[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/backref.c b/ap/os/linux/linux-3.4.x/fs/btrfs/backref.c
new file mode 100644
index 0000000..9a6b24a
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/backref.c
@@ -0,0 +1,1432 @@
+/*
+ * Copyright (C) 2011 STRATO.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "backref.h"
+#include "ulist.h"
+#include "transaction.h"
+#include "delayed-ref.h"
+#include "locking.h"
+
+/*
+ * this structure records all encountered refs on the way up to the root
+ */
+struct __prelim_ref {
+	struct list_head list;
+	u64 root_id;
+	struct btrfs_key key;
+	int level;
+	int count;
+	u64 parent;
+	u64 wanted_disk_byte;
+};
+
+static int __add_prelim_ref(struct list_head *head, u64 root_id,
+			    struct btrfs_key *key, int level, u64 parent,
+			    u64 wanted_disk_byte, int count)
+{
+	struct __prelim_ref *ref;
+
+	/* in case we're adding delayed refs, we're holding the refs spinlock */
+	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
+	if (!ref)
+		return -ENOMEM;
+
+	ref->root_id = root_id;
+	if (key)
+		ref->key = *key;
+	else
+		memset(&ref->key, 0, sizeof(ref->key));
+
+	ref->level = level;
+	ref->count = count;
+	ref->parent = parent;
+	ref->wanted_disk_byte = wanted_disk_byte;
+	list_add_tail(&ref->list, head);
+
+	return 0;
+}
+
+static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
+				struct ulist *parents,
+				struct extent_buffer *eb, int level,
+				u64 wanted_objectid, u64 wanted_disk_byte)
+{
+	int ret;
+	int slot;
+	struct btrfs_file_extent_item *fi;
+	struct btrfs_key key;
+	u64 disk_byte;
+
+add_parent:
+	ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
+	if (ret < 0)
+		return ret;
+
+	if (level != 0)
+		return 0;
+
+	/*
+	 * if the current leaf is full with EXTENT_DATA items, we must
+	 * check the next one if that holds a reference as well.
+	 * ref->count cannot be used to skip this check.
+	 * repeat this until we don't find any additional EXTENT_DATA items.
+	 */
+	while (1) {
+		ret = btrfs_next_leaf(root, path);
+		if (ret < 0)
+			return ret;
+		if (ret)
+			return 0;
+
+		eb = path->nodes[0];
+		for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
+			btrfs_item_key_to_cpu(eb, &key, slot);
+			if (key.objectid != wanted_objectid ||
+			    key.type != BTRFS_EXTENT_DATA_KEY)
+				return 0;
+			fi = btrfs_item_ptr(eb, slot,
+						struct btrfs_file_extent_item);
+			disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
+			if (disk_byte == wanted_disk_byte)
+				goto add_parent;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * resolve an indirect backref in the form (root_id, key, level)
+ * to a logical address
+ */
+static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
+					int search_commit_root,
+					struct __prelim_ref *ref,
+					struct ulist *parents)
+{
+	struct btrfs_path *path;
+	struct btrfs_root *root;
+	struct btrfs_key root_key;
+	struct btrfs_key key = {0};
+	struct extent_buffer *eb;
+	int ret = 0;
+	int root_level;
+	int level = ref->level;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+	path->search_commit_root = !!search_commit_root;
+
+	root_key.objectid = ref->root_id;
+	root_key.type = BTRFS_ROOT_ITEM_KEY;
+	root_key.offset = (u64)-1;
+	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
+	if (IS_ERR(root)) {
+		ret = PTR_ERR(root);
+		goto out;
+	}
+
+	rcu_read_lock();
+	root_level = btrfs_header_level(root->node);
+	rcu_read_unlock();
+
+	if (root_level + 1 == level)
+		goto out;
+
+	path->lowest_level = level;
+	ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
+	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
+		 "%d for key (%llu %u %llu)\n",
+		 (unsigned long long)ref->root_id, level, ref->count, ret,
+		 (unsigned long long)ref->key.objectid, ref->key.type,
+		 (unsigned long long)ref->key.offset);
+	if (ret < 0)
+		goto out;
+
+	eb = path->nodes[level];
+	if (!eb) {
+		WARN_ON(1);
+		ret = 1;
+		goto out;
+	}
+
+	if (level == 0) {
+		if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret)
+				goto out;
+			eb = path->nodes[0];
+		}
+
+		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
+	}
+
+	/* the last two parameters will only be used for level == 0 */
+	ret = add_all_parents(root, path, parents, eb, level, key.objectid,
+				ref->wanted_disk_byte);
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * resolve all indirect backrefs from the list
+ */
+static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
+				   int search_commit_root,
+				   struct list_head *head)
+{
+	int err;
+	int ret = 0;
+	struct __prelim_ref *ref;
+	struct __prelim_ref *ref_safe;
+	struct __prelim_ref *new_ref;
+	struct ulist *parents;
+	struct ulist_node *node;
+
+	parents = ulist_alloc(GFP_NOFS);
+	if (!parents)
+		return -ENOMEM;
+
+	/*
+	 * _safe allows us to insert directly after the current item without
+	 * iterating over the newly inserted items.
+	 * we're also allowed to re-assign ref during iteration.
