cell, struct bio *bio)
+{
+	schedule_copy(tc, virt_block, tc->origin_dev,
+		      virt_block, data_dest, cell, bio);
+}
+
+static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
+			  dm_block_t data_block, struct cell *cell,
+			  struct bio *bio)
+{
+	struct pool *pool = tc->pool;
+	struct new_mapping *m = get_next_mapping(pool);
+
+	INIT_LIST_HEAD(&m->list);
+	m->quiesced = 1;
+	m->prepared = 0;
+	m->tc = tc;
+	m->virt_block = virt_block;
+	m->data_block = data_block;
+	m->cell = cell;
+	m->err = 0;
+	m->bio = NULL;
+
+	/*
+	 * If the whole block of data is being overwritten or we are not
+	 * zeroing pre-existing data, we can issue the bio immediately.
+	 * Otherwise we use kcopyd to zero the data first.
+	 */
+	if (!pool->pf.zero_new_blocks)
+		process_prepared_mapping(m);
+
+	else if (io_overwrites_block(pool, bio)) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		h->overwrite_mapping = m;
+		m->bio = bio;
+		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
+		remap_and_issue(tc, bio, data_block);
+
+	} else {
+		int r;
+		struct dm_io_region to;
+
+		to.bdev = tc->pool_dev->bdev;
+		to.sector = data_block * pool->sectors_per_block;
+		to.count = pool->sectors_per_block;
+
+		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
+		if (r < 0) {
+			mempool_free(m, pool->mapping_pool);
+			DMERR("dm_kcopyd_zero() failed");
+			cell_error(cell);
+		}
+	}
+}
+
+static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
+{
+	int r;
+	dm_block_t free_blocks;
+	unsigned long flags;
+	struct pool *pool = tc->pool;
+
+	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
+	if (r)
+		return r;
+
+	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
+		DMWARN("%s: reached low water mark, sending event.",
+		       dm_device_name(pool->pool_md));
+		spin_lock_irqsave(&pool->lock, flags);
+		pool->low_water_triggered = 1;
+		spin_unlock_irqrestore(&pool->lock, flags);
+		dm_table_event(pool->ti->table);
+	}
+
+	if (!free_blocks) {
+		if (pool->no_free_space)
+			return -ENOSPC;
+		else {
+			/*
+			 * Try to commit to see if that will free up some
+			 * more space.
+			 */
+			r = dm_pool_commit_metadata(pool->pmd);
+			if (r) {
+				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+				      __func__, r);
+				return r;
+			}
+
+			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
+			if (r)
+				return r;
+
+			/*
+			 * If we still have no space we set a flag to avoid
+			 * doing all this checking and return -ENOSPC.
+			 */
+			if (!free_blocks) {
+				DMWARN("%s: no free space available.",
+				       dm_device_name(pool->pool_md));
+				spin_lock_irqsave(&pool->lock, flags);
+				pool->no_free_space = 1;
+				spin_unlock_irqrestore(&pool->lock, flags);
+				return -ENOSPC;
+			}
+		}
+	}
+
+	r = dm_pool_alloc_data_block(pool->pmd, result);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+/*
+ * If we have run out of space, queue bios until the device is
+ * resumed, presumably after having been reloaded with more space.
+ */
+static void retry_on_resume(struct bio *bio)
+{
+	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+	struct thin_c *tc = h->tc;
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_add(&pool->retry_on_resume_list, bio);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+static void no_space(struct cell *cell)
+{
+	struct bio *bio;
+	struct bio_list bios;
+
+	bio_list_init(&bios);
+	cell_release(cell, &bios);
+
+	while ((bio = bio_list_pop(&bios)))
+		retry_on_resume(bio);
+}
+
+static void process_discard(struct thin_c *tc, struct bio *bio)
+{
+	int r;
+	unsigned long flags;
+	struct pool *pool = tc->pool;
+	struct cell *cell, *cell2;
+	struct cell_key key, key2;
+	dm_block_t block = get_bio_block(tc, bio);
+	struct dm_thin_lookup_result lookup_result;
+	struct new_mapping *m;
+
+	build_virtual_key(tc->td, block, &key);
+	if (bio_detain(tc->pool->prison, &key, bio, &cell))
+		return;
+
+	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
+	switch (r) {
+	case 0:
+		/*
+		 * Check nobody is fiddling with this pool block.  This can
+		 * happen if someone's in the process of breaking sharing
+		 * on this block.
+		 */
+		build_data_key(tc->td, lookup_result.block, &key2);
+		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
+			cell_release_singleton(cell, bio);
+			break;
+		}
+
+		if (io_overlaps_block(pool, bio)) {
+			/*
+			 * IO may still be going to the destination block.  We must
+			 * quiesce before we can do the removal.
+			 */
+			m = get_next_mapping(pool);
+			m->tc = tc;
+			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
+			m->virt_block = block;
+			m->data_block = lookup_result.block;
+			m->cell = cell;
+			m->cell2 = cell2;
+			m->err = 0;
+			m->bio = bio;
+
+			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
+				spin_lock_irqsave(&pool->lock, flags);
+				list_add(&m->list, &pool->prepared_discards);
+				spin_unlock_irqrestore(&pool->lock, flags);
+				wake_worker(pool);
+			}
+		} else {
+			/*
+			 * This path is hit if people are ignoring
+			 * limits->discard_granularity.  It ignores any
+			 * part of the discard that is in a subsequent
+			 * block.
