[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/compression.c b/ap/os/linux/linux-3.4.x/fs/btrfs/compression.c
new file mode 100644
index 0000000..503a6bd
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/compression.c
@@ -0,0 +1,1040 @@
+/*
+ * Copyright (C) 2008 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/bit_spinlock.h>
+#include <linux/slab.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "ordered-data.h"
+#include "compression.h"
+#include "extent_io.h"
+#include "extent_map.h"
+
+struct compressed_bio {
+	/* number of bios pending for this compressed extent */
+	atomic_t pending_bios;
+
+	/* the pages with the compressed data on them */
+	struct page **compressed_pages;
+
+	/* inode that owns this data */
+	struct inode *inode;
+
+	/* starting offset in the inode for our pages */
+	u64 start;
+
+	/* number of bytes in the inode we're working on */
+	unsigned long len;
+
+	/* number of bytes on disk */
+	unsigned long compressed_len;
+
+	/* the compression algorithm for this bio */
+	int compress_type;
+
+	/* number of compressed pages in the array */
+	unsigned long nr_pages;
+
+	/* IO errors */
+	int errors;
+	int mirror_num;
+
+	/* for reads, this is the bio we are copying the data into */
+	struct bio *orig_bio;
+
+	/*
+	 * the start of a variable length array of checksums only
+	 * used by reads
+	 */
+	u32 sums;
+};
+
+static inline int compressed_bio_size(struct btrfs_root *root,
+				      unsigned long disk_size)
+{
+	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+
+	return sizeof(struct compressed_bio) +
+		((disk_size + root->sectorsize - 1) / root->sectorsize) *
+		csum_size;
+}
+
+static struct bio *compressed_bio_alloc(struct block_device *bdev,
+					u64 first_byte, gfp_t gfp_flags)
+{
+	int nr_vecs;
+
+	nr_vecs = bio_get_nr_vecs(bdev);
+	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
+}
+
+static int check_compressed_csum(struct inode *inode,
+				 struct compressed_bio *cb,
+				 u64 disk_start)
+{
+	int ret;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct page *page;
+	unsigned long i;
+	char *kaddr;
+	u32 csum;
+	u32 *cb_sum = &cb->sums;
+
+	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
+		return 0;
+
+	for (i = 0; i < cb->nr_pages; i++) {
+		page = cb->compressed_pages[i];
+		csum = ~(u32)0;
+
+		kaddr = kmap_atomic(page);
+		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
+		btrfs_csum_final(csum, (char *)&csum);
+		kunmap_atomic(kaddr);
+
+		if (csum != *cb_sum) {
+			printk(KERN_INFO "btrfs csum failed ino %llu "
+			       "extent %llu csum %u "
+			       "wanted %u mirror %d\n",
+			       (unsigned long long)btrfs_ino(inode),
+			       (unsigned long long)disk_start,
+			       csum, *cb_sum, cb->mirror_num);
+			ret = -EIO;
+			goto fail;
+		}
+		cb_sum++;
+
+	}
+	ret = 0;
+fail:
+	return ret;
+}
+
+/* when we finish reading compressed pages from the disk, we
+ * decompress them and then run the bio end_io routines on the
+ * decompressed pages (in the inode address space).
+ *
+ * This allows the checksumming and other IO error handling routines
+ * to work normally
+ *
+ * The compressed pages are freed here, and it must be run
+ * in process context
+ */
+static void end_compressed_bio_read(struct bio *bio, int err)
+{
+	struct compressed_bio *cb = bio->bi_private;
+	struct inode *inode;
+	struct page *page;
+	unsigned long index;
+	int ret;
+
+	if (err)
+		cb->errors = 1;
+
+	/* if there are more bios still pending for this compressed
+	 * extent, just exit
+	 */
+	if (!atomic_dec_and_test(&cb->pending_bios))
+		goto out;
+
+	inode = cb->inode;
+	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
+	if (ret)
+		goto csum_failed;
+
+	/* ok, we're the last bio for this extent, lets start
+	 * the decompression.
