[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/extent-tree.c b/ap/os/linux/linux-3.4.x/fs/btrfs/extent-tree.c
new file mode 100644
index 0000000..f4576dc
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/extent-tree.c
@@ -0,0 +1,8074 @@
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/sort.h>
+#include <linux/rcupdate.h>
+#include <linux/kthread.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include "compat.h"
+#include "hash.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "print-tree.h"
+#include "transaction.h"
+#include "volumes.h"
+#include "locking.h"
+#include "free-space-cache.h"
+
+/*
+ * control flags for do_chunk_alloc's force field
+ * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
+ * if we really need one.
+ *
+ * CHUNK_ALLOC_LIMITED means to only try and allocate one
+ * if we have very few chunks already allocated.  This is
+ * used as part of the clustering code to help make sure
+ * we have a good pool of storage to cluster in, without
+ * filling the FS with empty chunks
+ *
+ * CHUNK_ALLOC_FORCE means it must try to allocate one
+ *
+ */
+enum {
+	CHUNK_ALLOC_NO_FORCE = 0,
+	CHUNK_ALLOC_LIMITED = 1,
+	CHUNK_ALLOC_FORCE = 2,
+};
+
+/*
+ * Control how reservations are dealt with.
+ *
+ * RESERVE_FREE - freeing a reservation.
+ * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
+ *   ENOSPC accounting
+ * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
+ *   bytes_may_use as the ENOSPC accounting is done elsewhere
+ */
+enum {
+	RESERVE_FREE = 0,
+	RESERVE_ALLOC = 1,
+	RESERVE_ALLOC_NO_ACCOUNT = 2,
+};
+
+static int update_block_group(struct btrfs_trans_handle *trans,
+			      struct btrfs_root *root,
+			      u64 bytenr, u64 num_bytes, int alloc);
+static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				u64 bytenr, u64 num_bytes, u64 parent,
+				u64 root_objectid, u64 owner_objectid,
+				u64 owner_offset, int refs_to_drop,
+				struct btrfs_delayed_extent_op *extra_op);
+static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
+				    struct extent_buffer *leaf,
+				    struct btrfs_extent_item *ei);
+static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+				      struct btrfs_root *root,
+				      u64 parent, u64 root_objectid,
+				      u64 flags, u64 owner, u64 offset,
+				      struct btrfs_key *ins, int ref_mod);
+static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *root,
+				     u64 parent, u64 root_objectid,
+				     u64 flags, struct btrfs_disk_key *key,
+				     int level, struct btrfs_key *ins);
+static int do_chunk_alloc(struct btrfs_trans_handle *trans,
+			  struct btrfs_root *extent_root, u64 alloc_bytes,
+			  u64 flags, int force);
+static int find_next_key(struct btrfs_path *path, int level,
+			 struct btrfs_key *key);
+static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+			    int dump_block_groups);
+static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
+				       u64 num_bytes, int reserve);
+
+static noinline int
+block_group_cache_done(struct btrfs_block_group_cache *cache)
+{
+	smp_mb();
+	return cache->cached == BTRFS_CACHE_FINISHED;
+}
+
+static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
+{
+	return (cache->flags & bits) == bits;
+}
+
+static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
+{
+	atomic_inc(&cache->count);
+}
+
+void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
+{
+	if (atomic_dec_and_test(&cache->count)) {
+		WARN_ON(cache->pinned > 0);
+		WARN_ON(cache->reserved > 0);
+		kfree(cache->free_space_ctl);
+		kfree(cache);
+	}
+}
+
+/*
+ * this adds the block group to the fs_info rb tree for the block group
+ * cache
+ */
+static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
+				struct btrfs_block_group_cache *block_group)
+{
+	struct rb_node **p;
+	struct rb_node *parent = NULL;
+	struct btrfs_block_group_cache *cache;
+
+	spin_lock(&info->block_group_cache_lock);
+	p = &info->block_group_cache_tree.rb_node;
+
+	while (*p) {
+		parent = *p;
+		cache = rb_entry(parent, struct btrfs_block_group_cache,
+				 cache_node);
+		if (block_group->key.objectid < cache->key.objectid) {
+			p = &(*p)->rb_left;
+		} else if (block_group->key.objectid > cache->key.objectid) {
+			p = &(*p)->rb_right;
+		} else {
+			spin_unlock(&info->block_group_cache_lock);
+			return -EEXIST;
+		}
+	}
+
+	rb_link_node(&block_group->cache_node, parent, p);
+	rb_insert_color(&block_group->cache_node,
+			&info->block_group_cache_tree);
+	spin_unlock(&info->block_group_cache_lock);
+
+	return 0;
+}
+
+/*
+ * This will return the block group at or after bytenr if contains is 0, else
+ * it will return the block group that contains the bytenr
+ */
+static struct btrfs_block_group_cache *
+block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
+			      int contains)
+{
+	struct btrfs_block_group_cache *cache, *ret = NULL;
+	struct rb_node *n;
+	u64 end, start;
+
+	spin_lock(&info->block_group_cache_lock);
+	n = info->block_group_cache_tree.rb_node;
+
+	while (n) {
+		cache = rb_entry(n, struct btrfs_block_group_cache,
+				 cache_node);
+		end = cache->key.objectid + cache->key.offset - 1;
+		start = cache->key.objectid;
+
+		if (bytenr < start) {
+			if (!contains && (!ret || start < ret->key.objectid))
+				ret = cache;
+			n = n->rb_left;
+		} else if (bytenr > start) {
+			if (contains && bytenr <= end) {
+				ret = cache;
+				break;
+			}
+			n = n->rb_right;
+		} else {
+			ret = cache;
+			break;
+		}
+	}
+	if (ret)
+		btrfs_get_block_group(ret);
+	spin_unlock(&info->block_group_cache_lock);
+
+	return ret;
+}
+
+static int add_excluded_extent(struct btrfs_root *root,
+			       u64 start, u64 num_bytes)
+{
+	u64 end = start + num_bytes - 1;
+	set_extent_bits(&root->fs_info->freed_extents[0],
+			start, end, EXTENT_UPTODATE, GFP_NOFS);
+	set_extent_bits(&root->fs_info->freed_extents[1],
+			start, end, EXTENT_UPTODATE, GFP_NOFS);
+	return 0;
+}
+
+static void free_excluded_extents(struct btrfs_root *root,
+				  struct btrfs_block_group_cache *cache)
+{
+	u64 start, end;
+
+	start = cache->key.objectid;
+	end = start + cache->key.offset - 1;
+
+	clear_extent_bits(&root->fs_info->freed_extents[0],
+			  start, end, EXTENT_UPTODATE, GFP_NOFS);
+	clear_extent_bits(&root->fs_info->freed_extents[1],
+			  start, end, EXTENT_UPTODATE, GFP_NOFS);
+}
+
+static int exclude_super_stripes(struct btrfs_root *root,
+				 struct btrfs_block_group_cache *cache)
+{
+	u64 bytenr;
+	u64 *logical;
+	int stripe_len;
+	int i, nr, ret;
+
+	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
+		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
+		cache->bytes_super += stripe_len;
+		ret = add_excluded_extent(root, cache->key.objectid,
+					  stripe_len);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+		bytenr = btrfs_sb_offset(i);
+		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
+				       cache->key.objectid, bytenr,
+				       0, &logical, &nr, &stripe_len);
+		BUG_ON(ret); /* -ENOMEM */
+
+		while (nr--) {
+			cache->bytes_super += stripe_len;
+			ret = add_excluded_extent(root, logical[nr],
+						  stripe_len);
+			BUG_ON(ret); /* -ENOMEM */
+		}
+
+		kfree(logical);
+	}
+	return 0;
+}
+
+static struct btrfs_caching_control *
+get_caching_control(struct btrfs_block_group_cache *cache)
+{
+	struct btrfs_caching_control *ctl;
+
+	spin_lock(&cache->lock);
+	if (cache->cached != BTRFS_CACHE_STARTED) {
+		spin_unlock(&cache->lock);
+		return NULL;
+	}
+
+	/* We're loading it the fast way, so we don't have a caching_ctl. */
+	if (!cache->caching_ctl) {
+		spin_unlock(&cache->lock);
+		return NULL;
+	}
+
+	ctl = cache->caching_ctl;
+	atomic_inc(&ctl->count);
+	spin_unlock(&cache->lock);
+	return ctl;
+}
+
+static void put_caching_control(struct btrfs_caching_control *ctl)
+{
+	if (atomic_dec_and_test(&ctl->count))
+		kfree(ctl);
+}
+
+/*
+ * this is only called by cache_block_group, since we could have freed extents
+ * we need to check the pinned_extents for any extents that can't be used yet
+ * since their free space will be released as soon as the transaction commits.
+ */
+static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
+			      struct btrfs_fs_info *info, u64 start, u64 end)
+{
+	u64 extent_start, extent_end, size, total_added = 0;
+	int ret;
+
+	while (start < end) {
+		ret = find_first_extent_bit(info->pinned_extents, start,
+					    &extent_start, &extent_end,
+					    EXTENT_DIRTY | EXTENT_UPTODATE);
+		if (ret)
+			break;
+
+		if (extent_start <= start) {
+			start = extent_end + 1;
+		} else if (extent_start > start && extent_start < end) {
+			size = extent_start - start;
+			total_added += size;
+			ret = btrfs_add_free_space(block_group, start,
+						   size);
+			BUG_ON(ret); /* -ENOMEM or logic error */
+			start = extent_end + 1;
+		} else {
+			break;
+		}
+	}
+
+	if (start < end) {
+		size = end - start;
+		total_added += size;
+		ret = btrfs_add_free_space(block_group, start, size);
+		BUG_ON(ret); /* -ENOMEM or logic error */
+	}
+
+	return total_added;
+}
+
+static noinline void caching_thread(struct btrfs_work *work)
+{
+	struct btrfs_block_group_cache *block_group;
+	struct btrfs_fs_info *fs_info;
+	struct btrfs_caching_control *caching_ctl;
+	struct btrfs_root *extent_root;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	u64 total_found = 0;
+	u64 last = 0;
+	u32 nritems;
+	int ret = 0;
+
+	caching_ctl = container_of(work, struct btrfs_caching_control, work);
+	block_group = caching_ctl->block_group;
+	fs_info = block_group->fs_info;
+	extent_root = fs_info->extent_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		goto out;
+
+	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
+
+	/*
+	 * We don't want to deadlock with somebody trying to allocate a new
+	 * extent for the extent root while also trying to search the extent
+	 * root to add free space.  So we skip locking and search the commit
+	 * root, since its read-only
+	 */
+	path->skip_locking = 1;
+	path->search_commit_root = 1;
+	path->reada = 1;
+
+	key.objectid = last;
+	key.offset = 0;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+again:
+	mutex_lock(&caching_ctl->mutex);
+	/* need to make sure the commit_root doesn't disappear */
+	down_read(&fs_info->extent_commit_sem);
+
+	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+	if (ret < 0)
+		goto err;
+
+	leaf = path->nodes[0];
+	nritems = btrfs_header_nritems(leaf);
+
+	while (1) {
+		if (btrfs_fs_closing(fs_info) > 1) {
+			last = (u64)-1;
+			break;
+		}
+
+		if (path->slots[0] < nritems) {
+			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+		} else {
+			ret = find_next_key(path, 0, &key);
+			if (ret)
+				break;
+
+			if (need_resched() ||
+			    btrfs_next_leaf(extent_root, path)) {
+				caching_ctl->progress = last;
+				btrfs_release_path(path);
+				up_read(&fs_info->extent_commit_sem);
+				mutex_unlock(&caching_ctl->mutex);
+				cond_resched();
+				goto again;
+			}
+			leaf = path->nodes[0];
+			nritems = btrfs_header_nritems(leaf);
+			continue;
+		}
+
+		if (key.objectid < block_group->key.objectid) {
+			path->slots[0]++;
+			continue;
+		}
+
+		if (key.objectid >= block_group->key.objectid +
+		    block_group->key.offset)
+			break;
+
+		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
+			total_found += add_new_free_space(block_group,
+							  fs_info, last,
+							  key.objectid);
+			last = key.objectid + key.offset;
+
+			if (total_found > (1024 * 1024 * 2)) {
+				total_found = 0;
+				wake_up(&caching_ctl->wait);
+			}
+		}
+		path->slots[0]++;
+	}
+	ret = 0;
+
+	total_found += add_new_free_space(block_group, fs_info, last,
+					  block_group->key.objectid +
+					  block_group->key.offset);
+	caching_ctl->progress = (u64)-1;
+
+	spin_lock(&block_group->lock);
+	block_group->caching_ctl = NULL;
+	block_group->cached = BTRFS_CACHE_FINISHED;
+	spin_unlock(&block_group->lock);
+
+err:
+	btrfs_free_path(path);
+	up_read(&fs_info->extent_commit_sem);
+
+	free_excluded_extents(extent_root, block_group);
+
+	mutex_unlock(&caching_ctl->mutex);
+out:
+	wake_up(&caching_ctl->wait);
+
+	put_caching_control(caching_ctl);
+	btrfs_put_block_group(block_group);
+}
+
+static int cache_block_group(struct btrfs_block_group_cache *cache,
+			     struct btrfs_trans_handle *trans,
+			     struct btrfs_root *root,
+			     int load_cache_only)
+{
+	DEFINE_WAIT(wait);
+	struct btrfs_fs_info *fs_info = cache->fs_info;
+	struct btrfs_caching_control *caching_ctl;
+	int ret = 0;
+
+	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
+	if (!caching_ctl)
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&caching_ctl->list);
+	mutex_init(&caching_ctl->mutex);
+	init_waitqueue_head(&caching_ctl->wait);
+	caching_ctl->block_group = cache;
+	caching_ctl->progress = cache->key.objectid;
+	atomic_set(&caching_ctl->count, 1);
+	caching_ctl->work.func = caching_thread;
+
+	spin_lock(&cache->lock);
+	/*
+	 * This should be a rare occasion, but this could happen I think in the
+	 * case where one thread starts to load the space cache info, and then
+	 * some other thread starts a transaction commit which tries to do an
+	 * allocation while the other thread is still loading the space cache
+	 * info.  The previous loop should have kept us from choosing this block
+	 * group, but if we've moved to the state where we will wait on caching
+	 * block groups we need to first check if we're doing a fast load here,
+	 * so we can wait for it to finish, otherwise we could end up allocating
+	 * from a block group who's cache gets evicted for one reason or
+	 * another.
+	 */
+	while (cache->cached == BTRFS_CACHE_FAST) {
+		struct btrfs_caching_control *ctl;
+
+		ctl = cache->caching_ctl;
+		atomic_inc(&ctl->count);
+		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
+		spin_unlock(&cache->lock);
+
+		schedule();
+
+		finish_wait(&ctl->wait, &wait);
+		put_caching_control(ctl);
+		spin_lock(&cache->lock);
+	}
+
+	if (cache->cached != BTRFS_CACHE_NO) {
+		spin_unlock(&cache->lock);
+		kfree(caching_ctl);
+		return 0;
+	}
+	WARN_ON(cache->caching_ctl);
+	cache->caching_ctl = caching_ctl;
+	cache->cached = BTRFS_CACHE_FAST;
+	spin_unlock(&cache->lock);
+
+	/*
+	 * We can't do the read from on-disk cache during a commit since we need
+	 * to have the normal tree locking.  Also if we are currently trying to
+	 * allocate blocks for the tree root we can't do the fast caching since
+	 * we likely hold important locks.
+	 */
+	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
+		ret = load_free_space_cache(fs_info, cache);
+
+		spin_lock(&cache->lock);
+		if (ret == 1) {
+			cache->caching_ctl = NULL;
+			cache->cached = BTRFS_CACHE_FINISHED;
+			cache->last_byte_to_unpin = (u64)-1;
+		} else {
+			if (load_cache_only) {
+				cache->caching_ctl = NULL;
+				cache->cached = BTRFS_CACHE_NO;
+			} else {
+				cache->cached = BTRFS_CACHE_STARTED;
+			}
+		}
+		spin_unlock(&cache->lock);
+		wake_up(&caching_ctl->wait);
+		if (ret == 1) {
+			put_caching_control(caching_ctl);
+			free_excluded_extents(fs_info->extent_root, cache);
+			return 0;
+		}
+	} else {
+		/*
+		 * We are not going to do the fast caching, set cached to the
+		 * appropriate value and wakeup any waiters.
+		 */
+		spin_lock(&cache->lock);
+		if (load_cache_only) {
+			cache->caching_ctl = NULL;
+			cache->cached = BTRFS_CACHE_NO;
+		} else {
+			cache->cached = BTRFS_CACHE_STARTED;
+		}
+		spin_unlock(&cache->lock);
+		wake_up(&caching_ctl->wait);
+	}
+
+	if (load_cache_only) {
+		put_caching_control(caching_ctl);
+		return 0;
+	}
+
+	down_write(&fs_info->extent_commit_sem);
+	atomic_inc(&caching_ctl->count);
+	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
+	up_write(&fs_info->extent_commit_sem);
+
+	btrfs_get_block_group(cache);
+
+	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
+
+	return ret;
+}
+
+/*
+ * return the block group that starts at or after bytenr
+ */
+static struct btrfs_block_group_cache *
+btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
+{
+	struct btrfs_block_group_cache *cache;
+
+	cache = block_group_cache_tree_search(info, bytenr, 0);
+
+	return cache;
+}
+
+/*
+ * return the block group that contains the given bytenr
+ */
+struct btrfs_block_group_cache *btrfs_lookup_block_group(
+						 struct btrfs_fs_info *info,
+						 u64 bytenr)
+{
+	struct btrfs_block_group_cache *cache;
+
+	cache = block_group_cache_tree_search(info, bytenr, 1);
+
+	return cache;
+}
+
+static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
+						  u64 flags)
+{
+	struct list_head *head = &info->space_info;
+	struct btrfs_space_info *found;
+
+	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(found, head, list) {
+		if (found->flags & flags) {
+			rcu_read_unlock();
+			return found;
+		}
+	}
+	rcu_read_unlock();
+	return NULL;
+}
+
+/*
+ * after adding space to the filesystem, we need to clear the full flags
+ * on all the space infos.
+ */
+void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
+{
+	struct list_head *head = &info->space_info;
+	struct btrfs_space_info *found;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(found, head, list)
+		found->full = 0;
+	rcu_read_unlock();
+}
+
+static u64 div_factor(u64 num, int factor)
+{
+	if (factor == 10)
+		return num;
+	num *= factor;
+	do_div(num, 10);
+	return num;
+}
+
+static u64 div_factor_fine(u64 num, int factor)
+{
+	if (factor == 100)
+		return num;
+	num *= factor;
+	do_div(num, 100);
+	return num;
+}
+
+u64 btrfs_find_block_group(struct btrfs_root *root,
+			   u64 search_start, u64 search_hint, int owner)
+{
+	struct btrfs_block_group_cache *cache;
+	u64 used;
+	u64 last = max(search_hint, search_start);
+	u64 group_start = 0;
+	int full_search = 0;
+	int factor = 9;
+	int wrapped = 0;
+again:
+	while (1) {
+		cache = btrfs_lookup_first_block_group(root->fs_info, last);
+		if (!cache)
+			break;
+
+		spin_lock(&cache->lock);
+		last = cache->key.objectid + cache->key.offset;
+		used = btrfs_block_group_used(&cache->item);
+
+		if ((full_search || !cache->ro) &&
+		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
+			if (used + cache->pinned + cache->reserved <
+			    div_factor(cache->key.offset, factor)) {
+				group_start = cache->key.objectid;
+				spin_unlock(&cache->lock);
+				btrfs_put_block_group(cache);
+				goto found;
+			}
+		}
+		spin_unlock(&cache->lock);
+		btrfs_put_block_group(cache);
+		cond_resched();
+	}
+	if (!wrapped) {
+		last = search_start;
+		wrapped = 1;
+		goto again;
+	}
+	if (!full_search && factor < 10) {
+		last = search_start;
+		full_search = 1;
+		factor = 10;
+		goto again;
+	}
+found:
+	return group_start;
+}
+
+/* simple helper to search for an existing extent at a given offset */
+int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
+{
+	int ret;
+	struct btrfs_key key;
+	struct btrfs_path *path;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = start;
+	key.offset = len;
+	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
+	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
+				0, 0);
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * helper function to lookup reference count and flags of extent.
+ *
+ * the head node for delayed ref is used to store the sum of all the
+ * reference count modifications queued up in the rbtree. the head
+ * node may also store the extent flags to set. This way you can check
+ * to see what the reference count and extent flags would be if all of
+ * the delayed refs are not processed.
+ */
+int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
+			     struct btrfs_root *root, u64 bytenr,
+			     u64 num_bytes, u64 *refs, u64 *flags)
+{
+	struct btrfs_delayed_ref_head *head;
+	struct btrfs_delayed_ref_root *delayed_refs;
+	struct btrfs_path *path;
+	struct btrfs_extent_item *ei;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	u32 item_size;
+	u64 num_refs;
+	u64 extent_flags;
+	int ret;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = bytenr;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+	key.offset = num_bytes;
+	if (!trans) {
+		path->skip_locking = 1;
+		path->search_commit_root = 1;
+	}
+again:
+	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
+				&key, path, 0, 0);
+	if (ret < 0)
+		goto out_free;
+
+	if (ret == 0) {
+		leaf = path->nodes[0];
+		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+		if (item_size >= sizeof(*ei)) {
+			ei = btrfs_item_ptr(leaf, path->slots[0],
+					    struct btrfs_extent_item);
+			num_refs = btrfs_extent_refs(leaf, ei);
+			extent_flags = btrfs_extent_flags(leaf, ei);
+		} else {
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+			struct btrfs_extent_item_v0 *ei0;
+			BUG_ON(item_size != sizeof(*ei0));
+			ei0 = btrfs_item_ptr(leaf, path->slots[0],
+					     struct btrfs_extent_item_v0);
+			num_refs = btrfs_extent_refs_v0(leaf, ei0);
+			/* FIXME: this isn't correct for data */
+			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+#else
+			BUG();
+#endif
+		}
+		BUG_ON(num_refs == 0);
+	} else {
+		num_refs = 0;
+		extent_flags = 0;
+		ret = 0;
+	}
+
+	if (!trans)
+		goto out;
+
+	delayed_refs = &trans->transaction->delayed_refs;
+	spin_lock(&delayed_refs->lock);
+	head = btrfs_find_delayed_ref_head(trans, bytenr);
+	if (head) {
+		if (!mutex_trylock(&head->mutex)) {
+			atomic_inc(&head->node.refs);
+			spin_unlock(&delayed_refs->lock);
+
+			btrfs_release_path(path);
+
+			/*
+			 * Mutex was contended, block until it's released and try
+			 * again
+			 */
+			mutex_lock(&head->mutex);
+			mutex_unlock(&head->mutex);
+			btrfs_put_delayed_ref(&head->node);
+			goto again;
+		}
+		if (head->extent_op && head->extent_op->update_flags)
+			extent_flags |= head->extent_op->flags_to_set;
+		else
+			BUG_ON(num_refs == 0);
+
+		num_refs += head->node.ref_mod;
+		mutex_unlock(&head->mutex);
+	}
+	spin_unlock(&delayed_refs->lock);
+out:
+	WARN_ON(num_refs == 0);
+	if (refs)
+		*refs = num_refs;
+	if (flags)
+		*flags = extent_flags;
+out_free:
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * Back reference rules.  Back refs have three main goals:
+ *
+ * 1) differentiate between all holders of references to an extent so that
+ *    when a reference is dropped we can make sure it was a valid reference
+ *    before freeing the extent.
+ *
+ * 2) Provide enough information to quickly find the holders of an extent
+ *    if we notice a given block is corrupted or bad.
+ *
+ * 3) Make it easy to migrate blocks for FS shrinking or storage pool
+ *    maintenance.  This is actually the same as #2, but with a slightly
+ *    different use case.
+ *
+ * There are two kinds of back refs. The implicit back refs is optimized
+ * for pointers in non-shared tree blocks. For a given pointer in a block,
+ * back refs of this kind provide information about the block's owner tree
+ * and the pointer's key. These information allow us to find the block by
+ * b-tree searching. The full back refs is for pointers in tree blocks not
+ * referenced by their owner trees. The location of tree block is recorded
+ * in the back refs. Actually the full back refs is generic, and can be
+ * used in all cases the implicit back refs is used. The major shortcoming
+ * of the full back refs is its overhead. Every time a tree block gets
+ * COWed, we have to update back refs entry for all pointers in it.
+ *
+ * For a newly allocated tree block, we use implicit back refs for
+ * pointers in it. This means most tree related operations only involve
+ * implicit back refs. For a tree block created in old transaction, the
+ * only way to drop a reference to it is COW it. So we can detect the
+ * event that tree block loses its owner tree's reference and do the
+ * back refs conversion.
+ *
+ * When a tree block is COW'd through a tree, there are four cases:
+ *
+ * The reference count of the block is one and the tree is the block's
+ * owner tree. Nothing to do in this case.
+ *
+ * The reference count of the block is one and the tree is not the
+ * block's owner tree. In this case, full back refs is used for pointers
+ * in the block. Remove these full back refs, add implicit back refs for
+ * every pointers in the new block.
+ *
+ * The reference count of the block is greater than one and the tree is
+ * the block's owner tree. In this case, implicit back refs is used for
+ * pointers in the block. Add full back refs for every pointers in the
+ * block, increase lower level extents' reference counts. The original
+ * implicit back refs are entailed to the new block.
+ *
+ * The reference count of the block is greater than one and the tree is
+ * not the block's owner tree. Add implicit back refs for every pointer in
+ * the new block, increase lower level extents' reference count.
+ *
+ * Back Reference Key composing:
+ *
+ * The key objectid corresponds to the first byte in the extent,
+ * The key type is used to differentiate between types of back refs.
+ * There are different meanings of the key offset for different types
+ * of back refs.
+ *
+ * File extents can be referenced by:
+ *
+ * - multiple snapshots, subvolumes, or different generations in one subvol
+ * - different files inside a single subvolume
+ * - different offsets inside a file (bookend extents in file.c)
+ *
+ * The extent ref structure for the implicit back refs has fields for:
+ *
+ * - Objectid of the subvolume root
+ * - objectid of the file holding the reference
+ * - original offset in the file
+ * - how many bookend extents
+ *
+ * The key offset for the implicit back refs is hash of the first
+ * three fields.
+ *
+ * The extent ref structure for the full back refs has field for:
+ *
+ * - number of pointers in the tree leaf
+ *
+ * The key offset for the implicit back refs is the first byte of
+ * the tree leaf
+ *
+ * When a file extent is allocated, The implicit back refs is used.
+ * the fields are filled in:
+ *
+ *     (root_key.objectid, inode objectid, offset in file, 1)
+ *
+ * When a file extent is removed file truncation, we find the
+ * corresponding implicit back refs and check the following fields:
+ *
+ *     (btrfs_header_owner(leaf), inode objectid, offset in file)
+ *
+ * Btree extents can be referenced by:
+ *
+ * - Different subvolumes
+ *
+ * Both the implicit back refs and the full back refs for tree blocks
+ * only consist of key. The key offset for the implicit back refs is
+ * objectid of block's owner tree. The key offset for the full back refs
+ * is the first byte of parent block.
+ *
+ * When implicit back refs is used, information about the lowest key and
+ * level of the tree block are required. These information are stored in
+ * tree block info structure.