+			 */
+			sector_t offset = bio->bi_sector - (block << pool->block_shift);
+			unsigned remaining = (pool->sectors_per_block - offset) << 9;
+			bio->bi_size = min(bio->bi_size, remaining);
+
+			cell_release_singleton(cell, bio);
+			cell_release_singleton(cell2, bio);
+			if ((!lookup_result.shared) && pool->pf.discard_passdown)
+				remap_and_issue(tc, bio, lookup_result.block);
+			else
+				bio_endio(bio, 0);
+		}
+		break;
+
+	case -ENODATA:
+		/*
+		 * It isn't provisioned, just forget it.
+		 */
+		cell_release_singleton(cell, bio);
+		bio_endio(bio, 0);
+		break;
+
+	default:
+		DMERR("discard: find block unexpectedly returned %d", r);
+		cell_release_singleton(cell, bio);
+		bio_io_error(bio);
+		break;
+	}
+}
+
+static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
+			  struct cell_key *key,
+			  struct dm_thin_lookup_result *lookup_result,
+			  struct cell *cell)
+{
+	int r;
+	dm_block_t data_block;
+
+	r = alloc_data_block(tc, &data_block);
+	switch (r) {
+	case 0:
+		schedule_internal_copy(tc, block, lookup_result->block,
+				       data_block, cell, bio);
+		break;
+
+	case -ENOSPC:
+		no_space(cell);
+		break;
+
+	default:
+		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
+		cell_error(cell);
+		break;
+	}
+}
+
+static void process_shared_bio(struct thin_c *tc, struct bio *bio,
+			       dm_block_t block,
+			       struct dm_thin_lookup_result *lookup_result)
+{
+	struct cell *cell;
+	struct pool *pool = tc->pool;
+	struct cell_key key;
+
+	/*
+	 * If cell is already occupied, then sharing is already in the process
+	 * of being broken so we have nothing further to do here.
+	 */
+	build_data_key(tc->td, lookup_result->block, &key);
+	if (bio_detain(pool->prison, &key, bio, &cell))
+		return;
+
+	if (bio_data_dir(bio) == WRITE)
+		break_sharing(tc, bio, block, &key, lookup_result, cell);
+	else {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+
+		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
+
+		cell_release_singleton(cell, bio);
+		remap_and_issue(tc, bio, lookup_result->block);
+	}
+}
+
+static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
+			    struct cell *cell)
+{
+	int r;
+	dm_block_t data_block;
+
+	/*
+	 * Remap empty bios (flushes) immediately, without provisioning.
+	 */
+	if (!bio->bi_size) {
+		cell_release_singleton(cell, bio);
+		remap_and_issue(tc, bio, 0);
+		return;
+	}
+
+	/*
+	 * Fill read bios with zeroes and complete them immediately.
+	 */
+	if (bio_data_dir(bio) == READ) {
+		zero_fill_bio(bio);
+		cell_release_singleton(cell, bio);
+		bio_endio(bio, 0);
+		return;
+	}
+
+	r = alloc_data_block(tc, &data_block);
+	switch (r) {
+	case 0:
+		if (tc->origin_dev)
+			schedule_external_copy(tc, block, data_block, cell, bio);
+		else
+			schedule_zero(tc, block, data_block, cell, bio);
+		break;
+
+	case -ENOSPC:
+		no_space(cell);
+		break;
+
+	default:
+		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
+		cell_error(cell);
+		break;
+	}
+}
+
+static void process_bio(struct thin_c *tc, struct bio *bio)
+{
+	int r;
+	dm_block_t block = get_bio_block(tc, bio);
+	struct cell *cell;
+	struct cell_key key;
+	struct dm_thin_lookup_result lookup_result;
+
+	/*
+	 * If cell is already occupied, then the block is already
+	 * being provisioned so we have nothing further to do here.
+	 */
+	build_virtual_key(tc->td, block, &key);
+	if (bio_detain(tc->pool->prison, &key, bio, &cell))
+		return;
+
+	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
+	switch (r) {
+	case 0:
+		/*
+		 * We can release this cell now.  This thread is the only
+		 * one that puts bios into a cell, and we know there were
+		 * no preceding bios.
+		 */
+		/*
+		 * TODO: this will probably have to change when discard goes
+		 * back in.
+		 */
+		cell_release_singleton(cell, bio);
+
+		if (lookup_result.shared)
+			process_shared_bio(tc, bio, block, &lookup_result);
+		else
+			remap_and_issue(tc, bio, lookup_result.block);
+		break;
+
+	case -ENODATA:
+		if (bio_data_dir(bio) == READ && tc->origin_dev) {
+			cell_release_singleton(cell, bio);
+			remap_to_origin_and_issue(tc, bio);
+		} else
+			provision_block(tc, bio, block, cell);
+		break;
+
+	default:
+		DMERR("dm_thin_find_block() failed, error = %d", r);
+		cell_release_singleton(cell, bio);
+		bio_io_error(bio);
+		break;
+	}
+}
+
+static int need_commit_due_to_time(struct pool *pool)
+{
+	return jiffies < pool->last_commit_jiffies ||
+	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
+}
+
+static void process_deferred_bios(struct pool *pool)
+{
+	unsigned long flags;
+	struct bio *bio;
+	struct bio_list bios;
+	int r;
+
+	bio_list_init(&bios);
+
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_merge(&bios, &pool->deferred_bios);
+	bio_list_init(&pool->deferred_bios);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	while ((bio = bio_list_pop(&bios))) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		struct thin_c *tc = h->tc;
+
+		/*
+		 * If we've got no free new_mapping structs, and processing
+		 * this bio might require one, we pause until there are some
+		 * prepared mappings to process.
