[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/inode.c b/ap/os/linux/linux-3.4.x/fs/btrfs/inode.c
new file mode 100644
index 0000000..9e51325
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/inode.c
@@ -0,0 +1,7695 @@
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/statfs.h>
+#include <linux/compat.h>
+#include <linux/bit_spinlock.h>
+#include <linux/xattr.h>
+#include <linux/posix_acl.h>
+#include <linux/falloc.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include <linux/mount.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "ioctl.h"
+#include "print-tree.h"
+#include "ordered-data.h"
+#include "xattr.h"
+#include "tree-log.h"
+#include "volumes.h"
+#include "compression.h"
+#include "locking.h"
+#include "free-space-cache.h"
+#include "inode-map.h"
+
+struct btrfs_iget_args {
+	u64 ino;
+	struct btrfs_root *root;
+};
+
+static const struct inode_operations btrfs_dir_inode_operations;
+static const struct inode_operations btrfs_symlink_inode_operations;
+static const struct inode_operations btrfs_dir_ro_inode_operations;
+static const struct inode_operations btrfs_special_inode_operations;
+static const struct inode_operations btrfs_file_inode_operations;
+static const struct address_space_operations btrfs_aops;
+static const struct address_space_operations btrfs_symlink_aops;
+static const struct file_operations btrfs_dir_file_operations;
+static struct extent_io_ops btrfs_extent_io_ops;
+
+static struct kmem_cache *btrfs_inode_cachep;
+struct kmem_cache *btrfs_trans_handle_cachep;
+struct kmem_cache *btrfs_transaction_cachep;
+struct kmem_cache *btrfs_path_cachep;
+struct kmem_cache *btrfs_free_space_cachep;
+
+#define S_SHIFT 12
+static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
+	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
+	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
+	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
+	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
+	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
+	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
+	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
+};
+
+static int btrfs_setsize(struct inode *inode, loff_t newsize);
+static int btrfs_truncate(struct inode *inode);
+static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
+static noinline int cow_file_range(struct inode *inode,
+				   struct page *locked_page,
+				   u64 start, u64 end, int *page_started,
+				   unsigned long *nr_written, int unlock);
+static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root, struct inode *inode);
+
+static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
+				     struct inode *inode,  struct inode *dir,
+				     const struct qstr *qstr)
+{
+	int err;
+
+	err = btrfs_init_acl(trans, inode, dir);
+	if (!err)
+		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
+	return err;
+}
+
+/*
+ * this does all the hard work for inserting an inline extent into
+ * the btree.  The caller should have done a btrfs_drop_extents so that
+ * no overlapping inline items exist in the btree
+ */
+static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root, struct inode *inode,
+				u64 start, size_t size, size_t compressed_size,
+				int compress_type,
+				struct page **compressed_pages)
+{
+	struct btrfs_key key;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct page *page = NULL;
+	char *kaddr;
+	unsigned long ptr;
+	struct btrfs_file_extent_item *ei;
+	int err = 0;
+	int ret;
+	size_t cur_size = size;
+	size_t datasize;
+	unsigned long offset;
+
+	if (compressed_size && compressed_pages)
+		cur_size = compressed_size;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->leave_spinning = 1;
+
+	key.objectid = btrfs_ino(inode);
+	key.offset = start;
+	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
+	datasize = btrfs_file_extent_calc_inline_size(cur_size);
+
+	inode_add_bytes(inode, size);
+	ret = btrfs_insert_empty_item(trans, root, path, &key,
+				      datasize);
+	if (ret) {
+		err = ret;
+		goto fail;
+	}
+	leaf = path->nodes[0];
+	ei = btrfs_item_ptr(leaf, path->slots[0],
+			    struct btrfs_file_extent_item);
+	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
+	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
+	btrfs_set_file_extent_encryption(leaf, ei, 0);
+	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
+	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
+	ptr = btrfs_file_extent_inline_start(ei);
+
+	if (compress_type != BTRFS_COMPRESS_NONE) {
+		struct page *cpage;
+		int i = 0;
+		while (compressed_size > 0) {
+			cpage = compressed_pages[i];
+			cur_size = min_t(unsigned long, compressed_size,
+				       PAGE_CACHE_SIZE);
+
+			kaddr = kmap_atomic(cpage);
+			write_extent_buffer(leaf, kaddr, ptr, cur_size);
+			kunmap_atomic(kaddr);
+
+			i++;
+			ptr += cur_size;
+			compressed_size -= cur_size;
+		}
+		btrfs_set_file_extent_compression(leaf, ei,
+						  compress_type);
+	} else {
+		page = find_get_page(inode->i_mapping,
+				     start >> PAGE_CACHE_SHIFT);
+		btrfs_set_file_extent_compression(leaf, ei, 0);
+		kaddr = kmap_atomic(page);
+		offset = start & (PAGE_CACHE_SIZE - 1);
+		write_extent_buffer(leaf, kaddr + offset, ptr, size);
+		kunmap_atomic(kaddr);
+		page_cache_release(page);
+	}
+	btrfs_mark_buffer_dirty(leaf);
+	btrfs_free_path(path);
+
+	/*
+	 * we're an inline extent, so nobody can
+	 * extend the file past i_size without locking
+	 * a page we already have locked.
+	 *
+	 * We must do any isize and inode updates
+	 * before we unlock the pages.  Otherwise we
+	 * could end up racing with unlink.
+	 */
+	BTRFS_I(inode)->disk_i_size = inode->i_size;
+	ret = btrfs_update_inode(trans, root, inode);
+
+	return ret;
+fail:
+	btrfs_free_path(path);
+	return err;
+}
+
+
+/*
+ * conditionally insert an inline extent into the file.  This
+ * does the checks required to make sure the data is small enough
+ * to fit as an inline extent.
+ */
+static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
+				 struct btrfs_root *root,
+				 struct inode *inode, u64 start, u64 end,
+				 size_t compressed_size, int compress_type,
+				 struct page **compressed_pages)
+{
+	u64 isize = i_size_read(inode);
+	u64 actual_end = min(end + 1, isize);
+	u64 inline_len = actual_end - start;
+	u64 aligned_end = (end + root->sectorsize - 1) &
+			~((u64)root->sectorsize - 1);
+	u64 hint_byte;
+	u64 data_len = inline_len;
+	int ret;
+
+	if (compressed_size)
+		data_len = compressed_size;
+
+	if (start > 0 ||
+	    actual_end >= PAGE_CACHE_SIZE ||
+	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
+	    (!compressed_size &&
+	    (actual_end & (root->sectorsize - 1)) == 0) ||
+	    end + 1 < isize ||
+	    data_len > root->fs_info->max_inline) {
+		return 1;
+	}
+
+	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
+				 &hint_byte, 1);
+	if (ret)
+		return ret;
+
+	if (isize > actual_end)
+		inline_len = min_t(u64, isize, actual_end);
+	ret = insert_inline_extent(trans, root, inode, start,
+				   inline_len, compressed_size,
+				   compress_type, compressed_pages);
+	if (ret && ret != -ENOSPC) {
+		btrfs_abort_transaction(trans, root, ret);
+		return ret;
+	} else if (ret == -ENOSPC) {
+		return 1;
+	}
+
+	btrfs_delalloc_release_metadata(inode, end + 1 - start);
+	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
+	return 0;
+}
+
+struct async_extent {
+	u64 start;
+	u64 ram_size;
+	u64 compressed_size;
+	struct page **pages;
+	unsigned long nr_pages;
+	int compress_type;
+	struct list_head list;
+};
+
+struct async_cow {
+	struct inode *inode;
+	struct btrfs_root *root;
+	struct page *locked_page;
+	u64 start;
+	u64 end;
+	struct list_head extents;
+	struct btrfs_work work;
+};
+
+static noinline int add_async_extent(struct async_cow *cow,
+				     u64 start, u64 ram_size,
+				     u64 compressed_size,
+				     struct page **pages,
+				     unsigned long nr_pages,
+				     int compress_type)
+{
+	struct async_extent *async_extent;
+
+	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
+	BUG_ON(!async_extent); /* -ENOMEM */
+	async_extent->start = start;
+	async_extent->ram_size = ram_size;
+	async_extent->compressed_size = compressed_size;
+	async_extent->pages = pages;
+	async_extent->nr_pages = nr_pages;
+	async_extent->compress_type = compress_type;
+	list_add_tail(&async_extent->list, &cow->extents);
+	return 0;
+}
+
+/*
+ * we create compressed extents in two phases.  The first
+ * phase compresses a range of pages that have already been
+ * locked (both pages and state bits are locked).
+ *
+ * This is done inside an ordered work queue, and the compression
+ * is spread across many cpus.  The actual IO submission is step
+ * two, and the ordered work queue takes care of making sure that
+ * happens in the same order things were put onto the queue by
+ * writepages and friends.
+ *
+ * If this code finds it can't get good compression, it puts an
+ * entry onto the work queue to write the uncompressed bytes.  This
+ * makes sure that both compressed inodes and uncompressed inodes
+ * are written in the same order that pdflush sent them down.
+ */
+static noinline int compress_file_range(struct inode *inode,
+					struct page *locked_page,
+					u64 start, u64 end,
+					struct async_cow *async_cow,
+					int *num_added)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	u64 num_bytes;
+	u64 blocksize = root->sectorsize;
+	u64 actual_end;
+	u64 isize = i_size_read(inode);
+	int ret = 0;
+	struct page **pages = NULL;
+	unsigned long nr_pages;
+	unsigned long nr_pages_ret = 0;
+	unsigned long total_compressed = 0;
+	unsigned long total_in = 0;
+	unsigned long max_compressed = 128 * 1024;
+	unsigned long max_uncompressed = 128 * 1024;
+	int i;
+	int will_compress;
+	int compress_type = root->fs_info->compress_type;
+	int redirty = 0;
+
+	/* if this is a small write inside eof, kick off a defrag */
+	if ((end - start + 1) < 16 * 1024 &&
+	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
+		btrfs_add_inode_defrag(NULL, inode);
+
+	actual_end = min_t(u64, isize, end + 1);
+again:
+	will_compress = 0;
+	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
+	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
+
+	/*
+	 * we don't want to send crud past the end of i_size through
+	 * compression, that's just a waste of CPU time.  So, if the
+	 * end of the file is before the start of our current
+	 * requested range of bytes, we bail out to the uncompressed
+	 * cleanup code that can deal with all of this.
+	 *
+	 * It isn't really the fastest way to fix things, but this is a
+	 * very uncommon corner.
+	 */
+	if (actual_end <= start)
+		goto cleanup_and_bail_uncompressed;
+
+	total_compressed = actual_end - start;
+
+	/* we want to make sure that amount of ram required to uncompress
+	 * an extent is reasonable, so we limit the total size in ram
+	 * of a compressed extent to 128k.  This is a crucial number
+	 * because it also controls how easily we can spread reads across
+	 * cpus for decompression.
+	 *
+	 * We also want to make sure the amount of IO required to do
+	 * a random read is reasonably small, so we limit the size of
+	 * a compressed extent to 128k.
+	 */
+	total_compressed = min(total_compressed, max_uncompressed);
+	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
+	num_bytes = max(blocksize,  num_bytes);
+	total_in = 0;
+	ret = 0;
+
+	/*
+	 * we do compression for mount -o compress and when the
+	 * inode has not been flagged as nocompress.  This flag can
+	 * change at any time if we discover bad compression ratios.
+	 */
+	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
+	    (btrfs_test_opt(root, COMPRESS) ||
+	     (BTRFS_I(inode)->force_compress) ||
+	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
+		WARN_ON(pages);
+		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
+		if (!pages) {
+			/* just bail out to the uncompressed code */
+			goto cont;
+		}
+
+		if (BTRFS_I(inode)->force_compress)
+			compress_type = BTRFS_I(inode)->force_compress;
+
+		/*
+		 * we need to call clear_page_dirty_for_io on each
+		 * page in the range.  Otherwise applications with the file
+		 * mmap'd can wander in and change the page contents while
+		 * we are compressing them.
+		 *
+		 * If the compression fails for any reason, we set the pages
+		 * dirty again later on.