+ */
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
+				  struct btrfs_root *root,
+				  struct btrfs_path *path,
+				  u64 owner, u32 extra_size)
+{
+	struct btrfs_extent_item *item;
+	struct btrfs_extent_item_v0 *ei0;
+	struct btrfs_extent_ref_v0 *ref0;
+	struct btrfs_tree_block_info *bi;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	u32 new_size = sizeof(*item);
+	u64 refs;
+	int ret;
+
+	leaf = path->nodes[0];
+	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
+
+	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+	ei0 = btrfs_item_ptr(leaf, path->slots[0],
+			     struct btrfs_extent_item_v0);
+	refs = btrfs_extent_refs_v0(leaf, ei0);
+
+	if (owner == (u64)-1) {
+		while (1) {
+			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+				ret = btrfs_next_leaf(root, path);
+				if (ret < 0)
+					return ret;
+				BUG_ON(ret > 0); /* Corruption */
+				leaf = path->nodes[0];
+			}
+			btrfs_item_key_to_cpu(leaf, &found_key,
+					      path->slots[0]);
+			BUG_ON(key.objectid != found_key.objectid);
+			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
+				path->slots[0]++;
+				continue;
+			}
+			ref0 = btrfs_item_ptr(leaf, path->slots[0],
+					      struct btrfs_extent_ref_v0);
+			owner = btrfs_ref_objectid_v0(leaf, ref0);
+			break;
+		}
+	}
+	btrfs_release_path(path);
+
+	if (owner < BTRFS_FIRST_FREE_OBJECTID)
+		new_size += sizeof(*bi);
+
+	new_size -= sizeof(*ei0);
+	ret = btrfs_search_slot(trans, root, &key, path,
+				new_size + extra_size, 1);
+	if (ret < 0)
+		return ret;
+	BUG_ON(ret); /* Corruption */
+
+	btrfs_extend_item(trans, root, path, new_size);
+
+	leaf = path->nodes[0];
+	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	btrfs_set_extent_refs(leaf, item, refs);
+	/* FIXME: get real generation */
+	btrfs_set_extent_generation(leaf, item, 0);
+	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+		btrfs_set_extent_flags(leaf, item,
+				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
+				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
+		bi = (struct btrfs_tree_block_info *)(item + 1);
+		/* FIXME: get first key of the block */
+		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
+		btrfs_set_tree_block_level(leaf, bi, (int)owner);
+	} else {
+		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
+	}
+	btrfs_mark_buffer_dirty(leaf);
+	return 0;
+}
+#endif
+
+static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
+{
+	u32 high_crc = ~(u32)0;
+	u32 low_crc = ~(u32)0;
+	__le64 lenum;
+
+	lenum = cpu_to_le64(root_objectid);
+	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
+	lenum = cpu_to_le64(owner);
+	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
+	lenum = cpu_to_le64(offset);
+	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
+
+	return ((u64)high_crc << 31) ^ (u64)low_crc;
+}
+
+static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
+				     struct btrfs_extent_data_ref *ref)
+{
+	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
+				    btrfs_extent_data_ref_objectid(leaf, ref),
+				    btrfs_extent_data_ref_offset(leaf, ref));
+}
+
+static int match_extent_data_ref(struct extent_buffer *leaf,
+				 struct btrfs_extent_data_ref *ref,
+				 u64 root_objectid, u64 owner, u64 offset)
+{
+	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
+	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
+	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
+		return 0;
+	return 1;
+}
+
+static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
+					   struct btrfs_root *root,
+					   struct btrfs_path *path,
+					   u64 bytenr, u64 parent,
+					   u64 root_objectid,
+					   u64 owner, u64 offset)
+{
+	struct btrfs_key key;
+	struct btrfs_extent_data_ref *ref;
+	struct extent_buffer *leaf;
+	u32 nritems;
+	int ret;
+	int recow;
+	int err = -ENOENT;
+
+	key.objectid = bytenr;
+	if (parent) {
+		key.type = BTRFS_SHARED_DATA_REF_KEY;
+		key.offset = parent;
+	} else {
+		key.type = BTRFS_EXTENT_DATA_REF_KEY;
+		key.offset = hash_extent_data_ref(root_objectid,
+						  owner, offset);
+	}
+again:
+	recow = 0;
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret < 0) {
+		err = ret;
+		goto fail;
+	}
+
+	if (parent) {
+		if (!ret)
+			return 0;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+		key.type = BTRFS_EXTENT_REF_V0_KEY;
+		btrfs_release_path(path);
+		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+		if (ret < 0) {
+			err = ret;
+			goto fail;
+		}
+		if (!ret)
+			return 0;
+#endif
+		goto fail;
+	}
+
+	leaf = path->nodes[0];
+	nritems = btrfs_header_nritems(leaf);
+	while (1) {
+		if (path->slots[0] >= nritems) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret < 0)
+				err = ret;
+			if (ret)
+				goto fail;
+
+			leaf = path->nodes[0];
+			nritems = btrfs_header_nritems(leaf);
+			recow = 1;
+		}
+
+		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+		if (key.objectid != bytenr ||
+		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
+			goto fail;
+
+		ref = btrfs_item_ptr(leaf, path->slots[0],
+				     struct btrfs_extent_data_ref);
+
+		if (match_extent_data_ref(leaf, ref, root_objectid,
+					  owner, offset)) {
+			if (recow) {
+				btrfs_release_path(path);
+				goto again;
+			}
+			err = 0;
+			break;
+		}
+		path->slots[0]++;
+	}
+fail:
+	return err;
+}
+
+static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
+					   struct btrfs_root *root,
+					   struct btrfs_path *path,
+					   u64 bytenr, u64 parent,
+					   u64 root_objectid, u64 owner,
+					   u64 offset, int refs_to_add)
+{
+	struct btrfs_key key;
+	struct extent_buffer *leaf;
+	u32 size;
+	u32 num_refs;
+	int ret;
+
+	key.objectid = bytenr;
+	if (parent) {
+		key.type = BTRFS_SHARED_DATA_REF_KEY;
+		key.offset = parent;
+		size = sizeof(struct btrfs_shared_data_ref);
+	} else {
+		key.type = BTRFS_EXTENT_DATA_REF_KEY;
+		key.offset = hash_extent_data_ref(root_objectid,
+						  owner, offset);
+		size = sizeof(struct btrfs_extent_data_ref);
+	}
+
+	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
+	if (ret && ret != -EEXIST)
+		goto fail;
+
+	leaf = path->nodes[0];
+	if (parent) {
+		struct btrfs_shared_data_ref *ref;
+		ref = btrfs_item_ptr(leaf, path->slots[0],
+				     struct btrfs_shared_data_ref);
+		if (ret == 0) {
+			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
+		} else {
+			num_refs = btrfs_shared_data_ref_count(leaf, ref);
+			num_refs += refs_to_add;
+			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
+		}
+	} else {
+		struct btrfs_extent_data_ref *ref;
+		while (ret == -EEXIST) {
+			ref = btrfs_item_ptr(leaf, path->slots[0],
+					     struct btrfs_extent_data_ref);
+			if (match_extent_data_ref(leaf, ref, root_objectid,
+						  owner, offset))
+				break;
+			btrfs_release_path(path);
+			key.offset++;
+			ret = btrfs_insert_empty_item(trans, root, path, &key,
+						      size);
+			if (ret && ret != -EEXIST)
+				goto fail;
+
+			leaf = path->nodes[0];
+		}
+		ref = btrfs_item_ptr(leaf, path->slots[0],
+				     struct btrfs_extent_data_ref);
+		if (ret == 0) {
+			btrfs_set_extent_data_ref_root(leaf, ref,
+						       root_objectid);
+			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
+			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
+			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
+		} else {
+			num_refs = btrfs_extent_data_ref_count(leaf, ref);
+			num_refs += refs_to_add;
+			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
+		}
+	}
+	btrfs_mark_buffer_dirty(leaf);
+	ret = 0;
+fail:
+	btrfs_release_path(path);
+	return ret;
+}
+
+static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
+					   struct btrfs_root *root,
+					   struct btrfs_path *path,
+					   int refs_to_drop)
+{
+	struct btrfs_key key;
+	struct btrfs_extent_data_ref *ref1 = NULL;
+	struct btrfs_shared_data_ref *ref2 = NULL;
+	struct extent_buffer *leaf;
+	u32 num_refs = 0;
+	int ret = 0;
+
+	leaf = path->nodes[0];
+	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+		ref1 = btrfs_item_ptr(leaf, path->slots[0],
+				      struct btrfs_extent_data_ref);
+		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+		ref2 = btrfs_item_ptr(leaf, path->slots[0],
+				      struct btrfs_shared_data_ref);
+		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+		struct btrfs_extent_ref_v0 *ref0;
+		ref0 = btrfs_item_ptr(leaf, path->slots[0],
+				      struct btrfs_extent_ref_v0);
+		num_refs = btrfs_ref_count_v0(leaf, ref0);
+#endif
+	} else {
+		BUG();
+	}
+
+	BUG_ON(num_refs < refs_to_drop);
+	num_refs -= refs_to_drop;
+
+	if (num_refs == 0) {
+		ret = btrfs_del_item(trans, root, path);
+	} else {
+		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
+			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
+		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
+			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+		else {
+			struct btrfs_extent_ref_v0 *ref0;
+			ref0 = btrfs_item_ptr(leaf, path->slots[0],
+					struct btrfs_extent_ref_v0);
+			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
+		}
+#endif
+		btrfs_mark_buffer_dirty(leaf);
+	}
+	return ret;
+}
+
+static noinline u32 extent_data_ref_count(struct btrfs_root *root,
+					  struct btrfs_path *path,
+					  struct btrfs_extent_inline_ref *iref)
+{
+	struct btrfs_key key;
+	struct extent_buffer *leaf;
+	struct btrfs_extent_data_ref *ref1;
+	struct btrfs_shared_data_ref *ref2;
+	u32 num_refs = 0;
+
+	leaf = path->nodes[0];
+	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+	if (iref) {
+		if (btrfs_extent_inline_ref_type(leaf, iref) ==
+		    BTRFS_EXTENT_DATA_REF_KEY) {
+			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
+			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+		} else {
+			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
+			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+		}
+	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+		ref1 = btrfs_item_ptr(leaf, path->slots[0],
+				      struct btrfs_extent_data_ref);
+		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+		ref2 = btrfs_item_ptr(leaf, path->slots[0],
+				      struct btrfs_shared_data_ref);
+		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+		struct btrfs_extent_ref_v0 *ref0;
+		ref0 = btrfs_item_ptr(leaf, path->slots[0],
+				      struct btrfs_extent_ref_v0);
+		num_refs = btrfs_ref_count_v0(leaf, ref0);
+#endif
+	} else {
+		WARN_ON(1);
+	}
+	return num_refs;
+}
+
+static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
+					  struct btrfs_root *root,
+					  struct btrfs_path *path,
+					  u64 bytenr, u64 parent,
+					  u64 root_objectid)
+{
+	struct btrfs_key key;
+	int ret;
+
+	key.objectid = bytenr;
+	if (parent) {
+		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
+		key.offset = parent;
+	} else {
+		key.type = BTRFS_TREE_BLOCK_REF_KEY;
+		key.offset = root_objectid;
+	}
+
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret > 0)
+		ret = -ENOENT;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	if (ret == -ENOENT && parent) {
+		btrfs_release_path(path);
+		key.type = BTRFS_EXTENT_REF_V0_KEY;
+		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+		if (ret > 0)
+			ret = -ENOENT;
+	}
+#endif
+	return ret;
+}
+
+static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
+					  struct btrfs_root *root,
+					  struct btrfs_path *path,
+					  u64 bytenr, u64 parent,
+					  u64 root_objectid)
+{
+	struct btrfs_key key;
+	int ret;
+
+	key.objectid = bytenr;
+	if (parent) {
+		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
+		key.offset = parent;
+	} else {
+		key.type = BTRFS_TREE_BLOCK_REF_KEY;
+		key.offset = root_objectid;
+	}
+
+	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
+	btrfs_release_path(path);
+	return ret;
+}
+
+static inline int extent_ref_type(u64 parent, u64 owner)
+{
+	int type;
+	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+		if (parent > 0)
+			type = BTRFS_SHARED_BLOCK_REF_KEY;
+		else
+			type = BTRFS_TREE_BLOCK_REF_KEY;
+	} else {
+		if (parent > 0)
+			type = BTRFS_SHARED_DATA_REF_KEY;
+		else
+			type = BTRFS_EXTENT_DATA_REF_KEY;
+	}
+	return type;
+}
+
+static int find_next_key(struct btrfs_path *path, int level,
+			 struct btrfs_key *key)
+
+{
+	for (; level < BTRFS_MAX_LEVEL; level++) {
+		if (!path->nodes[level])
+			break;
+		if (path->slots[level] + 1 >=
+		    btrfs_header_nritems(path->nodes[level]))
+			continue;
+		if (level == 0)
+			btrfs_item_key_to_cpu(path->nodes[level], key,
+					      path->slots[level] + 1);
+		else
+			btrfs_node_key_to_cpu(path->nodes[level], key,
+					      path->slots[level] + 1);
+		return 0;
+	}
+	return 1;
+}
+
+/*
+ * look for inline back ref. if back ref is found, *ref_ret is set
+ * to the address of inline back ref, and 0 is returned.
+ *
+ * if back ref isn't found, *ref_ret is set to the address where it
+ * should be inserted, and -ENOENT is returned.
+ *
+ * if insert is true and there are too many inline back refs, the path
+ * points to the extent item, and -EAGAIN is returned.
+ *
+ * NOTE: inline back refs are ordered in the same way that back ref
+ *	 items in the tree are ordered.
+ */
+static noinline_for_stack
+int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct btrfs_extent_inline_ref **ref_ret,
+				 u64 bytenr, u64 num_bytes,
+				 u64 parent, u64 root_objectid,
+				 u64 owner, u64 offset, int insert)
+{
+	struct btrfs_key key;
+	struct extent_buffer *leaf;
+	struct btrfs_extent_item *ei;
+	struct btrfs_extent_inline_ref *iref;
+	u64 flags;
+	u64 item_size;
+	unsigned long ptr;
+	unsigned long end;
+	int extra_size;
+	int type;
+	int want;
+	int ret;
+	int err = 0;
+
+	key.objectid = bytenr;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+	key.offset = num_bytes;
+
+	want = extent_ref_type(parent, owner);
+	if (insert) {
+		extra_size = btrfs_extent_inline_ref_size(want);
+		path->keep_locks = 1;
+	} else
+		extra_size = -1;
+	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
+	if (ret < 0) {
+		err = ret;
+		goto out;
+	}
+	if (ret && !insert) {
+		err = -ENOENT;
+		goto out;
+	}
+	BUG_ON(ret); /* Corruption */
+
+	leaf = path->nodes[0];
+	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	if (item_size < sizeof(*ei)) {
+		if (!insert) {
+			err = -ENOENT;
+			goto out;
+		}
+		ret = convert_extent_item_v0(trans, root, path, owner,
+					     extra_size);
+		if (ret < 0) {
+			err = ret;
+			goto out;
+		}
+		leaf = path->nodes[0];
+		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+	}
+#endif
+	BUG_ON(item_size < sizeof(*ei));
+
+	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	flags = btrfs_extent_flags(leaf, ei);
+
+	ptr = (unsigned long)(ei + 1);
+	end = (unsigned long)ei + item_size;
+
+	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+		ptr += sizeof(struct btrfs_tree_block_info);
+		BUG_ON(ptr > end);
+	} else {
+		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
+	}
+
+	err = -ENOENT;
+	while (1) {
+		if (ptr >= end) {
+			WARN_ON(ptr > end);
+			break;
+		}
+		iref = (struct btrfs_extent_inline_ref *)ptr;
+		type = btrfs_extent_inline_ref_type(leaf, iref);
+		if (want < type)
+			break;
+		if (want > type) {
+			ptr += btrfs_extent_inline_ref_size(type);
+			continue;
+		}
+
+		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+			struct btrfs_extent_data_ref *dref;
+			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+			if (match_extent_data_ref(leaf, dref, root_objectid,
+						  owner, offset)) {
+				err = 0;
+				break;
+			}
+			if (hash_extent_data_ref_item(leaf, dref) <
+			    hash_extent_data_ref(root_objectid, owner, offset))
+				break;
+		} else {
+			u64 ref_offset;
+			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
+			if (parent > 0) {
+				if (parent == ref_offset) {
+					err = 0;
+					break;
+				}
+				if (ref_offset < parent)
+					break;
+			} else {
+				if (root_objectid == ref_offset) {
+					err = 0;
+					break;
+				}
+				if (ref_offset < root_objectid)
+					break;
+			}
+		}
+		ptr += btrfs_extent_inline_ref_size(type);
+	}
+	if (err == -ENOENT && insert) {
+		if (item_size + extra_size >=
+		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
+			err = -EAGAIN;
+			goto out;
+		}
+		/*
+		 * To add new inline back ref, we have to make sure
+		 * there is no corresponding back ref item.
+		 * For simplicity, we just do not add new inline back
+		 * ref if there is any kind of item for this block
+		 */
+		if (find_next_key(path, 0, &key) == 0 &&
+		    key.objectid == bytenr &&
+		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
+			err = -EAGAIN;
+			goto out;
+		}
+	}
+	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
+out:
+	if (insert) {
+		path->keep_locks = 0;
+		btrfs_unlock_up_safe(path, 1);
+	}
+	return err;
+}
+
+/*
+ * helper to add new inline back ref
+ */
+static noinline_for_stack
+void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct btrfs_extent_inline_ref *iref,
+				 u64 parent, u64 root_objectid,
+				 u64 owner, u64 offset, int refs_to_add,
+				 struct btrfs_delayed_extent_op *extent_op)
+{
+	struct extent_buffer *leaf;
+	struct btrfs_extent_item *ei;
+	unsigned long ptr;
+	unsigned long end;
+	unsigned long item_offset;
+	u64 refs;
+	int size;
+	int type;
+
+	leaf = path->nodes[0];
+	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	item_offset = (unsigned long)iref - (unsigned long)ei;
+
+	type = extent_ref_type(parent, owner);
+	size = btrfs_extent_inline_ref_size(type);
+
+	btrfs_extend_item(trans, root, path, size);
+
+	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	refs = btrfs_extent_refs(leaf, ei);
+	refs += refs_to_add;
+	btrfs_set_extent_refs(leaf, ei, refs);
+	if (extent_op)
+		__run_delayed_extent_op(extent_op, leaf, ei);
+
+	ptr = (unsigned long)ei + item_offset;
+	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
+	if (ptr < end - size)
+		memmove_extent_buffer(leaf, ptr + size, ptr,
+				      end - size - ptr);
+
+	iref = (struct btrfs_extent_inline_ref *)ptr;
+	btrfs_set_extent_inline_ref_type(leaf, iref, type);
+	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+		struct btrfs_extent_data_ref *dref;
+		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
+		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
+		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
+		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
+	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
+		struct btrfs_shared_data_ref *sref;
+		sref = (struct btrfs_shared_data_ref *)(iref + 1);
+		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
+		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
+		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+	} else {
+		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
+	}
+	btrfs_mark_buffer_dirty(leaf);
+}
+
+static int lookup_extent_backref(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct btrfs_extent_inline_ref **ref_ret,
+				 u64 bytenr, u64 num_bytes, u64 parent,
+				 u64 root_objectid, u64 owner, u64 offset)
+{
+	int ret;
+
+	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
+					   bytenr, num_bytes, parent,
+					   root_objectid, owner, offset, 0);
+	if (ret != -ENOENT)
+		return ret;
+
+	btrfs_release_path(path);
+	*ref_ret = NULL;
+
+	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
+					    root_objectid);
+	} else {
+		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
+					     root_objectid, owner, offset);
+	}
+	return ret;
+}
+
+/*
+ * helper to update/remove inline back ref
+ */
+static noinline_for_stack
+void update_inline_extent_backref(struct btrfs_trans_handle *trans,
+				  struct btrfs_root *root,
+				  struct btrfs_path *path,
+				  struct btrfs_extent_inline_ref *iref,
+				  int refs_to_mod,
+				  struct btrfs_delayed_extent_op *extent_op)
+{
+	struct extent_buffer *leaf;
+	struct btrfs_extent_item *ei;
+	struct btrfs_extent_data_ref *dref = NULL;
+	struct btrfs_shared_data_ref *sref = NULL;
+	unsigned long ptr;
+	unsigned long end;
+	u32 item_size;
+	int size;
+	int type;
+	u64 refs;
+
+	leaf = path->nodes[0];
+	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	refs = btrfs_extent_refs(leaf, ei);
+	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
+	refs += refs_to_mod;
+	btrfs_set_extent_refs(leaf, ei, refs);
+	if (extent_op)
+		__run_delayed_extent_op(extent_op, leaf, ei);
+
+	type = btrfs_extent_inline_ref_type(leaf, iref);
+
+	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+		refs = btrfs_extent_data_ref_count(leaf, dref);
+	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
+		sref = (struct btrfs_shared_data_ref *)(iref + 1);
+		refs = btrfs_shared_data_ref_count(leaf, sref);
+	} else {
+		refs = 1;
+		BUG_ON(refs_to_mod != -1);
+	}
+
+	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
+	refs += refs_to_mod;
+
+	if (refs > 0) {
+		if (type == BTRFS_EXTENT_DATA_REF_KEY)
+			btrfs_set_extent_data_ref_count(leaf, dref, refs);
+		else
+			btrfs_set_shared_data_ref_count(leaf, sref, refs);
+	} else {
+		size =  btrfs_extent_inline_ref_size(type);
+		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+		ptr = (unsigned long)iref;
+		end = (unsigned long)ei + item_size;
+		if (ptr + size < end)
+			memmove_extent_buffer(leaf, ptr, ptr + size,
+					      end - ptr - size);
+		item_size -= size;
+		btrfs_truncate_item(trans, root, path, item_size, 1);
+	}
+	btrfs_mark_buffer_dirty(leaf);
+}
+
+static noinline_for_stack
+int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 u64 bytenr, u64 num_bytes, u64 parent,
+				 u64 root_objectid, u64 owner,
+				 u64 offset, int refs_to_add,
+				 struct btrfs_delayed_extent_op *extent_op)
+{
+	struct btrfs_extent_inline_ref *iref;
+	int ret;
+
+	ret = lookup_inline_extent_backref(trans, root, path, &iref,
+					   bytenr, num_bytes, parent,
+					   root_objectid, owner, offset, 1);
+	if (ret == 0) {
+		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
+		update_inline_extent_backref(trans, root, path, iref,
+					     refs_to_add, extent_op);
+	} else if (ret == -ENOENT) {
+		setup_inline_extent_backref(trans, root, path, iref, parent,
+					    root_objectid, owner, offset,
+					    refs_to_add, extent_op);
+		ret = 0;
+	}
+	return ret;
+}
+
+static int insert_extent_backref(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 u64 bytenr, u64 parent, u64 root_objectid,
+				 u64 owner, u64 offset, int refs_to_add)
+{
+	int ret;
+	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+		BUG_ON(refs_to_add != 1);
+		ret = insert_tree_block_ref(trans, root, path, bytenr,
+					    parent, root_objectid);
+	} else {
+		ret = insert_extent_data_ref(trans, root, path, bytenr,
+					     parent, root_objectid,
+					     owner, offset, refs_to_add);
+	}
+	return ret;
+}
+
+static int remove_extent_backref(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct btrfs_extent_inline_ref *iref,
+				 int refs_to_drop, int is_data)
+{
+	int ret = 0;
+
+	BUG_ON(!is_data && refs_to_drop != 1);
+	if (iref) {
+		update_inline_extent_backref(trans, root, path, iref,
+					     -refs_to_drop, NULL);
+	} else if (is_data) {
+		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
+	} else {
+		ret = btrfs_del_item(trans, root, path);
+	}
+	return ret;
+}
+
+static int btrfs_issue_discard(struct block_device *bdev,
+				u64 start, u64 len)
+{
+	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
+}
+
+static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
+				u64 num_bytes, u64 *actual_bytes)
+{
+	int ret;
+	u64 discarded_bytes = 0;
+	struct btrfs_bio *bbio = NULL;
+
+
+	/* Tell the block device(s) that the sectors can be discarded */
+	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
+			      bytenr, &num_bytes, &bbio, 0);
+	/* Error condition is -ENOMEM */
+	if (!ret) {
+		struct btrfs_bio_stripe *stripe = bbio->stripes;
+		int i;
+
+
+		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
+			if (!stripe->dev->can_discard)
+				continue;
+
+			ret = btrfs_issue_discard(stripe->dev->bdev,
+						  stripe->physical,
+						  stripe->length);
+			if (!ret)
+				discarded_bytes += stripe->length;
+			else if (ret != -EOPNOTSUPP)
+				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
+
+			/*
+			 * Just in case we get back EOPNOTSUPP for some reason,
+			 * just ignore the return value so we don't screw up
+			 * people calling discard_extent.
+			 */
+			ret = 0;
+		}
+		kfree(bbio);
+	}
+
+	if (actual_bytes)
+		*actual_bytes = discarded_bytes;
+
+
+	return ret;
+}
+
+/* Can return -ENOMEM */
+int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+			 struct btrfs_root *root,
+			 u64 bytenr, u64 num_bytes, u64 parent,
+			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
+{
+	int ret;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+
+	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
+	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
+
+	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
+					num_bytes,
+					parent, root_objectid, (int)owner,
+					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
+	} else {
+		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
+					num_bytes,
+					parent, root_objectid, owner, offset,
+					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
+	}
+	return ret;
+}
+
+static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+				  struct btrfs_root *root,
+				  u64 bytenr, u64 num_bytes,
+				  u64 parent, u64 root_objectid,
+				  u64 owner, u64 offset, int refs_to_add,
+				  struct btrfs_delayed_extent_op *extent_op)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_extent_item *item;
+	u64 refs;
+	int ret;
+	int err = 0;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->reada = 1;
+	path->leave_spinning = 1;
+	/* this will setup the path even if it fails to insert the back ref */
+	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
+					   path, bytenr, num_bytes, parent,
+					   root_objectid, owner, offset,
+					   refs_to_add, extent_op);
+	if (ret == 0)
+		goto out;
+
+	if (ret != -EAGAIN) {
+		err = ret;
+		goto out;
+	}
+
+	leaf = path->nodes[0];
+	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	refs = btrfs_extent_refs(leaf, item);
+	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
+	if (extent_op)
+		__run_delayed_extent_op(extent_op, leaf, item);
+
+	btrfs_mark_buffer_dirty(leaf);
+	btrfs_release_path(path);
+
+	path->reada = 1;
+	path->leave_spinning = 1;
+
+	/* now insert the actual backref */
+	ret = insert_extent_backref(trans, root->fs_info->extent_root,
+				    path, bytenr, parent, root_objectid,
+				    owner, offset, refs_to_add);
+	if (ret)
+		btrfs_abort_transaction(trans, root, ret);
+out:
+	btrfs_free_path(path);
+	return err;
+}
+
+static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				struct btrfs_delayed_ref_node *node,
+				struct btrfs_delayed_extent_op *extent_op,
+				int insert_reserved)
+{
+	int ret = 0;
+	struct btrfs_delayed_data_ref *ref;
+	struct btrfs_key ins;
+	u64 parent = 0;
+	u64 ref_root = 0;
+	u64 flags = 0;
+
+	ins.objectid = node->bytenr;
+	ins.offset = node->num_bytes;
+	ins.type = BTRFS_EXTENT_ITEM_KEY;
+
+	ref = btrfs_delayed_node_to_data_ref(node);
+	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
+		parent = ref->parent;
+	else
+		ref_root = ref->root;
+
+	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
+		if (extent_op) {
+			BUG_ON(extent_op->update_key);
+			flags |= extent_op->flags_to_set;
+		}
+		ret = alloc_reserved_file_extent(trans, root,
+						 parent, ref_root, flags,
+						 ref->objectid, ref->offset,
+						 &ins, node->ref_mod);
+	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
+		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
+					     node->num_bytes, parent,
+					     ref_root, ref->objectid,
+					     ref->offset, node->ref_mod,
+					     extent_op);
+	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
+		ret = __btrfs_free_extent(trans, root, node->bytenr,
+					  node->num_bytes, parent,
+					  ref_root, ref->objectid,
+					  ref->offset, node->ref_mod,
+					  extent_op);
+	} else {
+		BUG();
+	}
+	return ret;
+}
+
+static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
+				    struct extent_buffer *leaf,
+				    struct btrfs_extent_item *ei)
+{
+	u64 flags = btrfs_extent_flags(leaf, ei);
+	if (extent_op->update_flags) {
+		flags |= extent_op->flags_to_set;
+		btrfs_set_extent_flags(leaf, ei, flags);
+	}
+
+	if (extent_op->update_key) {
+		struct btrfs_tree_block_info *bi;
+		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
+		bi = (struct btrfs_tree_block_info *)(ei + 1);
+		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
+	}
+}
+
+static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_delayed_ref_node *node,
+				 struct btrfs_delayed_extent_op *extent_op)
+{
+	struct btrfs_key key;
+	struct btrfs_path *path;
+	struct btrfs_extent_item *ei;
+	struct extent_buffer *leaf;
+	u32 item_size;
+	int ret;
+	int err = 0;
+
+	if (trans->aborted)
+		return 0;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = node->bytenr;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+	key.offset = node->num_bytes;
+
+	path->reada = 1;
+	path->leave_spinning = 1;
+	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
+				path, 0, 1);
+	if (ret < 0) {
+		err = ret;
+		goto out;
+	}
+	if (ret > 0) {
+		err = -EIO;
+		goto out;
+	}
+
+	leaf = path->nodes[0];
+	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	if (item_size < sizeof(*ei)) {
+		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
+					     path, (u64)-1, 0);
+		if (ret < 0) {
+			err = ret;
+			goto out;
+		}
+		leaf = path->nodes[0];
+		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+	}
+#endif
+	BUG_ON(item_size < sizeof(*ei));
+	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+	__run_delayed_extent_op(extent_op, leaf, ei);
+
+	btrfs_mark_buffer_dirty(leaf);
+out:
+	btrfs_free_path(path);
+	return err;
+}
+
+static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				struct btrfs_delayed_ref_node *node,
+				struct btrfs_delayed_extent_op *extent_op,
+				int insert_reserved)
+{
+	int ret = 0;
+	struct btrfs_delayed_tree_ref *ref;
+	struct btrfs_key ins;
+	u64 parent = 0;
+	u64 ref_root = 0;
+
+	ins.objectid = node->bytenr;
+	ins.offset = node->num_bytes;
+	ins.type = BTRFS_EXTENT_ITEM_KEY;
+
+	ref = btrfs_delayed_node_to_tree_ref(node);
+	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
+		parent = ref->parent;
+	else
+		ref_root = ref->root;
+
+	BUG_ON(node->ref_mod != 1);
+	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
+		BUG_ON(!extent_op || !extent_op->update_flags ||
+		       !extent_op->update_key);
+		ret = alloc_reserved_tree_block(trans, root,
+						parent, ref_root,
+						extent_op->flags_to_set,
+						&extent_op->key,
+						ref->level, &ins);
+	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
+		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
+					     node->num_bytes, parent, ref_root,
+					     ref->level, 0, 1, extent_op);
+	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
+		ret = __btrfs_free_extent(trans, root, node->bytenr,
+					  node->num_bytes, parent, ref_root,
+					  ref->level, 0, 1, extent_op);
+	} else {
+		BUG();
+	}
+	return ret;
+}
+
+/* helper function to actually process a single delayed ref entry */
+static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root,
+			       struct btrfs_delayed_ref_node *node,
+			       struct btrfs_delayed_extent_op *extent_op,
+			       int insert_reserved)
+{
+	int ret = 0;
+
+	if (trans->aborted)
+		return 0;
+
+	if (btrfs_delayed_ref_is_head(node)) {
+		struct btrfs_delayed_ref_head *head;
+		/*
+		 * we've hit the end of the chain and we were supposed
+		 * to insert this extent into the tree.  But, it got
+		 * deleted before we ever needed to insert it, so all
+		 * we have to do is clean up the accounting
+		 */
+		BUG_ON(extent_op);
+		head = btrfs_delayed_node_to_head(node);
+		if (insert_reserved) {
+			btrfs_pin_extent(root, node->bytenr,
+					 node->num_bytes, 1);
+			if (head->is_data) {
+				ret = btrfs_del_csums(trans, root,
+						      node->bytenr,
+						      node->num_bytes);
+			}
+		}
+		mutex_unlock(&head->mutex);
+		return ret;
+	}
+
+	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
+	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
+		ret = run_delayed_tree_ref(trans, root, node, extent_op,
+					   insert_reserved);
+	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
+		 node->type == BTRFS_SHARED_DATA_REF_KEY)
+		ret = run_delayed_data_ref(trans, root, node, extent_op,
+					   insert_reserved);
+	else
+		BUG();
+	return ret;
+}
+
+static noinline struct btrfs_delayed_ref_node *
+select_delayed_ref(struct btrfs_delayed_ref_head *head)
+{
+	struct rb_node *node;
+	struct btrfs_delayed_ref_node *ref;
+	int action = BTRFS_ADD_DELAYED_REF;
+again:
+	/*
+	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
+	 * this prevents ref count from going down to zero when
+	 * there still are pending delayed ref.