+		 */
+		if (ensure_next_mapping(pool)) {
+			spin_lock_irqsave(&pool->lock, flags);
+			bio_list_add(&pool->deferred_bios, bio);
+			bio_list_merge(&pool->deferred_bios, &bios);
+			spin_unlock_irqrestore(&pool->lock, flags);
+			break;
+		}
+
+		if (bio->bi_rw & REQ_DISCARD)
+			process_discard(tc, bio);
+		else
+			process_bio(tc, bio);
+	}
+
+	/*
+	 * If there are any deferred flush bios, we must commit
+	 * the metadata before issuing them.
+	 */
+	bio_list_init(&bios);
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_merge(&bios, &pool->deferred_flush_bios);
+	bio_list_init(&pool->deferred_flush_bios);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
+		return;
+
+	r = dm_pool_commit_metadata(pool->pmd);
+	if (r) {
+		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+		      __func__, r);
+		while ((bio = bio_list_pop(&bios)))
+			bio_io_error(bio);
+		return;
+	}
+	pool->last_commit_jiffies = jiffies;
+
+	while ((bio = bio_list_pop(&bios)))
+		generic_make_request(bio);
+}
+
+static void do_worker(struct work_struct *ws)
+{
+	struct pool *pool = container_of(ws, struct pool, worker);
+
+	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
+	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
+	process_deferred_bios(pool);
+}
+
+/*
+ * We want to commit periodically so that not too much
+ * unwritten data builds up.
+ */
+static void do_waker(struct work_struct *ws)
+{
+	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
+	wake_worker(pool);
+	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Mapping functions.
+ */
+
+/*
+ * Called only while mapping a thin bio to hand it over to the workqueue.
+ */
+static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
+{
+	unsigned long flags;
+	struct pool *pool = tc->pool;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_add(&pool->deferred_bios, bio);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	wake_worker(pool);
+}
+
+static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
+{
+	struct pool *pool = tc->pool;
+	struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
+
+	h->tc = tc;
+	h->shared_read_entry = NULL;
+	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
+	h->overwrite_mapping = NULL;
+
+	return h;
+}
+
+/*
+ * Non-blocking function called from the thin target's map function.
+ */
+static int thin_bio_map(struct dm_target *ti, struct bio *bio,
+			union map_info *map_context)
+{
+	int r;
+	struct thin_c *tc = ti->private;
+	dm_block_t block = get_bio_block(tc, bio);
+	struct dm_thin_device *td = tc->td;
+	struct dm_thin_lookup_result result;
+
+	map_context->ptr = thin_hook_bio(tc, bio);
+	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
+		thin_defer_bio(tc, bio);
+		return DM_MAPIO_SUBMITTED;
+	}
+
+	r = dm_thin_find_block(td, block, 0, &result);
+
+	/*
+	 * Note that we defer readahead too.
+	 */
+	switch (r) {
+	case 0:
+		if (unlikely(result.shared)) {
+			/*
+			 * We have a race condition here between the
+			 * result.shared value returned by the lookup and
+			 * snapshot creation, which may cause new
+			 * sharing.
+			 *
+			 * To avoid this always quiesce the origin before
+			 * taking the snap.  You want to do this anyway to
+			 * ensure a consistent application view
+			 * (i.e. lockfs).
+			 *
+			 * More distant ancestors are irrelevant. The
+			 * shared flag will be set in their case.
+			 */
+			thin_defer_bio(tc, bio);
+			r = DM_MAPIO_SUBMITTED;
+		} else {
+			remap(tc, bio, result.block);
+			r = DM_MAPIO_REMAPPED;
+		}
+		break;
+
+	case -ENODATA:
+		/*
+		 * In future, the failed dm_thin_find_block above could
+		 * provide the hint to load the metadata into cache.
+		 */
+	case -EWOULDBLOCK:
+		thin_defer_bio(tc, bio);
+		r = DM_MAPIO_SUBMITTED;
+		break;
+	}
+
+	return r;
+}
+
+static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
+{
+	int r;
+	unsigned long flags;
+	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
+
+	spin_lock_irqsave(&pt->pool->lock, flags);
+	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
+	spin_unlock_irqrestore(&pt->pool->lock, flags);
+
+	if (!r) {
+		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
+		r = bdi_congested(&q->backing_dev_info, bdi_bits);
+	}
+
+	return r;
+}
+
+static void __requeue_bios(struct pool *pool)
+{
+	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
+	bio_list_init(&pool->retry_on_resume_list);
+}
+
+/*----------------------------------------------------------------
+ * Binding of control targets to a pool object
+ *--------------------------------------------------------------*/
+static int bind_control_target(struct pool *pool, struct dm_target *ti)
+{
+	struct pool_c *pt = ti->private;
+
+	pool->ti = ti;
+	pool->low_water_blocks = pt->low_water_blocks;
+	pool->pf = pt->pf;
+
+	/*
+	 * If discard_passdown was enabled verify that the data device
+	 * supports discards.  Disable discard_passdown if not; otherwise
+	 * -EOPNOTSUPP will be returned.