+	 */
+	ret = btrfs_decompress_biovec(cb->compress_type,
+				      cb->compressed_pages,
+				      cb->start,
+				      cb->orig_bio->bi_io_vec,
+				      cb->orig_bio->bi_vcnt,
+				      cb->compressed_len);
+csum_failed:
+	if (ret)
+		cb->errors = 1;
+
+	/* release the compressed pages */
+	index = 0;
+	for (index = 0; index < cb->nr_pages; index++) {
+		page = cb->compressed_pages[index];
+		page->mapping = NULL;
+		page_cache_release(page);
+	}
+
+	/* do io completion on the original bio */
+	if (cb->errors) {
+		bio_io_error(cb->orig_bio);
+	} else {
+		int bio_index = 0;
+		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
+
+		/*
+		 * we have verified the checksum already, set page
+		 * checked so the end_io handlers know about it
+		 */
+		while (bio_index < cb->orig_bio->bi_vcnt) {
+			SetPageChecked(bvec->bv_page);
+			bvec++;
+			bio_index++;
+		}
+		bio_endio(cb->orig_bio, 0);
+	}
+
+	/* finally free the cb struct */
+	kfree(cb->compressed_pages);
+	kfree(cb);
+out:
+	bio_put(bio);
+}
+
+/*
+ * Clear the writeback bits on all of the file
+ * pages for a compressed write
+ */
+static noinline void end_compressed_writeback(struct inode *inode, u64 start,
+					      unsigned long ram_size)
+{
+	unsigned long index = start >> PAGE_CACHE_SHIFT;
+	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
+	struct page *pages[16];
+	unsigned long nr_pages = end_index - index + 1;
+	int i;
+	int ret;
+
+	while (nr_pages > 0) {
+		ret = find_get_pages_contig(inode->i_mapping, index,
+				     min_t(unsigned long,
+				     nr_pages, ARRAY_SIZE(pages)), pages);
+		if (ret == 0) {
+			nr_pages -= 1;
+			index += 1;
+			continue;
+		}
+		for (i = 0; i < ret; i++) {
+			end_page_writeback(pages[i]);
+			page_cache_release(pages[i]);
+		}
+		nr_pages -= ret;
+		index += ret;
+	}
+	/* the inode may be gone now */
+}
+
+/*
+ * do the cleanup once all the compressed pages hit the disk.
+ * This will clear writeback on the file pages and free the compressed
+ * pages.
+ *
+ * This also calls the writeback end hooks for the file pages so that
+ * metadata and checksums can be updated in the file.
+ */
+static void end_compressed_bio_write(struct bio *bio, int err)
+{
+	struct extent_io_tree *tree;
+	struct compressed_bio *cb = bio->bi_private;
+	struct inode *inode;
+	struct page *page;
+	unsigned long index;
+
+	if (err)
+		cb->errors = 1;
+
+	/* if there are more bios still pending for this compressed
+	 * extent, just exit
+	 */
+	if (!atomic_dec_and_test(&cb->pending_bios))
+		goto out;
+
+	/* ok, we're the last bio for this extent, step one is to
+	 * call back into the FS and do all the end_io operations
+	 */
+	inode = cb->inode;
+	tree = &BTRFS_I(inode)->io_tree;
+	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
+	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
+					 cb->start,
+					 cb->start + cb->len - 1,
+					 NULL, 1);
+	cb->compressed_pages[0]->mapping = NULL;
+
+	end_compressed_writeback(inode, cb->start, cb->len);
+	/* note, our inode could be gone now */
+
+	/*
+	 * release the compressed pages, these came from alloc_page and
+	 * are not attached to the inode at all
+	 */
+	index = 0;
+	for (index = 0; index < cb->nr_pages; index++) {
+		page = cb->compressed_pages[index];
+		page->mapping = NULL;
+		page_cache_release(page);
+	}
+
+	/* finally free the cb struct */
+	kfree(cb->compressed_pages);
+	kfree(cb);
+out:
+	bio_put(bio);
+}
+
+/*
+ * worker function to build and submit bios for previously compressed pages.
+ * The corresponding pages in the inode should be marked for writeback
+ * and the compressed pages should have a reference on them for dropping
+ * when the IO is complete.