+	 */
+	node = rb_prev(&head->node.rb_node);
+	while (1) {
+		if (!node)
+			break;
+		ref = rb_entry(node, struct btrfs_delayed_ref_node,
+				rb_node);
+		if (ref->bytenr != head->node.bytenr)
+			break;
+		if (ref->action == action)
+			return ref;
+		node = rb_prev(node);
+	}
+	if (action == BTRFS_ADD_DELAYED_REF) {
+		action = BTRFS_DROP_DELAYED_REF;
+		goto again;
+	}
+	return NULL;
+}
+
+/*
+ * Returns 0 on success or if called with an already aborted transaction.
+ * Returns -ENOMEM or -EIO on failure and will abort the transaction.
+ */
+static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
+				       struct btrfs_root *root,
+				       struct list_head *cluster)
+{
+	struct btrfs_delayed_ref_root *delayed_refs;
+	struct btrfs_delayed_ref_node *ref;
+	struct btrfs_delayed_ref_head *locked_ref = NULL;
+	struct btrfs_delayed_extent_op *extent_op;
+	int ret;
+	int count = 0;
+	int must_insert_reserved = 0;
+
+	delayed_refs = &trans->transaction->delayed_refs;
+	while (1) {
+		if (!locked_ref) {
+			/* pick a new head ref from the cluster list */
+			if (list_empty(cluster))
+				break;
+
+			locked_ref = list_entry(cluster->next,
+				     struct btrfs_delayed_ref_head, cluster);
+
+			/* grab the lock that says we are going to process
+			 * all the refs for this head */
+			ret = btrfs_delayed_ref_lock(trans, locked_ref);
+
+			/*
+			 * we may have dropped the spin lock to get the head
+			 * mutex lock, and that might have given someone else
+			 * time to free the head.  If that's true, it has been
+			 * removed from our list and we can move on.
+			 */
+			if (ret == -EAGAIN) {
+				locked_ref = NULL;
+				count++;
+				continue;
+			}
+		}
+
+		/*
+		 * locked_ref is the head node, so we have to go one
+		 * node back for any delayed ref updates
+		 */
+		ref = select_delayed_ref(locked_ref);
+
+		if (ref && ref->seq &&
+		    btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
+			/*
+			 * there are still refs with lower seq numbers in the
+			 * process of being added. Don't run this ref yet.
+			 */
+			list_del_init(&locked_ref->cluster);
+			mutex_unlock(&locked_ref->mutex);
+			locked_ref = NULL;
+			delayed_refs->num_heads_ready++;
+			spin_unlock(&delayed_refs->lock);
+			cond_resched();
+			spin_lock(&delayed_refs->lock);
+			continue;
+		}
+
+		/*
+		 * record the must insert reserved flag before we
+		 * drop the spin lock.
+		 */
+		must_insert_reserved = locked_ref->must_insert_reserved;
+		locked_ref->must_insert_reserved = 0;
+
+		extent_op = locked_ref->extent_op;
+		locked_ref->extent_op = NULL;
+
+		if (!ref) {
+			/* All delayed refs have been processed, Go ahead
+			 * and send the head node to run_one_delayed_ref,
+			 * so that any accounting fixes can happen
+			 */
+			ref = &locked_ref->node;
+
+			if (extent_op && must_insert_reserved) {
+				kfree(extent_op);
+				extent_op = NULL;
+			}
+
+			if (extent_op) {
+				spin_unlock(&delayed_refs->lock);
+
+				ret = run_delayed_extent_op(trans, root,
+							    ref, extent_op);
+				kfree(extent_op);
+
+				if (ret) {
+					printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
+					spin_lock(&delayed_refs->lock);
+					return ret;
+				}
+
+				goto next;
+			}
+
+			list_del_init(&locked_ref->cluster);
+			locked_ref = NULL;
+		}
+
+		ref->in_tree = 0;
+		rb_erase(&ref->rb_node, &delayed_refs->root);
+		delayed_refs->num_entries--;
+		/*
+		 * we modified num_entries, but as we're currently running
+		 * delayed refs, skip
+		 *     wake_up(&delayed_refs->seq_wait);
+		 * here.
+		 */
+		spin_unlock(&delayed_refs->lock);
+
+		ret = run_one_delayed_ref(trans, root, ref, extent_op,
+					  must_insert_reserved);
+
+		btrfs_put_delayed_ref(ref);
+		kfree(extent_op);
+		count++;
+
+		if (ret) {
+			printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
+			spin_lock(&delayed_refs->lock);
+			return ret;
+		}
+
+next:
+		do_chunk_alloc(trans, root->fs_info->extent_root,
+			       2 * 1024 * 1024,
+			       btrfs_get_alloc_profile(root, 0),
+			       CHUNK_ALLOC_NO_FORCE);
+		cond_resched();
+		spin_lock(&delayed_refs->lock);
+	}
+	return count;
+}
+
+
+static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
+			unsigned long num_refs)
+{
+	struct list_head *first_seq = delayed_refs->seq_head.next;
+
+	spin_unlock(&delayed_refs->lock);
+	pr_debug("waiting for more refs (num %ld, first %p)\n",
+		 num_refs, first_seq);
+	wait_event(delayed_refs->seq_wait,
+		   num_refs != delayed_refs->num_entries ||
+		   delayed_refs->seq_head.next != first_seq);
+	pr_debug("done waiting for more refs (num %ld, first %p)\n",
+		 delayed_refs->num_entries, delayed_refs->seq_head.next);
+	spin_lock(&delayed_refs->lock);
+}
+
+/*
+ * this starts processing the delayed reference count updates and
+ * extent insertions we have queued up so far.  count can be
+ * 0, which means to process everything in the tree at the start
+ * of the run (but not newly added entries), or it can be some target
+ * number you'd like to process.
+ *
+ * Returns 0 on success or if called with an aborted transaction
+ * Returns <0 on error and aborts the transaction
+ */
+int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
+			   struct btrfs_root *root, unsigned long count)
+{
+	struct rb_node *node;
+	struct btrfs_delayed_ref_root *delayed_refs;
+	struct btrfs_delayed_ref_node *ref;
+	struct list_head cluster;
+	int ret;
+	u64 delayed_start;
+	int run_all = count == (unsigned long)-1;
+	int run_most = 0;
+	unsigned long num_refs = 0;
+	int consider_waiting;
+
+	/* We'll clean this up in btrfs_cleanup_transaction */
+	if (trans->aborted)
+		return 0;
+
+	if (root == root->fs_info->extent_root)
+		root = root->fs_info->tree_root;
+
+	do_chunk_alloc(trans, root->fs_info->extent_root,
+		       2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
+		       CHUNK_ALLOC_NO_FORCE);
+
+	delayed_refs = &trans->transaction->delayed_refs;
+	INIT_LIST_HEAD(&cluster);
+again:
+	consider_waiting = 0;
+	spin_lock(&delayed_refs->lock);
+	if (count == 0) {
+		count = delayed_refs->num_entries * 2;
+		run_most = 1;
+	}
+	while (1) {
+		if (!(run_all || run_most) &&
+		    delayed_refs->num_heads_ready < 64)
+			break;
+
+		/*
+		 * go find something we can process in the rbtree.  We start at
+		 * the beginning of the tree, and then build a cluster
+		 * of refs to process starting at the first one we are able to
+		 * lock
+		 */
+		delayed_start = delayed_refs->run_delayed_start;
+		ret = btrfs_find_ref_cluster(trans, &cluster,
+					     delayed_refs->run_delayed_start);
+		if (ret)
+			break;
+
+		if (delayed_start >= delayed_refs->run_delayed_start) {
+			if (consider_waiting == 0) {
+				/*
+				 * btrfs_find_ref_cluster looped. let's do one
+				 * more cycle. if we don't run any delayed ref
+				 * during that cycle (because we can't because
+				 * all of them are blocked) and if the number of
+				 * refs doesn't change, we avoid busy waiting.
+				 */
+				consider_waiting = 1;
+				num_refs = delayed_refs->num_entries;
+			} else {
+				wait_for_more_refs(delayed_refs, num_refs);
+				/*
+				 * after waiting, things have changed. we
+				 * dropped the lock and someone else might have
+				 * run some refs, built new clusters and so on.
+				 * therefore, we restart staleness detection.
+				 */
+				consider_waiting = 0;
+			}
+		}
+
+		ret = run_clustered_refs(trans, root, &cluster);
+		if (ret < 0) {
+			spin_unlock(&delayed_refs->lock);
+			btrfs_abort_transaction(trans, root, ret);
+			return ret;
+		}
+
+		count -= min_t(unsigned long, ret, count);
+
+		if (count == 0)
+			break;
+
+		if (ret || delayed_refs->run_delayed_start == 0) {
+			/* refs were run, let's reset staleness detection */
+			consider_waiting = 0;
+		}
+	}
+
+	if (run_all) {
+		node = rb_first(&delayed_refs->root);
+		if (!node)
+			goto out;
+		count = (unsigned long)-1;
+
+		while (node) {
+			ref = rb_entry(node, struct btrfs_delayed_ref_node,
+				       rb_node);
+			if (btrfs_delayed_ref_is_head(ref)) {
+				struct btrfs_delayed_ref_head *head;
+
+				head = btrfs_delayed_node_to_head(ref);
+				atomic_inc(&ref->refs);
+
+				spin_unlock(&delayed_refs->lock);
+				/*
+				 * Mutex was contended, block until it's
+				 * released and try again
+				 */
+				mutex_lock(&head->mutex);
+				mutex_unlock(&head->mutex);
+
+				btrfs_put_delayed_ref(ref);
+				cond_resched();
+				goto again;
+			}
+			node = rb_next(node);
+		}
+		spin_unlock(&delayed_refs->lock);
+		schedule_timeout(1);
+		goto again;
+	}
+out:
+	spin_unlock(&delayed_refs->lock);
+	return 0;
+}
+
+int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				u64 bytenr, u64 num_bytes, u64 flags,
+				int is_data)
+{
+	struct btrfs_delayed_extent_op *extent_op;
+	int ret;
+
+	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
+	if (!extent_op)
+		return -ENOMEM;
+
+	extent_op->flags_to_set = flags;
+	extent_op->update_flags = 1;
+	extent_op->update_key = 0;
+	extent_op->is_data = is_data ? 1 : 0;
+
+	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
+					  num_bytes, extent_op);
+	if (ret)
+		kfree(extent_op);
+	return ret;
+}
+
+static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
+				      struct btrfs_root *root,
+				      struct btrfs_path *path,
+				      u64 objectid, u64 offset, u64 bytenr)
+{
+	struct btrfs_delayed_ref_head *head;
+	struct btrfs_delayed_ref_node *ref;
+	struct btrfs_delayed_data_ref *data_ref;
+	struct btrfs_delayed_ref_root *delayed_refs;
+	struct rb_node *node;
+	int ret = 0;
+
+	ret = -ENOENT;
+	delayed_refs = &trans->transaction->delayed_refs;
+	spin_lock(&delayed_refs->lock);
+	head = btrfs_find_delayed_ref_head(trans, bytenr);
+	if (!head)
+		goto out;
+
+	if (!mutex_trylock(&head->mutex)) {
+		atomic_inc(&head->node.refs);
+		spin_unlock(&delayed_refs->lock);
+
+		btrfs_release_path(path);
+
+		/*
+		 * Mutex was contended, block until it's released and let
+		 * caller try again
+		 */
+		mutex_lock(&head->mutex);
+		mutex_unlock(&head->mutex);
+		btrfs_put_delayed_ref(&head->node);
+		return -EAGAIN;
+	}
+
+	node = rb_prev(&head->node.rb_node);
+	if (!node)
+		goto out_unlock;
+
+	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+
+	if (ref->bytenr != bytenr)
+		goto out_unlock;
+
+	ret = 1;
+	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
+		goto out_unlock;
+
+	data_ref = btrfs_delayed_node_to_data_ref(ref);
+
+	node = rb_prev(node);
+	if (node) {
+		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+		if (ref->bytenr == bytenr)
+			goto out_unlock;
+	}
+
+	if (data_ref->root != root->root_key.objectid ||
+	    data_ref->objectid != objectid || data_ref->offset != offset)
+		goto out_unlock;
+
+	ret = 0;
+out_unlock:
+	mutex_unlock(&head->mutex);
+out:
+	spin_unlock(&delayed_refs->lock);
+	return ret;
+}
+
+static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
+					struct btrfs_root *root,
+					struct btrfs_path *path,
+					u64 objectid, u64 offset, u64 bytenr)
+{
+	struct btrfs_root *extent_root = root->fs_info->extent_root;
+	struct extent_buffer *leaf;
+	struct btrfs_extent_data_ref *ref;
+	struct btrfs_extent_inline_ref *iref;
+	struct btrfs_extent_item *ei;
+	struct btrfs_key key;
+	u32 item_size;
+	int ret;
+
+	key.objectid = bytenr;
+	key.offset = (u64)-1;
+	key.type = BTRFS_EXTENT_ITEM_KEY;
+
+	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+	if (ret < 0)
+		goto out;
+	BUG_ON(ret == 0); /* Corruption */
+
+	ret = -ENOENT;
+	if (path->slots[0] == 0)
+		goto out;
+
+	path->slots[0]--;
+	leaf = path->nodes[0];
+	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
+		goto out;
+
+	ret = 1;
+	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	if (item_size < sizeof(*ei)) {
+		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
+		goto out;
+	}
+#endif
+	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+
+	if (item_size != sizeof(*ei) +
+	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
+		goto out;
+
+	if (btrfs_extent_generation(leaf, ei) <=
+	    btrfs_root_last_snapshot(&root->root_item))
+		goto out;
+
+	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
+	if (btrfs_extent_inline_ref_type(leaf, iref) !=
+	    BTRFS_EXTENT_DATA_REF_KEY)
+		goto out;
+
+	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
+	if (btrfs_extent_refs(leaf, ei) !=
+	    btrfs_extent_data_ref_count(leaf, ref) ||
+	    btrfs_extent_data_ref_root(leaf, ref) !=
+	    root->root_key.objectid ||
+	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
+	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
+		goto out;
+
+	ret = 0;
+out:
+	return ret;
+}
+
+int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
+			  struct btrfs_root *root,
+			  u64 objectid, u64 offset, u64 bytenr)
+{
+	struct btrfs_path *path;
+	int ret;
+	int ret2;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOENT;
+
+	do {
+		ret = check_committed_ref(trans, root, path, objectid,
+					  offset, bytenr);
+		if (ret && ret != -ENOENT)
+			goto out;
+
+		ret2 = check_delayed_ref(trans, root, path, objectid,
+					 offset, bytenr);
+	} while (ret2 == -EAGAIN);
+
+	if (ret2 && ret2 != -ENOENT) {
+		ret = ret2;
+		goto out;
+	}
+
+	if (ret != -ENOENT || ret2 != -ENOENT)
+		ret = 0;
+out:
+	btrfs_free_path(path);
+	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
+		WARN_ON(ret > 0);
+	return ret;
+}
+
+static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
+			   struct btrfs_root *root,
+			   struct extent_buffer *buf,
+			   int full_backref, int inc, int for_cow)
+{
+	u64 bytenr;
+	u64 num_bytes;
+	u64 parent;
+	u64 ref_root;
+	u32 nritems;
+	struct btrfs_key key;
+	struct btrfs_file_extent_item *fi;
+	int i;
+	int level;
+	int ret = 0;
+	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
+			    u64, u64, u64, u64, u64, u64, int);
+
+	ref_root = btrfs_header_owner(buf);
+	nritems = btrfs_header_nritems(buf);
+	level = btrfs_header_level(buf);
+
+	if (!root->ref_cows && level == 0)
+		return 0;
+
+	if (inc)
+		process_func = btrfs_inc_extent_ref;
+	else
+		process_func = btrfs_free_extent;
+
+	if (full_backref)
+		parent = buf->start;
+	else
+		parent = 0;
+
+	for (i = 0; i < nritems; i++) {
+		if (level == 0) {
+			btrfs_item_key_to_cpu(buf, &key, i);
+			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
+				continue;
+			fi = btrfs_item_ptr(buf, i,
+					    struct btrfs_file_extent_item);
+			if (btrfs_file_extent_type(buf, fi) ==
+			    BTRFS_FILE_EXTENT_INLINE)
+				continue;
+			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
+			if (bytenr == 0)
+				continue;
+
+			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
+			key.offset -= btrfs_file_extent_offset(buf, fi);
+			ret = process_func(trans, root, bytenr, num_bytes,
+					   parent, ref_root, key.objectid,
+					   key.offset, for_cow);
+			if (ret)
+				goto fail;
+		} else {
+			bytenr = btrfs_node_blockptr(buf, i);
+			num_bytes = btrfs_level_size(root, level - 1);
+			ret = process_func(trans, root, bytenr, num_bytes,
+					   parent, ref_root, level - 1, 0,
+					   for_cow);
+			if (ret)
+				goto fail;
+		}
+	}
+	return 0;
+fail:
+	return ret;
+}
+
+int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+		  struct extent_buffer *buf, int full_backref, int for_cow)
+{
+	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
+}
+
+int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+		  struct extent_buffer *buf, int full_backref, int for_cow)
+{
+	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
+}
+
+static int write_one_cache_group(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct btrfs_block_group_cache *cache)
+{
+	int ret;
+	struct btrfs_root *extent_root = root->fs_info->extent_root;
+	unsigned long bi;
+	struct extent_buffer *leaf;
+
+	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
+	if (ret < 0)
+		goto fail;
+	BUG_ON(ret); /* Corruption */
+
+	leaf = path->nodes[0];
+	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
+	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
+	btrfs_mark_buffer_dirty(leaf);
+	btrfs_release_path(path);
+fail:
+	if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		return ret;
+	}
+	return 0;
+
+}
+
+static struct btrfs_block_group_cache *
+next_block_group(struct btrfs_root *root,
+		 struct btrfs_block_group_cache *cache)
+{
+	struct rb_node *node;
+	spin_lock(&root->fs_info->block_group_cache_lock);
+	node = rb_next(&cache->cache_node);
+	btrfs_put_block_group(cache);
+	if (node) {
+		cache = rb_entry(node, struct btrfs_block_group_cache,
+				 cache_node);
+		btrfs_get_block_group(cache);
+	} else
+		cache = NULL;
+	spin_unlock(&root->fs_info->block_group_cache_lock);
+	return cache;
+}
+
+static int cache_save_setup(struct btrfs_block_group_cache *block_group,
+			    struct btrfs_trans_handle *trans,
+			    struct btrfs_path *path)
+{
+	struct btrfs_root *root = block_group->fs_info->tree_root;
+	struct inode *inode = NULL;
+	u64 alloc_hint = 0;
+	int dcs = BTRFS_DC_ERROR;
+	int num_pages = 0;
+	int retries = 0;
+	int ret = 0;
+
+	/*
+	 * If this block group is smaller than 100 megs don't bother caching the
+	 * block group.
+	 */
+	if (block_group->key.offset < (100 * 1024 * 1024)) {
+		spin_lock(&block_group->lock);
+		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
+		spin_unlock(&block_group->lock);
+		return 0;
+	}
+
+again:
+	inode = lookup_free_space_inode(root, block_group, path);
+	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
+		ret = PTR_ERR(inode);
+		btrfs_release_path(path);
+		goto out;
+	}
+
+	if (IS_ERR(inode)) {
+		BUG_ON(retries);
+		retries++;
+
+		if (block_group->ro)
+			goto out_free;
+
+		ret = create_free_space_inode(root, trans, block_group, path);
+		if (ret)
+			goto out_free;
+		goto again;
+	}
+
+	/* We've already setup this transaction, go ahead and exit */
+	if (block_group->cache_generation == trans->transid &&
+	    i_size_read(inode)) {
+		dcs = BTRFS_DC_SETUP;
+		goto out_put;
+	}
+
+	/*
+	 * We want to set the generation to 0, that way if anything goes wrong
+	 * from here on out we know not to trust this cache when we load up next
+	 * time.
+	 */
+	BTRFS_I(inode)->generation = 0;
+	ret = btrfs_update_inode(trans, root, inode);
+	WARN_ON(ret);
+
+	if (i_size_read(inode) > 0) {
+		ret = btrfs_truncate_free_space_cache(root, trans, path,
+						      inode);
+		if (ret)
+			goto out_put;
+	}
+
+	spin_lock(&block_group->lock);
+	if (block_group->cached != BTRFS_CACHE_FINISHED) {
+		/* We're not cached, don't bother trying to write stuff out */
+		dcs = BTRFS_DC_WRITTEN;
+		spin_unlock(&block_group->lock);
+		goto out_put;
+	}
+	spin_unlock(&block_group->lock);
+
+	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
+	if (!num_pages)
+		num_pages = 1;
+
+	/*
+	 * Just to make absolutely sure we have enough space, we're going to
+	 * preallocate 12 pages worth of space for each block group.  In
+	 * practice we ought to use at most 8, but we need extra space so we can
+	 * add our header and have a terminator between the extents and the
+	 * bitmaps.
+	 */
+	num_pages *= 16;
+	num_pages *= PAGE_CACHE_SIZE;
+
+	ret = btrfs_check_data_free_space(inode, num_pages);
+	if (ret)
+		goto out_put;
+
+	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
+					      num_pages, num_pages,
+					      &alloc_hint);
+	if (!ret)
+		dcs = BTRFS_DC_SETUP;
+	btrfs_free_reserved_data_space(inode, num_pages);
+
+out_put:
+	iput(inode);
+out_free:
+	btrfs_release_path(path);
+out:
+	spin_lock(&block_group->lock);
+	if (!ret && dcs == BTRFS_DC_SETUP)
+		block_group->cache_generation = trans->transid;
+	block_group->disk_cache_state = dcs;
+	spin_unlock(&block_group->lock);
+
+	return ret;
+}
+
+int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
+				   struct btrfs_root *root)
+{
+	struct btrfs_block_group_cache *cache;
+	int err = 0;
+	struct btrfs_path *path;
+	u64 last = 0;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+again:
+	while (1) {
+		cache = btrfs_lookup_first_block_group(root->fs_info, last);
+		while (cache) {
+			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
+				break;
+			cache = next_block_group(root, cache);
+		}
+		if (!cache) {
+			if (last == 0)
+				break;
+			last = 0;
+			continue;
+		}
+		err = cache_save_setup(cache, trans, path);
+		last = cache->key.objectid + cache->key.offset;
+		btrfs_put_block_group(cache);
+	}
+
+	while (1) {
+		if (last == 0) {
+			err = btrfs_run_delayed_refs(trans, root,
+						     (unsigned long)-1);
+			if (err) /* File system offline */
+				goto out;
+		}
+
+		cache = btrfs_lookup_first_block_group(root->fs_info, last);
+		while (cache) {
+			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
+				btrfs_put_block_group(cache);
+				goto again;
+			}
+
+			if (cache->dirty)
+				break;
+			cache = next_block_group(root, cache);
+		}
+		if (!cache) {
+			if (last == 0)
+				break;
+			last = 0;
+			continue;
+		}
+
+		if (cache->disk_cache_state == BTRFS_DC_SETUP)
+			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
+		cache->dirty = 0;
+		last = cache->key.objectid + cache->key.offset;
+
+		err = write_one_cache_group(trans, root, path, cache);
+		if (err) /* File system offline */
+			goto out;
+
+		btrfs_put_block_group(cache);
+	}
+
+	while (1) {
+		/*
+		 * I don't think this is needed since we're just marking our
+		 * preallocated extent as written, but just in case it can't
+		 * hurt.
+		 */
+		if (last == 0) {
+			err = btrfs_run_delayed_refs(trans, root,
+						     (unsigned long)-1);
+			if (err) /* File system offline */
+				goto out;
+		}
+
+		cache = btrfs_lookup_first_block_group(root->fs_info, last);
+		while (cache) {
+			/*
+			 * Really this shouldn't happen, but it could if we
+			 * couldn't write the entire preallocated extent and
+			 * splitting the extent resulted in a new block.
+			 */
+			if (cache->dirty) {
+				btrfs_put_block_group(cache);
+				goto again;
+			}
+			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
+				break;
+			cache = next_block_group(root, cache);
+		}
+		if (!cache) {
+			if (last == 0)
+				break;
+			last = 0;
+			continue;
+		}
+
+		err = btrfs_write_out_cache(root, trans, cache, path);
+
+		/*
+		 * If we didn't have an error then the cache state is still
+		 * NEED_WRITE, so we can set it to WRITTEN.