+	 */
+	if (pt->pf.discard_passdown) {
+		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
+		if (!q || !blk_queue_discard(q)) {
+			char buf[BDEVNAME_SIZE];
+			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
+			       bdevname(pt->data_dev->bdev, buf));
+			pool->pf.discard_passdown = 0;
+		}
+	}
+
+	return 0;
+}
+
+static void unbind_control_target(struct pool *pool, struct dm_target *ti)
+{
+	if (pool->ti == ti)
+		pool->ti = NULL;
+}
+
+/*----------------------------------------------------------------
+ * Pool creation
+ *--------------------------------------------------------------*/
+/* Initialize pool features. */
+static void pool_features_init(struct pool_features *pf)
+{
+	pf->zero_new_blocks = 1;
+	pf->discard_enabled = 1;
+	pf->discard_passdown = 1;
+}
+
+static void __pool_destroy(struct pool *pool)
+{
+	__pool_table_remove(pool);
+
+	if (dm_pool_metadata_close(pool->pmd) < 0)
+		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+
+	prison_destroy(pool->prison);
+	dm_kcopyd_client_destroy(pool->copier);
+
+	if (pool->wq)
+		destroy_workqueue(pool->wq);
+
+	if (pool->next_mapping)
+		mempool_free(pool->next_mapping, pool->mapping_pool);
+	mempool_destroy(pool->mapping_pool);
+	mempool_destroy(pool->endio_hook_pool);
+	kfree(pool);
+}
+
+static struct pool *pool_create(struct mapped_device *pool_md,
+				struct block_device *metadata_dev,
+				unsigned long block_size, char **error)
+{
+	int r;
+	void *err_p;
+	struct pool *pool;
+	struct dm_pool_metadata *pmd;
+
+	pmd = dm_pool_metadata_open(metadata_dev, block_size);
+	if (IS_ERR(pmd)) {
+		*error = "Error creating metadata object";
+		return (struct pool *)pmd;
+	}
+
+	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
+	if (!pool) {
+		*error = "Error allocating memory for pool";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_pool;
+	}
+
+	pool->pmd = pmd;
+	pool->sectors_per_block = block_size;
+	pool->block_shift = ffs(block_size) - 1;
+	pool->offset_mask = block_size - 1;
+	pool->low_water_blocks = 0;
+	pool_features_init(&pool->pf);
+	pool->prison = prison_create(PRISON_CELLS);
+	if (!pool->prison) {
+		*error = "Error creating pool's bio prison";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_prison;
+	}
+
+	pool->copier = dm_kcopyd_client_create();
+	if (IS_ERR(pool->copier)) {
+		r = PTR_ERR(pool->copier);
+		*error = "Error creating pool's kcopyd client";
+		err_p = ERR_PTR(r);
+		goto bad_kcopyd_client;
+	}
+
+	/*
+	 * Create singlethreaded workqueue that will service all devices
+	 * that use this metadata.
+	 */
+	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
+	if (!pool->wq) {
+		*error = "Error creating pool's workqueue";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_wq;
+	}
+
+	INIT_WORK(&pool->worker, do_worker);
+	INIT_DELAYED_WORK(&pool->waker, do_waker);
+	spin_lock_init(&pool->lock);
+	bio_list_init(&pool->deferred_bios);
+	bio_list_init(&pool->deferred_flush_bios);
+	INIT_LIST_HEAD(&pool->prepared_mappings);
+	INIT_LIST_HEAD(&pool->prepared_discards);
+	pool->low_water_triggered = 0;
+	pool->no_free_space = 0;
+	bio_list_init(&pool->retry_on_resume_list);
+	ds_init(&pool->shared_read_ds);
+	ds_init(&pool->all_io_ds);
+
+	pool->next_mapping = NULL;
+	pool->mapping_pool =
+		mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
+	if (!pool->mapping_pool) {
+		*error = "Error creating pool's mapping mempool";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_mapping_pool;
+	}
+
+	pool->endio_hook_pool =
+		mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
+	if (!pool->endio_hook_pool) {
+		*error = "Error creating pool's endio_hook mempool";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_endio_hook_pool;
+	}
+	pool->ref_count = 1;
+	pool->last_commit_jiffies = jiffies;
+	pool->pool_md = pool_md;
+	pool->md_dev = metadata_dev;
+	__pool_table_insert(pool);
+
+	return pool;
+
+bad_endio_hook_pool:
+	mempool_destroy(pool->mapping_pool);
+bad_mapping_pool:
+	destroy_workqueue(pool->wq);
+bad_wq:
+	dm_kcopyd_client_destroy(pool->copier);
+bad_kcopyd_client:
+	prison_destroy(pool->prison);
+bad_prison:
+	kfree(pool);
+bad_pool:
+	if (dm_pool_metadata_close(pmd))
+		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+
+	return err_p;
+}
+
+static void __pool_inc(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	pool->ref_count++;
+}
+
+static void __pool_dec(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	BUG_ON(!pool->ref_count);
+	if (!--pool->ref_count)
+		__pool_destroy(pool);
+}
+
+static struct pool *__pool_find(struct mapped_device *pool_md,
+				struct block_device *metadata_dev,
+				unsigned long block_size, char **error,
+				int *created)
+{
+	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
+
+	if (pool) {
+		if (pool->pool_md != pool_md)
+			return ERR_PTR(-EBUSY);
+		__pool_inc(pool);
+
+	} else {
+		pool = __pool_table_lookup(pool_md);
+		if (pool) {
+			if (pool->md_dev != metadata_dev)
+				return ERR_PTR(-EINVAL);
+			__pool_inc(pool);
+
+		} else {
+			pool = pool_create(pool_md, metadata_dev, block_size, error);
+			*created = 1;
+		}
+	}
+
+	return pool;
+}
+
+/*----------------------------------------------------------------
+ * Pool target methods
+ *--------------------------------------------------------------*/
+static void pool_dtr(struct dm_target *ti)
+{
+	struct pool_c *pt = ti->private;
+
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	unbind_control_target(pt->pool, ti);
+	__pool_dec(pt->pool);
+	dm_put_device(ti, pt->metadata_dev);
+	dm_put_device(ti, pt->data_dev);
+	kfree(pt);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+}
+
+static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
+			       struct dm_target *ti)
+{
+	int r;
+	unsigned argc;
+	const char *arg_name;
+
+	static struct dm_arg _args[] = {
+		{0, 3, "Invalid number of pool feature arguments"},
+	};
+
+	/*
+	 * No feature arguments supplied.