+ *
+ * This also checksums the file bytes and gets things ready for
+ * the end io hooks.
+ */
+int btrfs_submit_compressed_write(struct inode *inode, u64 start,
+				 unsigned long len, u64 disk_start,
+				 unsigned long compressed_len,
+				 struct page **compressed_pages,
+				 unsigned long nr_pages)
+{
+	struct bio *bio = NULL;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct compressed_bio *cb;
+	unsigned long bytes_left;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	int pg_index = 0;
+	struct page *page;
+	u64 first_byte = disk_start;
+	struct block_device *bdev;
+	int ret;
+	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
+	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
+	if (!cb)
+		return -ENOMEM;
+	atomic_set(&cb->pending_bios, 0);
+	cb->errors = 0;
+	cb->inode = inode;
+	cb->start = start;
+	cb->len = len;
+	cb->mirror_num = 0;
+	cb->compressed_pages = compressed_pages;
+	cb->compressed_len = compressed_len;
+	cb->orig_bio = NULL;
+	cb->nr_pages = nr_pages;
+
+	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
+	if(!bio) {
+		kfree(cb);
+		return -ENOMEM;
+	}
+	bio->bi_private = cb;
+	bio->bi_end_io = end_compressed_bio_write;
+	atomic_inc(&cb->pending_bios);
+
+	/* create and submit bios for the compressed pages */
+	bytes_left = compressed_len;
+	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
+		page = compressed_pages[pg_index];
+		page->mapping = inode->i_mapping;
+		if (bio->bi_size)
+			ret = io_tree->ops->merge_bio_hook(page, 0,
+							   PAGE_CACHE_SIZE,
+							   bio, 0);
+		else
+			ret = 0;
+
+		page->mapping = NULL;
+		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
+		    PAGE_CACHE_SIZE) {
+			bio_get(bio);
+
+			/*
+			 * inc the count before we submit the bio so
+			 * we know the end IO handler won't happen before
+			 * we inc the count.  Otherwise, the cb might get
+			 * freed before we're done setting it up
+			 */
+			atomic_inc(&cb->pending_bios);
+			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
+			BUG_ON(ret); /* -ENOMEM */
+
+			if (!skip_sum) {
+				ret = btrfs_csum_one_bio(root, inode, bio,
+							 start, 1);
+				BUG_ON(ret); /* -ENOMEM */
+			}
+
+			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
+			BUG_ON(ret); /* -ENOMEM */
+
+			bio_put(bio);
+
+			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
+			BUG_ON(!bio);
+			bio->bi_private = cb;
+			bio->bi_end_io = end_compressed_bio_write;
+			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
+		}
+		if (bytes_left < PAGE_CACHE_SIZE) {
+			printk("bytes left %lu compress len %lu nr %lu\n",
+			       bytes_left, cb->compressed_len, cb->nr_pages);
+		}
+		bytes_left -= PAGE_CACHE_SIZE;
+		first_byte += PAGE_CACHE_SIZE;
+		cond_resched();
+	}
+	bio_get(bio);
+
+	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
+	BUG_ON(ret); /* -ENOMEM */
+
+	if (!skip_sum) {
+		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
+	BUG_ON(ret); /* -ENOMEM */
+
+	bio_put(bio);
+	return 0;
+}
+
+static noinline int add_ra_bio_pages(struct inode *inode,
+				     u64 compressed_end,
+				     struct compressed_bio *cb)
+{
+	unsigned long end_index;
+	unsigned long pg_index;
+	u64 last_offset;
+	u64 isize = i_size_read(inode);
+	int ret;
+	struct page *page;
+	unsigned long nr_pages = 0;
+	struct extent_map *em;
+	struct address_space *mapping = inode->i_mapping;
+	struct extent_map_tree *em_tree;
+	struct extent_io_tree *tree;
+	u64 end;
+	int misses = 0;
+
+	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
+	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
+	em_tree = &BTRFS_I(inode)->extent_tree;
+	tree = &BTRFS_I(inode)->io_tree;
+
+	if (isize == 0)
+		return 0;
+
+	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
+
+	while (last_offset < compressed_end) {
+		pg_index = last_offset >> PAGE_CACHE_SHIFT;
+
+		if (pg_index > end_index)
+			break;
+
+		rcu_read_lock();
+		page = radix_tree_lookup(&mapping->page_tree, pg_index);
+		rcu_read_unlock();
+		if (page) {
+			misses++;
+			if (misses > 4)
+				break;
+			goto next;
+		}
+
+		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
+								~__GFP_FS);
+		if (!page)
+			break;
+
+		if (add_to_page_cache_lru(page, mapping, pg_index,
+								GFP_NOFS)) {
+			page_cache_release(page);
+			goto next;
+		}
+
+		end = last_offset + PAGE_CACHE_SIZE - 1;
+		/*
+		 * at this point, we have a locked page in the page cache
+		 * for these bytes in the file.  But, we have to make
+		 * sure they map to this compressed extent on disk.