+	 */
+	list_for_each_entry_safe(ref, ref_safe, head, list) {
+		if (ref->parent)	/* already direct */
+			continue;
+		if (ref->count == 0)
+			continue;
+		err = __resolve_indirect_ref(fs_info, search_commit_root,
+					     ref, parents);
+		if (err) {
+			if (ret == 0)
+				ret = err;
+			continue;
+		}
+
+		/* we put the first parent into the ref at hand */
+		node = ulist_next(parents, NULL);
+		ref->parent = node ? node->val : 0;
+
+		/* additional parents require new refs being added here */
+		while ((node = ulist_next(parents, node))) {
+			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
+			if (!new_ref) {
+				ret = -ENOMEM;
+				break;
+			}
+			memcpy(new_ref, ref, sizeof(*ref));
+			new_ref->parent = node->val;
+			list_add(&new_ref->list, &ref->list);
+		}
+		ulist_reinit(parents);
+	}
+
+	ulist_free(parents);
+	return ret;
+}
+
+/*
+ * merge two lists of backrefs and adjust counts accordingly
+ *
+ * mode = 1: merge identical keys, if key is set
+ * mode = 2: merge identical parents
+ */
+static int __merge_refs(struct list_head *head, int mode)
+{
+	struct list_head *pos1;
+
+	list_for_each(pos1, head) {
+		struct list_head *n2;
+		struct list_head *pos2;
+		struct __prelim_ref *ref1;
+
+		ref1 = list_entry(pos1, struct __prelim_ref, list);
+
+		if (mode == 1 && ref1->key.type == 0)
+			continue;
+		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
+		     pos2 = n2, n2 = pos2->next) {
+			struct __prelim_ref *ref2;
+
+			ref2 = list_entry(pos2, struct __prelim_ref, list);
+
+			if (mode == 1) {
+				if (memcmp(&ref1->key, &ref2->key,
+					   sizeof(ref1->key)) ||
+				    ref1->level != ref2->level ||
+				    ref1->root_id != ref2->root_id)
+					continue;
+				ref1->count += ref2->count;
+			} else {
+				if (ref1->parent != ref2->parent)
+					continue;
+				ref1->count += ref2->count;
+			}
+			list_del(&ref2->list);
+			kfree(ref2);
+		}
+
+	}
+	return 0;
+}
+
+/*
+ * add all currently queued delayed refs from this head whose seq nr is
+ * smaller or equal that seq to the list
+ */
+static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
+			      struct btrfs_key *info_key,
+			      struct list_head *prefs)
+{
+	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
+	struct rb_node *n = &head->node.rb_node;
+	int sgn;
+	int ret = 0;
+
+	if (extent_op && extent_op->update_key)
+		btrfs_disk_key_to_cpu(info_key, &extent_op->key);
+
+	while ((n = rb_prev(n))) {
+		struct btrfs_delayed_ref_node *node;
+		node = rb_entry(n, struct btrfs_delayed_ref_node,
+				rb_node);
+		if (node->bytenr != head->node.bytenr)
+			break;
+		WARN_ON(node->is_head);
+
+		if (node->seq > seq)
+			continue;
+
+		switch (node->action) {
+		case BTRFS_ADD_DELAYED_EXTENT:
+		case BTRFS_UPDATE_DELAYED_HEAD:
+			WARN_ON(1);
+			continue;
+		case BTRFS_ADD_DELAYED_REF:
+			sgn = 1;
+			break;
+		case BTRFS_DROP_DELAYED_REF:
+			sgn = -1;
+			break;
+		default:
+			BUG_ON(1);
+		}
+		switch (node->type) {
+		case BTRFS_TREE_BLOCK_REF_KEY: {
+			struct btrfs_delayed_tree_ref *ref;
+
+			ref = btrfs_delayed_node_to_tree_ref(node);
+			ret = __add_prelim_ref(prefs, ref->root, info_key,
+					       ref->level + 1, 0, node->bytenr,
+					       node->ref_mod * sgn);
+			break;
+		}
+		case BTRFS_SHARED_BLOCK_REF_KEY: {
+			struct btrfs_delayed_tree_ref *ref;
+
+			ref = btrfs_delayed_node_to_tree_ref(node);
+			ret = __add_prelim_ref(prefs, ref->root, info_key,
+					       ref->level + 1, ref->parent,
+					       node->bytenr,
+					       node->ref_mod * sgn);
+			break;
+		}
+		case BTRFS_EXTENT_DATA_REF_KEY: {
+			struct btrfs_delayed_data_ref *ref;
+			struct btrfs_key key;
+
+			ref = btrfs_delayed_node_to_data_ref(node);
+
+			key.objectid = ref->objectid;
+			key.type = BTRFS_EXTENT_DATA_KEY;
+			key.offset = ref->offset;
+			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
+					       node->bytenr,
+					       node->ref_mod * sgn);
+			break;
+		}
+		case BTRFS_SHARED_DATA_REF_KEY: {
+			struct btrfs_delayed_data_ref *ref;
+			struct btrfs_key key;
+
+			ref = btrfs_delayed_node_to_data_ref(node);
+
+			key.objectid = ref->objectid;
+			key.type = BTRFS_EXTENT_DATA_KEY;
+			key.offset = ref->offset;
+			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
+					       ref->parent, node->bytenr,
+					       node->ref_mod * sgn);
+			break;
+		}
+		default:
+			WARN_ON(1);
+		}
+		BUG_ON(ret);
+	}
+
+	return 0;
+}
+
+/*
+ * add all inline backrefs for bytenr to the list
+ */
+static int __add_inline_refs(struct btrfs_fs_info *fs_info,
+			     struct btrfs_path *path, u64 bytenr,
+			     struct btrfs_key *info_key, int *info_level,
+			     struct list_head *prefs)
+{
+	int ret = 0;
+	int slot;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	unsigned long ptr;