+		 */
+		extent_range_clear_dirty_for_io(inode, start, end);
+		redirty = 1;
+		ret = btrfs_compress_pages(compress_type,
+					   inode->i_mapping, start,
+					   total_compressed, pages,
+					   nr_pages, &nr_pages_ret,
+					   &total_in,
+					   &total_compressed,
+					   max_compressed);
+
+		if (!ret) {
+			unsigned long offset = total_compressed &
+				(PAGE_CACHE_SIZE - 1);
+			struct page *page = pages[nr_pages_ret - 1];
+			char *kaddr;
+
+			/* zero the tail end of the last page, we might be
+			 * sending it down to disk
+			 */
+			if (offset) {
+				kaddr = kmap_atomic(page);
+				memset(kaddr + offset, 0,
+				       PAGE_CACHE_SIZE - offset);
+				kunmap_atomic(kaddr);
+			}
+			will_compress = 1;
+		}
+	}
+cont:
+	if (start == 0) {
+		trans = btrfs_join_transaction(root);
+		if (IS_ERR(trans)) {
+			ret = PTR_ERR(trans);
+			trans = NULL;
+			goto cleanup_and_out;
+		}
+		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+		/* lets try to make an inline extent */
+		if (ret || total_in < (actual_end - start)) {
+			/* we didn't compress the entire range, try
+			 * to make an uncompressed inline extent.
+			 */
+			ret = cow_file_range_inline(trans, root, inode,
+						    start, end, 0, 0, NULL);
+		} else {
+			/* try making a compressed inline extent */
+			ret = cow_file_range_inline(trans, root, inode,
+						    start, end,
+						    total_compressed,
+						    compress_type, pages);
+		}
+		if (ret <= 0) {
+			/*
+			 * inline extent creation worked or returned error,
+			 * we don't need to create any more async work items.
+			 * Unlock and free up our temp pages.
+			 */
+			extent_clear_unlock_delalloc(inode,
+			     &BTRFS_I(inode)->io_tree,
+			     start, end, NULL,
+			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
+			     EXTENT_CLEAR_DELALLOC |
+			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
+
+			btrfs_end_transaction(trans, root);
+			goto free_pages_out;
+		}
+		btrfs_end_transaction(trans, root);
+	}
+
+	if (will_compress) {
+		/*
+		 * we aren't doing an inline extent round the compressed size
+		 * up to a block size boundary so the allocator does sane
+		 * things
+		 */
+		total_compressed = (total_compressed + blocksize - 1) &
+			~(blocksize - 1);
+
+		/*
+		 * one last check to make sure the compression is really a
+		 * win, compare the page count read with the blocks on disk
+		 */
+		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
+			~(PAGE_CACHE_SIZE - 1);
+		if (total_compressed >= total_in) {
+			will_compress = 0;
+		} else {
+			num_bytes = total_in;
+		}
+	}
+	if (!will_compress && pages) {
+		/*
+		 * the compression code ran but failed to make things smaller,
+		 * free any pages it allocated and our page pointer array
+		 */
+		for (i = 0; i < nr_pages_ret; i++) {
+			WARN_ON(pages[i]->mapping);
+			page_cache_release(pages[i]);
+		}
+		kfree(pages);
+		pages = NULL;
+		total_compressed = 0;
+		nr_pages_ret = 0;
+
+		/* flag the file so we don't compress in the future */
+		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
+		    !(BTRFS_I(inode)->force_compress)) {
+			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
+		}
+	}
+	if (will_compress) {
+		*num_added += 1;
+
+		/* the async work queues will take care of doing actual
+		 * allocation on disk for these compressed pages,
+		 * and will submit them to the elevator.
+		 */
+		add_async_extent(async_cow, start, num_bytes,
+				 total_compressed, pages, nr_pages_ret,
+				 compress_type);
+
+		if (start + num_bytes < end) {
+			start += num_bytes;
+			pages = NULL;
+			cond_resched();
+			goto again;
+		}
+	} else {
+cleanup_and_bail_uncompressed:
+		/*
+		 * No compression, but we still need to write the pages in
+		 * the file we've been given so far.  redirty the locked
+		 * page if it corresponds to our extent and set things up
+		 * for the async work queue to run cow_file_range to do
+		 * the normal delalloc dance
+		 */
+		if (page_offset(locked_page) >= start &&
+		    page_offset(locked_page) <= end) {
+			__set_page_dirty_nobuffers(locked_page);
+			/* unlocked later on in the async handlers */
+		}
+		if (redirty)
+			extent_range_redirty_for_io(inode, start, end);
+		add_async_extent(async_cow, start, end - start + 1,
+				 0, NULL, 0, BTRFS_COMPRESS_NONE);
+		*num_added += 1;
+	}
+
+out:
+	return ret;
+
+free_pages_out:
+	for (i = 0; i < nr_pages_ret; i++) {
+		WARN_ON(pages[i]->mapping);
+		page_cache_release(pages[i]);
+	}
+	kfree(pages);
+
+	goto out;
+
+cleanup_and_out:
+	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
+				     start, end, NULL,
+				     EXTENT_CLEAR_UNLOCK_PAGE |
+				     EXTENT_CLEAR_DIRTY |
+				     EXTENT_CLEAR_DELALLOC |
+				     EXTENT_SET_WRITEBACK |
+				     EXTENT_END_WRITEBACK);
+	if (!trans || IS_ERR(trans))
+		btrfs_error(root->fs_info, ret, "Failed to join transaction");
+	else
+		btrfs_abort_transaction(trans, root, ret);
+	goto free_pages_out;
+}
+
+/*
+ * phase two of compressed writeback.  This is the ordered portion
+ * of the code, which only gets called in the order the work was
+ * queued.  We walk all the async extents created by compress_file_range
+ * and send them down to the disk.
+ */
+static noinline int submit_compressed_extents(struct inode *inode,
+					      struct async_cow *async_cow)
+{
+	struct async_extent *async_extent;
+	u64 alloc_hint = 0;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_key ins;
+	struct extent_map *em;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+	struct extent_io_tree *io_tree;
+	int ret = 0;
+
+	if (list_empty(&async_cow->extents))
+		return 0;
+
+
+	while (!list_empty(&async_cow->extents)) {
+		async_extent = list_entry(async_cow->extents.next,
+					  struct async_extent, list);
+		list_del(&async_extent->list);
+
+		io_tree = &BTRFS_I(inode)->io_tree;
+
+retry:
+		/* did the compression code fall back to uncompressed IO? */
+		if (!async_extent->pages) {
+			int page_started = 0;
+			unsigned long nr_written = 0;
+
+			lock_extent(io_tree, async_extent->start,
+					 async_extent->start +
+					 async_extent->ram_size - 1);
+
+			/* allocate blocks */
+			ret = cow_file_range(inode, async_cow->locked_page,
+					     async_extent->start,
+					     async_extent->start +
+					     async_extent->ram_size - 1,
+					     &page_started, &nr_written, 0);
+
+			/* JDM XXX */
+
+			/*
+			 * if page_started, cow_file_range inserted an
+			 * inline extent and took care of all the unlocking
+			 * and IO for us.  Otherwise, we need to submit
+			 * all those pages down to the drive.
+			 */
+			if (!page_started && !ret)
+				extent_write_locked_range(io_tree,
+						  inode, async_extent->start,
+						  async_extent->start +
+						  async_extent->ram_size - 1,
+						  btrfs_get_extent,
+						  WB_SYNC_ALL);
+			kfree(async_extent);
+			cond_resched();
+			continue;
+		}
+
+		lock_extent(io_tree, async_extent->start,
+			    async_extent->start + async_extent->ram_size - 1);
+
+		trans = btrfs_join_transaction(root);
+		if (IS_ERR(trans)) {
+			ret = PTR_ERR(trans);
+		} else {
+			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+			ret = btrfs_reserve_extent(trans, root,
+					   async_extent->compressed_size,
+					   async_extent->compressed_size,
+					   0, alloc_hint, &ins, 1);
+			if (ret)
+				btrfs_abort_transaction(trans, root, ret);
+			btrfs_end_transaction(trans, root);
+		}
+
+		if (ret) {
+			int i;
+			for (i = 0; i < async_extent->nr_pages; i++) {
+				WARN_ON(async_extent->pages[i]->mapping);
+				page_cache_release(async_extent->pages[i]);
+			}
+			kfree(async_extent->pages);
+			async_extent->nr_pages = 0;
+			async_extent->pages = NULL;
+			unlock_extent(io_tree, async_extent->start,
+				      async_extent->start +
+				      async_extent->ram_size - 1);
+			if (ret == -ENOSPC)
+				goto retry;
+			goto out_free; /* JDM: Requeue? */
+		}
+
+		/*
+		 * here we're doing allocation and writeback of the
+		 * compressed pages
+		 */
+		btrfs_drop_extent_cache(inode, async_extent->start,
+					async_extent->start +
+					async_extent->ram_size - 1, 0);
+
+		em = alloc_extent_map();
+		BUG_ON(!em); /* -ENOMEM */
+		em->start = async_extent->start;
+		em->len = async_extent->ram_size;
+		em->orig_start = em->start;
+
+		em->block_start = ins.objectid;
+		em->block_len = ins.offset;
+		em->bdev = root->fs_info->fs_devices->latest_bdev;
+		em->compress_type = async_extent->compress_type;
+		set_bit(EXTENT_FLAG_PINNED, &em->flags);
+		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+
+		while (1) {
+			write_lock(&em_tree->lock);
+			ret = add_extent_mapping(em_tree, em);
+			write_unlock(&em_tree->lock);
+			if (ret != -EEXIST) {
+				free_extent_map(em);
+				break;
+			}
+			btrfs_drop_extent_cache(inode, async_extent->start,
+						async_extent->start +
+						async_extent->ram_size - 1, 0);
+		}
+
+		ret = btrfs_add_ordered_extent_compress(inode,
+						async_extent->start,
+						ins.objectid,
+						async_extent->ram_size,
+						ins.offset,
+						BTRFS_ORDERED_COMPRESSED,
+						async_extent->compress_type);
+		BUG_ON(ret); /* -ENOMEM */
+
+		/*
+		 * clear dirty, set writeback and unlock the pages.
+		 */
+		extent_clear_unlock_delalloc(inode,
+				&BTRFS_I(inode)->io_tree,
+				async_extent->start,
+				async_extent->start +
+				async_extent->ram_size - 1,
+				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
+				EXTENT_CLEAR_UNLOCK |
+				EXTENT_CLEAR_DELALLOC |
+				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
+
+		ret = btrfs_submit_compressed_write(inode,
+				    async_extent->start,
+				    async_extent->ram_size,
+				    ins.objectid,
+				    ins.offset, async_extent->pages,
+				    async_extent->nr_pages);
+
+		BUG_ON(ret); /* -ENOMEM */
+		alloc_hint = ins.objectid + ins.offset;
+		kfree(async_extent);
+		cond_resched();
+	}
+	ret = 0;
+out:
+	return ret;
+out_free:
+	kfree(async_extent);
+	goto out;
+}
+
+static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
+				      u64 num_bytes)
+{
+	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+	struct extent_map *em;
+	u64 alloc_hint = 0;
+
+	read_lock(&em_tree->lock);
+	em = search_extent_mapping(em_tree, start, num_bytes);
+	if (em) {
+		/*
+		 * if block start isn't an actual block number then find the
+		 * first block in this inode and use that as a hint.  If that
+		 * block is also bogus then just don't worry about it.
+		 */
+		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
+			free_extent_map(em);
+			em = search_extent_mapping(em_tree, 0, 0);
+			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
+				alloc_hint = em->block_start;
+			if (em)
+				free_extent_map(em);
+		} else {
+			alloc_hint = em->block_start;
+			free_extent_map(em);
+		}
+	}
+	read_unlock(&em_tree->lock);
+
+	return alloc_hint;
+}
+
+/*
+ * when extent_io.c finds a delayed allocation range in the file,
+ * the call backs end up in this code.  The basic idea is to
+ * allocate extents on disk for the range, and create ordered data structs
+ * in ram to track those extents.