+		 */
+		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
+			cache->disk_cache_state = BTRFS_DC_WRITTEN;
+		last = cache->key.objectid + cache->key.offset;
+		btrfs_put_block_group(cache);
+	}
+out:
+
+	btrfs_free_path(path);
+	return err;
+}
+
+int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
+{
+	struct btrfs_block_group_cache *block_group;
+	int readonly = 0;
+
+	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
+	if (!block_group || block_group->ro)
+		readonly = 1;
+	if (block_group)
+		btrfs_put_block_group(block_group);
+	return readonly;
+}
+
+static int update_space_info(struct btrfs_fs_info *info, u64 flags,
+			     u64 total_bytes, u64 bytes_used,
+			     struct btrfs_space_info **space_info)
+{
+	struct btrfs_space_info *found;
+	int i;
+	int factor;
+
+	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
+		     BTRFS_BLOCK_GROUP_RAID10))
+		factor = 2;
+	else
+		factor = 1;
+
+	found = __find_space_info(info, flags);
+	if (found) {
+		spin_lock(&found->lock);
+		found->total_bytes += total_bytes;
+		found->disk_total += total_bytes * factor;
+		found->bytes_used += bytes_used;
+		found->disk_used += bytes_used * factor;
+		found->full = 0;
+		spin_unlock(&found->lock);
+		*space_info = found;
+		return 0;
+	}
+	found = kzalloc(sizeof(*found), GFP_NOFS);
+	if (!found)
+		return -ENOMEM;
+
+	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
+		INIT_LIST_HEAD(&found->block_groups[i]);
+	init_rwsem(&found->groups_sem);
+	spin_lock_init(&found->lock);
+	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
+	found->total_bytes = total_bytes;
+	found->disk_total = total_bytes * factor;
+	found->bytes_used = bytes_used;
+	found->disk_used = bytes_used * factor;
+	found->bytes_pinned = 0;
+	found->bytes_reserved = 0;
+	found->bytes_readonly = 0;
+	found->bytes_may_use = 0;
+	found->full = 0;
+	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
+	found->chunk_alloc = 0;
+	found->flush = 0;
+	init_waitqueue_head(&found->wait);
+	*space_info = found;
+	list_add_rcu(&found->list, &info->space_info);
+	return 0;
+}
+
+static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
+{
+	u64 extra_flags = chunk_to_extended(flags) &
+				BTRFS_EXTENDED_PROFILE_MASK;
+
+	if (flags & BTRFS_BLOCK_GROUP_DATA)
+		fs_info->avail_data_alloc_bits |= extra_flags;
+	if (flags & BTRFS_BLOCK_GROUP_METADATA)
+		fs_info->avail_metadata_alloc_bits |= extra_flags;
+	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+		fs_info->avail_system_alloc_bits |= extra_flags;
+}
+
+/*
+ * returns target flags in extended format or 0 if restripe for this
+ * chunk_type is not in progress
+ *
+ * should be called with either volume_mutex or balance_lock held
+ */
+static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
+{
+	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+	u64 target = 0;
+
+	if (!bctl)
+		return 0;
+
+	if (flags & BTRFS_BLOCK_GROUP_DATA &&
+	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
+	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
+		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
+	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
+		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
+	}
+
+	return target;
+}
+
+/*
+ * @flags: available profiles in extended format (see ctree.h)
+ *
+ * Returns reduced profile in chunk format.  If profile changing is in
+ * progress (either running or paused) picks the target profile (if it's
+ * already available), otherwise falls back to plain reducing.
+ */
+u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
+{
+	/*
+	 * we add in the count of missing devices because we want
+	 * to make sure that any RAID levels on a degraded FS
+	 * continue to be honored.
+	 */
+	u64 num_devices = root->fs_info->fs_devices->rw_devices +
+		root->fs_info->fs_devices->missing_devices;
+	u64 target;
+
+	/*
+	 * see if restripe for this chunk_type is in progress, if so
+	 * try to reduce to the target profile
+	 */
+	spin_lock(&root->fs_info->balance_lock);
+	target = get_restripe_target(root->fs_info, flags);
+	if (target) {
+		/* pick target profile only if it's already available */
+		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
+			spin_unlock(&root->fs_info->balance_lock);
+			return extended_to_chunk(target);
+		}
+	}
+	spin_unlock(&root->fs_info->balance_lock);
+
+	if (num_devices == 1)
+		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
+	if (num_devices < 4)
+		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
+
+	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
+	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
+		      BTRFS_BLOCK_GROUP_RAID10))) {
+		flags &= ~BTRFS_BLOCK_GROUP_DUP;
+	}
+
+	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
+	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
+		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
+	}
+
+	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
+	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
+	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
+	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
+		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
+	}
+
+	return extended_to_chunk(flags);
+}
+
+static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
+{
+	if (flags & BTRFS_BLOCK_GROUP_DATA)
+		flags |= root->fs_info->avail_data_alloc_bits;
+	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+		flags |= root->fs_info->avail_system_alloc_bits;
+	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
+		flags |= root->fs_info->avail_metadata_alloc_bits;
+
+	return btrfs_reduce_alloc_profile(root, flags);
+}
+
+u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
+{
+	u64 flags;
+
+	if (data)
+		flags = BTRFS_BLOCK_GROUP_DATA;
+	else if (root == root->fs_info->chunk_root)
+		flags = BTRFS_BLOCK_GROUP_SYSTEM;
+	else
+		flags = BTRFS_BLOCK_GROUP_METADATA;
+
+	return get_alloc_profile(root, flags);
+}
+
+void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
+{
+	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
+						       BTRFS_BLOCK_GROUP_DATA);
+}
+
+/*
+ * This will check the space that the inode allocates from to make sure we have
+ * enough space for bytes.
+ */
+int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
+{
+	struct btrfs_space_info *data_sinfo;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u64 used;
+	int ret = 0, committed = 0, alloc_chunk = 1;
+
+	/* make sure bytes are sectorsize aligned */
+	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
+
+	if (root == root->fs_info->tree_root ||
+	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
+		alloc_chunk = 0;
+		committed = 1;
+	}
+
+	data_sinfo = BTRFS_I(inode)->space_info;
+	if (!data_sinfo)
+		goto alloc;
+
+again:
+	/* make sure we have enough space to handle the data first */
+	spin_lock(&data_sinfo->lock);
+	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
+		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
+		data_sinfo->bytes_may_use;
+
+	if (used + bytes > data_sinfo->total_bytes) {
+		struct btrfs_trans_handle *trans;
+
+		/*
+		 * if we don't have enough free bytes in this space then we need
+		 * to alloc a new chunk.
+		 */
+		if (!data_sinfo->full && alloc_chunk) {
+			u64 alloc_target;
+
+			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
+			spin_unlock(&data_sinfo->lock);
+alloc:
+			alloc_target = btrfs_get_alloc_profile(root, 1);
+			trans = btrfs_join_transaction(root);
+			if (IS_ERR(trans))
+				return PTR_ERR(trans);
+
+			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+					     bytes + 2 * 1024 * 1024,
+					     alloc_target,
+					     CHUNK_ALLOC_NO_FORCE);
+			btrfs_end_transaction(trans, root);
+			if (ret < 0) {
+				if (ret != -ENOSPC)
+					return ret;
+				else
+					goto commit_trans;
+			}
+
+			if (!data_sinfo) {
+				btrfs_set_inode_space_info(root, inode);
+				data_sinfo = BTRFS_I(inode)->space_info;
+			}
+			goto again;
+		}
+
+		/*
+		 * If we have less pinned bytes than we want to allocate then
+		 * don't bother committing the transaction, it won't help us.
+		 */
+		if (data_sinfo->bytes_pinned < bytes)
+			committed = 1;
+		spin_unlock(&data_sinfo->lock);
+
+		/* commit the current transaction and try again */
+commit_trans:
+		if (!committed &&
+		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
+			committed = 1;
+			trans = btrfs_join_transaction(root);
+			if (IS_ERR(trans))
+				return PTR_ERR(trans);
+			ret = btrfs_commit_transaction(trans, root);
+			if (ret)
+				return ret;
+			goto again;
+		}
+
+		return -ENOSPC;
+	}
+	data_sinfo->bytes_may_use += bytes;
+	trace_btrfs_space_reservation(root->fs_info, "space_info",
+				      data_sinfo->flags, bytes, 1);
+	spin_unlock(&data_sinfo->lock);
+
+	return 0;
+}
+
+/*
+ * Called if we need to clear a data reservation for this inode.
+ */
+void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_space_info *data_sinfo;
+
+	/* make sure bytes are sectorsize aligned */
+	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
+
+	data_sinfo = BTRFS_I(inode)->space_info;
+	spin_lock(&data_sinfo->lock);
+	data_sinfo->bytes_may_use -= bytes;
+	trace_btrfs_space_reservation(root->fs_info, "space_info",
+				      data_sinfo->flags, bytes, 0);
+	spin_unlock(&data_sinfo->lock);
+}
+
+static void force_metadata_allocation(struct btrfs_fs_info *info)
+{
+	struct list_head *head = &info->space_info;
+	struct btrfs_space_info *found;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(found, head, list) {
+		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
+			found->force_alloc = CHUNK_ALLOC_FORCE;
+	}
+	rcu_read_unlock();
+}
+
+static int should_alloc_chunk(struct btrfs_root *root,
+			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
+			      int force)
+{
+	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
+	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
+	u64 thresh;
+
+	if (force == CHUNK_ALLOC_FORCE)
+		return 1;
+
+	/*
+	 * We need to take into account the global rsv because for all intents
+	 * and purposes it's used space.  Don't worry about locking the
+	 * global_rsv, it doesn't change except when the transaction commits.
+	 */
+	num_allocated += global_rsv->size;
+
+	/*
+	 * in limited mode, we want to have some free space up to
+	 * about 1% of the FS size.
+	 */
+	if (force == CHUNK_ALLOC_LIMITED) {
+		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
+		thresh = max_t(u64, 64 * 1024 * 1024,
+			       div_factor_fine(thresh, 1));
+
+		if (num_bytes - num_allocated < thresh)
+			return 1;
+	}
+	thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
+
+	/* 256MB or 2% of the FS */
+	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
+	/* system chunks need a much small threshold */
+	if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
+		thresh = 32 * 1024 * 1024;
+
+	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
+		return 0;
+	return 1;
+}
+
+static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
+{
+	u64 num_dev;
+
+	if (type & BTRFS_BLOCK_GROUP_RAID10 ||
+	    type & BTRFS_BLOCK_GROUP_RAID0)
+		num_dev = root->fs_info->fs_devices->rw_devices;
+	else if (type & BTRFS_BLOCK_GROUP_RAID1)
+		num_dev = 2;
+	else
+		num_dev = 1;	/* DUP or single */
+
+	/* metadata for updaing devices and chunk tree */
+	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
+}
+
+static void check_system_chunk(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root, u64 type)
+{
+	struct btrfs_space_info *info;
+	u64 left;
+	u64 thresh;
+
+	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+	spin_lock(&info->lock);
+	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
+		info->bytes_reserved - info->bytes_readonly;
+	spin_unlock(&info->lock);
+
+	thresh = get_system_chunk_thresh(root, type);
+	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
+		printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
+		       left, thresh, type);
+		dump_space_info(info, 0, 0);
+	}
+
+	if (left < thresh) {
+		u64 flags;
+
+		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
+		btrfs_alloc_chunk(trans, root, flags);
+	}
+}
+
+static int do_chunk_alloc(struct btrfs_trans_handle *trans,
+			  struct btrfs_root *extent_root, u64 alloc_bytes,
+			  u64 flags, int force)
+{
+	struct btrfs_space_info *space_info;
+	struct btrfs_fs_info *fs_info = extent_root->fs_info;
+	int wait_for_alloc = 0;
+	int ret = 0;
+
+	space_info = __find_space_info(extent_root->fs_info, flags);
+	if (!space_info) {
+		ret = update_space_info(extent_root->fs_info, flags,
+					0, 0, &space_info);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+	BUG_ON(!space_info); /* Logic error */
+
+again:
+	spin_lock(&space_info->lock);
+	if (force < space_info->force_alloc)
+		force = space_info->force_alloc;
+	if (space_info->full) {
+		spin_unlock(&space_info->lock);
+		return 0;
+	}
+
+	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
+		spin_unlock(&space_info->lock);
+		return 0;
+	} else if (space_info->chunk_alloc) {
+		wait_for_alloc = 1;
+	} else {
+		space_info->chunk_alloc = 1;
+	}
+
+	spin_unlock(&space_info->lock);
+
+	mutex_lock(&fs_info->chunk_mutex);
+
+	/*
+	 * The chunk_mutex is held throughout the entirety of a chunk
+	 * allocation, so once we've acquired the chunk_mutex we know that the
+	 * other guy is done and we need to recheck and see if we should
+	 * allocate.
+	 */
+	if (wait_for_alloc) {
+		mutex_unlock(&fs_info->chunk_mutex);
+		wait_for_alloc = 0;
+		goto again;
+	}
+
+	/*
+	 * If we have mixed data/metadata chunks we want to make sure we keep
+	 * allocating mixed chunks instead of individual chunks.
+	 */
+	if (btrfs_mixed_space_info(space_info))
+		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
+
+	/*
+	 * if we're doing a data chunk, go ahead and make sure that
+	 * we keep a reasonable number of metadata chunks allocated in the
+	 * FS as well.
+	 */
+	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
+		fs_info->data_chunk_allocations++;
+		if (!(fs_info->data_chunk_allocations %
+		      fs_info->metadata_ratio))
+			force_metadata_allocation(fs_info);
+	}
+
+	/*
+	 * Check if we have enough space in SYSTEM chunk because we may need
+	 * to update devices.
+	 */
+	check_system_chunk(trans, extent_root, flags);
+
+	ret = btrfs_alloc_chunk(trans, extent_root, flags);
+	if (ret < 0 && ret != -ENOSPC)
+		goto out;
+
+	spin_lock(&space_info->lock);
+	if (ret)
+		space_info->full = 1;
+	else
+		ret = 1;
+
+	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
+	space_info->chunk_alloc = 0;
+	spin_unlock(&space_info->lock);
+out:
+	mutex_unlock(&extent_root->fs_info->chunk_mutex);
+	return ret;
+}
+
+/*
+ * shrink metadata reservation for delalloc
+ */
+static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
+			   bool wait_ordered)
+{
+	struct btrfs_block_rsv *block_rsv;
+	struct btrfs_space_info *space_info;
+	struct btrfs_trans_handle *trans;
+	u64 reserved;
+	u64 max_reclaim;
+	u64 reclaimed = 0;
+	long time_left;
+	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
+	int loops = 0;
+	unsigned long progress;
+
+	trans = (struct btrfs_trans_handle *)current->journal_info;
+	block_rsv = &root->fs_info->delalloc_block_rsv;
+	space_info = block_rsv->space_info;
+
+	smp_mb();
+	reserved = space_info->bytes_may_use;
+	progress = space_info->reservation_progress;
+
+	if (reserved == 0)
+		return 0;
+
+	smp_mb();
+	if (root->fs_info->delalloc_bytes == 0) {
+		if (trans)
+			return 0;
+		btrfs_wait_ordered_extents(root, 0, 0);
+		return 0;
+	}
+
+	max_reclaim = min(reserved, to_reclaim);
+	nr_pages = max_t(unsigned long, nr_pages,
+			 max_reclaim >> PAGE_CACHE_SHIFT);
+	while (loops < 1024) {
+		/* have the flusher threads jump in and do some IO */
+		smp_mb();
+		nr_pages = min_t(unsigned long, nr_pages,
+		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
+		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
+						WB_REASON_FS_FREE_SPACE);
+
+		spin_lock(&space_info->lock);
+		if (reserved > space_info->bytes_may_use)
+			reclaimed += reserved - space_info->bytes_may_use;
+		reserved = space_info->bytes_may_use;
+		spin_unlock(&space_info->lock);
+
+		loops++;
+
+		if (reserved == 0 || reclaimed >= max_reclaim)
+			break;
+
+		if (trans && trans->transaction->blocked)
+			return -EAGAIN;
+
+		if (wait_ordered && !trans) {
+			btrfs_wait_ordered_extents(root, 0, 0);
+		} else {
+			time_left = schedule_timeout_interruptible(1);
+
+			/* We were interrupted, exit */
+			if (time_left)
+				break;
+		}
+
+		/* we've kicked the IO a few times, if anything has been freed,
+		 * exit.  There is no sense in looping here for a long time
+		 * when we really need to commit the transaction, or there are
+		 * just too many writers without enough free space
+		 */
+
+		if (loops > 3) {
+			smp_mb();
+			if (progress != space_info->reservation_progress)
+				break;
+		}
+
+	}
+
+	return reclaimed >= to_reclaim;
+}
+
+/**
+ * maybe_commit_transaction - possibly commit the transaction if its ok to
+ * @root - the root we're allocating for
+ * @bytes - the number of bytes we want to reserve
+ * @force - force the commit
+ *
+ * This will check to make sure that committing the transaction will actually
+ * get us somewhere and then commit the transaction if it does.  Otherwise it
+ * will return -ENOSPC.
+ */
+static int may_commit_transaction(struct btrfs_root *root,
+				  struct btrfs_space_info *space_info,
+				  u64 bytes, int force)
+{
+	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
+	struct btrfs_trans_handle *trans;
+
+	trans = (struct btrfs_trans_handle *)current->journal_info;
+	if (trans)
+		return -EAGAIN;
+
+	if (force)
+		goto commit;
+
+	/* See if there is enough pinned space to make this reservation */
+	spin_lock(&space_info->lock);
+	if (space_info->bytes_pinned >= bytes) {
+		spin_unlock(&space_info->lock);
+		goto commit;
+	}
+	spin_unlock(&space_info->lock);
+
+	/*
+	 * See if there is some space in the delayed insertion reservation for
+	 * this reservation.
+	 */
+	if (space_info != delayed_rsv->space_info)
+		return -ENOSPC;
+
+	spin_lock(&space_info->lock);
+	spin_lock(&delayed_rsv->lock);
+	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
+		spin_unlock(&delayed_rsv->lock);
+		spin_unlock(&space_info->lock);
+		return -ENOSPC;
+	}
+	spin_unlock(&delayed_rsv->lock);
+	spin_unlock(&space_info->lock);
+
+commit:
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans))
+		return -ENOSPC;
+
+	return btrfs_commit_transaction(trans, root);
+}
+
+/**
+ * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
+ * @root - the root we're allocating for
+ * @block_rsv - the block_rsv we're allocating for
+ * @orig_bytes - the number of bytes we want
+ * @flush - wether or not we can flush to make our reservation
+ *
+ * This will reserve orgi_bytes number of bytes from the space info associated
+ * with the block_rsv.  If there is not enough space it will make an attempt to
+ * flush out space to make room.  It will do this by flushing delalloc if
+ * possible or committing the transaction.  If flush is 0 then no attempts to
+ * regain reservations will be made and this will fail if there is not enough
+ * space already.
+ */
+static int reserve_metadata_bytes(struct btrfs_root *root,
+				  struct btrfs_block_rsv *block_rsv,
+				  u64 orig_bytes, int flush)
+{
+	struct btrfs_space_info *space_info = block_rsv->space_info;
+	u64 used;
+	u64 num_bytes = orig_bytes;
+	int retries = 0;
+	int ret = 0;
+	bool committed = false;
+	bool flushing = false;
+	bool wait_ordered = false;
+
+again:
+	ret = 0;
+	spin_lock(&space_info->lock);
+	/*
+	 * We only want to wait if somebody other than us is flushing and we are
+	 * actually alloed to flush.
+	 */
+	while (flush && !flushing && space_info->flush) {
+		spin_unlock(&space_info->lock);
+		/*
+		 * If we have a trans handle we can't wait because the flusher
+		 * may have to commit the transaction, which would mean we would
+		 * deadlock since we are waiting for the flusher to finish, but
+		 * hold the current transaction open.
+		 */
+		if (current->journal_info)
+			return -EAGAIN;
+		ret = wait_event_killable(space_info->wait, !space_info->flush);
+		/* Must have been killed, return */
+		if (ret)
+			return -EINTR;
+
+		spin_lock(&space_info->lock);
+	}
+
+	ret = -ENOSPC;
+	used = space_info->bytes_used + space_info->bytes_reserved +
+		space_info->bytes_pinned + space_info->bytes_readonly +
+		space_info->bytes_may_use;
+
+	/*
+	 * The idea here is that we've not already over-reserved the block group
+	 * then we can go ahead and save our reservation first and then start
+	 * flushing if we need to.  Otherwise if we've already overcommitted
+	 * lets start flushing stuff first and then come back and try to make
+	 * our reservation.
+	 */
+	if (used <= space_info->total_bytes) {
+		if (used + orig_bytes <= space_info->total_bytes) {
+			space_info->bytes_may_use += orig_bytes;
+			trace_btrfs_space_reservation(root->fs_info,
+				"space_info", space_info->flags, orig_bytes, 1);
+			ret = 0;
+		} else {
+			/*
+			 * Ok set num_bytes to orig_bytes since we aren't
+			 * overocmmitted, this way we only try and reclaim what
+			 * we need.
+			 */
+			num_bytes = orig_bytes;
+		}
+	} else {
+		/*
+		 * Ok we're over committed, set num_bytes to the overcommitted
+		 * amount plus the amount of bytes that we need for this
+		 * reservation.
+		 */
+		wait_ordered = true;
+		num_bytes = used - space_info->total_bytes +
+			(orig_bytes * (retries + 1));
+	}
+
+	if (ret) {
+		u64 profile = btrfs_get_alloc_profile(root, 0);
+		u64 avail;
+
+		/*
+		 * If we have a lot of space that's pinned, don't bother doing
+		 * the overcommit dance yet and just commit the transaction.
+		 */
+		avail = (space_info->total_bytes - space_info->bytes_used) * 8;
+		do_div(avail, 10);
+		if (space_info->bytes_pinned >= avail && flush && !committed) {
+			space_info->flush = 1;
+			flushing = true;
+			spin_unlock(&space_info->lock);
+			ret = may_commit_transaction(root, space_info,
+						     orig_bytes, 1);
+			if (ret)
+				goto out;
+			committed = true;
+			goto again;
+		}
+
+		spin_lock(&root->fs_info->free_chunk_lock);
+		avail = root->fs_info->free_chunk_space;
+
+		/*
+		 * If we have dup, raid1 or raid10 then only half of the free
+		 * space is actually useable.
+		 */
+		if (profile & (BTRFS_BLOCK_GROUP_DUP |
+			       BTRFS_BLOCK_GROUP_RAID1 |
+			       BTRFS_BLOCK_GROUP_RAID10))
+			avail >>= 1;
+
+		/*
+		 * If we aren't flushing don't let us overcommit too much, say
+		 * 1/8th of the space.  If we can flush, let it overcommit up to
+		 * 1/2 of the space.
+		 */
+		if (flush)
+			avail >>= 3;
+		else
+			avail >>= 1;
+		 spin_unlock(&root->fs_info->free_chunk_lock);
+
+		if (used + num_bytes < space_info->total_bytes + avail) {
+			space_info->bytes_may_use += orig_bytes;
+			trace_btrfs_space_reservation(root->fs_info,
+				"space_info", space_info->flags, orig_bytes, 1);
+			ret = 0;
+		} else {
+			wait_ordered = true;
+		}
+	}
+
+	/*
+	 * Couldn't make our reservation, save our place so while we're trying
+	 * to reclaim space we can actually use it instead of somebody else
+	 * stealing it from us.
+	 */
+	if (ret && flush) {
+		flushing = true;
+		space_info->flush = 1;
+	}
+
+	spin_unlock(&space_info->lock);
+
+	if (!ret || !flush)
+		goto out;
+
+	/*
+	 * We do synchronous shrinking since we don't actually unreserve
+	 * metadata until after the IO is completed.
+	 */
+	ret = shrink_delalloc(root, num_bytes, wait_ordered);
+	if (ret < 0)
+		goto out;
+
+	ret = 0;
+
+	/*
+	 * So if we were overcommitted it's possible that somebody else flushed
+	 * out enough space and we simply didn't have enough space to reclaim,
+	 * so go back around and try again.
+	 */
+	if (retries < 2) {
+		wait_ordered = true;
+		retries++;
+		goto again;
+	}
+
+	ret = -ENOSPC;
+	if (committed)
+		goto out;
+
+	ret = may_commit_transaction(root, space_info, orig_bytes, 0);
+	if (!ret) {
+		committed = true;
+		goto again;
+	}
+
+out:
+	if (flushing) {
+		spin_lock(&space_info->lock);
+		space_info->flush = 0;
+		wake_up_all(&space_info->wait);
+		spin_unlock(&space_info->lock);
+	}
+	return ret;
+}
+
+static struct btrfs_block_rsv *get_block_rsv(
+					const struct btrfs_trans_handle *trans,
+					const struct btrfs_root *root)
+{
+	struct btrfs_block_rsv *block_rsv = NULL;
+
+	if (root->ref_cows || root == root->fs_info->csum_root)
+		block_rsv = trans->block_rsv;
+
+	if (!block_rsv)
+		block_rsv = root->block_rsv;
+
+	if (!block_rsv)
+		block_rsv = &root->fs_info->empty_block_rsv;
+
+	return block_rsv;
+}
+
+static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
+			       u64 num_bytes)
+{
+	int ret = -ENOSPC;
+	spin_lock(&block_rsv->lock);
+	if (block_rsv->reserved >= num_bytes) {
+		block_rsv->reserved -= num_bytes;
+		if (block_rsv->reserved < block_rsv->size)
+			block_rsv->full = 0;
+		ret = 0;
+	}
+	spin_unlock(&block_rsv->lock);
+	return ret;
+}
+
+static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
+				u64 num_bytes, int update_size)
+{
+	spin_lock(&block_rsv->lock);
+	block_rsv->reserved += num_bytes;
+	if (update_size)
+		block_rsv->size += num_bytes;
+	else if (block_rsv->reserved >= block_rsv->size)
+		block_rsv->full = 1;
+	spin_unlock(&block_rsv->lock);
+}
+
+static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
+				    struct btrfs_block_rsv *block_rsv,
+				    struct btrfs_block_rsv *dest, u64 num_bytes)
+{
+	struct btrfs_space_info *space_info = block_rsv->space_info;
+
+	spin_lock(&block_rsv->lock);
+	if (num_bytes == (u64)-1)
+		num_bytes = block_rsv->size;
+	block_rsv->size -= num_bytes;
+	if (block_rsv->reserved >= block_rsv->size) {
+		num_bytes = block_rsv->reserved - block_rsv->size;
+		block_rsv->reserved = block_rsv->size;
+		block_rsv->full = 1;
+	} else {
+		num_bytes = 0;
+	}
+	spin_unlock(&block_rsv->lock);
+
+	if (num_bytes > 0) {
+		if (dest) {
+			spin_lock(&dest->lock);
+			if (!dest->full) {
+				u64 bytes_to_add;
+
+				bytes_to_add = dest->size - dest->reserved;
+				bytes_to_add = min(num_bytes, bytes_to_add);
+				dest->reserved += bytes_to_add;
+				if (dest->reserved >= dest->size)
+					dest->full = 1;
+				num_bytes -= bytes_to_add;
+			}
+			spin_unlock(&dest->lock);
+		}
+		if (num_bytes) {
+			spin_lock(&space_info->lock);
+			space_info->bytes_may_use -= num_bytes;
+			trace_btrfs_space_reservation(fs_info, "space_info",
+					space_info->flags, num_bytes, 0);
+			space_info->reservation_progress++;
+			spin_unlock(&space_info->lock);
+		}
+	}
+}
+
+static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
+				   struct btrfs_block_rsv *dst, u64 num_bytes)
+{
+	int ret;
+
+	ret = block_rsv_use_bytes(src, num_bytes);
+	if (ret)
+		return ret;
+
+	block_rsv_add_bytes(dst, num_bytes, 1);
+	return 0;
+}
+
+void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
+{
+	memset(rsv, 0, sizeof(*rsv));
+	spin_lock_init(&rsv->lock);
+}
+
+struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
+{
+	struct btrfs_block_rsv *block_rsv;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+
+	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
+	if (!block_rsv)
+		return NULL;
+
+	btrfs_init_block_rsv(block_rsv);
+	block_rsv->space_info = __find_space_info(fs_info,
+						  BTRFS_BLOCK_GROUP_METADATA);
+	return block_rsv;
+}
+
+void btrfs_free_block_rsv(struct btrfs_root *root,
+			  struct btrfs_block_rsv *rsv)
+{
+	btrfs_block_rsv_release(root, rsv, (u64)-1);
+	kfree(rsv);
+}
+
+static inline int __block_rsv_add(struct btrfs_root *root,
+				  struct btrfs_block_rsv *block_rsv,
+				  u64 num_bytes, int flush)
+{
+	int ret;
+
+	if (num_bytes == 0)
+		return 0;
+
+	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
+	if (!ret) {
+		block_rsv_add_bytes(block_rsv, num_bytes, 1);
+		return 0;
+	}
+
+	return ret;
+}
+
+int btrfs_block_rsv_add(struct btrfs_root *root,
+			struct btrfs_block_rsv *block_rsv,
+			u64 num_bytes)
+{
+	return __block_rsv_add(root, block_rsv, num_bytes, 1);
+}
+
+int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
+				struct btrfs_block_rsv *block_rsv,
+				u64 num_bytes)
+{
+	return __block_rsv_add(root, block_rsv, num_bytes, 0);
+}
+
+int btrfs_block_rsv_check(struct btrfs_root *root,
+			  struct btrfs_block_rsv *block_rsv, int min_factor)
+{
+	u64 num_bytes = 0;
+	int ret = -ENOSPC;
+
+	if (!block_rsv)
+		return 0;
+
+	spin_lock(&block_rsv->lock);
+	num_bytes = div_factor(block_rsv->size, min_factor);
+	if (block_rsv->reserved >= num_bytes)
+		ret = 0;
+	spin_unlock(&block_rsv->lock);
+
+	return ret;
+}
+
+static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
+					   struct btrfs_block_rsv *block_rsv,
+					   u64 min_reserved, int flush)
+{
+	u64 num_bytes = 0;
+	int ret = -ENOSPC;
+
+	if (!block_rsv)
+		return 0;
+
+	spin_lock(&block_rsv->lock);
+	num_bytes = min_reserved;
+	if (block_rsv->reserved >= num_bytes)
+		ret = 0;
+	else
+		num_bytes -= block_rsv->reserved;
+	spin_unlock(&block_rsv->lock);
+
+	if (!ret)
+		return 0;
+
+	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
+	if (!ret) {
+		block_rsv_add_bytes(block_rsv, num_bytes, 0);
+		return 0;
+	}
+
+	return ret;
+}
+
+int btrfs_block_rsv_refill(struct btrfs_root *root,
+			   struct btrfs_block_rsv *block_rsv,
+			   u64 min_reserved)
+{
+	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
+}
+
+int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
+				   struct btrfs_block_rsv *block_rsv,
+				   u64 min_reserved)
+{
+	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
+}
+
+int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
+			    struct btrfs_block_rsv *dst_rsv,
+			    u64 num_bytes)
+{
+	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+void btrfs_block_rsv_release(struct btrfs_root *root,
+			     struct btrfs_block_rsv *block_rsv,
+			     u64 num_bytes)
+{
+	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+	if (global_rsv->full || global_rsv == block_rsv ||
+	    block_rsv->space_info != global_rsv->space_info)
+		global_rsv = NULL;
+	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
+				num_bytes);
+}
+
+/*
+ * helper to calculate size of global block reservation.