+		 */
+		set_page_extent_mapped(page);
+		lock_extent(tree, last_offset, end);
+		read_lock(&em_tree->lock);
+		em = lookup_extent_mapping(em_tree, last_offset,
+					   PAGE_CACHE_SIZE);
+		read_unlock(&em_tree->lock);
+
+		if (!em || last_offset < em->start ||
+		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
+		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
+			free_extent_map(em);
+			unlock_extent(tree, last_offset, end);
+			unlock_page(page);
+			page_cache_release(page);
+			break;
+		}
+		free_extent_map(em);
+
+		if (page->index == end_index) {
+			char *userpage;
+			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
+
+			if (zero_offset) {
+				int zeros;
+				zeros = PAGE_CACHE_SIZE - zero_offset;
+				userpage = kmap_atomic(page);
+				memset(userpage + zero_offset, 0, zeros);
+				flush_dcache_page(page);
+				kunmap_atomic(userpage);
+			}
+		}
+
+		ret = bio_add_page(cb->orig_bio, page,
+				   PAGE_CACHE_SIZE, 0);
+
+		if (ret == PAGE_CACHE_SIZE) {
+			nr_pages++;
+			page_cache_release(page);
+		} else {
+			unlock_extent(tree, last_offset, end);
+			unlock_page(page);
+			page_cache_release(page);
+			break;
+		}
+next:
+		last_offset += PAGE_CACHE_SIZE;
+	}
+	return 0;
+}
+
+/*
+ * for a compressed read, the bio we get passed has all the inode pages
+ * in it.  We don't actually do IO on those pages but allocate new ones
+ * to hold the compressed pages on disk.
+ *
+ * bio->bi_sector points to the compressed extent on disk
+ * bio->bi_io_vec points to all of the inode pages
+ * bio->bi_vcnt is a count of pages
+ *
+ * After the compressed pages are read, we copy the bytes into the
+ * bio we were passed and then call the bio end_io calls
+ */
+int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
+				 int mirror_num, unsigned long bio_flags)
+{
+	struct extent_io_tree *tree;
+	struct extent_map_tree *em_tree;
+	struct compressed_bio *cb;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
+	unsigned long compressed_len;
+	unsigned long nr_pages;
+	unsigned long pg_index;
+	struct page *page;
+	struct block_device *bdev;
+	struct bio *comp_bio;
+	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
+	u64 em_len;
+	u64 em_start;
+	struct extent_map *em;
+	int ret = -ENOMEM;
+	u32 *sums;
+
+	tree = &BTRFS_I(inode)->io_tree;
+	em_tree = &BTRFS_I(inode)->extent_tree;
+
+	/* we need the actual starting offset of this extent in the file */
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree,
+				   page_offset(bio->bi_io_vec->bv_page),
+				   PAGE_CACHE_SIZE);
+	read_unlock(&em_tree->lock);
+	if (!em)
+		return -EIO;
+
+	compressed_len = em->block_len;
+	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
+	if (!cb)
+		goto out;
+
+	atomic_set(&cb->pending_bios, 0);
+	cb->errors = 0;
+	cb->inode = inode;
+	cb->mirror_num = mirror_num;
+	sums = &cb->sums;
+
+	cb->start = em->orig_start;
+	em_len = em->len;
+	em_start = em->start;
+
+	free_extent_map(em);
+	em = NULL;
+
+	cb->len = uncompressed_len;
+	cb->compressed_len = compressed_len;
+	cb->compress_type = extent_compress_type(bio_flags);
+	cb->orig_bio = bio;
+
+	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
+				 PAGE_CACHE_SIZE;
+	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
+				       GFP_NOFS);
+	if (!cb->compressed_pages)
+		goto fail1;