+ *
+ * locked_page is the page that writepage had locked already.  We use
+ * it to make sure we don't do extra locks or unlocks.
+ *
+ * *page_started is set to one if we unlock locked_page and do everything
+ * required to start IO on it.  It may be clean and already done with
+ * IO when we return.
+ */
+static noinline int cow_file_range(struct inode *inode,
+				   struct page *locked_page,
+				   u64 start, u64 end, int *page_started,
+				   unsigned long *nr_written,
+				   int unlock)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	u64 alloc_hint = 0;
+	u64 num_bytes;
+	unsigned long ram_size;
+	u64 disk_num_bytes;
+	u64 cur_alloc_size;
+	u64 blocksize = root->sectorsize;
+	struct btrfs_key ins;
+	struct extent_map *em;
+	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+	int ret = 0;
+
+	BUG_ON(btrfs_is_free_space_inode(root, inode));
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans)) {
+		extent_clear_unlock_delalloc(inode,
+			     &BTRFS_I(inode)->io_tree,
+			     start, end, NULL,
+			     EXTENT_CLEAR_UNLOCK_PAGE |
+			     EXTENT_CLEAR_UNLOCK |
+			     EXTENT_CLEAR_DELALLOC |
+			     EXTENT_CLEAR_DIRTY |
+			     EXTENT_SET_WRITEBACK |
+			     EXTENT_END_WRITEBACK);
+		return PTR_ERR(trans);
+	}
+	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
+	num_bytes = max(blocksize,  num_bytes);
+	disk_num_bytes = num_bytes;
+	ret = 0;
+
+	/* if this is a small write inside eof, kick off defrag */
+	if (num_bytes < 64 * 1024 &&
+	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
+		btrfs_add_inode_defrag(trans, inode);
+
+	if (start == 0) {
+		/* lets try to make an inline extent */
+		ret = cow_file_range_inline(trans, root, inode,
+					    start, end, 0, 0, NULL);
+		if (ret == 0) {
+			extent_clear_unlock_delalloc(inode,
+				     &BTRFS_I(inode)->io_tree,
+				     start, end, NULL,
+				     EXTENT_CLEAR_UNLOCK_PAGE |
+				     EXTENT_CLEAR_UNLOCK |
+				     EXTENT_CLEAR_DELALLOC |
+				     EXTENT_CLEAR_DIRTY |
+				     EXTENT_SET_WRITEBACK |
+				     EXTENT_END_WRITEBACK);
+
+			*nr_written = *nr_written +
+			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
+			*page_started = 1;
+			goto out;
+		} else if (ret < 0) {
+			btrfs_abort_transaction(trans, root, ret);
+			goto out_unlock;
+		}
+	}
+
+	BUG_ON(disk_num_bytes >
+	       btrfs_super_total_bytes(root->fs_info->super_copy));
+
+	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
+	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
+
+	while (disk_num_bytes > 0) {
+		unsigned long op;
+
+		cur_alloc_size = disk_num_bytes;
+		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
+					   root->sectorsize, 0, alloc_hint,
+					   &ins, 1);
+		if (ret < 0) {
+			btrfs_abort_transaction(trans, root, ret);
+			goto out_unlock;
+		}
+
+		em = alloc_extent_map();
+		BUG_ON(!em); /* -ENOMEM */
+		em->start = start;
+		em->orig_start = em->start;
+		ram_size = ins.offset;
+		em->len = ins.offset;
+
+		em->block_start = ins.objectid;
+		em->block_len = ins.offset;
+		em->bdev = root->fs_info->fs_devices->latest_bdev;
+		set_bit(EXTENT_FLAG_PINNED, &em->flags);
+
+		while (1) {
+			write_lock(&em_tree->lock);
+			ret = add_extent_mapping(em_tree, em);
+			write_unlock(&em_tree->lock);
+			if (ret != -EEXIST) {
+				free_extent_map(em);
+				break;
+			}
+			btrfs_drop_extent_cache(inode, start,
+						start + ram_size - 1, 0);
+		}
+
+		cur_alloc_size = ins.offset;
+		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
+					       ram_size, cur_alloc_size, 0);
+		BUG_ON(ret); /* -ENOMEM */
+
+		if (root->root_key.objectid ==
+		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
+			ret = btrfs_reloc_clone_csums(inode, start,
+						      cur_alloc_size);
+			if (ret) {
+				btrfs_abort_transaction(trans, root, ret);
+				goto out_unlock;
+			}
+		}
+
+		if (disk_num_bytes < cur_alloc_size)
+			break;
+
+		/* we're not doing compressed IO, don't unlock the first
+		 * page (which the caller expects to stay locked), don't
+		 * clear any dirty bits and don't set any writeback bits
+		 *
+		 * Do set the Private2 bit so we know this page was properly
+		 * setup for writepage
+		 */
+		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
+		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
+			EXTENT_SET_PRIVATE2;
+
+		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
+					     start, start + ram_size - 1,
+					     locked_page, op);
+		disk_num_bytes -= cur_alloc_size;
+		num_bytes -= cur_alloc_size;
+		alloc_hint = ins.objectid + ins.offset;
+		start += cur_alloc_size;
+	}
+	ret = 0;
+out:
+	btrfs_end_transaction(trans, root);
+
+	return ret;
+out_unlock:
+	extent_clear_unlock_delalloc(inode,
+		     &BTRFS_I(inode)->io_tree,
+		     start, end, NULL,
+		     EXTENT_CLEAR_UNLOCK_PAGE |
+		     EXTENT_CLEAR_UNLOCK |
+		     EXTENT_CLEAR_DELALLOC |
+		     EXTENT_CLEAR_DIRTY |
+		     EXTENT_SET_WRITEBACK |
+		     EXTENT_END_WRITEBACK);
+
+	goto out;
+}
+
+/*
+ * work queue call back to started compression on a file and pages
+ */
+static noinline void async_cow_start(struct btrfs_work *work)
+{
+	struct async_cow *async_cow;
+	int num_added = 0;
+	async_cow = container_of(work, struct async_cow, work);
+
+	compress_file_range(async_cow->inode, async_cow->locked_page,
+			    async_cow->start, async_cow->end, async_cow,
+			    &num_added);
+	if (num_added == 0)
+		async_cow->inode = NULL;
+}
+
+/*
+ * work queue call back to submit previously compressed pages
+ */
+static noinline void async_cow_submit(struct btrfs_work *work)
+{
+	struct async_cow *async_cow;
+	struct btrfs_root *root;
+	unsigned long nr_pages;
+
+	async_cow = container_of(work, struct async_cow, work);
+
+	root = async_cow->root;
+	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
+		PAGE_CACHE_SHIFT;
+
+	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
+
+	if (atomic_read(&root->fs_info->async_delalloc_pages) <
+	    5 * 1042 * 1024 &&
+	    waitqueue_active(&root->fs_info->async_submit_wait))
+		wake_up(&root->fs_info->async_submit_wait);
+
+	if (async_cow->inode)
+		submit_compressed_extents(async_cow->inode, async_cow);
+}
+
+static noinline void async_cow_free(struct btrfs_work *work)
+{
+	struct async_cow *async_cow;
+	async_cow = container_of(work, struct async_cow, work);
+	kfree(async_cow);
+}
+
+static int cow_file_range_async(struct inode *inode, struct page *locked_page,
+				u64 start, u64 end, int *page_started,
+				unsigned long *nr_written)
+{
+	struct async_cow *async_cow;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	unsigned long nr_pages;
+	u64 cur_end;
+	int limit = 10 * 1024 * 1042;
+
+	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
+			 1, 0, NULL, GFP_NOFS);
+	while (start < end) {
+		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
+		BUG_ON(!async_cow); /* -ENOMEM */
+		async_cow->inode = inode;
+		async_cow->root = root;
+		async_cow->locked_page = locked_page;
+		async_cow->start = start;
+
+		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
+			cur_end = end;
+		else
+			cur_end = min(end, start + 512 * 1024 - 1);
+
+		async_cow->end = cur_end;
+		INIT_LIST_HEAD(&async_cow->extents);
+
+		async_cow->work.func = async_cow_start;
+		async_cow->work.ordered_func = async_cow_submit;
+		async_cow->work.ordered_free = async_cow_free;
+		async_cow->work.flags = 0;
+
+		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
+			PAGE_CACHE_SHIFT;
+		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
+
+		btrfs_queue_worker(&root->fs_info->delalloc_workers,
+				   &async_cow->work);
+
+		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
+			wait_event(root->fs_info->async_submit_wait,
+			   (atomic_read(&root->fs_info->async_delalloc_pages) <
+			    limit));
+		}
+
+		while (atomic_read(&root->fs_info->async_submit_draining) &&
+		      atomic_read(&root->fs_info->async_delalloc_pages)) {
+			wait_event(root->fs_info->async_submit_wait,
+			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
+			   0));
+		}
+
+		*nr_written += nr_pages;
+		start = cur_end + 1;
+	}
+	*page_started = 1;
+	return 0;
+}
+
+static noinline int csum_exist_in_range(struct btrfs_root *root,
+					u64 bytenr, u64 num_bytes)
+{
+	int ret;
+	struct btrfs_ordered_sum *sums;
+	LIST_HEAD(list);
+
+	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
+				       bytenr + num_bytes - 1, &list, 0);
+	if (ret == 0 && list_empty(&list))
+		return 0;
+
+	while (!list_empty(&list)) {
+		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
+		list_del(&sums->list);
+		kfree(sums);
+	}
+	return 1;
+}
+
+/*
+ * when nowcow writeback call back.  This checks for snapshots or COW copies
+ * of the extents that exist in the file, and COWs the file as required.
+ *
+ * If no cow copies or snapshots exist, we write directly to the existing
+ * blocks on disk
+ */
+static noinline int run_delalloc_nocow(struct inode *inode,
+				       struct page *locked_page,
+			      u64 start, u64 end, int *page_started, int force,
+			      unsigned long *nr_written)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	struct extent_buffer *leaf;
+	struct btrfs_path *path;
+	struct btrfs_file_extent_item *fi;
+	struct btrfs_key found_key;
+	u64 cow_start;
+	u64 cur_offset;
+	u64 extent_end;
+	u64 extent_offset;
+	u64 disk_bytenr;
+	u64 num_bytes;
+	int extent_type;
+	int ret, err;
+	int type;
+	int nocow;
+	int check_prev = 1;
+	bool nolock;
+	u64 ino = btrfs_ino(inode);
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	nolock = btrfs_is_free_space_inode(root, inode);
+
+	if (nolock)
+		trans = btrfs_join_transaction_nolock(root);
+	else
+		trans = btrfs_join_transaction(root);
+
+	if (IS_ERR(trans)) {
+		btrfs_free_path(path);
+		return PTR_ERR(trans);
+	}
+
+	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+	cow_start = (u64)-1;
+	cur_offset = start;
+	while (1) {
+		ret = btrfs_lookup_file_extent(trans, root, path, ino,
+					       cur_offset, 0);
+		if (ret < 0) {
+			btrfs_abort_transaction(trans, root, ret);
+			goto error;
+		}
+		if (ret > 0 && path->slots[0] > 0 && check_prev) {
+			leaf = path->nodes[0];
+			btrfs_item_key_to_cpu(leaf, &found_key,
+					      path->slots[0] - 1);
+			if (found_key.objectid == ino &&
+			    found_key.type == BTRFS_EXTENT_DATA_KEY)
+				path->slots[0]--;
+		}
+		check_prev = 0;
+next_slot:
+		leaf = path->nodes[0];
+		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret < 0) {
+				btrfs_abort_transaction(trans, root, ret);
+				goto error;
+			}
+			if (ret > 0)
+				break;
+			leaf = path->nodes[0];
+		}
+
+		nocow = 0;
+		disk_bytenr = 0;
+		num_bytes = 0;
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+		if (found_key.objectid > ino ||
+		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
+		    found_key.offset > end)
+			break;
+
+		if (found_key.offset > cur_offset) {
+			extent_end = found_key.offset;
+			extent_type = 0;
+			goto out_check;
+		}
+
+		fi = btrfs_item_ptr(leaf, path->slots[0],
+				    struct btrfs_file_extent_item);
+		extent_type = btrfs_file_extent_type(leaf, fi);
+
+		if (extent_type == BTRFS_FILE_EXTENT_REG ||
+		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
+			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+			extent_offset = btrfs_file_extent_offset(leaf, fi);
+			extent_end = found_key.offset +
+				btrfs_file_extent_num_bytes(leaf, fi);
+			if (extent_end <= start) {
+				path->slots[0]++;
+				goto next_slot;
+			}
+			if (disk_bytenr == 0)
+				goto out_check;
+			if (btrfs_file_extent_compression(leaf, fi) ||
+			    btrfs_file_extent_encryption(leaf, fi) ||
+			    btrfs_file_extent_other_encoding(leaf, fi))
+				goto out_check;
+			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
+				goto out_check;
+			if (btrfs_extent_readonly(root, disk_bytenr))
+				goto out_check;
+			if (btrfs_cross_ref_exist(trans, root, ino,
+						  found_key.offset -
+						  extent_offset, disk_bytenr))
+				goto out_check;
+			disk_bytenr += extent_offset;
+			disk_bytenr += cur_offset - found_key.offset;
+			num_bytes = min(end + 1, extent_end) - cur_offset;
+			/*
+			 * force cow if csum exists in the range.