+ * the desired value is sum of space used by extent tree,
+ * checksum tree and root tree
+ */
+static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_space_info *sinfo;
+	u64 num_bytes;
+	u64 meta_used;
+	u64 data_used;
+	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
+
+	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
+	spin_lock(&sinfo->lock);
+	data_used = sinfo->bytes_used;
+	spin_unlock(&sinfo->lock);
+
+	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+	spin_lock(&sinfo->lock);
+	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
+		data_used = 0;
+	meta_used = sinfo->bytes_used;
+	spin_unlock(&sinfo->lock);
+
+	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
+		    csum_size * 2;
+	num_bytes += div64_u64(data_used + meta_used, 50);
+
+	if (num_bytes * 3 > meta_used)
+		num_bytes = div64_u64(meta_used, 3);
+
+	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
+}
+
+static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
+	struct btrfs_space_info *sinfo = block_rsv->space_info;
+	u64 num_bytes;
+
+	num_bytes = calc_global_metadata_size(fs_info);
+
+	spin_lock(&sinfo->lock);
+	spin_lock(&block_rsv->lock);
+
+	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
+
+	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
+		    sinfo->bytes_reserved + sinfo->bytes_readonly +
+		    sinfo->bytes_may_use;
+
+	if (sinfo->total_bytes > num_bytes) {
+		num_bytes = sinfo->total_bytes - num_bytes;
+		block_rsv->reserved += num_bytes;
+		sinfo->bytes_may_use += num_bytes;
+		trace_btrfs_space_reservation(fs_info, "space_info",
+				      sinfo->flags, num_bytes, 1);
+	}
+
+	if (block_rsv->reserved >= block_rsv->size) {
+		num_bytes = block_rsv->reserved - block_rsv->size;
+		sinfo->bytes_may_use -= num_bytes;
+		trace_btrfs_space_reservation(fs_info, "space_info",
+				      sinfo->flags, num_bytes, 0);
+		sinfo->reservation_progress++;
+		block_rsv->reserved = block_rsv->size;
+		block_rsv->full = 1;
+	}
+
+	spin_unlock(&block_rsv->lock);
+	spin_unlock(&sinfo->lock);
+}
+
+static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_space_info *space_info;
+
+	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+	fs_info->chunk_block_rsv.space_info = space_info;
+
+	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+	fs_info->global_block_rsv.space_info = space_info;
+	fs_info->delalloc_block_rsv.space_info = space_info;
+	fs_info->trans_block_rsv.space_info = space_info;
+	fs_info->empty_block_rsv.space_info = space_info;
+	fs_info->delayed_block_rsv.space_info = space_info;
+
+	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
+	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
+	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
+	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
+	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
+
+	update_global_block_rsv(fs_info);
+}
+
+static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
+				(u64)-1);
+	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
+	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
+	WARN_ON(fs_info->trans_block_rsv.size > 0);
+	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
+	WARN_ON(fs_info->chunk_block_rsv.size > 0);
+	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
+	WARN_ON(fs_info->delayed_block_rsv.size > 0);
+	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
+}
+
+void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
+				  struct btrfs_root *root)
+{
+	if (!trans->bytes_reserved)
+		return;
+
+	trace_btrfs_space_reservation(root->fs_info, "transaction",
+				      trans->transid, trans->bytes_reserved, 0);
+	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
+	trans->bytes_reserved = 0;
+}
+
+/* Can only return 0 or -ENOSPC */
+int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
+				  struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
+	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
+
+	/*
+	 * We need to hold space in order to delete our orphan item once we've
+	 * added it, so this takes the reservation so we can release it later
+	 * when we are truly done with the orphan item.
+	 */
+	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+	trace_btrfs_space_reservation(root->fs_info, "orphan",
+				      btrfs_ino(inode), num_bytes, 1);
+	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+void btrfs_orphan_release_metadata(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+	trace_btrfs_space_reservation(root->fs_info, "orphan",
+				      btrfs_ino(inode), num_bytes, 0);
+	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
+}
+
+int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
+				struct btrfs_pending_snapshot *pending)
+{
+	struct btrfs_root *root = pending->root;
+	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
+	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
+	/*
+	 * two for root back/forward refs, two for directory entries
+	 * and one for root of the snapshot.
+	 */
+	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
+	dst_rsv->space_info = src_rsv->space_info;
+	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+/**
+ * drop_outstanding_extent - drop an outstanding extent
+ * @inode: the inode we're dropping the extent for
+ *
+ * This is called when we are freeing up an outstanding extent, either called
+ * after an error or after an extent is written.  This will return the number of
+ * reserved extents that need to be freed.  This must be called with
+ * BTRFS_I(inode)->lock held.
+ */
+static unsigned drop_outstanding_extent(struct inode *inode)
+{
+	unsigned drop_inode_space = 0;
+	unsigned dropped_extents = 0;
+
+	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
+	BTRFS_I(inode)->outstanding_extents--;
+
+	if (BTRFS_I(inode)->outstanding_extents == 0 &&
+	    BTRFS_I(inode)->delalloc_meta_reserved) {
+		drop_inode_space = 1;
+		BTRFS_I(inode)->delalloc_meta_reserved = 0;
+	}
+
+	/*
+	 * If we have more or the same amount of outsanding extents than we have
+	 * reserved then we need to leave the reserved extents count alone.
+	 */
+	if (BTRFS_I(inode)->outstanding_extents >=
+	    BTRFS_I(inode)->reserved_extents)
+		return drop_inode_space;
+
+	dropped_extents = BTRFS_I(inode)->reserved_extents -
+		BTRFS_I(inode)->outstanding_extents;
+	BTRFS_I(inode)->reserved_extents -= dropped_extents;
+	return dropped_extents + drop_inode_space;
+}
+
+/**
+ * calc_csum_metadata_size - return the amount of metada space that must be
+ *	reserved/free'd for the given bytes.
+ * @inode: the inode we're manipulating
+ * @num_bytes: the number of bytes in question
+ * @reserve: 1 if we are reserving space, 0 if we are freeing space
+ *
+ * This adjusts the number of csum_bytes in the inode and then returns the
+ * correct amount of metadata that must either be reserved or freed.  We
+ * calculate how many checksums we can fit into one leaf and then divide the
+ * number of bytes that will need to be checksumed by this value to figure out
+ * how many checksums will be required.  If we are adding bytes then the number
+ * may go up and we will return the number of additional bytes that must be
+ * reserved.  If it is going down we will return the number of bytes that must
+ * be freed.
+ *
+ * This must be called with BTRFS_I(inode)->lock held.
+ */
+static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
+				   int reserve)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u64 csum_size;
+	int num_csums_per_leaf;
+	int num_csums;
+	int old_csums;
+
+	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
+	    BTRFS_I(inode)->csum_bytes == 0)
+		return 0;
+
+	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
+	if (reserve)
+		BTRFS_I(inode)->csum_bytes += num_bytes;
+	else
+		BTRFS_I(inode)->csum_bytes -= num_bytes;
+	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
+	num_csums_per_leaf = (int)div64_u64(csum_size,
+					    sizeof(struct btrfs_csum_item) +
+					    sizeof(struct btrfs_disk_key));
+	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
+	num_csums = num_csums + num_csums_per_leaf - 1;
+	num_csums = num_csums / num_csums_per_leaf;
+
+	old_csums = old_csums + num_csums_per_leaf - 1;
+	old_csums = old_csums / num_csums_per_leaf;
+
+	/* No change, no need to reserve more */
+	if (old_csums == num_csums)
+		return 0;
+
+	if (reserve)
+		return btrfs_calc_trans_metadata_size(root,
+						      num_csums - old_csums);
+
+	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
+}
+
+int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
+	u64 to_reserve = 0;
+	u64 csum_bytes;
+	unsigned nr_extents = 0;
+	int extra_reserve = 0;
+	int flush = 1;
+	int ret;
+
+	/* Need to be holding the i_mutex here if we aren't free space cache */
+	if (btrfs_is_free_space_inode(root, inode))
+		flush = 0;
+
+	if (flush && btrfs_transaction_in_commit(root->fs_info))
+		schedule_timeout(1);
+
+	mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
+	num_bytes = ALIGN(num_bytes, root->sectorsize);
+
+	spin_lock(&BTRFS_I(inode)->lock);
+	BTRFS_I(inode)->outstanding_extents++;
+
+	if (BTRFS_I(inode)->outstanding_extents >
+	    BTRFS_I(inode)->reserved_extents)
+		nr_extents = BTRFS_I(inode)->outstanding_extents -
+			BTRFS_I(inode)->reserved_extents;
+
+	/*
+	 * Add an item to reserve for updating the inode when we complete the
+	 * delalloc io.
+	 */
+	if (!BTRFS_I(inode)->delalloc_meta_reserved) {
+		nr_extents++;
+		extra_reserve = 1;
+	}
+
+	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
+	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
+	csum_bytes = BTRFS_I(inode)->csum_bytes;
+	spin_unlock(&BTRFS_I(inode)->lock);
+
+	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
+	if (ret) {
+		u64 to_free = 0;
+		unsigned dropped;
+
+		spin_lock(&BTRFS_I(inode)->lock);
+		dropped = drop_outstanding_extent(inode);
+		/*
+		 * If the inodes csum_bytes is the same as the original
+		 * csum_bytes then we know we haven't raced with any free()ers
+		 * so we can just reduce our inodes csum bytes and carry on.
+		 */
+		if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
+			calc_csum_metadata_size(inode, num_bytes, 0);
+		} else {
+			u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
+			u64 bytes;
+
+			/*
+			 * This is tricky, but first we need to figure out how much we
+			 * free'd from any free-ers that occured during this
+			 * reservation, so we reset ->csum_bytes to the csum_bytes
+			 * before we dropped our lock, and then call the free for the
+			 * number of bytes that were freed while we were trying our
+			 * reservation.
+			 */
+			bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
+			BTRFS_I(inode)->csum_bytes = csum_bytes;
+			to_free = calc_csum_metadata_size(inode, bytes, 0);
+
+
+			/*
+			 * Now we need to see how much we would have freed had we not
+			 * been making this reservation and our ->csum_bytes were not
+			 * artificially inflated.
+			 */
+			BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
+			bytes = csum_bytes - orig_csum_bytes;
+			bytes = calc_csum_metadata_size(inode, bytes, 0);
+
+			/*
+			 * Now reset ->csum_bytes to what it should be.  If bytes is
+			 * more than to_free then we would have free'd more space had we
+			 * not had an artificially high ->csum_bytes, so we need to free
+			 * the remainder.  If bytes is the same or less then we don't
+			 * need to do anything, the other free-ers did the correct
+			 * thing.
+			 */
+			BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
+			if (bytes > to_free)
+				to_free = bytes - to_free;
+			else
+				to_free = 0;
+		}
+		spin_unlock(&BTRFS_I(inode)->lock);
+		if (dropped)
+			to_free += btrfs_calc_trans_metadata_size(root, dropped);
+
+		if (to_free) {
+			btrfs_block_rsv_release(root, block_rsv, to_free);
+			trace_btrfs_space_reservation(root->fs_info,
+						      "delalloc",
+						      btrfs_ino(inode),
+						      to_free, 0);
+		}
+		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
+		return ret;
+	}
+
+	spin_lock(&BTRFS_I(inode)->lock);
+	if (extra_reserve) {
+		BTRFS_I(inode)->delalloc_meta_reserved = 1;
+		nr_extents--;
+	}
+	BTRFS_I(inode)->reserved_extents += nr_extents;
+	spin_unlock(&BTRFS_I(inode)->lock);
+	mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
+
+	if (to_reserve)
+		trace_btrfs_space_reservation(root->fs_info,"delalloc",
+					      btrfs_ino(inode), to_reserve, 1);
+	block_rsv_add_bytes(block_rsv, to_reserve, 1);
+
+	return 0;
+}
+
+/**
+ * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
+ * @inode: the inode to release the reservation for
+ * @num_bytes: the number of bytes we're releasing
+ *
+ * This will release the metadata reservation for an inode.  This can be called
+ * once we complete IO for a given set of bytes to release their metadata
+ * reservations.
+ */
+void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u64 to_free = 0;
+	unsigned dropped;
+
+	num_bytes = ALIGN(num_bytes, root->sectorsize);
+	spin_lock(&BTRFS_I(inode)->lock);
+	dropped = drop_outstanding_extent(inode);
+
+	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
+	spin_unlock(&BTRFS_I(inode)->lock);
+	if (dropped > 0)
+		to_free += btrfs_calc_trans_metadata_size(root, dropped);
+
+	trace_btrfs_space_reservation(root->fs_info, "delalloc",
+				      btrfs_ino(inode), to_free, 0);
+	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
+				to_free);
+}
+
+/**
+ * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
+ * @inode: inode we're writing to
+ * @num_bytes: the number of bytes we want to allocate
+ *
+ * This will do the following things
+ *
+ * o reserve space in the data space info for num_bytes
+ * o reserve space in the metadata space info based on number of outstanding
+ *   extents and how much csums will be needed
+ * o add to the inodes ->delalloc_bytes
+ * o add it to the fs_info's delalloc inodes list.
+ *
+ * This will return 0 for success and -ENOSPC if there is no space left.
+ */
+int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
+{
+	int ret;
+
+	ret = btrfs_check_data_free_space(inode, num_bytes);
+	if (ret)
+		return ret;
+
+	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
+	if (ret) {
+		btrfs_free_reserved_data_space(inode, num_bytes);
+		return ret;
+	}
+
+	return 0;
+}
+
+/**
+ * btrfs_delalloc_release_space - release data and metadata space for delalloc
+ * @inode: inode we're releasing space for
+ * @num_bytes: the number of bytes we want to free up
+ *
+ * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
+ * called in the case that we don't need the metadata AND data reservations
+ * anymore.  So if there is an error or we insert an inline extent.
+ *
+ * This function will release the metadata space that was not used and will
+ * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
+ * list if there are no delalloc bytes left.
+ */
+void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
+{
+	btrfs_delalloc_release_metadata(inode, num_bytes);
+	btrfs_free_reserved_data_space(inode, num_bytes);
+}
+
+static int update_block_group(struct btrfs_trans_handle *trans,
+			      struct btrfs_root *root,
+			      u64 bytenr, u64 num_bytes, int alloc)
+{
+	struct btrfs_block_group_cache *cache = NULL;
+	struct btrfs_fs_info *info = root->fs_info;
+	u64 total = num_bytes;
+	u64 old_val;
+	u64 byte_in_group;
+	int factor;
+
+	/* block accounting for super block */
+	spin_lock(&info->delalloc_lock);
+	old_val = btrfs_super_bytes_used(info->super_copy);
+	if (alloc)
+		old_val += num_bytes;
+	else
+		old_val -= num_bytes;
+	btrfs_set_super_bytes_used(info->super_copy, old_val);
+	spin_unlock(&info->delalloc_lock);
+
+	while (total) {
+		cache = btrfs_lookup_block_group(info, bytenr);
+		if (!cache)
+			return -ENOENT;
+		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
+				    BTRFS_BLOCK_GROUP_RAID1 |
+				    BTRFS_BLOCK_GROUP_RAID10))
+			factor = 2;
+		else
+			factor = 1;
+		/*
+		 * If this block group has free space cache written out, we
+		 * need to make sure to load it if we are removing space.  This
+		 * is because we need the unpinning stage to actually add the
+		 * space back to the block group, otherwise we will leak space.
+		 */
+		if (!alloc && cache->cached == BTRFS_CACHE_NO)
+			cache_block_group(cache, trans, NULL, 1);
+
+		byte_in_group = bytenr - cache->key.objectid;
+		WARN_ON(byte_in_group > cache->key.offset);
+
+		spin_lock(&cache->space_info->lock);
+		spin_lock(&cache->lock);
+
+		if (btrfs_test_opt(root, SPACE_CACHE) &&
+		    cache->disk_cache_state < BTRFS_DC_CLEAR)
+			cache->disk_cache_state = BTRFS_DC_CLEAR;
+
+		cache->dirty = 1;
+		old_val = btrfs_block_group_used(&cache->item);
+		num_bytes = min(total, cache->key.offset - byte_in_group);
+		if (alloc) {
+			old_val += num_bytes;
+			btrfs_set_block_group_used(&cache->item, old_val);
+			cache->reserved -= num_bytes;
+			cache->space_info->bytes_reserved -= num_bytes;
+			cache->space_info->bytes_used += num_bytes;
+			cache->space_info->disk_used += num_bytes * factor;
+			spin_unlock(&cache->lock);
+			spin_unlock(&cache->space_info->lock);
+		} else {
+			old_val -= num_bytes;
+			btrfs_set_block_group_used(&cache->item, old_val);
+			cache->pinned += num_bytes;
+			cache->space_info->bytes_pinned += num_bytes;
+			cache->space_info->bytes_used -= num_bytes;
+			cache->space_info->disk_used -= num_bytes * factor;
+			spin_unlock(&cache->lock);
+			spin_unlock(&cache->space_info->lock);
+
+			set_extent_dirty(info->pinned_extents,
+					 bytenr, bytenr + num_bytes - 1,
+					 GFP_NOFS | __GFP_NOFAIL);
+		}
+		btrfs_put_block_group(cache);
+		total -= num_bytes;
+		bytenr += num_bytes;
+	}
+	return 0;
+}
+
+static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
+{
+	struct btrfs_block_group_cache *cache;
+	u64 bytenr;
+
+	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
+	if (!cache)
+		return 0;
+
+	bytenr = cache->key.objectid;
+	btrfs_put_block_group(cache);
+
+	return bytenr;
+}
+
+static int pin_down_extent(struct btrfs_root *root,
+			   struct btrfs_block_group_cache *cache,
+			   u64 bytenr, u64 num_bytes, int reserved)
+{
+	spin_lock(&cache->space_info->lock);
+	spin_lock(&cache->lock);
+	cache->pinned += num_bytes;
+	cache->space_info->bytes_pinned += num_bytes;
+	if (reserved) {
+		cache->reserved -= num_bytes;
+		cache->space_info->bytes_reserved -= num_bytes;
+	}
+	spin_unlock(&cache->lock);
+	spin_unlock(&cache->space_info->lock);
+
+	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
+			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
+	return 0;
+}
+
+/*
+ * this function must be called within transaction
+ */
+int btrfs_pin_extent(struct btrfs_root *root,
+		     u64 bytenr, u64 num_bytes, int reserved)
+{
+	struct btrfs_block_group_cache *cache;
+
+	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
+	BUG_ON(!cache); /* Logic error */
+
+	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
+
+	btrfs_put_block_group(cache);
+	return 0;
+}
+
+/*
+ * this function must be called within transaction
+ */
+int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
+				    struct btrfs_root *root,
+				    u64 bytenr, u64 num_bytes)
+{
+	struct btrfs_block_group_cache *cache;
+
+	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
+	BUG_ON(!cache); /* Logic error */
+
+	/*
+	 * pull in the free space cache (if any) so that our pin
+	 * removes the free space from the cache.  We have load_only set
+	 * to one because the slow code to read in the free extents does check
+	 * the pinned extents.
+	 */
+	cache_block_group(cache, trans, root, 1);
+
+	pin_down_extent(root, cache, bytenr, num_bytes, 0);
+
+	/* remove us from the free space cache (if we're there at all) */
+	btrfs_remove_free_space(cache, bytenr, num_bytes);
+	btrfs_put_block_group(cache);
+	return 0;
+}
+
+/**
+ * btrfs_update_reserved_bytes - update the block_group and space info counters
+ * @cache:	The cache we are manipulating
+ * @num_bytes:	The number of bytes in question
+ * @reserve:	One of the reservation enums
+ *
+ * This is called by the allocator when it reserves space, or by somebody who is
+ * freeing space that was never actually used on disk.  For example if you
+ * reserve some space for a new leaf in transaction A and before transaction A
+ * commits you free that leaf, you call this with reserve set to 0 in order to
+ * clear the reservation.
+ *
+ * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
+ * ENOSPC accounting.  For data we handle the reservation through clearing the
+ * delalloc bits in the io_tree.  We have to do this since we could end up
+ * allocating less disk space for the amount of data we have reserved in the
+ * case of compression.
+ *
+ * If this is a reservation and the block group has become read only we cannot
+ * make the reservation and return -EAGAIN, otherwise this function always
+ * succeeds.
+ */
+static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
+				       u64 num_bytes, int reserve)
+{
+	struct btrfs_space_info *space_info = cache->space_info;
+	int ret = 0;
+
+	spin_lock(&space_info->lock);
+	spin_lock(&cache->lock);
+	if (reserve != RESERVE_FREE) {
+		if (cache->ro) {
+			ret = -EAGAIN;
+		} else {
+			cache->reserved += num_bytes;
+			space_info->bytes_reserved += num_bytes;
+			if (reserve == RESERVE_ALLOC) {
+				trace_btrfs_space_reservation(cache->fs_info,
+						"space_info", space_info->flags,
+						num_bytes, 0);
+				space_info->bytes_may_use -= num_bytes;
+			}
+		}
+	} else {
+		if (cache->ro)
+			space_info->bytes_readonly += num_bytes;
+		cache->reserved -= num_bytes;
+		space_info->bytes_reserved -= num_bytes;
+		space_info->reservation_progress++;
+	}
+	spin_unlock(&cache->lock);
+	spin_unlock(&space_info->lock);
+	return ret;
+}
+
+void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_caching_control *next;
+	struct btrfs_caching_control *caching_ctl;
+	struct btrfs_block_group_cache *cache;
+
+	down_write(&fs_info->extent_commit_sem);
+
+	list_for_each_entry_safe(caching_ctl, next,
+				 &fs_info->caching_block_groups, list) {
+		cache = caching_ctl->block_group;
+		if (block_group_cache_done(cache)) {
+			cache->last_byte_to_unpin = (u64)-1;
+			list_del_init(&caching_ctl->list);
+			put_caching_control(caching_ctl);
+		} else {
+			cache->last_byte_to_unpin = caching_ctl->progress;
+		}
+	}
+
+	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
+		fs_info->pinned_extents = &fs_info->freed_extents[1];
+	else
+		fs_info->pinned_extents = &fs_info->freed_extents[0];
+
+	up_write(&fs_info->extent_commit_sem);
+
+	update_global_block_rsv(fs_info);
+}
+
+static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
+			      const bool return_free_space)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_block_group_cache *cache = NULL;
+	u64 len;
+
+	while (start <= end) {
+		if (!cache ||
+		    start >= cache->key.objectid + cache->key.offset) {
+			if (cache)
+				btrfs_put_block_group(cache);
+			cache = btrfs_lookup_block_group(fs_info, start);
+			BUG_ON(!cache); /* Logic error */
+		}
+
+		len = cache->key.objectid + cache->key.offset - start;
+		len = min(len, end + 1 - start);
+
+		if (start < cache->last_byte_to_unpin) {
+			len = min(len, cache->last_byte_to_unpin - start);
+			if (return_free_space)
+				btrfs_add_free_space(cache, start, len);
+		}
+
+		start += len;
+
+		spin_lock(&cache->space_info->lock);
+		spin_lock(&cache->lock);
+		cache->pinned -= len;
+		cache->space_info->bytes_pinned -= len;
+		if (cache->ro)
+			cache->space_info->bytes_readonly += len;
+		spin_unlock(&cache->lock);
+		spin_unlock(&cache->space_info->lock);
+	}
+
+	if (cache)
+		btrfs_put_block_group(cache);
+	return 0;
+}
+
+int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct extent_io_tree *unpin;
+	u64 start;
+	u64 end;
+	int ret;
+
+	if (trans->aborted)
+		return 0;
+
+	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
+		unpin = &fs_info->freed_extents[1];
+	else
+		unpin = &fs_info->freed_extents[0];
+
+	while (1) {
+		ret = find_first_extent_bit(unpin, 0, &start, &end,
+					    EXTENT_DIRTY);
+		if (ret)
+			break;
+
+		if (btrfs_test_opt(root, DISCARD))
+			ret = btrfs_discard_extent(root, start,
+						   end + 1 - start, NULL);
+
+		clear_extent_dirty(unpin, start, end, GFP_NOFS);
+		unpin_extent_range(root, start, end, true);
+		cond_resched();
+	}
+
+	return 0;
+}
+
+static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				u64 bytenr, u64 num_bytes, u64 parent,
+				u64 root_objectid, u64 owner_objectid,
+				u64 owner_offset, int refs_to_drop,
+				struct btrfs_delayed_extent_op *extent_op)
+{
+	struct btrfs_key key;
+	struct btrfs_path *path;
+	struct btrfs_fs_info *info = root->fs_info;
+	struct btrfs_root *extent_root = info->extent_root;
+	struct extent_buffer *leaf;
+	struct btrfs_extent_item *ei;
+	struct btrfs_extent_inline_ref *iref;
+	int ret;
+	int is_data;
+	int extent_slot = 0;
+	int found_extent = 0;
+	int num_to_del = 1;
+	u32 item_size;
+	u64 refs;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->reada = 1;
+	path->leave_spinning = 1;
+
+	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
+	BUG_ON(!is_data && refs_to_drop != 1);
+
+	ret = lookup_extent_backref(trans, extent_root, path, &iref,
+				    bytenr, num_bytes, parent,
+				    root_objectid, owner_objectid,
+				    owner_offset);
+	if (ret == 0) {
+		extent_slot = path->slots[0];
+		while (extent_slot >= 0) {
+			btrfs_item_key_to_cpu(path->nodes[0], &key,
+					      extent_slot);
+			if (key.objectid != bytenr)
+				break;
+			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
+			    key.offset == num_bytes) {
+				found_extent = 1;
+				break;
+			}
+			if (path->slots[0] - extent_slot > 5)
+				break;
+			extent_slot--;
+		}
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
+		if (found_extent && item_size < sizeof(*ei))
+			found_extent = 0;
+#endif
+		if (!found_extent) {
+			BUG_ON(iref);
+			ret = remove_extent_backref(trans, extent_root, path,
+						    NULL, refs_to_drop,
+						    is_data);
+			if (ret)
+				goto abort;
+			btrfs_release_path(path);
+			path->leave_spinning = 1;
+
+			key.objectid = bytenr;
+			key.type = BTRFS_EXTENT_ITEM_KEY;
+			key.offset = num_bytes;
+
+			ret = btrfs_search_slot(trans, extent_root,
+						&key, path, -1, 1);
+			if (ret) {
+				printk(KERN_ERR "umm, got %d back from search"
+				       ", was looking for %llu\n", ret,
+				       (unsigned long long)bytenr);
+				if (ret > 0)
+					btrfs_print_leaf(extent_root,
+							 path->nodes[0]);
+			}
+			if (ret < 0)
+				goto abort;
+			extent_slot = path->slots[0];
+		}
+	} else if (ret == -ENOENT) {
+		btrfs_print_leaf(extent_root, path->nodes[0]);
+		WARN_ON(1);
+		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
+		       "parent %llu root %llu  owner %llu offset %llu\n",
+		       (unsigned long long)bytenr,
+		       (unsigned long long)parent,
+		       (unsigned long long)root_objectid,
+		       (unsigned long long)owner_objectid,
+		       (unsigned long long)owner_offset);
+	} else {
+		goto abort;
+	}
+
+	leaf = path->nodes[0];
+	item_size = btrfs_item_size_nr(leaf, extent_slot);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+	if (item_size < sizeof(*ei)) {
+		BUG_ON(found_extent || extent_slot != path->slots[0]);
+		ret = convert_extent_item_v0(trans, extent_root, path,
+					     owner_objectid, 0);
+		if (ret < 0)
+			goto abort;
+
+		btrfs_release_path(path);
+		path->leave_spinning = 1;
+
+		key.objectid = bytenr;
+		key.type = BTRFS_EXTENT_ITEM_KEY;
+		key.offset = num_bytes;
+
+		ret = btrfs_search_slot(trans, extent_root, &key, path,
+					-1, 1);
+		if (ret) {
+			printk(KERN_ERR "umm, got %d back from search"
+			       ", was looking for %llu\n", ret,
+			       (unsigned long long)bytenr);
+			btrfs_print_leaf(extent_root, path->nodes[0]);
+		}
+		if (ret < 0)
+			goto abort;
+		extent_slot = path->slots[0];
+		leaf = path->nodes[0];
+		item_size = btrfs_item_size_nr(leaf, extent_slot);
+	}
+#endif
+	BUG_ON(item_size < sizeof(*ei));
+	ei = btrfs_item_ptr(leaf, extent_slot,
+			    struct btrfs_extent_item);
+	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
+		struct btrfs_tree_block_info *bi;
+		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
+		bi = (struct btrfs_tree_block_info *)(ei + 1);
+		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
+	}
+
+	refs = btrfs_extent_refs(leaf, ei);
+	BUG_ON(refs < refs_to_drop);
+	refs -= refs_to_drop;
+
+	if (refs > 0) {
+		if (extent_op)
+			__run_delayed_extent_op(extent_op, leaf, ei);
+		/*
+		 * In the case of inline back ref, reference count will
+		 * be updated by remove_extent_backref
+		 */
+		if (iref) {
+			BUG_ON(!found_extent);
+		} else {
+			btrfs_set_extent_refs(leaf, ei, refs);
+			btrfs_mark_buffer_dirty(leaf);
+		}
+		if (found_extent) {
+			ret = remove_extent_backref(trans, extent_root, path,
+						    iref, refs_to_drop,
+						    is_data);
+			if (ret)
+				goto abort;
+		}
+	} else {
+		if (found_extent) {
+			BUG_ON(is_data && refs_to_drop !=
+			       extent_data_ref_count(root, path, iref));
+			if (iref) {
+				BUG_ON(path->slots[0] != extent_slot);
+			} else {
+				BUG_ON(path->slots[0] != extent_slot + 1);
+				path->slots[0] = extent_slot;
+				num_to_del = 2;
+			}
+		}
+
+		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
+				      num_to_del);
+		if (ret)
+			goto abort;
+		btrfs_release_path(path);
+
+		if (is_data) {
+			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
+			if (ret)
+				goto abort;
+		}
+
+		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
+		if (ret)
+			goto abort;
+	}
+out:
+	btrfs_free_path(path);
+	return ret;
+
+abort:
+	btrfs_abort_transaction(trans, extent_root, ret);
+	goto out;
+}
+
+/*
+ * when we free an block, it is possible (and likely) that we free the last
+ * delayed ref for that extent as well.  This searches the delayed ref tree for
+ * a given extent, and if there are no other delayed refs to be processed, it
+ * removes it from the tree.