+	unsigned long end;
+	struct btrfs_extent_item *ei;
+	u64 flags;
+	u64 item_size;
+
+	/*
+	 * enumerate all inline refs
+	 */
+	leaf = path->nodes[0];
+	slot = path->slots[0] - 1;
+
+	item_size = btrfs_item_size_nr(leaf, slot);
+	BUG_ON(item_size < sizeof(*ei));
+
+	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
+	flags = btrfs_extent_flags(leaf, ei);
+
+	ptr = (unsigned long)(ei + 1);
+	end = (unsigned long)ei + item_size;
+
+	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+		struct btrfs_tree_block_info *info;
+		struct btrfs_disk_key disk_key;
+
+		info = (struct btrfs_tree_block_info *)ptr;
+		*info_level = btrfs_tree_block_level(leaf, info);
+		btrfs_tree_block_key(leaf, info, &disk_key);
+		btrfs_disk_key_to_cpu(info_key, &disk_key);
+		ptr += sizeof(struct btrfs_tree_block_info);
+		BUG_ON(ptr > end);
+	} else {
+		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
+	}
+
+	while (ptr < end) {
+		struct btrfs_extent_inline_ref *iref;
+		u64 offset;
+		int type;
+
+		iref = (struct btrfs_extent_inline_ref *)ptr;
+		type = btrfs_extent_inline_ref_type(leaf, iref);
+		offset = btrfs_extent_inline_ref_offset(leaf, iref);
+
+		switch (type) {
+		case BTRFS_SHARED_BLOCK_REF_KEY:
+			ret = __add_prelim_ref(prefs, 0, info_key,
+						*info_level + 1, offset,
+						bytenr, 1);
+			break;
+		case BTRFS_SHARED_DATA_REF_KEY: {
+			struct btrfs_shared_data_ref *sdref;
+			int count;
+
+			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
+			count = btrfs_shared_data_ref_count(leaf, sdref);
+			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
+					       bytenr, count);
+			break;
+		}
+		case BTRFS_TREE_BLOCK_REF_KEY:
+			ret = __add_prelim_ref(prefs, offset, info_key,
+					       *info_level + 1, 0, bytenr, 1);
+			break;
+		case BTRFS_EXTENT_DATA_REF_KEY: {
+			struct btrfs_extent_data_ref *dref;
+			int count;
+			u64 root;
+
+			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+			count = btrfs_extent_data_ref_count(leaf, dref);
+			key.objectid = btrfs_extent_data_ref_objectid(leaf,
+								      dref);
+			key.type = BTRFS_EXTENT_DATA_KEY;
+			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
+			root = btrfs_extent_data_ref_root(leaf, dref);
+			ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
+						count);
+			break;
+		}
+		default:
+			WARN_ON(1);
+		}
+		BUG_ON(ret);
+		ptr += btrfs_extent_inline_ref_size(type);
+	}
+
+	return 0;
+}
+
+/*
+ * add all non-inline backrefs for bytenr to the list
+ */
+static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
+			    struct btrfs_path *path, u64 bytenr,
+			    struct btrfs_key *info_key, int info_level,
+			    struct list_head *prefs)
+{
+	struct btrfs_root *extent_root = fs_info->extent_root;
+	int ret;
+	int slot;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+
+	while (1) {
+		ret = btrfs_next_item(extent_root, path);
+		if (ret < 0)
+			break;
+		if (ret) {
+			ret = 0;
+			break;
+		}
+
+		slot = path->slots[0];
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &key, slot);
+
+		if (key.objectid != bytenr)
+			break;
+		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
+			continue;
+		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
+			break;
+
+		switch (key.type) {
+		case BTRFS_SHARED_BLOCK_REF_KEY:
+			ret = __add_prelim_ref(prefs, 0, info_key,
+						info_level + 1, key.offset,
+						bytenr, 1);
+			break;
+		case BTRFS_SHARED_DATA_REF_KEY: {
+			struct btrfs_shared_data_ref *sdref;
+			int count;
+
+			sdref = btrfs_item_ptr(leaf, slot,
+					      struct btrfs_shared_data_ref);
+			count = btrfs_shared_data_ref_count(leaf, sdref);
+			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
+						bytenr, count);
+			break;
+		}
+		case BTRFS_TREE_BLOCK_REF_KEY:
+			ret = __add_prelim_ref(prefs, key.offset, info_key,
+						info_level + 1, 0, bytenr, 1);
+			break;
+		case BTRFS_EXTENT_DATA_REF_KEY: {
+			struct btrfs_extent_data_ref *dref;
+			int count;
+			u64 root;
+
+			dref = btrfs_item_ptr(leaf, slot,
+					      struct btrfs_extent_data_ref);
+			count = btrfs_extent_data_ref_count(leaf, dref);
+			key.objectid = btrfs_extent_data_ref_objectid(leaf,
+								      dref);
+			key.type = BTRFS_EXTENT_DATA_KEY;
+			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
+			root = btrfs_extent_data_ref_root(leaf, dref);
+			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
+						bytenr, count);
+			break;
+		}
+		default:
+			WARN_ON(1);
+		}
+		BUG_ON(ret);
+	}
+
+	return ret;
+}
+
+/*
+ * this adds all existing backrefs (inline backrefs, backrefs and delayed
+ * refs) for the given bytenr to the refs list, merges duplicates and resolves
+ * indirect refs to their parent bytenr.