+			 * this ensure that csum for a given extent are
+			 * either valid or do not exist.
+			 */
+			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
+				goto out_check;
+			nocow = 1;
+		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+			extent_end = found_key.offset +
+				btrfs_file_extent_inline_len(leaf, fi);
+			extent_end = ALIGN(extent_end, root->sectorsize);
+		} else {
+			BUG_ON(1);
+		}
+out_check:
+		if (extent_end <= start) {
+			path->slots[0]++;
+			goto next_slot;
+		}
+		if (!nocow) {
+			if (cow_start == (u64)-1)
+				cow_start = cur_offset;
+			cur_offset = extent_end;
+			if (cur_offset > end)
+				break;
+			path->slots[0]++;
+			goto next_slot;
+		}
+
+		btrfs_release_path(path);
+		if (cow_start != (u64)-1) {
+			ret = cow_file_range(inode, locked_page, cow_start,
+					found_key.offset - 1, page_started,
+					nr_written, 1);
+			if (ret) {
+				btrfs_abort_transaction(trans, root, ret);
+				goto error;
+			}
+			cow_start = (u64)-1;
+		}
+
+		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
+			struct extent_map *em;
+			struct extent_map_tree *em_tree;
+			em_tree = &BTRFS_I(inode)->extent_tree;
+			em = alloc_extent_map();
+			BUG_ON(!em); /* -ENOMEM */
+			em->start = cur_offset;
+			em->orig_start = em->start;
+			em->len = num_bytes;
+			em->block_len = num_bytes;
+			em->block_start = disk_bytenr;
+			em->bdev = root->fs_info->fs_devices->latest_bdev;
+			set_bit(EXTENT_FLAG_PINNED, &em->flags);
+			while (1) {
+				write_lock(&em_tree->lock);
+				ret = add_extent_mapping(em_tree, em);
+				write_unlock(&em_tree->lock);
+				if (ret != -EEXIST) {
+					free_extent_map(em);
+					break;
+				}
+				btrfs_drop_extent_cache(inode, em->start,
+						em->start + em->len - 1, 0);
+			}
+			type = BTRFS_ORDERED_PREALLOC;
+		} else {
+			type = BTRFS_ORDERED_NOCOW;
+		}
+
+		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
+					       num_bytes, num_bytes, type);
+		BUG_ON(ret); /* -ENOMEM */
+
+		if (root->root_key.objectid ==
+		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
+			ret = btrfs_reloc_clone_csums(inode, cur_offset,
+						      num_bytes);
+			if (ret) {
+				btrfs_abort_transaction(trans, root, ret);
+				goto error;
+			}
+		}
+
+		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
+				cur_offset, cur_offset + num_bytes - 1,
+				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
+				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
+				EXTENT_SET_PRIVATE2);
+		cur_offset = extent_end;
+		if (cur_offset > end)
+			break;
+	}
+	btrfs_release_path(path);
+
+	if (cur_offset <= end && cow_start == (u64)-1)
+		cow_start = cur_offset;
+	if (cow_start != (u64)-1) {
+		ret = cow_file_range(inode, locked_page, cow_start, end,
+				     page_started, nr_written, 1);
+		if (ret) {
+			btrfs_abort_transaction(trans, root, ret);
+			goto error;
+		}
+	}
+
+error:
+	if (nolock) {
+		err = btrfs_end_transaction_nolock(trans, root);
+	} else {
+		err = btrfs_end_transaction(trans, root);
+	}
+	if (!ret)
+		ret = err;
+
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * extent_io.c call back to do delayed allocation processing
+ */
+static int run_delalloc_range(struct inode *inode, struct page *locked_page,
+			      u64 start, u64 end, int *page_started,
+			      unsigned long *nr_written)
+{
+	int ret;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+
+	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
+		ret = run_delalloc_nocow(inode, locked_page, start, end,
+					 page_started, 1, nr_written);
+	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
+		ret = run_delalloc_nocow(inode, locked_page, start, end,
+					 page_started, 0, nr_written);
+	else if (!btrfs_test_opt(root, COMPRESS) &&
+		 !(BTRFS_I(inode)->force_compress) &&
+		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
+		ret = cow_file_range(inode, locked_page, start, end,
+				      page_started, nr_written, 1);
+	else
+		ret = cow_file_range_async(inode, locked_page, start, end,
+					   page_started, nr_written);
+	return ret;
+}
+
+static void btrfs_split_extent_hook(struct inode *inode,
+				    struct extent_state *orig, u64 split)
+{
+	/* not delalloc, ignore it */
+	if (!(orig->state & EXTENT_DELALLOC))
+		return;
+
+	spin_lock(&BTRFS_I(inode)->lock);
+	BTRFS_I(inode)->outstanding_extents++;
+	spin_unlock(&BTRFS_I(inode)->lock);
+}
+
+/*
+ * extent_io.c merge_extent_hook, used to track merged delayed allocation
+ * extents so we can keep track of new extents that are just merged onto old
+ * extents, such as when we are doing sequential writes, so we can properly
+ * account for the metadata space we'll need.
+ */
+static void btrfs_merge_extent_hook(struct inode *inode,
+				    struct extent_state *new,
+				    struct extent_state *other)
+{
+	/* not delalloc, ignore it */
+	if (!(other->state & EXTENT_DELALLOC))
+		return;
+
+	spin_lock(&BTRFS_I(inode)->lock);
+	BTRFS_I(inode)->outstanding_extents--;
+	spin_unlock(&BTRFS_I(inode)->lock);
+}
+
+/*
+ * extent_io.c set_bit_hook, used to track delayed allocation
+ * bytes in this file, and to maintain the list of inodes that
+ * have pending delalloc work to be done.
+ */
+static void btrfs_set_bit_hook(struct inode *inode,
+			       struct extent_state *state, int *bits)
+{
+
+	/*
+	 * set_bit and clear bit hooks normally require _irqsave/restore
+	 * but in this case, we are only testing for the DELALLOC
+	 * bit, which is only set or cleared with irqs on
+	 */
+	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
+		struct btrfs_root *root = BTRFS_I(inode)->root;
+		u64 len = state->end + 1 - state->start;
+		bool do_list = !btrfs_is_free_space_inode(root, inode);
+
+		if (*bits & EXTENT_FIRST_DELALLOC) {
+			*bits &= ~EXTENT_FIRST_DELALLOC;
+		} else {
+			spin_lock(&BTRFS_I(inode)->lock);
+			BTRFS_I(inode)->outstanding_extents++;
+			spin_unlock(&BTRFS_I(inode)->lock);
+		}
+
+		spin_lock(&root->fs_info->delalloc_lock);
+		BTRFS_I(inode)->delalloc_bytes += len;
+		root->fs_info->delalloc_bytes += len;
+		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
+			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
+				      &root->fs_info->delalloc_inodes);
+		}
+		spin_unlock(&root->fs_info->delalloc_lock);
+	}
+}
+
+/*
+ * extent_io.c clear_bit_hook, see set_bit_hook for why
+ */
+static void btrfs_clear_bit_hook(struct inode *inode,
+				 struct extent_state *state, int *bits)
+{
+	/*
+	 * set_bit and clear bit hooks normally require _irqsave/restore
+	 * but in this case, we are only testing for the DELALLOC
+	 * bit, which is only set or cleared with irqs on
+	 */
+	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
+		struct btrfs_root *root = BTRFS_I(inode)->root;
+		u64 len = state->end + 1 - state->start;
+		bool do_list = !btrfs_is_free_space_inode(root, inode);
+
+		if (*bits & EXTENT_FIRST_DELALLOC) {
+			*bits &= ~EXTENT_FIRST_DELALLOC;
+		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
+			spin_lock(&BTRFS_I(inode)->lock);
+			BTRFS_I(inode)->outstanding_extents--;
+			spin_unlock(&BTRFS_I(inode)->lock);
+		}
+
+		if (*bits & EXTENT_DO_ACCOUNTING)
+			btrfs_delalloc_release_metadata(inode, len);
+
+		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
+		    && do_list)
+			btrfs_free_reserved_data_space(inode, len);
+
+		spin_lock(&root->fs_info->delalloc_lock);
+		root->fs_info->delalloc_bytes -= len;
+		BTRFS_I(inode)->delalloc_bytes -= len;
+
+		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
+		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
+			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
+		}
+		spin_unlock(&root->fs_info->delalloc_lock);
+	}
+}
+
+/*
+ * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
+ * we don't create bios that span stripes or chunks
+ */
+int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
+			 size_t size, struct bio *bio,
+			 unsigned long bio_flags)
+{
+	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
+	struct btrfs_mapping_tree *map_tree;
+	u64 logical = (u64)bio->bi_sector << 9;
+	u64 length = 0;
+	u64 map_length;
+	int ret;
+
+	if (bio_flags & EXTENT_BIO_COMPRESSED)
+		return 0;
+
+	length = bio->bi_size;
+	map_tree = &root->fs_info->mapping_tree;
+	map_length = length;
+	ret = btrfs_map_block(map_tree, READ, logical,
+			      &map_length, NULL, 0);
+	/* Will always return 0 or 1 with map_multi == NULL */
+	BUG_ON(ret < 0);
+	if (map_length < length + size)
+		return 1;
+	return 0;
+}
+
+/*
+ * in order to insert checksums into the metadata in large chunks,
+ * we wait until bio submission time.   All the pages in the bio are
+ * checksummed and sums are attached onto the ordered extent record.
+ *
+ * At IO completion time the cums attached on the ordered extent record
+ * are inserted into the btree
+ */
+static int __btrfs_submit_bio_start(struct inode *inode, int rw,
+				    struct bio *bio, int mirror_num,
+				    unsigned long bio_flags,
+				    u64 bio_offset)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	int ret = 0;
+
+	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
+	BUG_ON(ret); /* -ENOMEM */
+	return 0;
+}
+
+/*
+ * in order to insert checksums into the metadata in large chunks,
+ * we wait until bio submission time.   All the pages in the bio are
+ * checksummed and sums are attached onto the ordered extent record.