+ */
+static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
+				      struct btrfs_root *root, u64 bytenr)
+{
+	struct btrfs_delayed_ref_head *head;
+	struct btrfs_delayed_ref_root *delayed_refs;
+	struct btrfs_delayed_ref_node *ref;
+	struct rb_node *node;
+	int ret = 0;
+
+	delayed_refs = &trans->transaction->delayed_refs;
+	spin_lock(&delayed_refs->lock);
+	head = btrfs_find_delayed_ref_head(trans, bytenr);
+	if (!head)
+		goto out;
+
+	node = rb_prev(&head->node.rb_node);
+	if (!node)
+		goto out;
+
+	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+
+	/* there are still entries for this ref, we can't drop it */
+	if (ref->bytenr == bytenr)
+		goto out;
+
+	if (head->extent_op) {
+		if (!head->must_insert_reserved)
+			goto out;
+		kfree(head->extent_op);
+		head->extent_op = NULL;
+	}
+
+	/*
+	 * waiting for the lock here would deadlock.  If someone else has it
+	 * locked they are already in the process of dropping it anyway
+	 */
+	if (!mutex_trylock(&head->mutex))
+		goto out;
+
+	/*
+	 * at this point we have a head with no other entries.  Go
+	 * ahead and process it.
+	 */
+	head->node.in_tree = 0;
+	rb_erase(&head->node.rb_node, &delayed_refs->root);
+
+	delayed_refs->num_entries--;
+	if (waitqueue_active(&delayed_refs->seq_wait))
+		wake_up(&delayed_refs->seq_wait);
+
+	/*
+	 * we don't take a ref on the node because we're removing it from the
+	 * tree, so we just steal the ref the tree was holding.
+	 */
+	delayed_refs->num_heads--;
+	if (list_empty(&head->cluster))
+		delayed_refs->num_heads_ready--;
+
+	list_del_init(&head->cluster);
+	spin_unlock(&delayed_refs->lock);
+
+	BUG_ON(head->extent_op);
+	if (head->must_insert_reserved)
+		ret = 1;
+
+	mutex_unlock(&head->mutex);
+	btrfs_put_delayed_ref(&head->node);
+	return ret;
+out:
+	spin_unlock(&delayed_refs->lock);
+	return 0;
+}
+
+void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
+			   struct btrfs_root *root,
+			   struct extent_buffer *buf,
+			   u64 parent, int last_ref, int for_cow)
+{
+	struct btrfs_block_group_cache *cache = NULL;
+	int ret;
+
+	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
+		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
+					buf->start, buf->len,
+					parent, root->root_key.objectid,
+					btrfs_header_level(buf),
+					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	if (!last_ref)
+		return;
+
+	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
+
+	if (btrfs_header_generation(buf) == trans->transid) {
+		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
+			ret = check_ref_cleanup(trans, root, buf->start);
+			if (!ret)
+				goto out;
+		}
+
+		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
+			pin_down_extent(root, cache, buf->start, buf->len, 1);
+			goto out;
+		}
+
+		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
+
+		btrfs_add_free_space(cache, buf->start, buf->len);
+		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
+	}
+out:
+	/*
+	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
+	 * anymore.
+	 */
+	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
+	btrfs_put_block_group(cache);
+}
+
+/* Can return -ENOMEM */
+int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
+		      u64 owner, u64 offset, int for_cow)
+{
+	int ret;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+
+	/*
+	 * tree log blocks never actually go into the extent allocation
+	 * tree, just update pinning info and exit early.
+	 */
+	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
+		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
+		/* unlocks the pinned mutex */
+		btrfs_pin_extent(root, bytenr, num_bytes, 1);
+		ret = 0;
+	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
+					num_bytes,
+					parent, root_objectid, (int)owner,
+					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
+	} else {
+		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
+						num_bytes,
+						parent, root_objectid, owner,
+						offset, BTRFS_DROP_DELAYED_REF,
+						NULL, for_cow);
+	}
+	return ret;
+}
+
+static u64 stripe_align(struct btrfs_root *root, u64 val)
+{
+	u64 mask = ((u64)root->stripesize - 1);
+	u64 ret = (val + mask) & ~mask;
+	return ret;
+}
+
+/*
+ * when we wait for progress in the block group caching, its because
+ * our allocation attempt failed at least once.  So, we must sleep
+ * and let some progress happen before we try again.
+ *
+ * This function will sleep at least once waiting for new free space to
+ * show up, and then it will check the block group free space numbers
+ * for our min num_bytes.  Another option is to have it go ahead
+ * and look in the rbtree for a free extent of a given size, but this
+ * is a good start.
+ */
+static noinline int
+wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
+				u64 num_bytes)
+{
+	struct btrfs_caching_control *caching_ctl;
+	DEFINE_WAIT(wait);
+
+	caching_ctl = get_caching_control(cache);
+	if (!caching_ctl)
+		return 0;
+
+	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
+		   (cache->free_space_ctl->free_space >= num_bytes));
+
+	put_caching_control(caching_ctl);
+	return 0;
+}
+
+static noinline int
+wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
+{
+	struct btrfs_caching_control *caching_ctl;
+	DEFINE_WAIT(wait);
+
+	caching_ctl = get_caching_control(cache);
+	if (!caching_ctl)
+		return 0;
+
+	wait_event(caching_ctl->wait, block_group_cache_done(cache));
+
+	put_caching_control(caching_ctl);
+	return 0;
+}
+
+static int __get_block_group_index(u64 flags)
+{
+	int index;
+
+	if (flags & BTRFS_BLOCK_GROUP_RAID10)
+		index = 0;
+	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
+		index = 1;
+	else if (flags & BTRFS_BLOCK_GROUP_DUP)
+		index = 2;
+	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
+		index = 3;
+	else
+		index = 4;
+
+	return index;
+}
+
+static int get_block_group_index(struct btrfs_block_group_cache *cache)
+{
+	return __get_block_group_index(cache->flags);
+}
+
+enum btrfs_loop_type {
+	LOOP_CACHING_NOWAIT = 0,
+	LOOP_CACHING_WAIT = 1,
+	LOOP_ALLOC_CHUNK = 2,
+	LOOP_NO_EMPTY_SIZE = 3,
+};
+
+/*
+ * walks the btree of allocated extents and find a hole of a given size.
+ * The key ins is changed to record the hole:
+ * ins->objectid == block start
+ * ins->flags = BTRFS_EXTENT_ITEM_KEY
+ * ins->offset == number of blocks
+ * Any available blocks before search_start are skipped.
+ */
+static noinline int find_free_extent(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *orig_root,
+				     u64 num_bytes, u64 empty_size,
+				     u64 hint_byte, struct btrfs_key *ins,
+				     u64 data)
+{
+	int ret = 0;
+	struct btrfs_root *root = orig_root->fs_info->extent_root;
+	struct btrfs_free_cluster *last_ptr = NULL;
+	struct btrfs_block_group_cache *block_group = NULL;
+	struct btrfs_block_group_cache *used_block_group;
+	u64 search_start = 0;
+	int empty_cluster = 2 * 1024 * 1024;
+	int allowed_chunk_alloc = 0;
+	int done_chunk_alloc = 0;
+	struct btrfs_space_info *space_info;
+	int loop = 0;
+	int index = 0;
+	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
+		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
+	bool found_uncached_bg = false;
+	bool failed_cluster_refill = false;
+	bool failed_alloc = false;
+	bool use_cluster = true;
+	bool have_caching_bg = false;
+
+	WARN_ON(num_bytes < root->sectorsize);
+	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
+	ins->objectid = 0;
+	ins->offset = 0;
+
+	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
+
+	space_info = __find_space_info(root->fs_info, data);
+	if (!space_info) {
+		printk(KERN_ERR "No space info for %llu\n", data);
+		return -ENOSPC;
+	}
+
+	/*
+	 * If the space info is for both data and metadata it means we have a
+	 * small filesystem and we can't use the clustering stuff.
+	 */
+	if (btrfs_mixed_space_info(space_info))
+		use_cluster = false;
+
+	if (orig_root->ref_cows || empty_size)
+		allowed_chunk_alloc = 1;
+
+	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
+		last_ptr = &root->fs_info->meta_alloc_cluster;
+		if (!btrfs_test_opt(root, SSD))
+			empty_cluster = 64 * 1024;
+	}
+
+	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
+	    btrfs_test_opt(root, SSD)) {
+		last_ptr = &root->fs_info->data_alloc_cluster;
+	}
+
+	if (last_ptr) {
+		spin_lock(&last_ptr->lock);
+		if (last_ptr->block_group)
+			hint_byte = last_ptr->window_start;
+		spin_unlock(&last_ptr->lock);
+	}
+
+	search_start = max(search_start, first_logical_byte(root, 0));
+	search_start = max(search_start, hint_byte);
+
+	if (!last_ptr)
+		empty_cluster = 0;
+
+	if (search_start == hint_byte) {
+		block_group = btrfs_lookup_block_group(root->fs_info,
+						       search_start);
+		used_block_group = block_group;
+		/*
+		 * we don't want to use the block group if it doesn't match our
+		 * allocation bits, or if its not cached.
+		 *
+		 * However if we are re-searching with an ideal block group
+		 * picked out then we don't care that the block group is cached.
+		 */
+		if (block_group && block_group_bits(block_group, data) &&
+		    block_group->cached != BTRFS_CACHE_NO) {
+			down_read(&space_info->groups_sem);
+			if (list_empty(&block_group->list) ||
+			    block_group->ro) {
+				/*
+				 * someone is removing this block group,
+				 * we can't jump into the have_block_group
+				 * target because our list pointers are not
+				 * valid
+				 */
+				btrfs_put_block_group(block_group);
+				up_read(&space_info->groups_sem);
+			} else {
+				index = get_block_group_index(block_group);
+				goto have_block_group;
+			}
+		} else if (block_group) {
+			btrfs_put_block_group(block_group);
+		}
+	}
+search:
+	have_caching_bg = false;
+	down_read(&space_info->groups_sem);
+	list_for_each_entry(block_group, &space_info->block_groups[index],
+			    list) {
+		u64 offset;
+		int cached;
+
+		used_block_group = block_group;
+		btrfs_get_block_group(block_group);
+		search_start = block_group->key.objectid;
+
+		/*
+		 * this can happen if we end up cycling through all the
+		 * raid types, but we want to make sure we only allocate
+		 * for the proper type.
+		 */
+		if (!block_group_bits(block_group, data)) {
+		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
+				BTRFS_BLOCK_GROUP_RAID1 |
+				BTRFS_BLOCK_GROUP_RAID10;
+
+			/*
+			 * if they asked for extra copies and this block group
+			 * doesn't provide them, bail.  This does allow us to
+			 * fill raid0 from raid1.
+			 */
+			if ((data & extra) && !(block_group->flags & extra))
+				goto loop;
+		}
+
+have_block_group:
+		cached = block_group_cache_done(block_group);
+		if (unlikely(!cached)) {
+			found_uncached_bg = true;
+			ret = cache_block_group(block_group, trans,
+						orig_root, 0);
+			BUG_ON(ret < 0);
+			ret = 0;
+		}
+
+		if (unlikely(block_group->ro))
+			goto loop;
+
+		/*
+		 * Ok we want to try and use the cluster allocator, so
+		 * lets look there
+		 */
+		if (last_ptr) {
+			/*
+			 * the refill lock keeps out other
+			 * people trying to start a new cluster
+			 */
+			spin_lock(&last_ptr->refill_lock);
+			used_block_group = last_ptr->block_group;
+			if (used_block_group != block_group &&
+			    (!used_block_group ||
+			     used_block_group->ro ||
+			     !block_group_bits(used_block_group, data))) {
+				used_block_group = block_group;
+				goto refill_cluster;
+			}
+
+			if (used_block_group != block_group)
+				btrfs_get_block_group(used_block_group);
+
+			offset = btrfs_alloc_from_cluster(used_block_group,
+			  last_ptr, num_bytes, used_block_group->key.objectid);
+			if (offset) {
+				/* we have a block, we're done */
+				spin_unlock(&last_ptr->refill_lock);
+				trace_btrfs_reserve_extent_cluster(root,
+					block_group, search_start, num_bytes);
+				goto checks;
+			}
+
+			WARN_ON(last_ptr->block_group != used_block_group);
+			if (used_block_group != block_group) {
+				btrfs_put_block_group(used_block_group);
+				used_block_group = block_group;
+			}
+refill_cluster:
+			BUG_ON(used_block_group != block_group);
+			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
+			 * set up a new clusters, so lets just skip it
+			 * and let the allocator find whatever block
+			 * it can find.  If we reach this point, we
+			 * will have tried the cluster allocator
+			 * plenty of times and not have found
+			 * anything, so we are likely way too
+			 * fragmented for the clustering stuff to find
+			 * anything.
+			 *
+			 * However, if the cluster is taken from the
+			 * current block group, release the cluster
+			 * first, so that we stand a better chance of
+			 * succeeding in the unclustered
+			 * allocation.  */
+			if (loop >= LOOP_NO_EMPTY_SIZE &&
+			    last_ptr->block_group != block_group) {
+				spin_unlock(&last_ptr->refill_lock);
+				goto unclustered_alloc;
+			}
+
+			/*
+			 * this cluster didn't work out, free it and
+			 * start over
+			 */
+			btrfs_return_cluster_to_free_space(NULL, last_ptr);
+
+			if (loop >= LOOP_NO_EMPTY_SIZE) {
+				spin_unlock(&last_ptr->refill_lock);
+				goto unclustered_alloc;
+			}
+
+			/* allocate a cluster in this block group */
+			ret = btrfs_find_space_cluster(trans, root,
+					       block_group, last_ptr,
+					       search_start, num_bytes,
+					       empty_cluster + empty_size);
+			if (ret == 0) {
+				/*
+				 * now pull our allocation out of this
+				 * cluster
+				 */
+				offset = btrfs_alloc_from_cluster(block_group,
+						  last_ptr, num_bytes,
+						  search_start);
+				if (offset) {
+					/* we found one, proceed */
+					spin_unlock(&last_ptr->refill_lock);
+					trace_btrfs_reserve_extent_cluster(root,
+						block_group, search_start,
+						num_bytes);
+					goto checks;
+				}
+			} else if (!cached && loop > LOOP_CACHING_NOWAIT
+				   && !failed_cluster_refill) {
+				spin_unlock(&last_ptr->refill_lock);
+
+				failed_cluster_refill = true;
+				wait_block_group_cache_progress(block_group,
+				       num_bytes + empty_cluster + empty_size);
+				goto have_block_group;
+			}
+
+			/*
+			 * at this point we either didn't find a cluster
+			 * or we weren't able to allocate a block from our
+			 * cluster.  Free the cluster we've been trying
+			 * to use, and go to the next block group
+			 */
+			btrfs_return_cluster_to_free_space(NULL, last_ptr);
+			spin_unlock(&last_ptr->refill_lock);
+			goto loop;
+		}
+
+unclustered_alloc:
+		spin_lock(&block_group->free_space_ctl->tree_lock);
+		if (cached &&
+		    block_group->free_space_ctl->free_space <
+		    num_bytes + empty_cluster + empty_size) {
+			spin_unlock(&block_group->free_space_ctl->tree_lock);
+			goto loop;
+		}
+		spin_unlock(&block_group->free_space_ctl->tree_lock);
+
+		offset = btrfs_find_space_for_alloc(block_group, search_start,
+						    num_bytes, empty_size);
+		/*
+		 * If we didn't find a chunk, and we haven't failed on this
+		 * block group before, and this block group is in the middle of
+		 * caching and we are ok with waiting, then go ahead and wait
+		 * for progress to be made, and set failed_alloc to true.
+		 *
+		 * If failed_alloc is true then we've already waited on this
+		 * block group once and should move on to the next block group.
+		 */
+		if (!offset && !failed_alloc && !cached &&
+		    loop > LOOP_CACHING_NOWAIT) {
+			wait_block_group_cache_progress(block_group,
+						num_bytes + empty_size);
+			failed_alloc = true;
+			goto have_block_group;
+		} else if (!offset) {
+			if (!cached)
+				have_caching_bg = true;
+			goto loop;
+		}
+checks:
+		search_start = stripe_align(root, offset);
+
+		/* move on to the next group */
+		if (search_start + num_bytes >
+		    used_block_group->key.objectid + used_block_group->key.offset) {
+			btrfs_add_free_space(used_block_group, offset, num_bytes);
+			goto loop;
+		}
+
+		if (offset < search_start)
+			btrfs_add_free_space(used_block_group, offset,
+					     search_start - offset);
+		BUG_ON(offset > search_start);
+
+		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
+						  alloc_type);
+		if (ret == -EAGAIN) {
+			btrfs_add_free_space(used_block_group, offset, num_bytes);
+			goto loop;
+		}
+
+		/* we are all good, lets return */
+		ins->objectid = search_start;
+		ins->offset = num_bytes;
+
+		trace_btrfs_reserve_extent(orig_root, block_group,
+					   search_start, num_bytes);
+		if (offset < search_start)
+			btrfs_add_free_space(used_block_group, offset,
+					     search_start - offset);
+		BUG_ON(offset > search_start);
+		if (used_block_group != block_group)
+			btrfs_put_block_group(used_block_group);
+		btrfs_put_block_group(block_group);
+		break;
+loop:
+		failed_cluster_refill = false;
+		failed_alloc = false;
+		BUG_ON(index != get_block_group_index(block_group));
+		if (used_block_group != block_group)
+			btrfs_put_block_group(used_block_group);
+		btrfs_put_block_group(block_group);
+	}
+	up_read(&space_info->groups_sem);
+
+	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
+		goto search;
+
+	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
+		goto search;
+
+	/*
+	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
+	 *			caching kthreads as we move along
+	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
+	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
+	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
+	 *			again
+	 */
+	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
+		index = 0;
+		loop++;
+		if (loop == LOOP_ALLOC_CHUNK) {
+		       if (allowed_chunk_alloc) {
+				ret = do_chunk_alloc(trans, root, num_bytes +
+						     2 * 1024 * 1024, data,
+						     CHUNK_ALLOC_LIMITED);
+				if (ret < 0) {
+					btrfs_abort_transaction(trans,
+								root, ret);
+					goto out;
+				}
+				allowed_chunk_alloc = 0;
+				if (ret == 1)
+					done_chunk_alloc = 1;
+			} else if (!done_chunk_alloc &&
+				   space_info->force_alloc ==
+				   CHUNK_ALLOC_NO_FORCE) {
+				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
+			}
+
+		       /*
+			* We didn't allocate a chunk, go ahead and drop the
+			* empty size and loop again.
+			*/
+		       if (!done_chunk_alloc)
+			       loop = LOOP_NO_EMPTY_SIZE;
+		}
+
+		if (loop == LOOP_NO_EMPTY_SIZE) {
+			empty_size = 0;
+			empty_cluster = 0;
+		}
+
+		goto search;
+	} else if (!ins->objectid) {
+		ret = -ENOSPC;
+	} else if (ins->objectid) {
+		ret = 0;
+	}
+out:
+
+	return ret;
+}
+
+static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+			    int dump_block_groups)
+{
+	struct btrfs_block_group_cache *cache;
+	int index = 0;
+
+	spin_lock(&info->lock);
+	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
+	       (unsigned long long)info->flags,
+	       (unsigned long long)(info->total_bytes - info->bytes_used -
+				    info->bytes_pinned - info->bytes_reserved -
+				    info->bytes_readonly),
+	       (info->full) ? "" : "not ");
+	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
+	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
+	       (unsigned long long)info->total_bytes,
+	       (unsigned long long)info->bytes_used,
+	       (unsigned long long)info->bytes_pinned,
+	       (unsigned long long)info->bytes_reserved,
+	       (unsigned long long)info->bytes_may_use,
+	       (unsigned long long)info->bytes_readonly);
+	spin_unlock(&info->lock);
+
+	if (!dump_block_groups)
+		return;
+
+	down_read(&info->groups_sem);
+again:
+	list_for_each_entry(cache, &info->block_groups[index], list) {
+		spin_lock(&cache->lock);
+		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
+		       "%llu pinned %llu reserved\n",
+		       (unsigned long long)cache->key.objectid,
+		       (unsigned long long)cache->key.offset,
+		       (unsigned long long)btrfs_block_group_used(&cache->item),
+		       (unsigned long long)cache->pinned,
+		       (unsigned long long)cache->reserved);
+		btrfs_dump_free_space(cache, bytes);
+		spin_unlock(&cache->lock);
+	}
+	if (++index < BTRFS_NR_RAID_TYPES)
+		goto again;
+	up_read(&info->groups_sem);
+}
+
+int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
+			 struct btrfs_root *root,
+			 u64 num_bytes, u64 min_alloc_size,
+			 u64 empty_size, u64 hint_byte,
+			 struct btrfs_key *ins, u64 data)
+{
+	bool final_tried = false;
+	int ret;
+
+	data = btrfs_get_alloc_profile(root, data);
+again:
+	/*
+	 * the only place that sets empty_size is btrfs_realloc_node, which
+	 * is not called recursively on allocations
+	 */
+	if (empty_size || root->ref_cows) {
+		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+				     num_bytes + 2 * 1024 * 1024, data,
+				     CHUNK_ALLOC_NO_FORCE);
+		if (ret < 0 && ret != -ENOSPC) {
+			btrfs_abort_transaction(trans, root, ret);
+			return ret;
+		}
+	}
+
+	WARN_ON(num_bytes < root->sectorsize);
+	ret = find_free_extent(trans, root, num_bytes, empty_size,
+			       hint_byte, ins, data);
+
+	if (ret == -ENOSPC) {
+		if (!final_tried) {
+			num_bytes = num_bytes >> 1;
+			num_bytes = num_bytes & ~(root->sectorsize - 1);
+			num_bytes = max(num_bytes, min_alloc_size);
+			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+				       num_bytes, data, CHUNK_ALLOC_FORCE);
+			if (ret < 0 && ret != -ENOSPC) {
+				btrfs_abort_transaction(trans, root, ret);
+				return ret;
+			}
+			if (num_bytes == min_alloc_size)
+				final_tried = true;
+			goto again;
+		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
+			struct btrfs_space_info *sinfo;
+
+			sinfo = __find_space_info(root->fs_info, data);
+			printk(KERN_ERR "btrfs allocation failed flags %llu, "
+			       "wanted %llu\n", (unsigned long long)data,
+			       (unsigned long long)num_bytes);
+			if (sinfo)
+				dump_space_info(sinfo, num_bytes, 1);
+		}
+	}
+
+	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
+
+	return ret;
+}
+
+static int __btrfs_free_reserved_extent(struct btrfs_root *root,
+					u64 start, u64 len, int pin)
+{
+	struct btrfs_block_group_cache *cache;
+	int ret = 0;
+
+	cache = btrfs_lookup_block_group(root->fs_info, start);
+	if (!cache) {
+		printk(KERN_ERR "Unable to find block group for %llu\n",
+		       (unsigned long long)start);
+		return -ENOSPC;
+	}
+
+	if (pin)
+		pin_down_extent(root, cache, start, len, 1);
+	else {
+		if (btrfs_test_opt(root, DISCARD))
+			ret = btrfs_discard_extent(root, start, len, NULL);
+		btrfs_add_free_space(cache, start, len);
+		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
+	}
+	btrfs_put_block_group(cache);
+
+	trace_btrfs_reserved_extent_free(root, start, len);
+
+	return ret;
+}
+
+int btrfs_free_reserved_extent(struct btrfs_root *root,
+					u64 start, u64 len)
+{
+	return __btrfs_free_reserved_extent(root, start, len, 0);
+}
+
+int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
+				       u64 start, u64 len)
+{
+	return __btrfs_free_reserved_extent(root, start, len, 1);
+}
+
+static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+				      struct btrfs_root *root,
+				      u64 parent, u64 root_objectid,
+				      u64 flags, u64 owner, u64 offset,
+				      struct btrfs_key *ins, int ref_mod)
+{
+	int ret;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_extent_item *extent_item;
+	struct btrfs_extent_inline_ref *iref;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	int type;
+	u32 size;
+
+	if (parent > 0)
+		type = BTRFS_SHARED_DATA_REF_KEY;
+	else
+		type = BTRFS_EXTENT_DATA_REF_KEY;
+
+	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->leave_spinning = 1;
+	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
+				      ins, size);
+	if (ret) {
+		btrfs_free_path(path);
+		return ret;
+	}
+
+	leaf = path->nodes[0];
+	extent_item = btrfs_item_ptr(leaf, path->slots[0],
+				     struct btrfs_extent_item);
+	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
+	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
+	btrfs_set_extent_flags(leaf, extent_item,
+			       flags | BTRFS_EXTENT_FLAG_DATA);
+
+	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
+	btrfs_set_extent_inline_ref_type(leaf, iref, type);
+	if (parent > 0) {
+		struct btrfs_shared_data_ref *ref;
+		ref = (struct btrfs_shared_data_ref *)(iref + 1);
+		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
+	} else {
+		struct btrfs_extent_data_ref *ref;
+		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
+		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
+		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
+		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
+		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
+	}
+
+	btrfs_mark_buffer_dirty(path->nodes[0]);
+	btrfs_free_path(path);
+
+	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
+	if (ret) { /* -ENOENT, logic error */
+		printk(KERN_ERR "btrfs update block group failed for %llu "
+		       "%llu\n", (unsigned long long)ins->objectid,
+		       (unsigned long long)ins->offset);
+		BUG();
+	}
+	return ret;
+}
+
+static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *root,
+				     u64 parent, u64 root_objectid,
+				     u64 flags, struct btrfs_disk_key *key,
+				     int level, struct btrfs_key *ins)
+{
+	int ret;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_extent_item *extent_item;
+	struct btrfs_tree_block_info *block_info;
+	struct btrfs_extent_inline_ref *iref;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->leave_spinning = 1;
+	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
+				      ins, size);
+	if (ret) {
+		btrfs_free_path(path);
+		return ret;
+	}
+
+	leaf = path->nodes[0];
+	extent_item = btrfs_item_ptr(leaf, path->slots[0],
+				     struct btrfs_extent_item);
+	btrfs_set_extent_refs(leaf, extent_item, 1);
+	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
+	btrfs_set_extent_flags(leaf, extent_item,
+			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
+	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
+
+	btrfs_set_tree_block_key(leaf, block_info, key);
+	btrfs_set_tree_block_level(leaf, block_info, level);
+
+	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
+	if (parent > 0) {
+		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
+		btrfs_set_extent_inline_ref_type(leaf, iref,
+						 BTRFS_SHARED_BLOCK_REF_KEY);
+		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+	} else {
+		btrfs_set_extent_inline_ref_type(leaf, iref,
+						 BTRFS_TREE_BLOCK_REF_KEY);
+		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
+	}
+
+	btrfs_mark_buffer_dirty(leaf);
+	btrfs_free_path(path);
+
+	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
+	if (ret) { /* -ENOENT, logic error */
+		printk(KERN_ERR "btrfs update block group failed for %llu "
+		       "%llu\n", (unsigned long long)ins->objectid,
+		       (unsigned long long)ins->offset);
+		BUG();
+	}
+	return ret;
+}
+
+int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *root,
+				     u64 root_objectid, u64 owner,
+				     u64 offset, struct btrfs_key *ins)
+{
+	int ret;
+
+	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
+
+	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
+					 ins->offset, 0,
+					 root_objectid, owner, offset,
+					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
+	return ret;
+}
+
+/*
+ * this is used by the tree logging recovery code.  It records that
+ * an extent has been allocated and makes sure to clear the free
+ * space cache bits as well
+ */
+int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
+				   struct btrfs_root *root,
+				   u64 root_objectid, u64 owner, u64 offset,
+				   struct btrfs_key *ins)
+{
+	int ret;
+	struct btrfs_block_group_cache *block_group;
+	struct btrfs_caching_control *caching_ctl;
+	u64 start = ins->objectid;
+	u64 num_bytes = ins->offset;
+
+	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
+	cache_block_group(block_group, trans, NULL, 0);
+	caching_ctl = get_caching_control(block_group);
+
+	if (!caching_ctl) {
+		BUG_ON(!block_group_cache_done(block_group));
+		ret = btrfs_remove_free_space(block_group, start, num_bytes);
+		BUG_ON(ret); /* -ENOMEM */
+	} else {
+		mutex_lock(&caching_ctl->mutex);
+
+		if (start >= caching_ctl->progress) {
+			ret = add_excluded_extent(root, start, num_bytes);
+			BUG_ON(ret); /* -ENOMEM */
+		} else if (start + num_bytes <= caching_ctl->progress) {
+			ret = btrfs_remove_free_space(block_group,
+						      start, num_bytes);
+			BUG_ON(ret); /* -ENOMEM */
+		} else {
+			num_bytes = caching_ctl->progress - start;
+			ret = btrfs_remove_free_space(block_group,
+						      start, num_bytes);
+			BUG_ON(ret); /* -ENOMEM */
+
+			start = caching_ctl->progress;
+			num_bytes = ins->objectid + ins->offset -
+				    caching_ctl->progress;
+			ret = add_excluded_extent(root, start, num_bytes);
+			BUG_ON(ret); /* -ENOMEM */
+		}
+
+		mutex_unlock(&caching_ctl->mutex);
+		put_caching_control(caching_ctl);
+	}
+
+	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
+					  RESERVE_ALLOC_NO_ACCOUNT);
+	BUG_ON(ret); /* logic error */
+	btrfs_put_block_group(block_group);
+	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
+					 0, owner, offset, ins, 1);
+	return ret;
+}
+
+struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
+					    struct btrfs_root *root,
+					    u64 bytenr, u32 blocksize,
+					    int level)
+{
+	struct extent_buffer *buf;
+
+	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+	if (!buf)
+		return ERR_PTR(-ENOMEM);
+	btrfs_set_header_generation(buf, trans->transid);
+	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
+	btrfs_tree_lock(buf);
+	clean_tree_block(trans, root, buf);
+	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
+
+	btrfs_set_lock_blocking(buf);
+	btrfs_set_buffer_uptodate(buf);
+
+	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
+		/*
+		 * we allow two log transactions at a time, use different
+		 * EXENT bit to differentiate dirty pages.