+ * When roots are found, they're added to the roots list
+ *
+ * FIXME some caching might speed things up
+ */
+static int find_parent_nodes(struct btrfs_trans_handle *trans,
+			     struct btrfs_fs_info *fs_info, u64 bytenr,
+			     u64 seq, struct ulist *refs, struct ulist *roots)
+{
+	struct btrfs_key key;
+	struct btrfs_path *path;
+	struct btrfs_key info_key = { 0 };
+	struct btrfs_delayed_ref_root *delayed_refs = NULL;
+	struct btrfs_delayed_ref_head *head;
+	int info_level = 0;
+	int ret;
+	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
+	struct list_head prefs_delayed;
+	struct list_head prefs;
+	struct __prelim_ref *ref;
+
+	INIT_LIST_HEAD(&prefs);
+	INIT_LIST_HEAD(&prefs_delayed);
+
+	key.objectid = bytenr;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+	key.offset = (u64)-1;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+	path->search_commit_root = !!search_commit_root;
+
+	/*
+	 * grab both a lock on the path and a lock on the delayed ref head.
+	 * We need both to get a consistent picture of how the refs look
+	 * at a specified point in time
+	 */
+again:
+	head = NULL;
+
+	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
+	if (ret < 0)
+		goto out;
+	BUG_ON(ret == 0);
+
+	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
+		/*
+		 * look if there are updates for this ref queued and lock the
+		 * head
+		 */
+		delayed_refs = &trans->transaction->delayed_refs;
+		spin_lock(&delayed_refs->lock);
+		head = btrfs_find_delayed_ref_head(trans, bytenr);
+		if (head) {
+			if (!mutex_trylock(&head->mutex)) {
+				atomic_inc(&head->node.refs);
+				spin_unlock(&delayed_refs->lock);
+
+				btrfs_release_path(path);
+
+				/*
+				 * Mutex was contended, block until it's
+				 * released and try again
+				 */
+				mutex_lock(&head->mutex);
+				mutex_unlock(&head->mutex);
+				btrfs_put_delayed_ref(&head->node);
+				goto again;
+			}
+			ret = __add_delayed_refs(head, seq, &info_key,
+						 &prefs_delayed);
+			if (ret) {
+				spin_unlock(&delayed_refs->lock);
+				goto out;
+			}
+		}
+		spin_unlock(&delayed_refs->lock);
+	}
+
+	if (path->slots[0]) {
+		struct extent_buffer *leaf;
+		int slot;
+
+		leaf = path->nodes[0];
+		slot = path->slots[0] - 1;
+		btrfs_item_key_to_cpu(leaf, &key, slot);
+		if (key.objectid == bytenr &&
+		    key.type == BTRFS_EXTENT_ITEM_KEY) {
+			ret = __add_inline_refs(fs_info, path, bytenr,
+						&info_key, &info_level, &prefs);
+			if (ret)
+				goto out;
+			ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
+					       info_level, &prefs);
+			if (ret)
+				goto out;
+		}
+	}
+	btrfs_release_path(path);
+
+	/*
+	 * when adding the delayed refs above, the info_key might not have
+	 * been known yet. Go over the list and replace the missing keys
+	 */
+	list_for_each_entry(ref, &prefs_delayed, list) {
+		if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
+			memcpy(&ref->key, &info_key, sizeof(ref->key));
+	}
+	list_splice_init(&prefs_delayed, &prefs);
+
+	ret = __merge_refs(&prefs, 1);
+	if (ret)
+		goto out;
+
+	ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs);
+	if (ret)
+		goto out;
+
+	ret = __merge_refs(&prefs, 2);
+	if (ret)
+		goto out;
+
+	while (!list_empty(&prefs)) {
+		ref = list_first_entry(&prefs, struct __prelim_ref, list);
+		list_del(&ref->list);
+		if (ref->count < 0)
+			WARN_ON(1);
+		if (ref->count && ref->root_id && ref->parent == 0) {
+			/* no parent == root of tree */
+			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
+			BUG_ON(ret < 0);
+		}
+		if (ref->count && ref->parent) {
+			ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
+			BUG_ON(ret < 0);
+		}
+		kfree(ref);
+	}
+
+out:
+	if (head)
+		mutex_unlock(&head->mutex);
+	btrfs_free_path(path);
+	while (!list_empty(&prefs)) {
+		ref = list_first_entry(&prefs, struct __prelim_ref, list);
+		list_del(&ref->list);
+		kfree(ref);
+	}
+	while (!list_empty(&prefs_delayed)) {
+		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
+				       list);
+		list_del(&ref->list);
+		kfree(ref);
+	}
+
+	return ret;
+}
+
+/*
+ * Finds all leafs with a reference to the specified combination of bytenr and
+ * offset. key_list_head will point to a list of corresponding keys (caller must
+ * free each list element). The leafs will be stored in the leafs ulist, which
+ * must be freed with ulist_free.