+ *
+ * At IO completion time the cums attached on the ordered extent record
+ * are inserted into the btree
+ */
+static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
+			  int mirror_num, unsigned long bio_flags,
+			  u64 bio_offset)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
+}
+
+/*
+ * extent_io.c submission hook. This does the right thing for csum calculation
+ * on write, or reading the csums from the tree before a read
+ */
+static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
+			  int mirror_num, unsigned long bio_flags,
+			  u64 bio_offset)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	int ret = 0;
+	int skip_sum;
+	int metadata = 0;
+
+	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+	if (btrfs_is_free_space_inode(root, inode))
+		metadata = 2;
+
+	ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
+	if (ret)
+		return ret;
+
+	if (!(rw & REQ_WRITE)) {
+		if (bio_flags & EXTENT_BIO_COMPRESSED) {
+			return btrfs_submit_compressed_read(inode, bio,
+						    mirror_num, bio_flags);
+		} else if (!skip_sum) {
+			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
+			if (ret)
+				return ret;
+		}
+		goto mapit;
+	} else if (!skip_sum) {
+		/* csum items have already been cloned */
+		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
+			goto mapit;
+		/* we're doing a write, do the async checksumming */
+		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
+				   inode, rw, bio, mirror_num,
+				   bio_flags, bio_offset,
+				   __btrfs_submit_bio_start,
+				   __btrfs_submit_bio_done);
+	}
+
+mapit:
+	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
+}
+
+/*
+ * given a list of ordered sums record them in the inode.  This happens
+ * at IO completion time based on sums calculated at bio submission time.
+ */
+static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
+			     struct inode *inode, u64 file_offset,
+			     struct list_head *list)
+{
+	struct btrfs_ordered_sum *sum;
+
+	list_for_each_entry(sum, list, list) {
+		btrfs_csum_file_blocks(trans,
+		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
+	}
+	return 0;
+}
+
+int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
+			      struct extent_state **cached_state)
+{
+	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
+		WARN_ON(1);
+	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
+				   cached_state, GFP_NOFS);
+}
+
+/* see btrfs_writepage_start_hook for details on why this is required */
+struct btrfs_writepage_fixup {
+	struct page *page;
+	struct btrfs_work work;
+};
+
+static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
+{
+	struct btrfs_writepage_fixup *fixup;
+	struct btrfs_ordered_extent *ordered;
+	struct extent_state *cached_state = NULL;
+	struct page *page;
+	struct inode *inode;
+	u64 page_start;
+	u64 page_end;
+	int ret;
+
+	fixup = container_of(work, struct btrfs_writepage_fixup, work);
+	page = fixup->page;
+again:
+	lock_page(page);
+	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
+		ClearPageChecked(page);
+		goto out_page;
+	}
+
+	inode = page->mapping->host;
+	page_start = page_offset(page);
+	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
+
+	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
+			 &cached_state);
+
+	/* already ordered? We're done */
+	if (PagePrivate2(page))
+		goto out;
+
+	ordered = btrfs_lookup_ordered_extent(inode, page_start);
+	if (ordered) {
+		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
+				     page_end, &cached_state, GFP_NOFS);
+		unlock_page(page);
+		btrfs_start_ordered_extent(inode, ordered, 1);
+		btrfs_put_ordered_extent(ordered);
+		goto again;
+	}
+
+	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
+	if (ret) {
+		mapping_set_error(page->mapping, ret);
+		end_extent_writepage(page, ret, page_start, page_end);
+		ClearPageChecked(page);
+		goto out;
+	 }
+
+	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
+	ClearPageChecked(page);
+	set_page_dirty(page);
+out:
+	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
+			     &cached_state, GFP_NOFS);
+out_page:
+	unlock_page(page);
+	page_cache_release(page);
+	kfree(fixup);
+}
+
+/*
+ * There are a few paths in the higher layers of the kernel that directly
+ * set the page dirty bit without asking the filesystem if it is a
+ * good idea.  This causes problems because we want to make sure COW
+ * properly happens and the data=ordered rules are followed.
+ *
+ * In our case any range that doesn't have the ORDERED bit set
+ * hasn't been properly setup for IO.  We kick off an async process
+ * to fix it up.  The async helper will wait for ordered extents, set
+ * the delalloc bit and make it safe to write the page.
+ */
+static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
+{
+	struct inode *inode = page->mapping->host;
+	struct btrfs_writepage_fixup *fixup;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+
+	/* this page is properly in the ordered list */
+	if (TestClearPagePrivate2(page))
+		return 0;
+
+	if (PageChecked(page))
+		return -EAGAIN;
+
+	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
+	if (!fixup)
+		return -EAGAIN;
+
+	SetPageChecked(page);
+	page_cache_get(page);
+	fixup->work.func = btrfs_writepage_fixup_worker;
+	fixup->page = page;
+	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
+	return -EBUSY;
+}
+
+static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
+				       struct inode *inode, u64 file_pos,
+				       u64 disk_bytenr, u64 disk_num_bytes,
+				       u64 num_bytes, u64 ram_bytes,
+				       u8 compression, u8 encryption,
+				       u16 other_encoding, int extent_type)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_file_extent_item *fi;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_key ins;
+	u64 hint;
+	int ret;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->leave_spinning = 1;
+
+	/*
+	 * we may be replacing one extent in the tree with another.
+	 * The new extent is pinned in the extent map, and we don't want
+	 * to drop it from the cache until it is completely in the btree.
+	 *
+	 * So, tell btrfs_drop_extents to leave this extent in the cache.
+	 * the caller is expected to unpin it and allow it to be merged
+	 * with the others.
+	 */
+	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
+				 &hint, 0);
+	if (ret)
+		goto out;
+
+	ins.objectid = btrfs_ino(inode);
+	ins.offset = file_pos;
+	ins.type = BTRFS_EXTENT_DATA_KEY;
+	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
+	if (ret)
+		goto out;
+	leaf = path->nodes[0];
+	fi = btrfs_item_ptr(leaf, path->slots[0],
+			    struct btrfs_file_extent_item);
+	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
+	btrfs_set_file_extent_type(leaf, fi, extent_type);
+	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
+	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
+	btrfs_set_file_extent_offset(leaf, fi, 0);
+	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
+	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
+	btrfs_set_file_extent_compression(leaf, fi, compression);
+	btrfs_set_file_extent_encryption(leaf, fi, encryption);
+	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
+
+	btrfs_unlock_up_safe(path, 1);
+	btrfs_set_lock_blocking(leaf);
+
+	btrfs_mark_buffer_dirty(leaf);
+
+	inode_add_bytes(inode, num_bytes);
+
+	ins.objectid = disk_bytenr;
+	ins.offset = disk_num_bytes;
+	ins.type = BTRFS_EXTENT_ITEM_KEY;
+	ret = btrfs_alloc_reserved_file_extent(trans, root,
+					root->root_key.objectid,
+					btrfs_ino(inode), file_pos, &ins);
+out:
+	btrfs_free_path(path);
+
+	return ret;
+}
+
+/*
+ * helper function for btrfs_finish_ordered_io, this
+ * just reads in some of the csum leaves to prime them into ram
+ * before we start the transaction.  It limits the amount of btree
+ * reads required while inside the transaction.
+ */
+/* as ordered data IO finishes, this gets called so we can finish
+ * an ordered extent if the range of bytes in the file it covers are
+ * fully written.
+ */
+static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans = NULL;
+	struct btrfs_ordered_extent *ordered_extent = NULL;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	struct extent_state *cached_state = NULL;
+	int compress_type = 0;
+	int ret;
+	bool nolock;
+
+	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
+					     end - start + 1);
+	if (!ret)
+		return 0;
+	BUG_ON(!ordered_extent); /* Logic error */
+
+	nolock = btrfs_is_free_space_inode(root, inode);
+
+	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
+		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
+		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
+		if (!ret) {
+			if (nolock)
+				trans = btrfs_join_transaction_nolock(root);
+			else
+				trans = btrfs_join_transaction(root);
+			if (IS_ERR(trans))
+				return PTR_ERR(trans);
+			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+			ret = btrfs_update_inode_fallback(trans, root, inode);
+			if (ret) /* -ENOMEM or corruption */
+				btrfs_abort_transaction(trans, root, ret);
+		}
+		goto out;
+	}
+
+	lock_extent_bits(io_tree, ordered_extent->file_offset,
+			 ordered_extent->file_offset + ordered_extent->len - 1,
+			 0, &cached_state);
+
+	if (nolock)
+		trans = btrfs_join_transaction_nolock(root);
+	else
+		trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans)) {
+		ret = PTR_ERR(trans);
+		trans = NULL;
+		goto out_unlock;
+	}
+	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
+		compress_type = ordered_extent->compress_type;
+	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
+		BUG_ON(compress_type);
+		ret = btrfs_mark_extent_written(trans, inode,
+						ordered_extent->file_offset,
+						ordered_extent->file_offset +
+						ordered_extent->len);
+	} else {
+		BUG_ON(root == root->fs_info->tree_root);
+		ret = insert_reserved_file_extent(trans, inode,
+						ordered_extent->file_offset,
+						ordered_extent->start,
+						ordered_extent->disk_len,
+						ordered_extent->len,
+						ordered_extent->len,
+						compress_type, 0, 0,
+						BTRFS_FILE_EXTENT_REG);
+		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
+				   ordered_extent->file_offset,
+				   ordered_extent->len);
+	}
+	unlock_extent_cached(io_tree, ordered_extent->file_offset,
+			     ordered_extent->file_offset +
+			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
+	if (ret < 0) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto out;
+	}
+
+	add_pending_csums(trans, inode, ordered_extent->file_offset,
+			  &ordered_extent->list);
+
+	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
+	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
+		ret = btrfs_update_inode_fallback(trans, root, inode);
+		if (ret) { /* -ENOMEM or corruption */
+			btrfs_abort_transaction(trans, root, ret);
+			goto out;
+		}
+	}
+	ret = 0;
+out:
+	if (root != root->fs_info->tree_root)
+		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
+	if (trans) {
+		if (nolock)
+			btrfs_end_transaction_nolock(trans, root);
+		else
+			btrfs_end_transaction(trans, root);
+	}
+
+	/* once for us */
+	btrfs_put_ordered_extent(ordered_extent);
+	/* once for the tree */
+	btrfs_put_ordered_extent(ordered_extent);
+
+	return 0;
+out_unlock:
+	unlock_extent_cached(io_tree, ordered_extent->file_offset,
+			     ordered_extent->file_offset +
+			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
+	goto out;
+}
+
+static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
+				struct extent_state *state, int uptodate)
+{
+	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
+
+	ClearPagePrivate2(page);
+	return btrfs_finish_ordered_io(page->mapping->host, start, end);
+}
+
+/*
+ * when reads are done, we need to check csums to verify the data is correct
+ * if there's a match, we allow the bio to finish.  If not, the code in
+ * extent_io.c will try to find good copies for us.
+ */
+static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
+			       struct extent_state *state, int mirror)
+{
+	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
+	struct inode *inode = page->mapping->host;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	char *kaddr;
+	u64 private = ~(u32)0;
+	int ret;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u32 csum = ~(u32)0;
+
+	if (PageChecked(page)) {
+		ClearPageChecked(page);
+		goto good;
+	}
+
+	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
+		goto good;
+
+	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
+	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
+		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
+				  GFP_NOFS);
+		return 0;
+	}
+
+	if (state && state->start == start) {
+		private = state->private;
+		ret = 0;
+	} else {
+		ret = get_state_private(io_tree, start, &private);
+	}
+	kaddr = kmap_atomic(page);
+	if (ret)
+		goto zeroit;
+
+	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
+	btrfs_csum_final(csum, (char *)&csum);
+	if (csum != private)
+		goto zeroit;
+
+	kunmap_atomic(kaddr);
+good:
+	return 0;
+
+zeroit:
+	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
+		       "private %llu\n",
+		       (unsigned long long)btrfs_ino(page->mapping->host),
+		       (unsigned long long)start, csum,
+		       (unsigned long long)private);
+	memset(kaddr + offset, 1, end - start + 1);
+	flush_dcache_page(page);
+	kunmap_atomic(kaddr);
+	if (private == 0)
+		return 0;
+	return -EIO;
+}
+
+struct delayed_iput {
+	struct list_head list;
+	struct inode *inode;
+};
+
+/* JDM: If this is fs-wide, why can't we add a pointer to
+ * btrfs_inode instead and avoid the allocation? */
+void btrfs_add_delayed_iput(struct inode *inode)
+{
+	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
+	struct delayed_iput *delayed;
+
+	if (atomic_add_unless(&inode->i_count, -1, 1))
+		return;
+
+	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
+	delayed->inode = inode;
+
+	spin_lock(&fs_info->delayed_iput_lock);
+	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
+	spin_unlock(&fs_info->delayed_iput_lock);
+}
+
+void btrfs_run_delayed_iputs(struct btrfs_root *root)
+{
+	LIST_HEAD(list);
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct delayed_iput *delayed;
+	int empty;
+
+	spin_lock(&fs_info->delayed_iput_lock);
+	empty = list_empty(&fs_info->delayed_iputs);
+	spin_unlock(&fs_info->delayed_iput_lock);
+	if (empty)
+		return;
+
+	down_read(&root->fs_info->cleanup_work_sem);
+	spin_lock(&fs_info->delayed_iput_lock);
+	list_splice_init(&fs_info->delayed_iputs, &list);
+	spin_unlock(&fs_info->delayed_iput_lock);
+
+	while (!list_empty(&list)) {
+		delayed = list_entry(list.next, struct delayed_iput, list);
+		list_del(&delayed->list);
+		iput(delayed->inode);
+		kfree(delayed);
+	}
+	up_read(&root->fs_info->cleanup_work_sem);
+}
+
+enum btrfs_orphan_cleanup_state {
+	ORPHAN_CLEANUP_STARTED	= 1,
+	ORPHAN_CLEANUP_DONE	= 2,
+};
+
+/*
+ * This is called in transaction commit time. If there are no orphan
+ * files in the subvolume, it removes orphan item and frees block_rsv
+ * structure.