+
+	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
+							      __GFP_HIGHMEM);
+		if (!cb->compressed_pages[pg_index])
+			goto fail2;
+	}
+	cb->nr_pages = nr_pages;
+
+	add_ra_bio_pages(inode, em_start + em_len, cb);
+
+	/* include any pages we added in add_ra-bio_pages */
+	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
+	cb->len = uncompressed_len;
+
+	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
+	if (!comp_bio)
+		goto fail2;
+	comp_bio->bi_private = cb;
+	comp_bio->bi_end_io = end_compressed_bio_read;
+	atomic_inc(&cb->pending_bios);
+
+	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+		page = cb->compressed_pages[pg_index];
+		page->mapping = inode->i_mapping;
+		page->index = em_start >> PAGE_CACHE_SHIFT;
+
+		if (comp_bio->bi_size)
+			ret = tree->ops->merge_bio_hook(page, 0,
+							PAGE_CACHE_SIZE,
+							comp_bio, 0);
+		else
+			ret = 0;
+
+		page->mapping = NULL;
+		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
+		    PAGE_CACHE_SIZE) {
+			bio_get(comp_bio);
+
+			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
+			BUG_ON(ret); /* -ENOMEM */
+
+			/*
+			 * inc the count before we submit the bio so
+			 * we know the end IO handler won't happen before
+			 * we inc the count.  Otherwise, the cb might get
+			 * freed before we're done setting it up
+			 */
+			atomic_inc(&cb->pending_bios);
+
+			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+				ret = btrfs_lookup_bio_sums(root, inode,
+							comp_bio, sums);
+				BUG_ON(ret); /* -ENOMEM */
+			}
+			sums += (comp_bio->bi_size + root->sectorsize - 1) /
+				root->sectorsize;
+
+			ret = btrfs_map_bio(root, READ, comp_bio,
+					    mirror_num, 0);
+			BUG_ON(ret); /* -ENOMEM */
+
+			bio_put(comp_bio);
+
+			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
+							GFP_NOFS);
+			BUG_ON(!comp_bio);
+			comp_bio->bi_private = cb;
+			comp_bio->bi_end_io = end_compressed_bio_read;
+
+			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
+		}
+		cur_disk_byte += PAGE_CACHE_SIZE;
+	}
+	bio_get(comp_bio);
+
+	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
+	BUG_ON(ret); /* -ENOMEM */
+
+	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
+	BUG_ON(ret); /* -ENOMEM */
+
+	bio_put(comp_bio);
+	return 0;
+
+fail2:
+	for (pg_index = 0; pg_index < nr_pages; pg_index++)
+		free_page((unsigned long)cb->compressed_pages[pg_index]);
+
+	kfree(cb->compressed_pages);
+fail1:
+	kfree(cb);
+out:
+	free_extent_map(em);
+	return ret;
+}
+
+static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
+static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
+static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
+static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
+static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
+
+struct btrfs_compress_op *btrfs_compress_op[] = {
+	&btrfs_zlib_compress,
+	&btrfs_lzo_compress,
+};
+
+void __init btrfs_init_compress(void)
+{
+	int i;
+
+	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+		INIT_LIST_HEAD(&comp_idle_workspace[i]);
+		spin_lock_init(&comp_workspace_lock[i]);
+		atomic_set(&comp_alloc_workspace[i], 0);
+		init_waitqueue_head(&comp_workspace_wait[i]);
+	}
+}
+
+/*
+ * this finds an available workspace or allocates a new one
+ * ERR_PTR is returned if things go bad.