+ *
+ * returns 0 on success, <0 on error
+ */
+static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
+				struct btrfs_fs_info *fs_info, u64 bytenr,
+				u64 num_bytes, u64 seq, struct ulist **leafs)
+{
+	struct ulist *tmp;
+	int ret;
+
+	tmp = ulist_alloc(GFP_NOFS);
+	if (!tmp)
+		return -ENOMEM;
+	*leafs = ulist_alloc(GFP_NOFS);
+	if (!*leafs) {
+		ulist_free(tmp);
+		return -ENOMEM;
+	}
+
+	ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
+	ulist_free(tmp);
+
+	if (ret < 0 && ret != -ENOENT) {
+		ulist_free(*leafs);
+		return ret;
+	}
+
+	return 0;
+}
+
+/*
+ * walk all backrefs for a given extent to find all roots that reference this
+ * extent. Walking a backref means finding all extents that reference this
+ * extent and in turn walk the backrefs of those, too. Naturally this is a
+ * recursive process, but here it is implemented in an iterative fashion: We
+ * find all referencing extents for the extent in question and put them on a
+ * list. In turn, we find all referencing extents for those, further appending
+ * to the list. The way we iterate the list allows adding more elements after
+ * the current while iterating. The process stops when we reach the end of the
+ * list. Found roots are added to the roots list.
+ *
+ * returns 0 on success, < 0 on error.
+ */
+int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
+				struct btrfs_fs_info *fs_info, u64 bytenr,
+				u64 num_bytes, u64 seq, struct ulist **roots)
+{
+	struct ulist *tmp;
+	struct ulist_node *node = NULL;
+	int ret;
+
+	tmp = ulist_alloc(GFP_NOFS);
+	if (!tmp)
+		return -ENOMEM;
+	*roots = ulist_alloc(GFP_NOFS);
+	if (!*roots) {
+		ulist_free(tmp);
+		return -ENOMEM;
+	}
+
+	while (1) {
+		ret = find_parent_nodes(trans, fs_info, bytenr, seq,
+					tmp, *roots);
+		if (ret < 0 && ret != -ENOENT) {
+			ulist_free(tmp);
+			ulist_free(*roots);
+			return ret;
+		}
+		node = ulist_next(tmp, node);
+		if (!node)
+			break;
+		bytenr = node->val;
+	}
+
+	ulist_free(tmp);
+	return 0;
+}
+
+
+static int __inode_info(u64 inum, u64 ioff, u8 key_type,
+			struct btrfs_root *fs_root, struct btrfs_path *path,
+			struct btrfs_key *found_key)
+{
+	int ret;
+	struct btrfs_key key;
+	struct extent_buffer *eb;
+
+	key.type = key_type;
+	key.objectid = inum;
+	key.offset = ioff;
+
+	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
+	if (ret < 0)
+		return ret;
+
+	eb = path->nodes[0];
+	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
+		ret = btrfs_next_leaf(fs_root, path);
+		if (ret)
+			return ret;
+		eb = path->nodes[0];
+	}
+
+	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
+	if (found_key->type != key.type || found_key->objectid != key.objectid)
+		return 1;
+
+	return 0;
+}
+
+/*
+ * this makes the path point to (inum INODE_ITEM ioff)
+ */
+int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
+			struct btrfs_path *path)
+{
+	struct btrfs_key key;
+	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
+				&key);
+}
+
+static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
+				struct btrfs_path *path,
+				struct btrfs_key *found_key)
+{
+	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
+				found_key);
+}
+
+/*
+ * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
+ * of the path are separated by '/' and the path is guaranteed to be
+ * 0-terminated. the path is only given within the current file system.
+ * Therefore, it never starts with a '/'. the caller is responsible to provide
+ * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
+ * the start point of the resulting string is returned. this pointer is within
+ * dest, normally.
+ * in case the path buffer would overflow, the pointer is decremented further
+ * as if output was written to the buffer, though no more output is actually
+ * generated. that way, the caller can determine how much space would be
+ * required for the path to fit into the buffer. in that case, the returned
+ * value will be smaller than dest. callers must check this!