+	 */
+	if (!as->argc)
+		return 0;
+
+	r = dm_read_arg_group(_args, as, &argc, &ti->error);
+	if (r)
+		return -EINVAL;
+
+	while (argc && !r) {
+		arg_name = dm_shift_arg(as);
+		argc--;
+
+		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
+			pf->zero_new_blocks = 0;
+			continue;
+		} else if (!strcasecmp(arg_name, "ignore_discard")) {
+			pf->discard_enabled = 0;
+			continue;
+		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
+			pf->discard_passdown = 0;
+			continue;
+		}
+
+		ti->error = "Unrecognised pool feature requested";
+		r = -EINVAL;
+	}
+
+	return r;
+}
+
+/*
+ * thin-pool <metadata dev> <data dev>
+ *	     <data block size (sectors)>
+ *	     <low water mark (blocks)>
+ *	     [<#feature args> [<arg>]*]
+ *
+ * Optional feature arguments are:
+ *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
+ *	     ignore_discard: disable discard
+ *	     no_discard_passdown: don't pass discards down to the data device
+ */
+static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r, pool_created = 0;
+	struct pool_c *pt;
+	struct pool *pool;
+	struct pool_features pf;
+	struct dm_arg_set as;
+	struct dm_dev *data_dev;
+	unsigned long block_size;
+	dm_block_t low_water_blocks;
+	struct dm_dev *metadata_dev;
+	sector_t metadata_dev_size;
+	char b[BDEVNAME_SIZE];
+
+	/*
+	 * FIXME Remove validation from scope of lock.
+	 */
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	if (argc < 4) {
+		ti->error = "Invalid argument count";
+		r = -EINVAL;
+		goto out_unlock;
+	}
+	as.argc = argc;
+	as.argv = argv;
+
+	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
+	if (r) {
+		ti->error = "Error opening metadata block device";
+		goto out_unlock;
+	}
+
+	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
+	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
+		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
+		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
+
+	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
+	if (r) {
+		ti->error = "Error getting data device";
+		goto out_metadata;
+	}
+
+	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
+	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
+	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
+	    !is_power_of_2(block_size)) {
+		ti->error = "Invalid block size";
+		r = -EINVAL;
+		goto out;
+	}
+
+	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
+		ti->error = "Invalid low water mark";
+		r = -EINVAL;
+		goto out;
+	}
+
+	/*
+	 * Set default pool features.
+	 */
+	pool_features_init(&pf);
+
+	dm_consume_args(&as, 4);
+	r = parse_pool_features(&as, &pf, ti);
+	if (r)
+		goto out;
+
+	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
+	if (!pt) {
+		r = -ENOMEM;
+		goto out;
+	}
+
+	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
+			   block_size, &ti->error, &pool_created);
+	if (IS_ERR(pool)) {
+		r = PTR_ERR(pool);
+		goto out_free_pt;
+	}
+
+	/*
+	 * 'pool_created' reflects whether this is the first table load.
+	 * Top level discard support is not allowed to be changed after
+	 * initial load.  This would require a pool reload to trigger thin
+	 * device changes.
+	 */
+	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
+		ti->error = "Discard support cannot be disabled once enabled";
+		r = -EINVAL;
+		goto out_flags_changed;
+	}
+
+	pt->pool = pool;
+	pt->ti = ti;
+	pt->metadata_dev = metadata_dev;
+	pt->data_dev = data_dev;
+	pt->low_water_blocks = low_water_blocks;
+	pt->pf = pf;
+	ti->num_flush_requests = 1;
+	/*
+	 * Only need to enable discards if the pool should pass
+	 * them down to the data device.  The thin device's discard
+	 * processing will cause mappings to be removed from the btree.
+	 */
+	if (pf.discard_enabled && pf.discard_passdown) {
+		ti->num_discard_requests = 1;
+		/*
+		 * Setting 'discards_supported' circumvents the normal
+		 * stacking of discard limits (this keeps the pool and
+		 * thin devices' discard limits consistent).
+		 */
+		ti->discards_supported = 1;
+		ti->discard_zeroes_data_unsupported = 1;
+	}
+	ti->private = pt;
+
+	pt->callbacks.congested_fn = pool_is_congested;
+	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return 0;
+
+out_flags_changed:
+	__pool_dec(pool);
+out_free_pt:
+	kfree(pt);
+out:
+	dm_put_device(ti, data_dev);
+out_metadata:
+	dm_put_device(ti, metadata_dev);
+out_unlock:
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return r;
+}
+
+static int pool_map(struct dm_target *ti, struct bio *bio,
+		    union map_info *map_context)
+{
+	int r;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+	unsigned long flags;
+
+	/*
+	 * As this is a singleton target, ti->begin is always zero.
+	 */
+	spin_lock_irqsave(&pool->lock, flags);
+	bio->bi_bdev = pt->data_dev->bdev;
+	r = DM_MAPIO_REMAPPED;
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	return r;
+}
+
+/*
+ * Retrieves the number of blocks of the data device from
+ * the superblock and compares it to the actual device size,
+ * thus resizing the data device in case it has grown.