+ */
+static struct list_head *find_workspace(int type)
+{
+	struct list_head *workspace;
+	int cpus = num_online_cpus();
+	int idx = type - 1;
+
+	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
+	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
+	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
+	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
+	int *num_workspace			= &comp_num_workspace[idx];
+again:
+	spin_lock(workspace_lock);
+	if (!list_empty(idle_workspace)) {
+		workspace = idle_workspace->next;
+		list_del(workspace);
+		(*num_workspace)--;
+		spin_unlock(workspace_lock);
+		return workspace;
+
+	}
+	if (atomic_read(alloc_workspace) > cpus) {
+		DEFINE_WAIT(wait);
+
+		spin_unlock(workspace_lock);
+		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
+		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
+			schedule();
+		finish_wait(workspace_wait, &wait);
+		goto again;
+	}
+	atomic_inc(alloc_workspace);
+	spin_unlock(workspace_lock);
+
+	workspace = btrfs_compress_op[idx]->alloc_workspace();
+	if (IS_ERR(workspace)) {
+		atomic_dec(alloc_workspace);
+		wake_up(workspace_wait);
+	}
+	return workspace;
+}
+
+/*
+ * put a workspace struct back on the list or free it if we have enough
+ * idle ones sitting around
+ */
+static void free_workspace(int type, struct list_head *workspace)
+{
+	int idx = type - 1;
+	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
+	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
+	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
+	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
+	int *num_workspace			= &comp_num_workspace[idx];
+
+	spin_lock(workspace_lock);
+	if (*num_workspace < num_online_cpus()) {
+		list_add_tail(workspace, idle_workspace);
+		(*num_workspace)++;
+		spin_unlock(workspace_lock);
+		goto wake;
+	}
+	spin_unlock(workspace_lock);
+
+	btrfs_compress_op[idx]->free_workspace(workspace);
+	atomic_dec(alloc_workspace);
+wake:
+	if (waitqueue_active(workspace_wait))
+		wake_up(workspace_wait);
+}
+
+/*
+ * cleanup function for module exit
+ */
+static void free_workspaces(void)
+{
+	struct list_head *workspace;
+	int i;
+
+	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+		while (!list_empty(&comp_idle_workspace[i])) {
+			workspace = comp_idle_workspace[i].next;
+			list_del(workspace);
+			btrfs_compress_op[i]->free_workspace(workspace);
+			atomic_dec(&comp_alloc_workspace[i]);
+		}
+	}
+}
+
+/*
+ * given an address space and start/len, compress the bytes.
+ *
+ * pages are allocated to hold the compressed result and stored
+ * in 'pages'
+ *
+ * out_pages is used to return the number of pages allocated.  There
+ * may be pages allocated even if we return an error
+ *
+ * total_in is used to return the number of bytes actually read.  It
+ * may be smaller then len if we had to exit early because we
+ * ran out of room in the pages array or because we cross the
+ * max_out threshold.
+ *
+ * total_out is used to return the total number of compressed bytes
+ *
+ * max_out tells us the max number of bytes that we're allowed to
+ * stuff into pages
+ */
+int btrfs_compress_pages(int type, struct address_space *mapping,
+			 u64 start, unsigned long len,
+			 struct page **pages,
+			 unsigned long nr_dest_pages,
+			 unsigned long *out_pages,
+			 unsigned long *total_in,
+			 unsigned long *total_out,
+			 unsigned long max_out)
+{
+	struct list_head *workspace;
+	int ret;
+
+	workspace = find_workspace(type);
+	if (IS_ERR(workspace))
+		return -1;
+
+	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
+						      start, len, pages,
+						      nr_dest_pages, out_pages,
+						      total_in, total_out,
+						      max_out);
+	free_workspace(type, workspace);
+	return ret;
+}
+
+/*
+ * pages_in is an array of pages with compressed data.
+ *
+ * disk_start is the starting logical offset of this array in the file
+ *
+ * bvec is a bio_vec of pages from the file that we want to decompress into
+ *
+ * vcnt is the count of pages in the biovec
+ *
+ * srclen is the number of bytes in pages_in
+ *
+ * The basic idea is that we have a bio that was created by readpages.