+ */
+void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
+			      struct btrfs_root *root)
+{
+	struct btrfs_block_rsv *block_rsv;
+	int ret;
+
+	if (!list_empty(&root->orphan_list) ||
+	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
+		return;
+
+	spin_lock(&root->orphan_lock);
+	if (!list_empty(&root->orphan_list)) {
+		spin_unlock(&root->orphan_lock);
+		return;
+	}
+
+	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
+		spin_unlock(&root->orphan_lock);
+		return;
+	}
+
+	block_rsv = root->orphan_block_rsv;
+	root->orphan_block_rsv = NULL;
+	spin_unlock(&root->orphan_lock);
+
+	if (root->orphan_item_inserted &&
+	    btrfs_root_refs(&root->root_item) > 0) {
+		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
+					    root->root_key.objectid);
+		BUG_ON(ret);
+		root->orphan_item_inserted = 0;
+	}
+
+	if (block_rsv) {
+		WARN_ON(block_rsv->size > 0);
+		btrfs_free_block_rsv(root, block_rsv);
+	}
+}
+
+/*
+ * This creates an orphan entry for the given inode in case something goes
+ * wrong in the middle of an unlink/truncate.
+ *
+ * NOTE: caller of this function should reserve 5 units of metadata for
+ *	 this function.
+ */
+int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_block_rsv *block_rsv = NULL;
+	int reserve = 0;
+	int insert = 0;
+	int ret;
+
+	if (!root->orphan_block_rsv) {
+		block_rsv = btrfs_alloc_block_rsv(root);
+		if (!block_rsv)
+			return -ENOMEM;
+	}
+
+	spin_lock(&root->orphan_lock);
+	if (!root->orphan_block_rsv) {
+		root->orphan_block_rsv = block_rsv;
+	} else if (block_rsv) {
+		btrfs_free_block_rsv(root, block_rsv);
+		block_rsv = NULL;
+	}
+
+	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
+		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
+#if 0
+		/*
+		 * For proper ENOSPC handling, we should do orphan
+		 * cleanup when mounting. But this introduces backward
+		 * compatibility issue.
+		 */
+		if (!xchg(&root->orphan_item_inserted, 1))
+			insert = 2;
+		else
+			insert = 1;
+#endif
+		insert = 1;
+	}
+
+	if (!BTRFS_I(inode)->orphan_meta_reserved) {
+		BTRFS_I(inode)->orphan_meta_reserved = 1;
+		reserve = 1;
+	}
+	spin_unlock(&root->orphan_lock);
+
+	/* grab metadata reservation from transaction handle */
+	if (reserve) {
+		ret = btrfs_orphan_reserve_metadata(trans, inode);
+		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
+	}
+
+	/* insert an orphan item to track this unlinked/truncated file */
+	if (insert >= 1) {
+		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
+		if (ret && ret != -EEXIST) {
+			btrfs_abort_transaction(trans, root, ret);
+			return ret;
+		}
+		ret = 0;
+	}
+
+	/* insert an orphan item to track subvolume contains orphan files */
+	if (insert >= 2) {
+		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
+					       root->root_key.objectid);
+		if (ret && ret != -EEXIST) {
+			btrfs_abort_transaction(trans, root, ret);
+			return ret;
+		}
+	}
+	return 0;
+}
+
+/*
+ * We have done the truncate/delete so we can go ahead and remove the orphan
+ * item for this particular inode.
+ */
+int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	int delete_item = 0;
+	int release_rsv = 0;
+	int ret = 0;
+
+	spin_lock(&root->orphan_lock);
+	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
+		list_del_init(&BTRFS_I(inode)->i_orphan);
+		delete_item = 1;
+	}
+
+	if (BTRFS_I(inode)->orphan_meta_reserved) {
+		BTRFS_I(inode)->orphan_meta_reserved = 0;
+		release_rsv = 1;
+	}
+	spin_unlock(&root->orphan_lock);
+
+	if (trans && delete_item) {
+		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
+		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
+	}
+
+	if (release_rsv)
+		btrfs_orphan_release_metadata(inode);
+
+	return 0;
+}
+
+/*
+ * this cleans up any orphans that may be left on the list from the last use
+ * of this root.
+ */
+int btrfs_orphan_cleanup(struct btrfs_root *root)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_key key, found_key;
+	struct btrfs_trans_handle *trans;
+	struct inode *inode;
+	u64 last_objectid = 0;
+	int ret = 0, nr_unlink = 0, nr_truncate = 0;
+
+	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
+		return 0;
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		ret = -ENOMEM;
+		goto out;
+	}
+	path->reada = -1;
+
+	key.objectid = BTRFS_ORPHAN_OBJECTID;
+	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
+	key.offset = (u64)-1;
+
+	while (1) {
+		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+		if (ret < 0)
+			goto out;
+
+		/*
+		 * if ret == 0 means we found what we were searching for, which
+		 * is weird, but possible, so only screw with path if we didn't
+		 * find the key and see if we have stuff that matches
+		 */
+		if (ret > 0) {
+			ret = 0;
+			if (path->slots[0] == 0)
+				break;
+			path->slots[0]--;
+		}
+
+		/* pull out the item */
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+		/* make sure the item matches what we want */
+		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
+			break;
+		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
+			break;
+
+		/* release the path since we're done with it */
+		btrfs_release_path(path);
+
+		/*
+		 * this is where we are basically btrfs_lookup, without the
+		 * crossing root thing.  we store the inode number in the
+		 * offset of the orphan item.
+		 */
+
+		if (found_key.offset == last_objectid) {
+			printk(KERN_ERR "btrfs: Error removing orphan entry, "
+			       "stopping orphan cleanup\n");
+			ret = -EINVAL;
+			goto out;
+		}
+
+		last_objectid = found_key.offset;
+
+		found_key.objectid = found_key.offset;
+		found_key.type = BTRFS_INODE_ITEM_KEY;
+		found_key.offset = 0;
+		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
+		ret = PTR_RET(inode);
+		if (ret && ret != -ESTALE)
+			goto out;
+
+		if (ret == -ESTALE && root == root->fs_info->tree_root) {
+			struct btrfs_root *dead_root;
+			struct btrfs_fs_info *fs_info = root->fs_info;
+			int is_dead_root = 0;
+
+			/*
+			 * this is an orphan in the tree root. Currently these
+			 * could come from 2 sources:
+			 *  a) a snapshot deletion in progress
+			 *  b) a free space cache inode
+			 * We need to distinguish those two, as the snapshot
+			 * orphan must not get deleted.
+			 * find_dead_roots already ran before us, so if this
+			 * is a snapshot deletion, we should find the root
+			 * in the dead_roots list
+			 */
+			spin_lock(&fs_info->trans_lock);
+			list_for_each_entry(dead_root, &fs_info->dead_roots,
+					    root_list) {
+				if (dead_root->root_key.objectid ==
+				    found_key.objectid) {
+					is_dead_root = 1;
+					break;
+				}
+			}
+			spin_unlock(&fs_info->trans_lock);
+			if (is_dead_root) {
+				/* prevent this orphan from being found again */
+				key.offset = found_key.objectid - 1;
+				continue;
+			}
+		}
+		/*
+		 * Inode is already gone but the orphan item is still there,
+		 * kill the orphan item.
+		 */
+		if (ret == -ESTALE) {
+			trans = btrfs_start_transaction(root, 1);
+			if (IS_ERR(trans)) {
+				ret = PTR_ERR(trans);
+				goto out;
+			}
+			ret = btrfs_del_orphan_item(trans, root,
+						    found_key.objectid);
+			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
+			btrfs_end_transaction(trans, root);
+			continue;
+		}
+
+		/*
+		 * add this inode to the orphan list so btrfs_orphan_del does
+		 * the proper thing when we hit it
+		 */
+		spin_lock(&root->orphan_lock);
+		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
+		spin_unlock(&root->orphan_lock);
+
+		/* if we have links, this was a truncate, lets do that */
+		if (inode->i_nlink) {
+			if (!S_ISREG(inode->i_mode)) {
+				WARN_ON(1);
+				iput(inode);
+				continue;
+			}
+			nr_truncate++;
+			ret = btrfs_truncate(inode);
+		} else {
+			nr_unlink++;
+		}
+
+		/* this will do delete_inode and everything for us */
+		iput(inode);
+		if (ret)
+			goto out;
+	}
+	/* release the path since we're done with it */
+	btrfs_release_path(path);
+
+	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
+
+	if (root->orphan_block_rsv)
+		btrfs_block_rsv_release(root, root->orphan_block_rsv,
+					(u64)-1);
+
+	if (root->orphan_block_rsv || root->orphan_item_inserted) {
+		trans = btrfs_join_transaction(root);
+		if (!IS_ERR(trans))
+			btrfs_end_transaction(trans, root);
+	}
+
+	if (nr_unlink)
+		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
+	if (nr_truncate)
+		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
+
+out:
+	if (ret)
+		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * very simple check to peek ahead in the leaf looking for xattrs.  If we
+ * don't find any xattrs, we know there can't be any acls.