+ *
+ * This both copes with opening preallocated data devices in the ctr
+ * being followed by a resume
+ * -and-
+ * calling the resume method individually after userspace has
+ * grown the data device in reaction to a table event.
+ */
+static int pool_preresume(struct dm_target *ti)
+{
+	int r;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+	dm_block_t data_size, sb_data_size;
+
+	/*
+	 * Take control of the pool object.
+	 */
+	r = bind_control_target(pool, ti);
+	if (r)
+		return r;
+
+	data_size = ti->len >> pool->block_shift;
+	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
+	if (r) {
+		DMERR("failed to retrieve data device size");
+		return r;
+	}
+
+	if (data_size < sb_data_size) {
+		DMERR("pool target too small, is %llu blocks (expected %llu)",
+		      data_size, sb_data_size);
+		return -EINVAL;
+
+	} else if (data_size > sb_data_size) {
+		r = dm_pool_resize_data_dev(pool->pmd, data_size);
+		if (r) {
+			DMERR("failed to resize data device");
+			return r;
+		}
+
+		r = dm_pool_commit_metadata(pool->pmd);
+		if (r) {
+			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+			      __func__, r);
+			return r;
+		}
+	}
+
+	return 0;
+}
+
+static void pool_resume(struct dm_target *ti)
+{
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	pool->low_water_triggered = 0;
+	pool->no_free_space = 0;
+	__requeue_bios(pool);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	do_waker(&pool->waker.work);
+}
+
+static void pool_postsuspend(struct dm_target *ti)
+{
+	int r;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	cancel_delayed_work(&pool->waker);
+	flush_workqueue(pool->wq);
+
+	r = dm_pool_commit_metadata(pool->pmd);
+	if (r < 0) {
+		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+		      __func__, r);
+		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
+	}
+}
+
+static int check_arg_count(unsigned argc, unsigned args_required)
+{
+	if (argc != args_required) {
+		DMWARN("Message received with %u arguments instead of %u.",
+		       argc, args_required);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
+{
+	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
+	    *dev_id <= MAX_DEV_ID)
+		return 0;
+
+	if (warning)
+		DMWARN("Message received with invalid device id: %s", arg);
+
+	return -EINVAL;
+}
+
+static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id dev_id;
+	int r;
+
+	r = check_arg_count(argc, 2);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[1], &dev_id, 1);
+	if (r)
+		return r;
+
+	r = dm_pool_create_thin(pool->pmd, dev_id);
+	if (r) {
+		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
+		       argv[1]);
+		return r;
+	}
+
+	return 0;
+}
+
+static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id dev_id;
+	dm_thin_id origin_dev_id;
+	int r;
+
+	r = check_arg_count(argc, 3);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[1], &dev_id, 1);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[2], &origin_dev_id, 1);
+	if (r)
+		return r;
+
+	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
+	if (r) {
+		DMWARN("Creation of new snapshot %s of device %s failed.",
+		       argv[1], argv[2]);
+		return r;
+	}
+
+	return 0;
+}
+
+static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id dev_id;
+	int r;
+
+	r = check_arg_count(argc, 2);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[1], &dev_id, 1);
+	if (r)
+		return r;
+
+	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
+	if (r)
+		DMWARN("Deletion of thin device %s failed.", argv[1]);
+
+	return r;
+}
+
+static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id old_id, new_id;
+	int r;
+
+	r = check_arg_count(argc, 3);
+	if (r)
+		return r;
+
+	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
+		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
+		return -EINVAL;
+	}
+
+	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
+		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
+		return -EINVAL;
+	}
+
+	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
+	if (r) {
+		DMWARN("Failed to change transaction id from %s to %s.",
+		       argv[1], argv[2]);
+		return r;
+	}
+
+	return 0;
+}
+
+/*
+ * Messages supported:
+ *   create_thin	<dev_id>
+ *   create_snap	<dev_id> <origin_id>
+ *   delete		<dev_id>
+ *   trim		<dev_id> <new_size_in_sectors>
+ *   set_transaction_id <current_trans_id> <new_trans_id>
+ */
+static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r = -EINVAL;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	if (!strcasecmp(argv[0], "create_thin"))
+		r = process_create_thin_mesg(argc, argv, pool);
+
+	else if (!strcasecmp(argv[0], "create_snap"))
+		r = process_create_snap_mesg(argc, argv, pool);
+
+	else if (!strcasecmp(argv[0], "delete"))
+		r = process_delete_mesg(argc, argv, pool);
+
+	else if (!strcasecmp(argv[0], "set_transaction_id"))