+ * The pages in the bio are for the uncompressed data, and they may not
+ * be contiguous.  They all correspond to the range of bytes covered by
+ * the compressed extent.
+ */
+int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
+			    struct bio_vec *bvec, int vcnt, size_t srclen)
+{
+	struct list_head *workspace;
+	int ret;
+
+	workspace = find_workspace(type);
+	if (IS_ERR(workspace))
+		return -ENOMEM;
+
+	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
+							 disk_start,
+							 bvec, vcnt, srclen);
+	free_workspace(type, workspace);
+	return ret;
+}
+
+/*
+ * a less complex decompression routine.  Our compressed data fits in a
+ * single page, and we want to read a single page out of it.
+ * start_byte tells us the offset into the compressed data we're interested in
+ */
+int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
+		     unsigned long start_byte, size_t srclen, size_t destlen)
+{
+	struct list_head *workspace;
+	int ret;
+
+	workspace = find_workspace(type);
+	if (IS_ERR(workspace))
+		return -ENOMEM;
+
+	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
+						  dest_page, start_byte,
+						  srclen, destlen);
+
+	free_workspace(type, workspace);
+	return ret;
+}
+
+void btrfs_exit_compress(void)
+{
+	free_workspaces();
+}
+
+/*
+ * Copy uncompressed data from working buffer to pages.
+ *
+ * buf_start is the byte offset we're of the start of our workspace buffer.
+ *
+ * total_out is the last byte of the buffer
+ */
+int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
+			      unsigned long total_out, u64 disk_start,
+			      struct bio_vec *bvec, int vcnt,
+			      unsigned long *pg_index,
+			      unsigned long *pg_offset)
+{
+	unsigned long buf_offset;
+	unsigned long current_buf_start;
+	unsigned long start_byte;
+	unsigned long working_bytes = total_out - buf_start;
+	unsigned long bytes;
+	char *kaddr;
+	struct page *page_out = bvec[*pg_index].bv_page;
+
+	/*
+	 * start byte is the first byte of the page we're currently
+	 * copying into relative to the start of the compressed data.
+	 */
+	start_byte = page_offset(page_out) - disk_start;
+
+	/* we haven't yet hit data corresponding to this page */
+	if (total_out <= start_byte)
+		return 1;
+
+	/*
+	 * the start of the data we care about is offset into
+	 * the middle of our working buffer
+	 */
+	if (total_out > start_byte && buf_start < start_byte) {
+		buf_offset = start_byte - buf_start;
+		working_bytes -= buf_offset;
+	} else {
+		buf_offset = 0;
+	}
+	current_buf_start = buf_start;
+
+	/* copy bytes from the working buffer into the pages */
+	while (working_bytes > 0) {
+		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
+			    PAGE_CACHE_SIZE - buf_offset);
+		bytes = min(bytes, working_bytes);
+		kaddr = kmap_atomic(page_out);
+		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
+		if (*pg_index == (vcnt - 1) && *pg_offset == 0)
+			memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
+		kunmap_atomic(kaddr);
+		flush_dcache_page(page_out);
+
+		*pg_offset += bytes;
+		buf_offset += bytes;
+		working_bytes -= bytes;
+		current_buf_start += bytes;
+
+		/* check if we need to pick another page */
+		if (*pg_offset == PAGE_CACHE_SIZE) {
+			(*pg_index)++;
+			if (*pg_index >= vcnt)
+				return 0;
+
+			page_out = bvec[*pg_index].bv_page;
+			*pg_offset = 0;
+			start_byte = page_offset(page_out) - disk_start;
+
+			/*
+			 * make sure our new page is covered by this
+			 * working buffer
+			 */
+			if (total_out <= start_byte)
+				return 1;
+
+			/*
+			 * the next page in the biovec might not be adjacent
+			 * to the last page, but it might still be found
+			 * inside this working buffer. bump our offset pointer
+			 */
+			if (total_out > start_byte &&
+			    current_buf_start < start_byte) {
+				buf_offset = start_byte - buf_start;
+				working_bytes = total_out - start_byte;
+				current_buf_start = buf_start + buf_offset;
+			}
+		}
+	}
+
+	return 1;
+}