+ *
+ * slot is the slot the inode is in, objectid is the objectid of the inode
+ */
+static noinline int acls_after_inode_item(struct extent_buffer *leaf,
+					  int slot, u64 objectid)
+{
+	u32 nritems = btrfs_header_nritems(leaf);
+	struct btrfs_key found_key;
+	int scanned = 0;
+
+	slot++;
+	while (slot < nritems) {
+		btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+		/* we found a different objectid, there must not be acls */
+		if (found_key.objectid != objectid)
+			return 0;
+
+		/* we found an xattr, assume we've got an acl */
+		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
+			return 1;
+
+		/*
+		 * we found a key greater than an xattr key, there can't
+		 * be any acls later on
+		 */
+		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
+			return 0;
+
+		slot++;
+		scanned++;
+
+		/*
+		 * it goes inode, inode backrefs, xattrs, extents,
+		 * so if there are a ton of hard links to an inode there can
+		 * be a lot of backrefs.  Don't waste time searching too hard,
+		 * this is just an optimization
+		 */
+		if (scanned >= 8)
+			break;
+	}
+	/* we hit the end of the leaf before we found an xattr or
+	 * something larger than an xattr.  We have to assume the inode
+	 * has acls
+	 */
+	return 1;
+}
+
+/*
+ * read an inode from the btree into the in-memory inode
+ */
+static void btrfs_read_locked_inode(struct inode *inode)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_inode_item *inode_item;
+	struct btrfs_timespec *tspec;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_key location;
+	int maybe_acls;
+	u32 rdev;
+	int ret;
+	bool filled = false;
+
+	ret = btrfs_fill_inode(inode, &rdev);
+	if (!ret)
+		filled = true;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		goto make_bad;
+
+	path->leave_spinning = 1;
+	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
+
+	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
+	if (ret)
+		goto make_bad;
+
+	leaf = path->nodes[0];
+
+	if (filled)
+		goto cache_acl;
+
+	inode_item = btrfs_item_ptr(leaf, path->slots[0],
+				    struct btrfs_inode_item);
+	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
+	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
+	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
+	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
+	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
+
+	tspec = btrfs_inode_atime(inode_item);
+	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
+	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
+
+	tspec = btrfs_inode_mtime(inode_item);
+	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
+	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
+
+	tspec = btrfs_inode_ctime(inode_item);
+	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
+	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
+
+	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
+	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
+	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
+	inode->i_generation = BTRFS_I(inode)->generation;
+	inode->i_rdev = 0;
+	rdev = btrfs_inode_rdev(leaf, inode_item);
+
+	BTRFS_I(inode)->index_cnt = (u64)-1;
+	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
+cache_acl:
+	/*
+	 * try to precache a NULL acl entry for files that don't have
+	 * any xattrs or acls
+	 */
+	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
+					   btrfs_ino(inode));
+	if (!maybe_acls)
+		cache_no_acl(inode);
+
+	btrfs_free_path(path);
+
+	switch (inode->i_mode & S_IFMT) {
+	case S_IFREG:
+		inode->i_mapping->a_ops = &btrfs_aops;
+		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
+		inode->i_fop = &btrfs_file_operations;
+		inode->i_op = &btrfs_file_inode_operations;
+		break;
+	case S_IFDIR:
+		inode->i_fop = &btrfs_dir_file_operations;
+		if (root == root->fs_info->tree_root)
+			inode->i_op = &btrfs_dir_ro_inode_operations;
+		else
+			inode->i_op = &btrfs_dir_inode_operations;
+		break;
+	case S_IFLNK:
+		inode->i_op = &btrfs_symlink_inode_operations;
+		inode->i_mapping->a_ops = &btrfs_symlink_aops;
+		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+		break;
+	default:
+		inode->i_op = &btrfs_special_inode_operations;
+		init_special_inode(inode, inode->i_mode, rdev);
+		break;
+	}
+
+	btrfs_update_iflags(inode);
+	return;
+
+make_bad:
+	btrfs_free_path(path);
+	make_bad_inode(inode);
+}
+
+/*
+ * given a leaf and an inode, copy the inode fields into the leaf
+ */
+static void fill_inode_item(struct btrfs_trans_handle *trans,
+			    struct extent_buffer *leaf,
+			    struct btrfs_inode_item *item,
+			    struct inode *inode)
+{
+	btrfs_set_inode_uid(leaf, item, inode->i_uid);
+	btrfs_set_inode_gid(leaf, item, inode->i_gid);
+	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
+	btrfs_set_inode_mode(leaf, item, inode->i_mode);
+	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
+
+	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
+			       inode->i_atime.tv_sec);
+	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
+				inode->i_atime.tv_nsec);
+
+	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
+			       inode->i_mtime.tv_sec);
+	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
+				inode->i_mtime.tv_nsec);
+
+	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
+			       inode->i_ctime.tv_sec);
+	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
+				inode->i_ctime.tv_nsec);
+
+	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
+	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
+	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
+	btrfs_set_inode_transid(leaf, item, trans->transid);
+	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
+	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
+	btrfs_set_inode_block_group(leaf, item, 0);
+}
+
+/*
+ * copy everything in the in-memory inode into the btree.
+ */
+static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root, struct inode *inode)
+{
+	struct btrfs_inode_item *inode_item;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	int ret;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->leave_spinning = 1;
+	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
+				 1);
+	if (ret) {
+		if (ret > 0)
+			ret = -ENOENT;
+		goto failed;
+	}
+
+	btrfs_unlock_up_safe(path, 1);
+	leaf = path->nodes[0];
+	inode_item = btrfs_item_ptr(leaf, path->slots[0],
+				    struct btrfs_inode_item);
+
+	fill_inode_item(trans, leaf, inode_item, inode);
+	btrfs_mark_buffer_dirty(leaf);
+	btrfs_set_inode_last_trans(trans, inode);
+	ret = 0;
+failed:
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * copy everything in the in-memory inode into the btree.
+ */
+noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root, struct inode *inode)
+{
+	int ret;
+
+	/*
+	 * If the inode is a free space inode, we can deadlock during commit
+	 * if we put it into the delayed code.
+	 *
+	 * The data relocation inode should also be directly updated
+	 * without delay
+	 */
+	if (!btrfs_is_free_space_inode(root, inode)
+	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
+		ret = btrfs_delayed_update_inode(trans, root, inode);
+		if (!ret)
+			btrfs_set_inode_last_trans(trans, inode);
+		return ret;
+	}
+
+	return btrfs_update_inode_item(trans, root, inode);
+}
+
+static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root, struct inode *inode)
+{
+	int ret;
+
+	ret = btrfs_update_inode(trans, root, inode);
+	if (ret == -ENOSPC)
+		return btrfs_update_inode_item(trans, root, inode);
+	return ret;
+}
+
+/*
+ * unlink helper that gets used here in inode.c and in the tree logging
+ * recovery code.  It remove a link in a directory with a given name, and
+ * also drops the back refs in the inode to the directory
+ */
+static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				struct inode *dir, struct inode *inode,
+				const char *name, int name_len)
+{
+	struct btrfs_path *path;
+	int ret = 0;
+	struct extent_buffer *leaf;
+	struct btrfs_dir_item *di;
+	struct btrfs_key key;
+	u64 index;
+	u64 ino = btrfs_ino(inode);
+	u64 dir_ino = btrfs_ino(dir);
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	path->leave_spinning = 1;
+	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
+				    name, name_len, -1);
+	if (IS_ERR(di)) {
+		ret = PTR_ERR(di);
+		goto err;
+	}
+	if (!di) {
+		ret = -ENOENT;
+		goto err;
+	}
+	leaf = path->nodes[0];
+	btrfs_dir_item_key_to_cpu(leaf, di, &key);
+	ret = btrfs_delete_one_dir_name(trans, root, path, di);
+	if (ret)
+		goto err;
+	btrfs_release_path(path);
+
+	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
+				  dir_ino, &index);
+	if (ret) {
+		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
+		       "inode %llu parent %llu\n", name_len, name,
+		       (unsigned long long)ino, (unsigned long long)dir_ino);
+		btrfs_abort_transaction(trans, root, ret);
+		goto err;
+	}
+
+	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
+	if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto err;
+	}
+
+	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
+					 inode, dir_ino);
+	if (ret != 0 && ret != -ENOENT) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto err;
+	}
+
+	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
+					   dir, index);
+	if (ret == -ENOENT)
+		ret = 0;
+err:
+	btrfs_free_path(path);
+	if (ret)
+		goto out;
+
+	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
+	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
+	btrfs_update_inode(trans, root, dir);
+out:
+	return ret;
+}
+
+int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
+		       struct btrfs_root *root,
+		       struct inode *dir, struct inode *inode,
+		       const char *name, int name_len)
+{
+	int ret;
+	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
+	if (!ret) {
+		btrfs_drop_nlink(inode);
+		ret = btrfs_update_inode(trans, root, inode);
+	}
+	return ret;
+}
+		
+
+/* helper to check if there is any shared block in the path */
+static int check_path_shared(struct btrfs_root *root,
+			     struct btrfs_path *path)
+{
+	struct extent_buffer *eb;
+	int level;
+	u64 refs = 1;
+
+	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
+		int ret;
+
+		if (!path->nodes[level])
+			break;
+		eb = path->nodes[level];
+		if (!btrfs_block_can_be_shared(root, eb))
+			continue;
+		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
+					       &refs, NULL);
+		if (refs > 1)
+			return 1;
+	}
+	return 0;
+}
+
+/*
+ * helper to start transaction for unlink and rmdir.
+ *
+ * unlink and rmdir are special in btrfs, they do not always free space.
+ * so in enospc case, we should make sure they will free space before
+ * allowing them to use the global metadata reservation.
+ */
+static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
+						       struct dentry *dentry)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct btrfs_path *path;
+	struct btrfs_inode_ref *ref;
+	struct btrfs_dir_item *di;
+	struct inode *inode = dentry->d_inode;
+	u64 index;
+	int check_link = 1;
+	int err = -ENOSPC;
+	int ret;
+	u64 ino = btrfs_ino(inode);
+	u64 dir_ino = btrfs_ino(dir);
+
+	/*
+	 * 1 for the possible orphan item
+	 * 1 for the dir item
+	 * 1 for the dir index
+	 * 1 for the inode ref
+	 * 1 for the inode ref in the tree log
+	 * 2 for the dir entries in the log
+	 * 1 for the inode
+	 */
+	trans = btrfs_start_transaction(root, 8);
+	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
+		return trans;
+
+	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
+		return ERR_PTR(-ENOSPC);
+
+	/* check if there is someone else holds reference */
+	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
+		return ERR_PTR(-ENOSPC);
+
+	if (atomic_read(&inode->i_count) > 2)
+		return ERR_PTR(-ENOSPC);
+
+	if (xchg(&root->fs_info->enospc_unlink, 1))
+		return ERR_PTR(-ENOSPC);
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		root->fs_info->enospc_unlink = 0;
+		return ERR_PTR(-ENOMEM);
+	}
+
+	/* 1 for the orphan item */
+	trans = btrfs_start_transaction(root, 1);
+	if (IS_ERR(trans)) {
+		btrfs_free_path(path);
+		root->fs_info->enospc_unlink = 0;
+		return trans;
+	}
+
+	path->skip_locking = 1;
+	path->search_commit_root = 1;
+
+	ret = btrfs_lookup_inode(trans, root, path,
+				&BTRFS_I(dir)->location, 0);
+	if (ret < 0) {
+		err = ret;
+		goto out;
+	}
+	if (ret == 0) {
+		if (check_path_shared(root, path))
+			goto out;
+	} else {
+		check_link = 0;
+	}
+	btrfs_release_path(path);
+
+	ret = btrfs_lookup_inode(trans, root, path,
+				&BTRFS_I(inode)->location, 0);
+	if (ret < 0) {
+		err = ret;
+		goto out;
+	}
+	if (ret == 0) {
+		if (check_path_shared(root, path))
+			goto out;
+	} else {
+		check_link = 0;
+	}
+	btrfs_release_path(path);
+
+	if (ret == 0 && S_ISREG(inode->i_mode)) {
+		ret = btrfs_lookup_file_extent(trans, root, path,
+					       ino, (u64)-1, 0);
+		if (ret < 0) {
+			err = ret;
+			goto out;
+		}
+		BUG_ON(ret == 0); /* Corruption */
+		if (check_path_shared(root, path))
+			goto out;
+		btrfs_release_path(path);
+	}
+
+	if (!check_link) {
+		err = 0;
+		goto out;
+	}
+
+	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
+				dentry->d_name.name, dentry->d_name.len, 0);
+	if (IS_ERR(di)) {
+		err = PTR_ERR(di);
+		goto out;
+	}
+	if (di) {
+		if (check_path_shared(root, path))
+			goto out;
+	} else {
+		err = 0;
+		goto out;
+	}
+	btrfs_release_path(path);
+
+	ref = btrfs_lookup_inode_ref(trans, root, path,
+				dentry->d_name.name, dentry->d_name.len,
+				ino, dir_ino, 0);
+	if (IS_ERR(ref)) {
+		err = PTR_ERR(ref);
+		goto out;
+	}
+	BUG_ON(!ref); /* Logic error */
+	if (check_path_shared(root, path))
+		goto out;
+	index = btrfs_inode_ref_index(path->nodes[0], ref);
+	btrfs_release_path(path);
+
+	/*
+	 * This is a commit root search, if we can lookup inode item and other
+	 * relative items in the commit root, it means the transaction of
+	 * dir/file creation has been committed, and the dir index item that we
+	 * delay to insert has also been inserted into the commit root. So
+	 * we needn't worry about the delayed insertion of the dir index item
+	 * here.