+		r = process_set_transaction_id_mesg(argc, argv, pool);
+
+	else
+		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
+
+	if (!r) {
+		r = dm_pool_commit_metadata(pool->pmd);
+		if (r)
+			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
+			      argv[0], r);
+	}
+
+	return r;
+}
+
+/*
+ * Status line is:
+ *    <transaction id> <used metadata sectors>/<total metadata sectors>
+ *    <used data sectors>/<total data sectors> <held metadata root>
+ */
+static void pool_status(struct dm_target *ti, status_type_t type,
+			char *result, unsigned maxlen)
+{
+	int r, count;
+	unsigned sz = 0;
+	uint64_t transaction_id;
+	dm_block_t nr_free_blocks_data;
+	dm_block_t nr_free_blocks_metadata;
+	dm_block_t nr_blocks_data;
+	dm_block_t nr_blocks_metadata;
+	dm_block_t held_root;
+	char buf[BDEVNAME_SIZE];
+	char buf2[BDEVNAME_SIZE];
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
+		if (r) {
+			DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
+		if (r) {
+			DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
+		if (r) {
+			DMERR("dm_pool_get_metadata_dev_size returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
+		if (r) {
+			DMERR("dm_pool_get_free_block_count returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
+		if (r) {
+			DMERR("dm_pool_get_data_dev_size returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
+		if (r) {
+			DMERR("dm_pool_get_metadata_snap returned %d", r);
+			goto err;
+		}
+
+		DMEMIT("%llu %llu/%llu %llu/%llu ",
+		       (unsigned long long)transaction_id,
+		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
+		       (unsigned long long)nr_blocks_metadata,
+		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
+		       (unsigned long long)nr_blocks_data);
+
+		if (held_root)
+			DMEMIT("%llu", held_root);
+		else
+			DMEMIT("-");
+
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s %s %lu %llu ",
+		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
+		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
+		       (unsigned long)pool->sectors_per_block,
+		       (unsigned long long)pt->low_water_blocks);
+
+		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
+			!pt->pf.discard_passdown;
+		DMEMIT("%u ", count);
+
+		if (!pool->pf.zero_new_blocks)
+			DMEMIT("skip_block_zeroing ");
+
+		if (!pool->pf.discard_enabled)
+			DMEMIT("ignore_discard ");
+
+		if (!pt->pf.discard_passdown)
+			DMEMIT("no_discard_passdown ");
+
+		break;
+	}
+	return;
+
+err:
+	DMEMIT("Error");
+}
+
+static int pool_iterate_devices(struct dm_target *ti,
+				iterate_devices_callout_fn fn, void *data)
+{
+	struct pool_c *pt = ti->private;
+
+	return fn(ti, pt->data_dev, 0, ti->len, data);
+}
+
+static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+		      struct bio_vec *biovec, int max_size)
+{
+	struct pool_c *pt = ti->private;
+	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = pt->data_dev->bdev;
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
+{
+	/*
+	 * FIXME: these limits may be incompatible with the pool's data device
+	 */
+	limits->max_discard_sectors = pool->sectors_per_block;
+
+	/*
+	 * This is just a hint, and not enforced.  We have to cope with
+	 * bios that overlap 2 blocks.
+	 */
+	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
+}
+
+static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	blk_limits_io_min(limits, 0);
+	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
+	if (pool->pf.discard_enabled)
+		set_discard_limits(pool, limits);
+}
+
+static struct target_type pool_target = {
+	.name = "thin-pool",
+	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
+		    DM_TARGET_IMMUTABLE,
+	.version = {1, 1, 1},
+	.module = THIS_MODULE,
+	.ctr = pool_ctr,
+	.dtr = pool_dtr,
+	.map = pool_map,
+	.postsuspend = pool_postsuspend,
+	.preresume = pool_preresume,
+	.resume = pool_resume,
+	.message = pool_message,
+	.status = pool_status,
+	.merge = pool_merge,
+	.iterate_devices = pool_iterate_devices,
+	.io_hints = pool_io_hints,
+};
+
+/*----------------------------------------------------------------
+ * Thin target methods
+ *--------------------------------------------------------------*/
+static void thin_dtr(struct dm_target *ti)
+{
+	struct thin_c *tc = ti->private;
+
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	__pool_dec(tc->pool);
+	dm_pool_close_thin_device(tc->td);
+	dm_put_device(ti, tc->pool_dev);
+	if (tc->origin_dev)
+		dm_put_device(ti, tc->origin_dev);
+	kfree(tc);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+}
+
+/*
+ * Thin target parameters:
+ *
+ * <pool_dev> <dev_id> [origin_dev]
+ *
+ * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
+ * dev_id: the internal device identifier
+ * origin_dev: a device external to the pool that should act as the origin
+ *
+ * If the pool device has discards disabled, they get disabled for the thin
+ * device as well.