+ */
+static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
+				struct btrfs_inode_ref *iref,
+				struct extent_buffer *eb_in, u64 parent,
+				char *dest, u32 size)
+{
+	u32 len;
+	int slot;
+	u64 next_inum;
+	int ret;
+	s64 bytes_left = size - 1;
+	struct extent_buffer *eb = eb_in;
+	struct btrfs_key found_key;
+	int leave_spinning = path->leave_spinning;
+
+	if (bytes_left >= 0)
+		dest[bytes_left] = '\0';
+
+	path->leave_spinning = 1;
+	while (1) {
+		len = btrfs_inode_ref_name_len(eb, iref);
+		bytes_left -= len;
+		if (bytes_left >= 0)
+			read_extent_buffer(eb, dest + bytes_left,
+						(unsigned long)(iref + 1), len);
+		if (eb != eb_in) {
+			btrfs_tree_read_unlock_blocking(eb);
+			free_extent_buffer(eb);
+		}
+		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
+		if (ret > 0)
+			ret = -ENOENT;
+		if (ret)
+			break;
+		next_inum = found_key.offset;
+
+		/* regular exit ahead */
+		if (parent == next_inum)
+			break;
+
+		slot = path->slots[0];
+		eb = path->nodes[0];
+		/* make sure we can use eb after releasing the path */
+		if (eb != eb_in) {
+			atomic_inc(&eb->refs);
+			btrfs_tree_read_lock(eb);
+			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
+		}
+		btrfs_release_path(path);
+
+		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
+		parent = next_inum;
+		--bytes_left;
+		if (bytes_left >= 0)
+			dest[bytes_left] = '/';
+	}
+
+	btrfs_release_path(path);
+	path->leave_spinning = leave_spinning;
+
+	if (ret)
+		return ERR_PTR(ret);
+
+	return dest + bytes_left;
+}
+
+/*
+ * this makes the path point to (logical EXTENT_ITEM *)
+ * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
+ * tree blocks and <0 on error.
+ */
+int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
+			struct btrfs_path *path, struct btrfs_key *found_key)
+{
+	int ret;
+	u64 flags;
+	u32 item_size;
+	struct extent_buffer *eb;
+	struct btrfs_extent_item *ei;
+	struct btrfs_key key;
+
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+	key.objectid = logical;
+	key.offset = (u64)-1;
+
+	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
+	if (ret < 0)
+		return ret;
+	ret = btrfs_previous_item(fs_info->extent_root, path,
+					0, BTRFS_EXTENT_ITEM_KEY);
+	if (ret < 0)
+		return ret;
+
+	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
+	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
+	    found_key->objectid > logical ||
+	    found_key->objectid + found_key->offset <= logical) {
+		pr_debug("logical %llu is not within any extent\n",
+			 (unsigned long long)logical);
+		return -ENOENT;
+	}
+
+	eb = path->nodes[0];
+	item_size = btrfs_item_size_nr(eb, path->slots[0]);
+	BUG_ON(item_size < sizeof(*ei));
+
+	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
+	flags = btrfs_extent_flags(eb, ei);
+
+	pr_debug("logical %llu is at position %llu within the extent (%llu "
+		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
+		 (unsigned long long)logical,
+		 (unsigned long long)(logical - found_key->objectid),
+		 (unsigned long long)found_key->objectid,
+		 (unsigned long long)found_key->offset,
+		 (unsigned long long)flags, item_size);
+	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
+	if (flags & BTRFS_EXTENT_FLAG_DATA)
+		return BTRFS_EXTENT_FLAG_DATA;
+
+	return -EIO;
+}
+
+/*
+ * helper function to iterate extent inline refs. ptr must point to a 0 value
+ * for the first call and may be modified. it is used to track state.
+ * if more refs exist, 0 is returned and the next call to
+ * __get_extent_inline_ref must pass the modified ptr parameter to get the
+ * next ref. after the last ref was processed, 1 is returned.
+ * returns <0 on error
+ */
+static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
+				struct btrfs_extent_item *ei, u32 item_size,
+				struct btrfs_extent_inline_ref **out_eiref,
+				int *out_type)
+{
+	unsigned long end;
+	u64 flags;
+	struct btrfs_tree_block_info *info;
+
+	if (!*ptr) {
+		/* first call */
+		flags = btrfs_extent_flags(eb, ei);
+		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+			info = (struct btrfs_tree_block_info *)(ei + 1);
+			*out_eiref =
+				(struct btrfs_extent_inline_ref *)(info + 1);
+		} else {
+			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
+		}
+		*ptr = (unsigned long)*out_eiref;
+		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
+			return -ENOENT;
+	}
+
+	end = (unsigned long)ei + item_size;
+	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
+	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
+
+	*ptr += btrfs_extent_inline_ref_size(*out_type);
+	WARN_ON(*ptr > end);
+	if (*ptr == end)
+		return 1; /* last */
+
+	return 0;
+}
+
+/*
+ * reads the tree block backref for an extent. tree level and root are returned
+ * through out_level and out_root. ptr must point to a 0 value for the first
+ * call and may be modified (see __get_extent_inline_ref comment).
+ * returns 0 if data was provided, 1 if there was no more data to provide or
+ * <0 on error.