+		 */
+		if (root->log_transid % 2 == 0)
+			set_extent_dirty(&root->dirty_log_pages, buf->start,
+					buf->start + buf->len - 1, GFP_NOFS);
+		else
+			set_extent_new(&root->dirty_log_pages, buf->start,
+					buf->start + buf->len - 1, GFP_NOFS);
+	} else {
+		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
+			 buf->start + buf->len - 1, GFP_NOFS);
+	}
+	trans->blocks_used++;
+	/* this returns a buffer locked for blocking */
+	return buf;
+}
+
+static struct btrfs_block_rsv *
+use_block_rsv(struct btrfs_trans_handle *trans,
+	      struct btrfs_root *root, u32 blocksize)
+{
+	struct btrfs_block_rsv *block_rsv;
+	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+	int ret;
+
+	block_rsv = get_block_rsv(trans, root);
+
+	if (block_rsv->size == 0) {
+		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
+		/*
+		 * If we couldn't reserve metadata bytes try and use some from
+		 * the global reserve.
+		 */
+		if (ret && block_rsv != global_rsv) {
+			ret = block_rsv_use_bytes(global_rsv, blocksize);
+			if (!ret)
+				return global_rsv;
+			return ERR_PTR(ret);
+		} else if (ret) {
+			return ERR_PTR(ret);
+		}
+		return block_rsv;
+	}
+
+	ret = block_rsv_use_bytes(block_rsv, blocksize);
+	if (!ret)
+		return block_rsv;
+	if (ret) {
+		static DEFINE_RATELIMIT_STATE(_rs,
+				DEFAULT_RATELIMIT_INTERVAL,
+				/*DEFAULT_RATELIMIT_BURST*/ 2);
+		if (__ratelimit(&_rs)) {
+			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
+			WARN_ON(1);
+		}
+		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
+		if (!ret) {
+			return block_rsv;
+		} else if (ret && block_rsv != global_rsv) {
+			ret = block_rsv_use_bytes(global_rsv, blocksize);
+			if (!ret)
+				return global_rsv;
+		}
+	}
+
+	return ERR_PTR(-ENOSPC);
+}
+
+static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
+			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
+{
+	block_rsv_add_bytes(block_rsv, blocksize, 0);
+	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
+}
+
+/*
+ * finds a free extent and does all the dirty work required for allocation
+ * returns the key for the extent through ins, and a tree buffer for
+ * the first block of the extent through buf.
+ *
+ * returns the tree buffer or NULL.
+ */
+struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
+					struct btrfs_root *root, u32 blocksize,
+					u64 parent, u64 root_objectid,
+					struct btrfs_disk_key *key, int level,
+					u64 hint, u64 empty_size, int for_cow)
+{
+	struct btrfs_key ins;
+	struct btrfs_block_rsv *block_rsv;
+	struct extent_buffer *buf;
+	u64 flags = 0;
+	int ret;
+
+
+	block_rsv = use_block_rsv(trans, root, blocksize);
+	if (IS_ERR(block_rsv))
+		return ERR_CAST(block_rsv);
+
+	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
+				   empty_size, hint, &ins, 0);
+	if (ret) {
+		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
+		return ERR_PTR(ret);
+	}
+
+	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
+				    blocksize, level);
+	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
+
+	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
+		if (parent == 0)
+			parent = ins.objectid;
+		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
+	} else
+		BUG_ON(parent > 0);
+
+	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
+		struct btrfs_delayed_extent_op *extent_op;
+		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
+		BUG_ON(!extent_op); /* -ENOMEM */
+		if (key)
+			memcpy(&extent_op->key, key, sizeof(extent_op->key));
+		else
+			memset(&extent_op->key, 0, sizeof(extent_op->key));
+		extent_op->flags_to_set = flags;
+		extent_op->update_key = 1;
+		extent_op->update_flags = 1;
+		extent_op->is_data = 0;
+
+		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
+					ins.objectid,
+					ins.offset, parent, root_objectid,
+					level, BTRFS_ADD_DELAYED_EXTENT,
+					extent_op, for_cow);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+	return buf;
+}
+
+struct walk_control {
+	u64 refs[BTRFS_MAX_LEVEL];
+	u64 flags[BTRFS_MAX_LEVEL];
+	struct btrfs_key update_progress;
+	int stage;
+	int level;
+	int shared_level;
+	int update_ref;
+	int keep_locks;
+	int reada_slot;
+	int reada_count;
+	int for_reloc;
+};
+
+#define DROP_REFERENCE	1
+#define UPDATE_BACKREF	2
+
+static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *root,
+				     struct walk_control *wc,
+				     struct btrfs_path *path)
+{
+	u64 bytenr;
+	u64 generation;
+	u64 refs;
+	u64 flags;
+	u32 nritems;
+	u32 blocksize;
+	struct btrfs_key key;
+	struct extent_buffer *eb;
+	int ret;
+	int slot;
+	int nread = 0;
+
+	if (path->slots[wc->level] < wc->reada_slot) {
+		wc->reada_count = wc->reada_count * 2 / 3;
+		wc->reada_count = max(wc->reada_count, 2);
+	} else {
+		wc->reada_count = wc->reada_count * 3 / 2;
+		wc->reada_count = min_t(int, wc->reada_count,
+					BTRFS_NODEPTRS_PER_BLOCK(root));
+	}
+
+	eb = path->nodes[wc->level];
+	nritems = btrfs_header_nritems(eb);
+	blocksize = btrfs_level_size(root, wc->level - 1);
+
+	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
+		if (nread >= wc->reada_count)
+			break;
+
+		cond_resched();
+		bytenr = btrfs_node_blockptr(eb, slot);
+		generation = btrfs_node_ptr_generation(eb, slot);
+
+		if (slot == path->slots[wc->level])
+			goto reada;
+
+		if (wc->stage == UPDATE_BACKREF &&
+		    generation <= root->root_key.offset)
+			continue;
+
+		/* We don't lock the tree block, it's OK to be racy here */
+		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
+					       &refs, &flags);
+		/* We don't care about errors in readahead. */
+		if (ret < 0)
+			continue;
+		BUG_ON(refs == 0);
+
+		if (wc->stage == DROP_REFERENCE) {
+			if (refs == 1)
+				goto reada;
+
+			if (wc->level == 1 &&
+			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+				continue;
+			if (!wc->update_ref ||
+			    generation <= root->root_key.offset)
+				continue;
+			btrfs_node_key_to_cpu(eb, &key, slot);
+			ret = btrfs_comp_cpu_keys(&key,
+						  &wc->update_progress);
+			if (ret < 0)
+				continue;
+		} else {
+			if (wc->level == 1 &&
+			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+				continue;
+		}
+reada:
+		ret = readahead_tree_block(root, bytenr, blocksize,
+					   generation);
+		if (ret)
+			break;
+		nread++;
+	}
+	wc->reada_slot = slot;
+}
+
+/*
+ * hepler to process tree block while walking down the tree.
+ *
+ * when wc->stage == UPDATE_BACKREF, this function updates
+ * back refs for pointers in the block.
+ *
+ * NOTE: return value 1 means we should stop walking down.
+ */
+static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
+				   struct btrfs_root *root,
+				   struct btrfs_path *path,
+				   struct walk_control *wc, int lookup_info)
+{
+	int level = wc->level;
+	struct extent_buffer *eb = path->nodes[level];
+	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+	int ret;
+
+	if (wc->stage == UPDATE_BACKREF &&
+	    btrfs_header_owner(eb) != root->root_key.objectid)
+		return 1;
+
+	/*
+	 * when reference count of tree block is 1, it won't increase
+	 * again. once full backref flag is set, we never clear it.
+	 */
+	if (lookup_info &&
+	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
+	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
+		BUG_ON(!path->locks[level]);
+		ret = btrfs_lookup_extent_info(trans, root,
+					       eb->start, eb->len,
+					       &wc->refs[level],
+					       &wc->flags[level]);
+		BUG_ON(ret == -ENOMEM);
+		if (ret)
+			return ret;
+		BUG_ON(wc->refs[level] == 0);
+	}
+
+	if (wc->stage == DROP_REFERENCE) {
+		if (wc->refs[level] > 1)
+			return 1;
+
+		if (path->locks[level] && !wc->keep_locks) {
+			btrfs_tree_unlock_rw(eb, path->locks[level]);
+			path->locks[level] = 0;
+		}
+		return 0;
+	}
+
+	/* wc->stage == UPDATE_BACKREF */
+	if (!(wc->flags[level] & flag)) {
+		BUG_ON(!path->locks[level]);
+		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
+		BUG_ON(ret); /* -ENOMEM */
+		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
+		BUG_ON(ret); /* -ENOMEM */
+		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
+						  eb->len, flag, 0);
+		BUG_ON(ret); /* -ENOMEM */
+		wc->flags[level] |= flag;
+	}
+
+	/*
+	 * the block is shared by multiple trees, so it's not good to
+	 * keep the tree lock
+	 */
+	if (path->locks[level] && level > 0) {
+		btrfs_tree_unlock_rw(eb, path->locks[level]);
+		path->locks[level] = 0;
+	}
+	return 0;
+}
+
+/*
+ * hepler to process tree block pointer.
+ *
+ * when wc->stage == DROP_REFERENCE, this function checks
+ * reference count of the block pointed to. if the block
+ * is shared and we need update back refs for the subtree
+ * rooted at the block, this function changes wc->stage to
+ * UPDATE_BACKREF. if the block is shared and there is no
+ * need to update back, this function drops the reference
+ * to the block.
+ *
+ * NOTE: return value 1 means we should stop walking down.
+ */
+static noinline int do_walk_down(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct walk_control *wc, int *lookup_info)
+{
+	u64 bytenr;
+	u64 generation;
+	u64 parent;
+	u32 blocksize;
+	struct btrfs_key key;
+	struct extent_buffer *next;
+	int level = wc->level;
+	int reada = 0;
+	int ret = 0;
+
+	generation = btrfs_node_ptr_generation(path->nodes[level],
+					       path->slots[level]);
+	/*
+	 * if the lower level block was created before the snapshot
+	 * was created, we know there is no need to update back refs
+	 * for the subtree
+	 */
+	if (wc->stage == UPDATE_BACKREF &&
+	    generation <= root->root_key.offset) {
+		*lookup_info = 1;
+		return 1;
+	}
+
+	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
+	blocksize = btrfs_level_size(root, level - 1);
+
+	next = btrfs_find_tree_block(root, bytenr, blocksize);
+	if (!next) {
+		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
+		if (!next)
+			return -ENOMEM;
+		reada = 1;
+	}
+	btrfs_tree_lock(next);
+	btrfs_set_lock_blocking(next);
+
+	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
+				       &wc->refs[level - 1],
+				       &wc->flags[level - 1]);
+	if (ret < 0) {
+		btrfs_tree_unlock(next);
+		return ret;
+	}
+
+	BUG_ON(wc->refs[level - 1] == 0);
+	*lookup_info = 0;
+
+	if (wc->stage == DROP_REFERENCE) {
+		if (wc->refs[level - 1] > 1) {
+			if (level == 1 &&
+			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+				goto skip;
+
+			if (!wc->update_ref ||
+			    generation <= root->root_key.offset)
+				goto skip;
+
+			btrfs_node_key_to_cpu(path->nodes[level], &key,
+					      path->slots[level]);
+			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
+			if (ret < 0)
+				goto skip;
+
+			wc->stage = UPDATE_BACKREF;
+			wc->shared_level = level - 1;
+		}
+	} else {
+		if (level == 1 &&
+		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+			goto skip;
+	}
+
+	if (!btrfs_buffer_uptodate(next, generation, 0)) {
+		btrfs_tree_unlock(next);
+		free_extent_buffer(next);
+		next = NULL;
+		*lookup_info = 1;
+	}
+
+	if (!next) {
+		if (reada && level == 1)
+			reada_walk_down(trans, root, wc, path);
+		next = read_tree_block(root, bytenr, blocksize, generation);
+		if (!next)
+			return -EIO;
+		btrfs_tree_lock(next);
+		btrfs_set_lock_blocking(next);
+	}
+
+	level--;
+	BUG_ON(level != btrfs_header_level(next));
+	path->nodes[level] = next;
+	path->slots[level] = 0;
+	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+	wc->level = level;
+	if (wc->level == 1)
+		wc->reada_slot = 0;
+	return 0;
+skip:
+	wc->refs[level - 1] = 0;
+	wc->flags[level - 1] = 0;
+	if (wc->stage == DROP_REFERENCE) {
+		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
+			parent = path->nodes[level]->start;
+		} else {
+			BUG_ON(root->root_key.objectid !=
+			       btrfs_header_owner(path->nodes[level]));
+			parent = 0;
+		}
+
+		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
+				root->root_key.objectid, level - 1, 0, 0);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+	btrfs_tree_unlock(next);
+	free_extent_buffer(next);
+	*lookup_info = 1;
+	return 1;
+}
+
+/*
+ * hepler to process tree block while walking up the tree.
+ *
+ * when wc->stage == DROP_REFERENCE, this function drops
+ * reference count on the block.
+ *
+ * when wc->stage == UPDATE_BACKREF, this function changes
+ * wc->stage back to DROP_REFERENCE if we changed wc->stage
+ * to UPDATE_BACKREF previously while processing the block.
+ *
+ * NOTE: return value 1 means we should stop walking up.
+ */
+static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct walk_control *wc)
+{
+	int ret;
+	int level = wc->level;
+	struct extent_buffer *eb = path->nodes[level];
+	u64 parent = 0;
+
+	if (wc->stage == UPDATE_BACKREF) {
+		BUG_ON(wc->shared_level < level);
+		if (level < wc->shared_level)
+			goto out;
+
+		ret = find_next_key(path, level + 1, &wc->update_progress);
+		if (ret > 0)
+			wc->update_ref = 0;
+
+		wc->stage = DROP_REFERENCE;
+		wc->shared_level = -1;
+		path->slots[level] = 0;
+
+		/*
+		 * check reference count again if the block isn't locked.
+		 * we should start walking down the tree again if reference
+		 * count is one.
+		 */
+		if (!path->locks[level]) {
+			BUG_ON(level == 0);
+			btrfs_tree_lock(eb);
+			btrfs_set_lock_blocking(eb);
+			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+			ret = btrfs_lookup_extent_info(trans, root,
+						       eb->start, eb->len,
+						       &wc->refs[level],
+						       &wc->flags[level]);
+			if (ret < 0) {
+				btrfs_tree_unlock_rw(eb, path->locks[level]);
+				return ret;
+			}
+			BUG_ON(wc->refs[level] == 0);
+			if (wc->refs[level] == 1) {
+				btrfs_tree_unlock_rw(eb, path->locks[level]);
+				return 1;
+			}
+		}
+	}
+
+	/* wc->stage == DROP_REFERENCE */
+	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
+
+	if (wc->refs[level] == 1) {
+		if (level == 0) {
+			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+				ret = btrfs_dec_ref(trans, root, eb, 1,
+						    wc->for_reloc);
+			else
+				ret = btrfs_dec_ref(trans, root, eb, 0,
+						    wc->for_reloc);
+			BUG_ON(ret); /* -ENOMEM */
+		}
+		/* make block locked assertion in clean_tree_block happy */
+		if (!path->locks[level] &&
+		    btrfs_header_generation(eb) == trans->transid) {
+			btrfs_tree_lock(eb);
+			btrfs_set_lock_blocking(eb);
+			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+		}
+		clean_tree_block(trans, root, eb);
+	}
+
+	if (eb == root->node) {
+		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+			parent = eb->start;
+		else
+			BUG_ON(root->root_key.objectid !=
+			       btrfs_header_owner(eb));
+	} else {
+		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+			parent = path->nodes[level + 1]->start;
+		else
+			BUG_ON(root->root_key.objectid !=
+			       btrfs_header_owner(path->nodes[level + 1]));
+	}
+
+	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
+out:
+	wc->refs[level] = 0;
+	wc->flags[level] = 0;
+	return 0;
+}
+
+static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
+				   struct btrfs_root *root,
+				   struct btrfs_path *path,
+				   struct walk_control *wc)
+{
+	int level = wc->level;
+	int lookup_info = 1;
+	int ret;
+
+	while (level >= 0) {
+		ret = walk_down_proc(trans, root, path, wc, lookup_info);
+		if (ret > 0)
+			break;
+
+		if (level == 0)
+			break;
+
+		if (path->slots[level] >=
+		    btrfs_header_nritems(path->nodes[level]))
+			break;
+
+		ret = do_walk_down(trans, root, path, wc, &lookup_info);
+		if (ret > 0) {
+			path->slots[level]++;
+			continue;
+		} else if (ret < 0)
+			return ret;
+		level = wc->level;
+	}
+	return 0;
+}
+
+static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct btrfs_path *path,
+				 struct walk_control *wc, int max_level)
+{
+	int level = wc->level;
+	int ret;
+
+	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
+	while (level < max_level && path->nodes[level]) {
+		wc->level = level;
+		if (path->slots[level] + 1 <
+		    btrfs_header_nritems(path->nodes[level])) {
+			path->slots[level]++;
+			return 0;
+		} else {
+			ret = walk_up_proc(trans, root, path, wc);
+			if (ret > 0)
+				return 0;
+
+			if (path->locks[level]) {
+				btrfs_tree_unlock_rw(path->nodes[level],
+						     path->locks[level]);
+				path->locks[level] = 0;
+			}
+			free_extent_buffer(path->nodes[level]);
+			path->nodes[level] = NULL;
+			level++;
+		}
+	}
+	return 1;
+}
+
+/*
+ * drop a subvolume tree.
+ *
+ * this function traverses the tree freeing any blocks that only
+ * referenced by the tree.
+ *
+ * when a shared tree block is found. this function decreases its
+ * reference count by one. if update_ref is true, this function
+ * also make sure backrefs for the shared block and all lower level
+ * blocks are properly updated.
+ */
+int btrfs_drop_snapshot(struct btrfs_root *root,
+			 struct btrfs_block_rsv *block_rsv, int update_ref,
+			 int for_reloc)
+{
+	struct btrfs_path *path;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *tree_root = root->fs_info->tree_root;
+	struct btrfs_root_item *root_item = &root->root_item;
+	struct walk_control *wc;
+	struct btrfs_key key;
+	int err = 0;
+	int ret;
+	int level;
+	bool root_dropped = false;
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		err = -ENOMEM;
+		goto out;
+	}
+
+	wc = kzalloc(sizeof(*wc), GFP_NOFS);
+	if (!wc) {
+		btrfs_free_path(path);
+		err = -ENOMEM;
+		goto out;
+	}
+
+	trans = btrfs_start_transaction(tree_root, 0);
+	if (IS_ERR(trans)) {
+		err = PTR_ERR(trans);
+		goto out_free;
+	}
+
+	if (block_rsv)
+		trans->block_rsv = block_rsv;
+
+	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
+		level = btrfs_header_level(root->node);
+		path->nodes[level] = btrfs_lock_root_node(root);
+		btrfs_set_lock_blocking(path->nodes[level]);
+		path->slots[level] = 0;
+		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+		memset(&wc->update_progress, 0,
+		       sizeof(wc->update_progress));
+	} else {
+		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
+		memcpy(&wc->update_progress, &key,
+		       sizeof(wc->update_progress));
+
+		level = root_item->drop_level;
+		BUG_ON(level == 0);
+		path->lowest_level = level;
+		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+		path->lowest_level = 0;
+		if (ret < 0) {
+			err = ret;
+			goto out_end_trans;
+		}
+		WARN_ON(ret > 0);
+
+		/*
+		 * unlock our path, this is safe because only this
+		 * function is allowed to delete this snapshot
+		 */
+		btrfs_unlock_up_safe(path, 0);
+
+		level = btrfs_header_level(root->node);
+		while (1) {
+			btrfs_tree_lock(path->nodes[level]);
+			btrfs_set_lock_blocking(path->nodes[level]);
+			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+			ret = btrfs_lookup_extent_info(trans, root,
+						path->nodes[level]->start,
+						path->nodes[level]->len,
+						&wc->refs[level],
+						&wc->flags[level]);
+			if (ret < 0) {
+				err = ret;
+				goto out_end_trans;
+			}
+			BUG_ON(wc->refs[level] == 0);
+
+			if (level == root_item->drop_level)
+				break;
+
+			btrfs_tree_unlock(path->nodes[level]);
+			path->locks[level] = 0;
+			WARN_ON(wc->refs[level] != 1);
+			level--;
+		}
+	}
+
+	wc->level = level;
+	wc->shared_level = -1;
+	wc->stage = DROP_REFERENCE;
+	wc->update_ref = update_ref;
+	wc->keep_locks = 0;
+	wc->for_reloc = for_reloc;
+	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
+
+	while (1) {
+		ret = walk_down_tree(trans, root, path, wc);
+		if (ret < 0) {
+			err = ret;
+			break;
+		}
+
+		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
+		if (ret < 0) {
+			err = ret;
+			break;
+		}
+
+		if (ret > 0) {
+			BUG_ON(wc->stage != DROP_REFERENCE);
+			break;
+		}
+
+		if (wc->stage == DROP_REFERENCE) {
+			level = wc->level;
+			btrfs_node_key(path->nodes[level],
+				       &root_item->drop_progress,
+				       path->slots[level]);
+			root_item->drop_level = level;
+		}
+
+		BUG_ON(wc->level == 0);
+		if (btrfs_should_end_transaction(trans, tree_root)) {
+			ret = btrfs_update_root(trans, tree_root,
+						&root->root_key,
+						root_item);
+			if (ret) {
+				btrfs_abort_transaction(trans, tree_root, ret);
+				err = ret;
+				goto out_end_trans;
+			}
+
+			btrfs_end_transaction_throttle(trans, tree_root);
+			trans = btrfs_start_transaction(tree_root, 0);
+			if (IS_ERR(trans)) {
+				err = PTR_ERR(trans);
+				goto out_free;
+			}
+			if (block_rsv)
+				trans->block_rsv = block_rsv;
+		}
+	}
+	btrfs_release_path(path);
+	if (err)
+		goto out_end_trans;
+
+	ret = btrfs_del_root(trans, tree_root, &root->root_key);
+	if (ret) {
+		btrfs_abort_transaction(trans, tree_root, ret);
+		goto out_end_trans;
+	}
+
+	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
+		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
+					   NULL, NULL);
+		if (ret < 0) {
+			btrfs_abort_transaction(trans, tree_root, ret);
+			err = ret;
+			goto out_end_trans;
+		} else if (ret > 0) {
+			/* if we fail to delete the orphan item this time
+			 * around, it'll get picked up the next time.
+			 *
+			 * The most common failure here is just -ENOENT.
+			 */
+			btrfs_del_orphan_item(trans, tree_root,
+					      root->root_key.objectid);
+		}
+	}
+
+	if (root->in_radix) {
+		btrfs_free_fs_root(tree_root->fs_info, root);
+	} else {
+		free_extent_buffer(root->node);
+		free_extent_buffer(root->commit_root);
+		kfree(root);
+	}
+	root_dropped = true;
+out_end_trans:
+	btrfs_end_transaction_throttle(trans, tree_root);
+out_free:
+	kfree(wc);
+	btrfs_free_path(path);
+out:
+	/*
+	 * So if we need to stop dropping the snapshot for whatever reason we
+	 * need to make sure to add it back to the dead root list so that we
+	 * keep trying to do the work later.  This also cleans up roots if we
+	 * don't have it in the radix (like when we recover after a power fail
+	 * or unmount) so we don't leak memory.
+	 */
+	if (root_dropped == false)
+		btrfs_add_dead_root(root);
+	if (err && err != -EAGAIN)
+		btrfs_std_error(root->fs_info, err);
+	return err;
+}
+
+/*
+ * drop subtree rooted at tree block 'node'.