+ */
+static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r;
+	struct thin_c *tc;
+	struct dm_dev *pool_dev, *origin_dev;
+	struct mapped_device *pool_md;
+
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	if (argc != 2 && argc != 3) {
+		ti->error = "Invalid argument count";
+		r = -EINVAL;
+		goto out_unlock;
+	}
+
+	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
+	if (!tc) {
+		ti->error = "Out of memory";
+		r = -ENOMEM;
+		goto out_unlock;
+	}
+
+	if (argc == 3) {
+		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
+		if (r) {
+			ti->error = "Error opening origin device";
+			goto bad_origin_dev;
+		}
+		tc->origin_dev = origin_dev;
+	}
+
+	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
+	if (r) {
+		ti->error = "Error opening pool device";
+		goto bad_pool_dev;
+	}
+	tc->pool_dev = pool_dev;
+
+	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
+		ti->error = "Invalid device id";
+		r = -EINVAL;
+		goto bad_common;
+	}
+
+	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
+	if (!pool_md) {
+		ti->error = "Couldn't get pool mapped device";
+		r = -EINVAL;
+		goto bad_common;
+	}
+
+	tc->pool = __pool_table_lookup(pool_md);
+	if (!tc->pool) {
+		ti->error = "Couldn't find pool object";
+		r = -EINVAL;
+		goto bad_pool_lookup;
+	}
+	__pool_inc(tc->pool);
+
+	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
+	if (r) {
+		ti->error = "Couldn't open thin internal device";
+		goto bad_thin_open;
+	}
+
+	ti->split_io = tc->pool->sectors_per_block;
+	ti->num_flush_requests = 1;
+
+	/* In case the pool supports discards, pass them on. */
+	if (tc->pool->pf.discard_enabled) {
+		ti->discards_supported = 1;
+		ti->num_discard_requests = 1;
+		ti->discard_zeroes_data_unsupported = 1;
+	}
+
+	dm_put(pool_md);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return 0;
+
+bad_thin_open:
+	__pool_dec(tc->pool);
+bad_pool_lookup:
+	dm_put(pool_md);
+bad_common:
+	dm_put_device(ti, tc->pool_dev);
+bad_pool_dev:
+	if (tc->origin_dev)
+		dm_put_device(ti, tc->origin_dev);
+bad_origin_dev:
+	kfree(tc);
+out_unlock:
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return r;
+}
+
+static int thin_map(struct dm_target *ti, struct bio *bio,
+		    union map_info *map_context)
+{
+	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
+
+	return thin_bio_map(ti, bio, map_context);
+}
+
+static int thin_endio(struct dm_target *ti,
+		      struct bio *bio, int err,
+		      union map_info *map_context)
+{
+	unsigned long flags;
+	struct endio_hook *h = map_context->ptr;
+	struct list_head work;
+	struct new_mapping *m, *tmp;
+	struct pool *pool = h->tc->pool;
+
+	if (h->shared_read_entry) {
+		INIT_LIST_HEAD(&work);
+		ds_dec(h->shared_read_entry, &work);
+
+		spin_lock_irqsave(&pool->lock, flags);
+		list_for_each_entry_safe(m, tmp, &work, list) {
+			list_del(&m->list);
+			m->quiesced = 1;
+			__maybe_add_mapping(m);
+		}
+		spin_unlock_irqrestore(&pool->lock, flags);
+	}
+
+	if (h->all_io_entry) {
+		INIT_LIST_HEAD(&work);
+		ds_dec(h->all_io_entry, &work);
+		spin_lock_irqsave(&pool->lock, flags);
+		list_for_each_entry_safe(m, tmp, &work, list)
+			list_add(&m->list, &pool->prepared_discards);
+		spin_unlock_irqrestore(&pool->lock, flags);
+	}
+
+	mempool_free(h, pool->endio_hook_pool);
+
+	return 0;
+}
+
+static void thin_postsuspend(struct dm_target *ti)
+{
+	if (dm_noflush_suspending(ti))
+		requeue_io((struct thin_c *)ti->private);
+}
+
+/*
+ * <nr mapped sectors> <highest mapped sector>
+ */
+static void thin_status(struct dm_target *ti, status_type_t type,
+			char *result, unsigned maxlen)
+{
+	int r;
+	ssize_t sz = 0;
+	dm_block_t mapped, highest;
+	char buf[BDEVNAME_SIZE];
+	struct thin_c *tc = ti->private;
+
+	if (!tc->td)
+		DMEMIT("-");
+	else {
+		switch (type) {
+		case STATUSTYPE_INFO:
+			r = dm_thin_get_mapped_count(tc->td, &mapped);
+			if (r) {
+				DMERR("dm_thin_get_mapped_count returned %d", r);
+				goto err;
+			}
+
+			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
+			if (r < 0) {
+				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
+				goto err;
+			}
+
+			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
+			if (r)
+				DMEMIT("%llu", ((highest + 1) *
+						tc->pool->sectors_per_block) - 1);
+			else
+				DMEMIT("-");
+			break;
+
+		case STATUSTYPE_TABLE:
+			DMEMIT("%s %lu",
+			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
+			       (unsigned long) tc->dev_id);
+			if (tc->origin_dev)
+				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
+			break;
+		}
+	}
+
+	return;
+
+err:
+	DMEMIT("Error");
+}
+
+static int thin_iterate_devices(struct dm_target *ti,
+				iterate_devices_callout_fn fn, void *data)
+{
+	dm_block_t blocks;
+	struct thin_c *tc = ti->private;
+
+	/*
+	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
+	 * we follow a more convoluted path through to the pool's target.
+	 */
+	if (!tc->pool->ti)
+		return 0;	/* nothing is bound */
+
+	blocks = tc->pool->ti->len >> tc->pool->block_shift;
+	if (blocks)
+		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
+
+	return 0;
+}
+
+static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+	struct thin_c *tc = ti->private;
+	struct pool *pool = tc->pool;
+
+	blk_limits_io_min(limits, 0);
+	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
+	set_discard_limits(pool, limits);
+}
+
+static struct target_type thin_target = {
+	.name = "thin",
+	.version = {1, 1, 1},
+	.module	= THIS_MODULE,
+	.ctr = thin_ctr,
+	.dtr = thin_dtr,
+	.map = thin_map,
+	.end_io = thin_endio,
+	.postsuspend = thin_postsuspend,
+	.status = thin_status,
+	.iterate_devices = thin_iterate_devices,
+	.io_hints = thin_io_hints,
+};
+
+/*----------------------------------------------------------------*/
+
+static int __init dm_thin_init(void)
+{
+	int r;
+
+	pool_table_init();
+
+	r = dm_register_target(&thin_target);
+	if (r)
+		return r;
+
+	r = dm_register_target(&pool_target);
+	if (r)
+		dm_unregister_target(&thin_target);
+
+	return r;
+}
+
+static void dm_thin_exit(void)
+{
+	dm_unregister_target(&thin_target);
+	dm_unregister_target(&pool_target);
+}
+
+module_init(dm_thin_init);
+module_exit(dm_thin_exit);
+
+MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");