+ */
+int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
+				struct btrfs_extent_item *ei, u32 item_size,
+				u64 *out_root, u8 *out_level)
+{
+	int ret;
+	int type;
+	struct btrfs_tree_block_info *info;
+	struct btrfs_extent_inline_ref *eiref;
+
+	if (*ptr == (unsigned long)-1)
+		return 1;
+
+	while (1) {
+		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
+						&eiref, &type);
+		if (ret < 0)
+			return ret;
+
+		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
+		    type == BTRFS_SHARED_BLOCK_REF_KEY)
+			break;
+
+		if (ret == 1)
+			return 1;
+	}
+
+	/* we can treat both ref types equally here */
+	info = (struct btrfs_tree_block_info *)(ei + 1);
+	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
+	*out_level = btrfs_tree_block_level(eb, info);
+
+	if (ret == 1)
+		*ptr = (unsigned long)-1;
+
+	return 0;
+}
+
+static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical,
+				u64 orig_extent_item_objectid,
+				u64 extent_item_pos, u64 root,
+				iterate_extent_inodes_t *iterate, void *ctx)
+{
+	u64 disk_byte;
+	struct btrfs_key key;
+	struct btrfs_file_extent_item *fi;
+	struct extent_buffer *eb;
+	int slot;
+	int nritems;
+	int ret = 0;
+	int extent_type;
+	u64 data_offset;
+	u64 data_len;
+
+	eb = read_tree_block(fs_info->tree_root, logical,
+				fs_info->tree_root->leafsize, 0);
+	if (!eb)
+		return -EIO;
+
+	/*
+	 * from the shared data ref, we only have the leaf but we need
+	 * the key. thus, we must look into all items and see that we
+	 * find one (some) with a reference to our extent item.
+	 */
+	nritems = btrfs_header_nritems(eb);
+	for (slot = 0; slot < nritems; ++slot) {
+		btrfs_item_key_to_cpu(eb, &key, slot);
+		if (key.type != BTRFS_EXTENT_DATA_KEY)
+			continue;
+		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
+		extent_type = btrfs_file_extent_type(eb, fi);
+		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
+			continue;
+		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
+		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
+		if (disk_byte != orig_extent_item_objectid)
+			continue;
+
+		data_offset = btrfs_file_extent_offset(eb, fi);
+		data_len = btrfs_file_extent_num_bytes(eb, fi);
+
+		if (extent_item_pos < data_offset ||
+		    extent_item_pos >= data_offset + data_len)
+			continue;
+
+		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
+				"root %llu\n", orig_extent_item_objectid,
+				key.objectid, key.offset, root);
+		ret = iterate(key.objectid,
+				key.offset + (extent_item_pos - data_offset),
+				root, ctx);
+		if (ret) {
+			pr_debug("stopping iteration because ret=%d\n", ret);
+			break;
+		}
+	}
+
+	free_extent_buffer(eb);
+
+	return ret;
+}
+
+/*
+ * calls iterate() for every inode that references the extent identified by
+ * the given parameters.
+ * when the iterator function returns a non-zero value, iteration stops.
+ */
+int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
+				u64 extent_item_objectid, u64 extent_item_pos,
+				int search_commit_root,
+				iterate_extent_inodes_t *iterate, void *ctx)
+{
+	int ret;
+	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
+	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
+	struct btrfs_trans_handle *trans;
+	struct ulist *refs = NULL;
+	struct ulist *roots = NULL;
+	struct ulist_node *ref_node = NULL;
+	struct ulist_node *root_node = NULL;
+	struct seq_list seq_elem;
+	struct btrfs_delayed_ref_root *delayed_refs = NULL;
+
+	pr_debug("resolving all inodes for extent %llu\n",
+			extent_item_objectid);
+
+	if (search_commit_root) {
+		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
+	} else {
+		trans = btrfs_join_transaction(fs_info->extent_root);
+		if (IS_ERR(trans))
+			return PTR_ERR(trans);
+
+		delayed_refs = &trans->transaction->delayed_refs;
+		spin_lock(&delayed_refs->lock);
+		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
+		spin_unlock(&delayed_refs->lock);
+	}
+
+	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
+				   extent_item_pos, seq_elem.seq,
+				   &refs);
+
+	if (ret)
+		goto out;
+
+	while (!ret && (ref_node = ulist_next(refs, ref_node))) {
+		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
+						seq_elem.seq, &roots);
+		if (ret)
+			break;
+		while (!ret && (root_node = ulist_next(roots, root_node))) {
+			pr_debug("root %llu references leaf %llu\n",
+					root_node->val, ref_node->val);
+			ret = iterate_leaf_refs(fs_info, ref_node->val,
+						extent_item_objectid,
+						extent_item_pos, root_node->val,
+						iterate, ctx);
+		}
+	}
+
+	ulist_free(refs);
+	ulist_free(roots);
+out:
+	if (!search_commit_root) {
+		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
+		btrfs_end_transaction(trans, fs_info->extent_root);
+	}
+
+	return ret;
+}
+
+int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
+				struct btrfs_path *path,
+				iterate_extent_inodes_t *iterate, void *ctx)
+{
+	int ret;
+	u64 extent_item_pos;
+	struct btrfs_key found_key;
+	int search_commit_root = path->search_commit_root;
+
+	ret = extent_from_logical(fs_info, logical, path,
+					&found_key);
+	btrfs_release_path(path);
+	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+		ret = -EINVAL;