+ *
+ * NOTE: this function will unlock and release tree block 'node'
+ * only used by relocation code
+ */
+int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
+			struct btrfs_root *root,
+			struct extent_buffer *node,
+			struct extent_buffer *parent)
+{
+	struct btrfs_path *path;
+	struct walk_control *wc;
+	int level;
+	int parent_level;
+	int ret = 0;
+	int wret;
+
+	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	wc = kzalloc(sizeof(*wc), GFP_NOFS);
+	if (!wc) {
+		btrfs_free_path(path);
+		return -ENOMEM;
+	}
+
+	btrfs_assert_tree_locked(parent);
+	parent_level = btrfs_header_level(parent);
+	extent_buffer_get(parent);
+	path->nodes[parent_level] = parent;
+	path->slots[parent_level] = btrfs_header_nritems(parent);
+
+	btrfs_assert_tree_locked(node);
+	level = btrfs_header_level(node);
+	path->nodes[level] = node;
+	path->slots[level] = 0;
+	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+	wc->refs[parent_level] = 1;
+	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+	wc->level = level;
+	wc->shared_level = -1;
+	wc->stage = DROP_REFERENCE;
+	wc->update_ref = 0;
+	wc->keep_locks = 1;
+	wc->for_reloc = 1;
+	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
+
+	while (1) {
+		wret = walk_down_tree(trans, root, path, wc);
+		if (wret < 0) {
+			ret = wret;
+			break;
+		}
+
+		wret = walk_up_tree(trans, root, path, wc, parent_level);
+		if (wret < 0)
+			ret = wret;
+		if (wret != 0)
+			break;
+	}
+
+	kfree(wc);
+	btrfs_free_path(path);
+	return ret;
+}
+
+static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
+{
+	u64 num_devices;
+	u64 stripped;
+
+	/*
+	 * if restripe for this chunk_type is on pick target profile and
+	 * return, otherwise do the usual balance
+	 */
+	stripped = get_restripe_target(root->fs_info, flags);
+	if (stripped)
+		return extended_to_chunk(stripped);
+
+	/*
+	 * we add in the count of missing devices because we want
+	 * to make sure that any RAID levels on a degraded FS
+	 * continue to be honored.
+	 */
+	num_devices = root->fs_info->fs_devices->rw_devices +
+		root->fs_info->fs_devices->missing_devices;
+
+	stripped = BTRFS_BLOCK_GROUP_RAID0 |
+		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
+
+	if (num_devices == 1) {
+		stripped |= BTRFS_BLOCK_GROUP_DUP;
+		stripped = flags & ~stripped;
+
+		/* turn raid0 into single device chunks */
+		if (flags & BTRFS_BLOCK_GROUP_RAID0)
+			return stripped;
+
+		/* turn mirroring into duplication */
+		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
+			     BTRFS_BLOCK_GROUP_RAID10))
+			return stripped | BTRFS_BLOCK_GROUP_DUP;
+	} else {
+		/* they already had raid on here, just return */
+		if (flags & stripped)
+			return flags;
+
+		stripped |= BTRFS_BLOCK_GROUP_DUP;
+		stripped = flags & ~stripped;
+
+		/* switch duplicated blocks with raid1 */
+		if (flags & BTRFS_BLOCK_GROUP_DUP)
+			return stripped | BTRFS_BLOCK_GROUP_RAID1;
+
+		/* this is drive concat, leave it alone */
+	}
+
+	return flags;
+}
+
+static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
+{
+	struct btrfs_space_info *sinfo = cache->space_info;
+	u64 num_bytes;
+	u64 min_allocable_bytes;
+	int ret = -ENOSPC;
+
+
+	/*
+	 * We need some metadata space and system metadata space for
+	 * allocating chunks in some corner cases until we force to set
+	 * it to be readonly.
+	 */
+	if ((sinfo->flags &
+	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
+	    !force)
+		min_allocable_bytes = 1 * 1024 * 1024;
+	else
+		min_allocable_bytes = 0;
+
+	spin_lock(&sinfo->lock);
+	spin_lock(&cache->lock);
+
+	if (cache->ro) {
+		ret = 0;
+		goto out;
+	}
+
+	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
+		    cache->bytes_super - btrfs_block_group_used(&cache->item);
+
+	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
+	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
+	    min_allocable_bytes <= sinfo->total_bytes) {
+		sinfo->bytes_readonly += num_bytes;
+		cache->ro = 1;
+		ret = 0;
+	}
+out:
+	spin_unlock(&cache->lock);
+	spin_unlock(&sinfo->lock);
+	return ret;
+}
+
+int btrfs_set_block_group_ro(struct btrfs_root *root,
+			     struct btrfs_block_group_cache *cache)
+
+{
+	struct btrfs_trans_handle *trans;
+	u64 alloc_flags;
+	int ret;
+
+	BUG_ON(cache->ro);
+
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	alloc_flags = update_block_group_flags(root, cache->flags);
+	if (alloc_flags != cache->flags) {
+		ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
+				     CHUNK_ALLOC_FORCE);
+		if (ret < 0)
+			goto out;
+	}
+
+	ret = set_block_group_ro(cache, 0);
+	if (!ret)
+		goto out;
+	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
+	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
+			     CHUNK_ALLOC_FORCE);
+	if (ret < 0)
+		goto out;
+	ret = set_block_group_ro(cache, 0);
+out:
+	btrfs_end_transaction(trans, root);
+	return ret;
+}
+
+int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
+			    struct btrfs_root *root, u64 type)
+{
+	u64 alloc_flags = get_alloc_profile(root, type);
+	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
+			      CHUNK_ALLOC_FORCE);
+}
+
+/*
+ * helper to account the unused space of all the readonly block group in the
+ * list. takes mirrors into account.
+ */
+static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
+{
+	struct btrfs_block_group_cache *block_group;
+	u64 free_bytes = 0;
+	int factor;
+
+	list_for_each_entry(block_group, groups_list, list) {
+		spin_lock(&block_group->lock);
+
+		if (!block_group->ro) {
+			spin_unlock(&block_group->lock);
+			continue;
+		}
+
+		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
+					  BTRFS_BLOCK_GROUP_RAID10 |
+					  BTRFS_BLOCK_GROUP_DUP))
+			factor = 2;
+		else
+			factor = 1;
+
+		free_bytes += (block_group->key.offset -
+			       btrfs_block_group_used(&block_group->item)) *
+			       factor;
+
+		spin_unlock(&block_group->lock);
+	}
+
+	return free_bytes;
+}
+
+/*
+ * helper to account the unused space of all the readonly block group in the
+ * space_info. takes mirrors into account.
+ */
+u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
+{
+	int i;
+	u64 free_bytes = 0;
+
+	spin_lock(&sinfo->lock);
+
+	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
+		if (!list_empty(&sinfo->block_groups[i]))
+			free_bytes += __btrfs_get_ro_block_group_free_space(
+						&sinfo->block_groups[i]);
+
+	spin_unlock(&sinfo->lock);
+
+	return free_bytes;
+}
+
+void btrfs_set_block_group_rw(struct btrfs_root *root,
+			      struct btrfs_block_group_cache *cache)
+{
+	struct btrfs_space_info *sinfo = cache->space_info;
+	u64 num_bytes;
+
+	BUG_ON(!cache->ro);
+
+	spin_lock(&sinfo->lock);
+	spin_lock(&cache->lock);
+	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
+		    cache->bytes_super - btrfs_block_group_used(&cache->item);
+	sinfo->bytes_readonly -= num_bytes;
+	cache->ro = 0;
+	spin_unlock(&cache->lock);
+	spin_unlock(&sinfo->lock);
+}
+
+/*
+ * checks to see if its even possible to relocate this block group.
+ *
+ * @return - -1 if it's not a good idea to relocate this block group, 0 if its
+ * ok to go ahead and try.
+ */
+int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
+{
+	struct btrfs_block_group_cache *block_group;
+	struct btrfs_space_info *space_info;
+	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+	struct btrfs_device *device;
+	u64 min_free;
+	u64 dev_min = 1;
+	u64 dev_nr = 0;
+	u64 target;
+	int index;
+	int full = 0;
+	int ret = 0;
+
+	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
+
+	/* odd, couldn't find the block group, leave it alone */
+	if (!block_group)
+		return -1;
+
+	min_free = btrfs_block_group_used(&block_group->item);
+
+	/* no bytes used, we're good */
+	if (!min_free)
+		goto out;
+
+	space_info = block_group->space_info;
+	spin_lock(&space_info->lock);
+
+	full = space_info->full;
+
+	/*
+	 * if this is the last block group we have in this space, we can't
+	 * relocate it unless we're able to allocate a new chunk below.
+	 *
+	 * Otherwise, we need to make sure we have room in the space to handle
+	 * all of the extents from this block group.  If we can, we're good
+	 */
+	if ((space_info->total_bytes != block_group->key.offset) &&
+	    (space_info->bytes_used + space_info->bytes_reserved +
+	     space_info->bytes_pinned + space_info->bytes_readonly +
+	     min_free < space_info->total_bytes)) {
+		spin_unlock(&space_info->lock);
+		goto out;
+	}
+	spin_unlock(&space_info->lock);
+
+	/*
+	 * ok we don't have enough space, but maybe we have free space on our
+	 * devices to allocate new chunks for relocation, so loop through our
+	 * alloc devices and guess if we have enough space.  if this block
+	 * group is going to be restriped, run checks against the target
+	 * profile instead of the current one.
+	 */
+	ret = -1;
+
+	/*
+	 * index:
+	 *      0: raid10
+	 *      1: raid1
+	 *      2: dup
+	 *      3: raid0
+	 *      4: single
+	 */
+	target = get_restripe_target(root->fs_info, block_group->flags);
+	if (target) {
+		index = __get_block_group_index(extended_to_chunk(target));
+	} else {
+		/*
+		 * this is just a balance, so if we were marked as full
+		 * we know there is no space for a new chunk
+		 */
+		if (full)
+			goto out;
+
+		index = get_block_group_index(block_group);
+	}
+
+	if (index == 0) {
+		dev_min = 4;
+		/* Divide by 2 */
+		min_free >>= 1;
+	} else if (index == 1) {
+		dev_min = 2;
+	} else if (index == 2) {
+		/* Multiply by 2 */
+		min_free <<= 1;
+	} else if (index == 3) {
+		dev_min = fs_devices->rw_devices;
+		do_div(min_free, dev_min);
+	}
+
+	mutex_lock(&root->fs_info->chunk_mutex);
+	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
+		u64 dev_offset;
+
+		/*
+		 * check to make sure we can actually find a chunk with enough
+		 * space to fit our block group in.
+		 */
+		if (device->total_bytes > device->bytes_used + min_free) {
+			ret = find_free_dev_extent(device, min_free,
+						   &dev_offset, NULL);
+			if (!ret)
+				dev_nr++;
+
+			if (dev_nr >= dev_min)
+				break;
+
+			ret = -1;
+		}
+	}
+	mutex_unlock(&root->fs_info->chunk_mutex);
+out:
+	btrfs_put_block_group(block_group);
+	return ret;
+}
+
+static int find_first_block_group(struct btrfs_root *root,
+		struct btrfs_path *path, struct btrfs_key *key)
+{
+	int ret = 0;
+	struct btrfs_key found_key;
+	struct extent_buffer *leaf;
+	int slot;
+
+	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
+	if (ret < 0)
+		goto out;
+
+	while (1) {
+		slot = path->slots[0];
+		leaf = path->nodes[0];
+		if (slot >= btrfs_header_nritems(leaf)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret == 0)
+				continue;
+			if (ret < 0)
+				goto out;
+			break;
+		}
+		btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+		if (found_key.objectid >= key->objectid &&
+		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
+			ret = 0;
+			goto out;
+		}
+		path->slots[0]++;
+	}
+out:
+	return ret;
+}
+
+void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
+{
+	struct btrfs_block_group_cache *block_group;
+	u64 last = 0;
+
+	while (1) {
+		struct inode *inode;
+
+		block_group = btrfs_lookup_first_block_group(info, last);
+		while (block_group) {
+			spin_lock(&block_group->lock);
+			if (block_group->iref)
+				break;
+			spin_unlock(&block_group->lock);
+			block_group = next_block_group(info->tree_root,
+						       block_group);
+		}
+		if (!block_group) {
+			if (last == 0)
+				break;
+			last = 0;
+			continue;
+		}
+
+		inode = block_group->inode;
+		block_group->iref = 0;
+		block_group->inode = NULL;
+		spin_unlock(&block_group->lock);
+		iput(inode);
+		last = block_group->key.objectid + block_group->key.offset;
+		btrfs_put_block_group(block_group);
+	}
+}
+
+int btrfs_free_block_groups(struct btrfs_fs_info *info)
+{
+	struct btrfs_block_group_cache *block_group;
+	struct btrfs_space_info *space_info;
+	struct btrfs_caching_control *caching_ctl;
+	struct rb_node *n;
+
+	down_write(&info->extent_commit_sem);
+	while (!list_empty(&info->caching_block_groups)) {
+		caching_ctl = list_entry(info->caching_block_groups.next,
+					 struct btrfs_caching_control, list);
+		list_del(&caching_ctl->list);
+		put_caching_control(caching_ctl);
+	}
+	up_write(&info->extent_commit_sem);
+
+	spin_lock(&info->block_group_cache_lock);
+	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
+		block_group = rb_entry(n, struct btrfs_block_group_cache,
+				       cache_node);
+		rb_erase(&block_group->cache_node,
+			 &info->block_group_cache_tree);
+		spin_unlock(&info->block_group_cache_lock);
+
+		down_write(&block_group->space_info->groups_sem);
+		list_del(&block_group->list);
+		up_write(&block_group->space_info->groups_sem);
+
+		if (block_group->cached == BTRFS_CACHE_STARTED)
+			wait_block_group_cache_done(block_group);
+
+		/*
+		 * We haven't cached this block group, which means we could
+		 * possibly have excluded extents on this block group.
+		 */
+		if (block_group->cached == BTRFS_CACHE_NO)
+			free_excluded_extents(info->extent_root, block_group);
+
+		btrfs_remove_free_space_cache(block_group);
+		btrfs_put_block_group(block_group);
+
+		spin_lock(&info->block_group_cache_lock);
+	}
+	spin_unlock(&info->block_group_cache_lock);
+
+	/* now that all the block groups are freed, go through and
+	 * free all the space_info structs.  This is only called during
+	 * the final stages of unmount, and so we know nobody is
+	 * using them.  We call synchronize_rcu() once before we start,
+	 * just to be on the safe side.
+	 */
+	synchronize_rcu();
+
+	release_global_block_rsv(info);
+
+	while(!list_empty(&info->space_info)) {
+		space_info = list_entry(info->space_info.next,
+					struct btrfs_space_info,
+					list);
+		if (space_info->bytes_pinned > 0 ||
+		    space_info->bytes_reserved > 0 ||
+		    space_info->bytes_may_use > 0) {
+			WARN_ON(1);
+			dump_space_info(space_info, 0, 0);
+		}
+		list_del(&space_info->list);
+		kfree(space_info);
+	}
+	return 0;
+}
+
+static void __link_block_group(struct btrfs_space_info *space_info,
+			       struct btrfs_block_group_cache *cache)
+{
+	int index = get_block_group_index(cache);
+
+	down_write(&space_info->groups_sem);
+	list_add_tail(&cache->list, &space_info->block_groups[index]);
+	up_write(&space_info->groups_sem);
+}
+
+int btrfs_read_block_groups(struct btrfs_root *root)
+{
+	struct btrfs_path *path;
+	int ret;
+	struct btrfs_block_group_cache *cache;
+	struct btrfs_fs_info *info = root->fs_info;
+	struct btrfs_space_info *space_info;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	struct extent_buffer *leaf;
+	int need_clear = 0;
+	u64 cache_gen;
+
+	root = info->extent_root;
+	key.objectid = 0;
+	key.offset = 0;
+	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+	path->reada = 1;
+
+	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
+	if (btrfs_test_opt(root, SPACE_CACHE) &&
+	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
+		need_clear = 1;
+	if (btrfs_test_opt(root, CLEAR_CACHE))
+		need_clear = 1;
+
+	while (1) {
+		ret = find_first_block_group(root, path, &key);
+		if (ret > 0)
+			break;
+		if (ret != 0)
+			goto error;
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+		cache = kzalloc(sizeof(*cache), GFP_NOFS);
+		if (!cache) {
+			ret = -ENOMEM;
+			goto error;
+		}
+		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
+						GFP_NOFS);
+		if (!cache->free_space_ctl) {
+			kfree(cache);
+			ret = -ENOMEM;
+			goto error;
+		}
+
+		atomic_set(&cache->count, 1);
+		spin_lock_init(&cache->lock);
+		cache->fs_info = info;
+		INIT_LIST_HEAD(&cache->list);
+		INIT_LIST_HEAD(&cache->cluster_list);
+
+		if (need_clear)
+			cache->disk_cache_state = BTRFS_DC_CLEAR;
+
+		read_extent_buffer(leaf, &cache->item,
+				   btrfs_item_ptr_offset(leaf, path->slots[0]),
+				   sizeof(cache->item));
+		memcpy(&cache->key, &found_key, sizeof(found_key));
+
+		key.objectid = found_key.objectid + found_key.offset;
+		btrfs_release_path(path);
+		cache->flags = btrfs_block_group_flags(&cache->item);
+		cache->sectorsize = root->sectorsize;
+
+		btrfs_init_free_space_ctl(cache);
+
+		/*
+		 * We need to exclude the super stripes now so that the space
+		 * info has super bytes accounted for, otherwise we'll think
+		 * we have more space than we actually do.
+		 */
+		exclude_super_stripes(root, cache);
+
+		/*
+		 * check for two cases, either we are full, and therefore
+		 * don't need to bother with the caching work since we won't
+		 * find any space, or we are empty, and we can just add all
+		 * the space in and be done with it.  This saves us _alot_ of
+		 * time, particularly in the full case.
+		 */
+		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
+			cache->last_byte_to_unpin = (u64)-1;
+			cache->cached = BTRFS_CACHE_FINISHED;
+			free_excluded_extents(root, cache);
+		} else if (btrfs_block_group_used(&cache->item) == 0) {
+			cache->last_byte_to_unpin = (u64)-1;
+			cache->cached = BTRFS_CACHE_FINISHED;
+			add_new_free_space(cache, root->fs_info,
+					   found_key.objectid,
+					   found_key.objectid +
+					   found_key.offset);
+			free_excluded_extents(root, cache);
+		}
+
+		ret = update_space_info(info, cache->flags, found_key.offset,
+					btrfs_block_group_used(&cache->item),
+					&space_info);
+		BUG_ON(ret); /* -ENOMEM */
+		cache->space_info = space_info;
+		spin_lock(&cache->space_info->lock);
+		cache->space_info->bytes_readonly += cache->bytes_super;
+		spin_unlock(&cache->space_info->lock);
+
+		__link_block_group(space_info, cache);
+
+		ret = btrfs_add_block_group_cache(root->fs_info, cache);
+		BUG_ON(ret); /* Logic error */
+
+		set_avail_alloc_bits(root->fs_info, cache->flags);
+		if (btrfs_chunk_readonly(root, cache->key.objectid))
+			set_block_group_ro(cache, 1);
+	}
+
+	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
+		if (!(get_alloc_profile(root, space_info->flags) &
+		      (BTRFS_BLOCK_GROUP_RAID10 |
+		       BTRFS_BLOCK_GROUP_RAID1 |
+		       BTRFS_BLOCK_GROUP_DUP)))
+			continue;
+		/*
+		 * avoid allocating from un-mirrored block group if there are
+		 * mirrored block groups.
+		 */
+		list_for_each_entry(cache, &space_info->block_groups[3], list)
+			set_block_group_ro(cache, 1);
+		list_for_each_entry(cache, &space_info->block_groups[4], list)
+			set_block_group_ro(cache, 1);
+	}
+
+	init_global_block_rsv(info);
+	ret = 0;
+error:
+	btrfs_free_path(path);
+	return ret;
+}
+
+int btrfs_make_block_group(struct btrfs_trans_handle *trans,
+			   struct btrfs_root *root, u64 bytes_used,
+			   u64 type, u64 chunk_objectid, u64 chunk_offset,
+			   u64 size)
+{
+	int ret;
+	struct btrfs_root *extent_root;
+	struct btrfs_block_group_cache *cache;
+
+	extent_root = root->fs_info->extent_root;
+
+	root->fs_info->last_trans_log_full_commit = trans->transid;
+
+	cache = kzalloc(sizeof(*cache), GFP_NOFS);
+	if (!cache)
+		return -ENOMEM;
+	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
+					GFP_NOFS);
+	if (!cache->free_space_ctl) {
+		kfree(cache);
+		return -ENOMEM;
+	}
+
+	cache->key.objectid = chunk_offset;
+	cache->key.offset = size;
+	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
+	cache->sectorsize = root->sectorsize;
+	cache->fs_info = root->fs_info;
+
+	atomic_set(&cache->count, 1);
+	spin_lock_init(&cache->lock);
+	INIT_LIST_HEAD(&cache->list);
+	INIT_LIST_HEAD(&cache->cluster_list);
+
+	btrfs_init_free_space_ctl(cache);
+
+	btrfs_set_block_group_used(&cache->item, bytes_used);
+	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
+	cache->flags = type;
+	btrfs_set_block_group_flags(&cache->item, type);
+
+	cache->last_byte_to_unpin = (u64)-1;
+	cache->cached = BTRFS_CACHE_FINISHED;
+	exclude_super_stripes(root, cache);
+
+	add_new_free_space(cache, root->fs_info, chunk_offset,
+			   chunk_offset + size);
+
+	free_excluded_extents(root, cache);
+
+	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
+				&cache->space_info);
+	BUG_ON(ret); /* -ENOMEM */
+	update_global_block_rsv(root->fs_info);
+
+	spin_lock(&cache->space_info->lock);
+	cache->space_info->bytes_readonly += cache->bytes_super;
+	spin_unlock(&cache->space_info->lock);
+
+	__link_block_group(cache->space_info, cache);
+
+	ret = btrfs_add_block_group_cache(root->fs_info, cache);
+	BUG_ON(ret); /* Logic error */
+
+	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
+				sizeof(cache->item));
+	if (ret) {
+		btrfs_abort_transaction(trans, extent_root, ret);
+		return ret;
+	}
+
+	set_avail_alloc_bits(extent_root->fs_info, type);
+
+	return 0;
+}
+
+static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
+{
+	u64 extra_flags = chunk_to_extended(flags) &
+				BTRFS_EXTENDED_PROFILE_MASK;
+
+	if (flags & BTRFS_BLOCK_GROUP_DATA)
+		fs_info->avail_data_alloc_bits &= ~extra_flags;
+	if (flags & BTRFS_BLOCK_GROUP_METADATA)
+		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
+	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+		fs_info->avail_system_alloc_bits &= ~extra_flags;
+}
+
+int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
+			     struct btrfs_root *root, u64 group_start)
+{
+	struct btrfs_path *path;
+	struct btrfs_block_group_cache *block_group;
+	struct btrfs_free_cluster *cluster;
+	struct btrfs_root *tree_root = root->fs_info->tree_root;
+	struct btrfs_key key;
+	struct inode *inode;
+	int ret;
+	int index;
+	int factor;
+
+	root = root->fs_info->extent_root;
+
+	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
+	BUG_ON(!block_group);
+	BUG_ON(!block_group->ro);
+
+	/*
+	 * Free the reserved super bytes from this block group before
+	 * remove it.
+	 */
+	free_excluded_extents(root, block_group);
+
+	memcpy(&key, &block_group->key, sizeof(key));
+	index = get_block_group_index(block_group);
+	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
+				  BTRFS_BLOCK_GROUP_RAID1 |
+				  BTRFS_BLOCK_GROUP_RAID10))
+		factor = 2;
+	else
+		factor = 1;
+
+	/* make sure this block group isn't part of an allocation cluster */
+	cluster = &root->fs_info->data_alloc_cluster;
+	spin_lock(&cluster->refill_lock);
+	btrfs_return_cluster_to_free_space(block_group, cluster);
+	spin_unlock(&cluster->refill_lock);
+
+	/*
+	 * make sure this block group isn't part of a metadata
+	 * allocation cluster
+	 */
+	cluster = &root->fs_info->meta_alloc_cluster;
+	spin_lock(&cluster->refill_lock);
+	btrfs_return_cluster_to_free_space(block_group, cluster);
+	spin_unlock(&cluster->refill_lock);
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	inode = lookup_free_space_inode(tree_root, block_group, path);
+	if (!IS_ERR(inode)) {
+		ret = btrfs_orphan_add(trans, inode);
+		if (ret) {
+			btrfs_add_delayed_iput(inode);
+			goto out;
+		}
+		clear_nlink(inode);
+		/* One for the block groups ref */
+		spin_lock(&block_group->lock);
+		if (block_group->iref) {
+			block_group->iref = 0;
+			block_group->inode = NULL;
+			spin_unlock(&block_group->lock);
+			iput(inode);
+		} else {
+			spin_unlock(&block_group->lock);
+		}
+		/* One for our lookup ref */
+		btrfs_add_delayed_iput(inode);
+	}
+
+	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+	key.offset = block_group->key.objectid;
+	key.type = 0;
+
+	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
+	if (ret < 0)
+		goto out;
+	if (ret > 0)
+		btrfs_release_path(path);
+	if (ret == 0) {
+		ret = btrfs_del_item(trans, tree_root, path);
+		if (ret)
+			goto out;
+		btrfs_release_path(path);
+	}
+
+	spin_lock(&root->fs_info->block_group_cache_lock);
+	rb_erase(&block_group->cache_node,
+		 &root->fs_info->block_group_cache_tree);
+	spin_unlock(&root->fs_info->block_group_cache_lock);
+
+	down_write(&block_group->space_info->groups_sem);
+	/*
+	 * we must use list_del_init so people can check to see if they
+	 * are still on the list after taking the semaphore
+	 */
+	list_del_init(&block_group->list);
+	if (list_empty(&block_group->space_info->block_groups[index]))
+		clear_avail_alloc_bits(root->fs_info, block_group->flags);
+	up_write(&block_group->space_info->groups_sem);
+
+	if (block_group->cached == BTRFS_CACHE_STARTED)
+		wait_block_group_cache_done(block_group);
+
+	btrfs_remove_free_space_cache(block_group);
+
+	spin_lock(&block_group->space_info->lock);
+	block_group->space_info->total_bytes -= block_group->key.offset;
+	block_group->space_info->bytes_readonly -= block_group->key.offset;
+	block_group->space_info->disk_total -= block_group->key.offset * factor;
+	spin_unlock(&block_group->space_info->lock);
+
+	memcpy(&key, &block_group->key, sizeof(key));
+
+	btrfs_clear_space_info_full(root->fs_info);
+
+	btrfs_put_block_group(block_group);
+	btrfs_put_block_group(block_group);
+
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret > 0)
+		ret = -EIO;
+	if (ret < 0)
+		goto out;
+
+	ret = btrfs_del_item(trans, root, path);
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_space_info *space_info;
+	struct btrfs_super_block *disk_super;
+	u64 features;
+	u64 flags;
+	int mixed = 0;
+	int ret;
+
+	disk_super = fs_info->super_copy;
+	if (!btrfs_super_root(disk_super))
+		return 1;
+
+	features = btrfs_super_incompat_flags(disk_super);
+	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
+		mixed = 1;
+
+	flags = BTRFS_BLOCK_GROUP_SYSTEM;
+	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+	if (ret)
+		goto out;
+
+	if (mixed) {
+		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
+		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+	} else {
+		flags = BTRFS_BLOCK_GROUP_METADATA;
+		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+		if (ret)
+			goto out;
+
+		flags = BTRFS_BLOCK_GROUP_DATA;
+		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+	}
+out:
+	return ret;
+}
+
+int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
+{
+	return unpin_extent_range(root, start, end, false);
+}
+
+int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
+			       u64 num_bytes, u64 *actual_bytes)
+{
+	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
+}
+
+int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_block_group_cache *cache = NULL;
+	u64 group_trimmed;
+	u64 start;
+	u64 end;
+	u64 trimmed = 0;
+	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
+	int ret = 0;
+
+	/*
+	 * try to trim all FS space, our block group may start from non-zero.
+	 */
+	if (range->len == total_bytes)
+		cache = btrfs_lookup_first_block_group(fs_info, range->start);
+	else
+		cache = btrfs_lookup_block_group(fs_info, range->start);
+
+	while (cache) {
+		if (cache->key.objectid >= (range->start + range->len)) {
+			btrfs_put_block_group(cache);
+			break;
+		}
+
+		start = max(range->start, cache->key.objectid);
+		end = min(range->start + range->len,
+				cache->key.objectid + cache->key.offset);
+
+		if (end - start >= range->minlen) {
+			if (!block_group_cache_done(cache)) {
+				ret = cache_block_group(cache, NULL, root, 0);
+				if (!ret)
+					wait_block_group_cache_done(cache);
+			}
+			ret = btrfs_trim_block_group(cache,
+						     &group_trimmed,
+						     start,
+						     end,
+						     range->minlen);
+
+			trimmed += group_trimmed;
+			if (ret) {
+				btrfs_put_block_group(cache);
+				break;
+			}
+		}
+
+		cache = next_block_group(fs_info->tree_root, cache);
+	}
+
+	range->len = trimmed;
+	return ret;
+}