+	if (ret < 0)
+		return ret;
+
+	extent_item_pos = logical - found_key.objectid;
+	ret = iterate_extent_inodes(fs_info, found_key.objectid,
+					extent_item_pos, search_commit_root,
+					iterate, ctx);
+
+	return ret;
+}
+
+static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
+				struct btrfs_path *path,
+				iterate_irefs_t *iterate, void *ctx)
+{
+	int ret = 0;
+	int slot;
+	u32 cur;
+	u32 len;
+	u32 name_len;
+	u64 parent = 0;
+	int found = 0;
+	struct extent_buffer *eb;
+	struct btrfs_item *item;
+	struct btrfs_inode_ref *iref;
+	struct btrfs_key found_key;
+
+	while (!ret) {
+		path->leave_spinning = 1;
+		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
+					&found_key);
+		if (ret < 0)
+			break;
+		if (ret) {
+			ret = found ? 0 : -ENOENT;
+			break;
+		}
+		++found;
+
+		parent = found_key.offset;
+		slot = path->slots[0];
+		eb = path->nodes[0];
+		/* make sure we can use eb after releasing the path */
+		atomic_inc(&eb->refs);
+		btrfs_tree_read_lock(eb);
+		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
+		btrfs_release_path(path);
+
+		item = btrfs_item_nr(eb, slot);
+		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
+
+		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
+			name_len = btrfs_inode_ref_name_len(eb, iref);
+			/* path must be released before calling iterate()! */
+			pr_debug("following ref at offset %u for inode %llu in "
+				 "tree %llu\n", cur,
+				 (unsigned long long)found_key.objectid,
+				 (unsigned long long)fs_root->objectid);
+			ret = iterate(parent, iref, eb, ctx);
+			if (ret)
+				break;
+			len = sizeof(*iref) + name_len;
+			iref = (struct btrfs_inode_ref *)((char *)iref + len);
+		}
+		btrfs_tree_read_unlock_blocking(eb);
+		free_extent_buffer(eb);
+	}
+
+	btrfs_release_path(path);
+
+	return ret;
+}
+
+/*
+ * returns 0 if the path could be dumped (probably truncated)
+ * returns <0 in case of an error
+ */
+static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
+				struct extent_buffer *eb, void *ctx)
+{
+	struct inode_fs_paths *ipath = ctx;
+	char *fspath;
+	char *fspath_min;
+	int i = ipath->fspath->elem_cnt;
+	const int s_ptr = sizeof(char *);
+	u32 bytes_left;
+
+	bytes_left = ipath->fspath->bytes_left > s_ptr ?
+					ipath->fspath->bytes_left - s_ptr : 0;
+
+	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
+	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
+				inum, fspath_min, bytes_left);
+	if (IS_ERR(fspath))
+		return PTR_ERR(fspath);
+
+	if (fspath > fspath_min) {
+		pr_debug("path resolved: %s\n", fspath);
+		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
+		++ipath->fspath->elem_cnt;
+		ipath->fspath->bytes_left = fspath - fspath_min;
+	} else {
+		pr_debug("missed path, not enough space. missing bytes: %lu, "
+			 "constructed so far: %s\n",
+			 (unsigned long)(fspath_min - fspath), fspath_min);
+		++ipath->fspath->elem_missed;
+		ipath->fspath->bytes_missing += fspath_min - fspath;
+		ipath->fspath->bytes_left = 0;
+	}
+
+	return 0;
+}
+
+/*
+ * this dumps all file system paths to the inode into the ipath struct, provided
+ * is has been created large enough. each path is zero-terminated and accessed
+ * from ipath->fspath->val[i].
+ * when it returns, there are ipath->fspath->elem_cnt number of paths available
+ * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
+ * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
+ * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
+ * have been needed to return all paths.
+ */
+int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
+{
+	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
+				inode_to_path, ipath);
+}
+
+struct btrfs_data_container *init_data_container(u32 total_bytes)
+{
+	struct btrfs_data_container *data;
+	size_t alloc_bytes;
+
+	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
+	data = kmalloc(alloc_bytes, GFP_NOFS);
+	if (!data)
+		return ERR_PTR(-ENOMEM);
+
+	if (total_bytes >= sizeof(*data)) {
+		data->bytes_left = total_bytes - sizeof(*data);
+		data->bytes_missing = 0;
+	} else {
+		data->bytes_missing = sizeof(*data) - total_bytes;
+		data->bytes_left = 0;
+	}
+
+	data->elem_cnt = 0;
+	data->elem_missed = 0;
+
+	return data;
+}
+
+/*
+ * allocates space to return multiple file system paths for an inode.
+ * total_bytes to allocate are passed, note that space usable for actual path
+ * information will be total_bytes - sizeof(struct inode_fs_paths).
+ * the returned pointer must be freed with free_ipath() in the end.
+ */
+struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
+					struct btrfs_path *path)
+{
+	struct inode_fs_paths *ifp;
+	struct btrfs_data_container *fspath;
+
+	fspath = init_data_container(total_bytes);
+	if (IS_ERR(fspath))
+		return (void *)fspath;
+
+	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
+	if (!ifp) {
+		kfree(fspath);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	ifp->btrfs_path = path;
+	ifp->fspath = fspath;
+	ifp->fs_root = fs_root;
+
+	return ifp;
+}
+
+void free_ipath(struct inode_fs_paths *ipath)
+{
+	if (!ipath)
+		return;
+	kfree(ipath->fspath);
+	kfree(ipath);
+}