+	 */
+	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
+				dentry->d_name.name, dentry->d_name.len, 0);
+	if (IS_ERR(di)) {
+		err = PTR_ERR(di);
+		goto out;
+	}
+	BUG_ON(ret == -ENOENT);
+	if (check_path_shared(root, path))
+		goto out;
+
+	err = 0;
+out:
+	btrfs_free_path(path);
+	/* Migrate the orphan reservation over */
+	if (!err)
+		err = btrfs_block_rsv_migrate(trans->block_rsv,
+				&root->fs_info->global_block_rsv,
+				trans->bytes_reserved);
+
+	if (err) {
+		btrfs_end_transaction(trans, root);
+		root->fs_info->enospc_unlink = 0;
+		return ERR_PTR(err);
+	}
+
+	trans->block_rsv = &root->fs_info->global_block_rsv;
+	return trans;
+}
+
+static void __unlink_end_trans(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root)
+{
+	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
+		btrfs_block_rsv_release(root, trans->block_rsv,
+					trans->bytes_reserved);
+		trans->block_rsv = &root->fs_info->trans_block_rsv;
+		BUG_ON(!root->fs_info->enospc_unlink);
+		root->fs_info->enospc_unlink = 0;
+	}
+	btrfs_end_transaction(trans, root);
+}
+
+static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
+{
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct btrfs_trans_handle *trans;
+	struct inode *inode = dentry->d_inode;
+	int ret;
+	unsigned long nr = 0;
+
+	trans = __unlink_start_trans(dir, dentry);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
+
+	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
+				 dentry->d_name.name, dentry->d_name.len);
+	if (ret)
+		goto out;
+
+	if (inode->i_nlink == 0) {
+		ret = btrfs_orphan_add(trans, inode);
+		if (ret)
+			goto out;
+	}
+
+out:
+	nr = trans->blocks_used;
+	__unlink_end_trans(trans, root);
+	btrfs_btree_balance_dirty(root, nr);
+	return ret;
+}
+
+int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
+			struct btrfs_root *root,
+			struct inode *dir, u64 objectid,
+			const char *name, int name_len)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_dir_item *di;
+	struct btrfs_key key;
+	u64 index;
+	int ret;
+	u64 dir_ino = btrfs_ino(dir);
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
+				   name, name_len, -1);
+	if (IS_ERR_OR_NULL(di)) {
+		if (!di)
+			ret = -ENOENT;
+		else
+			ret = PTR_ERR(di);
+		goto out;
+	}
+
+	leaf = path->nodes[0];
+	btrfs_dir_item_key_to_cpu(leaf, di, &key);
+	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
+	ret = btrfs_delete_one_dir_name(trans, root, path, di);
+	if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto out;
+	}
+	btrfs_release_path(path);
+
+	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
+				 objectid, root->root_key.objectid,
+				 dir_ino, &index, name, name_len);
+	if (ret < 0) {
+		if (ret != -ENOENT) {
+			btrfs_abort_transaction(trans, root, ret);
+			goto out;
+		}
+		di = btrfs_search_dir_index_item(root, path, dir_ino,
+						 name, name_len);
+		if (IS_ERR_OR_NULL(di)) {
+			if (!di)
+				ret = -ENOENT;
+			else
+				ret = PTR_ERR(di);
+			btrfs_abort_transaction(trans, root, ret);
+			goto out;
+		}
+
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+		btrfs_release_path(path);
+		index = key.offset;
+	}
+	btrfs_release_path(path);
+
+	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
+	if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto out;
+	}
+
+	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
+	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
+	ret = btrfs_update_inode(trans, root, dir);
+	if (ret)
+		btrfs_abort_transaction(trans, root, ret);
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
+{
+	struct inode *inode = dentry->d_inode;
+	int err = 0;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct btrfs_trans_handle *trans;
+	unsigned long nr = 0;
+
+	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
+	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
+		return -ENOTEMPTY;
+
+	trans = __unlink_start_trans(dir, dentry);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
+		err = btrfs_unlink_subvol(trans, root, dir,
+					  BTRFS_I(inode)->location.objectid,
+					  dentry->d_name.name,
+					  dentry->d_name.len);
+		goto out;
+	}
+
+	err = btrfs_orphan_add(trans, inode);
+	if (err)
+		goto out;
+
+	/* now the directory is empty */
+	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
+				 dentry->d_name.name, dentry->d_name.len);
+	if (!err)
+		btrfs_i_size_write(inode, 0);
+out:
+	nr = trans->blocks_used;
+	__unlink_end_trans(trans, root);
+	btrfs_btree_balance_dirty(root, nr);
+
+	return err;
+}
+
+/*
+ * this can truncate away extent items, csum items and directory items.
+ * It starts at a high offset and removes keys until it can't find
+ * any higher than new_size
+ *
+ * csum items that cross the new i_size are truncated to the new size
+ * as well.
+ *
+ * min_type is the minimum key type to truncate down to.  If set to 0, this
+ * will kill all the items on this inode, including the INODE_ITEM_KEY.
+ */
+int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root,
+			       struct inode *inode,
+			       u64 new_size, u32 min_type)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_file_extent_item *fi;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	u64 extent_start = 0;
+	u64 extent_num_bytes = 0;
+	u64 extent_offset = 0;
+	u64 item_end = 0;
+	u64 mask = root->sectorsize - 1;
+	u32 found_type = (u8)-1;
+	int found_extent;
+	int del_item;
+	int pending_del_nr = 0;
+	int pending_del_slot = 0;
+	int extent_type = -1;
+	int ret;
+	int err = 0;
+	u64 ino = btrfs_ino(inode);
+
+	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+	path->reada = -1;
+
+	if (root->ref_cows || root == root->fs_info->tree_root)
+		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
+
+	/*
+	 * This function is also used to drop the items in the log tree before
+	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
+	 * it is used to drop the loged items. So we shouldn't kill the delayed
+	 * items.
+	 */
+	if (min_type == 0 && root == BTRFS_I(inode)->root)
+		btrfs_kill_delayed_inode_items(inode);
+
+	key.objectid = ino;
+	key.offset = (u64)-1;
+	key.type = (u8)-1;
+
+search_again:
+	path->leave_spinning = 1;
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret < 0) {
+		err = ret;
+		goto out;
+	}
+
+	if (ret > 0) {
+		/* there are no items in the tree for us to truncate, we're
+		 * done
+		 */
+		if (path->slots[0] == 0)
+			goto out;
+		path->slots[0]--;
+	}
+
+	while (1) {
+		fi = NULL;
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+		found_type = btrfs_key_type(&found_key);
+
+		if (found_key.objectid != ino)
+			break;
+
+		if (found_type < min_type)
+			break;
+
+		item_end = found_key.offset;
+		if (found_type == BTRFS_EXTENT_DATA_KEY) {
+			fi = btrfs_item_ptr(leaf, path->slots[0],
+					    struct btrfs_file_extent_item);
+			extent_type = btrfs_file_extent_type(leaf, fi);
+			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
+				item_end +=
+				    btrfs_file_extent_num_bytes(leaf, fi);
+			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+				item_end += btrfs_file_extent_inline_len(leaf,
+									 fi);
+			}
+			item_end--;
+		}
+		if (found_type > min_type) {
+			del_item = 1;
+		} else {
+			if (item_end < new_size)
+				break;
+			if (found_key.offset >= new_size)
+				del_item = 1;
+			else
+				del_item = 0;
+		}
+		found_extent = 0;
+		/* FIXME, shrink the extent if the ref count is only 1 */
+		if (found_type != BTRFS_EXTENT_DATA_KEY)
+			goto delete;
+
+		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
+			u64 num_dec;
+			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
+			if (!del_item) {
+				u64 orig_num_bytes =
+					btrfs_file_extent_num_bytes(leaf, fi);
+				extent_num_bytes = new_size -
+					found_key.offset + root->sectorsize - 1;
+				extent_num_bytes = extent_num_bytes &
+					~((u64)root->sectorsize - 1);
+				btrfs_set_file_extent_num_bytes(leaf, fi,
+							 extent_num_bytes);
+				num_dec = (orig_num_bytes -
+					   extent_num_bytes);
+				if (root->ref_cows && extent_start != 0)
+					inode_sub_bytes(inode, num_dec);
+				btrfs_mark_buffer_dirty(leaf);
+			} else {
+				extent_num_bytes =
+					btrfs_file_extent_disk_num_bytes(leaf,
+									 fi);
+				extent_offset = found_key.offset -
+					btrfs_file_extent_offset(leaf, fi);
+
+				/* FIXME blocksize != 4096 */
+				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
+				if (extent_start != 0) {
+					found_extent = 1;
+					if (root->ref_cows)
+						inode_sub_bytes(inode, num_dec);
+				}
+			}
+		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+			/*
+			 * we can't truncate inline items that have had
+			 * special encodings
+			 */
+			if (!del_item &&
+			    btrfs_file_extent_compression(leaf, fi) == 0 &&
+			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
+			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
+				u32 size = new_size - found_key.offset;
+
+				if (root->ref_cows) {
+					inode_sub_bytes(inode, item_end + 1 -
+							new_size);
+				}
+				size =
+				    btrfs_file_extent_calc_inline_size(size);
+				btrfs_truncate_item(trans, root, path,
+						    size, 1);
+			} else if (root->ref_cows) {
+				inode_sub_bytes(inode, item_end + 1 -
+						found_key.offset);
+			}
+		}
+delete:
+		if (del_item) {
+			if (!pending_del_nr) {
+				/* no pending yet, add ourselves */
+				pending_del_slot = path->slots[0];
+				pending_del_nr = 1;
+			} else if (pending_del_nr &&
+				   path->slots[0] + 1 == pending_del_slot) {
+				/* hop on the pending chunk */
+				pending_del_nr++;
+				pending_del_slot = path->slots[0];
+			} else {
+				BUG();
+			}
+		} else {
+			break;
+		}
+		if (found_extent && (root->ref_cows ||
+				     root == root->fs_info->tree_root)) {
+			btrfs_set_path_blocking(path);
+			ret = btrfs_free_extent(trans, root, extent_start,
+						extent_num_bytes, 0,
+						btrfs_header_owner(leaf),
+						ino, extent_offset, 0);
+			BUG_ON(ret);
+		}
+
+		if (found_type == BTRFS_INODE_ITEM_KEY)
+			break;
+
+		if (path->slots[0] == 0 ||
+		    path->slots[0] != pending_del_slot) {
+			if (root->ref_cows &&
+			    BTRFS_I(inode)->location.objectid !=
+						BTRFS_FREE_INO_OBJECTID) {
+				err = -EAGAIN;
+				goto out;
+			}
+			if (pending_del_nr) {
+				ret = btrfs_del_items(trans, root, path,
+						pending_del_slot,
+						pending_del_nr);
+				if (ret) {
+					btrfs_abort_transaction(trans,
+								root, ret);
+					goto error;
+				}
+				pending_del_nr = 0;
+			}
+			btrfs_release_path(path);
+			goto search_again;
+		} else {
+			path->slots[0]--;
+		}
+	}
+out:
+	if (pending_del_nr) {
+		ret = btrfs_del_items(trans, root, path, pending_del_slot,
+				      pending_del_nr);
+		if (ret)
+			btrfs_abort_transaction(trans, root, ret);
+	}
+error:
+	btrfs_free_path(path);
+	return err;
+}
+
+/*
+ * taken from block_truncate_page, but does cow as it zeros out
+ * any bytes left in the last page in the file.
+ */
+static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
+{
+	struct inode *inode = mapping->host;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	struct btrfs_ordered_extent *ordered;
+	struct extent_state *cached_state = NULL;
+	char *kaddr;
+	u32 blocksize = root->sectorsize;
+	pgoff_t index = from >> PAGE_CACHE_SHIFT;
+	unsigned offset = from & (PAGE_CACHE_SIZE-1);
+	struct page *page;
+	gfp_t mask = btrfs_alloc_write_mask(mapping);
+	int ret = 0;
+	u64 page_start;
+	u64 page_end;
+
+	if ((offset & (blocksize - 1)) == 0)
+		goto out;
+	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
+	if (ret)
+		goto out;
+
+	ret = -ENOMEM;
+again:
+	page = find_or_create_page(mapping, index, mask);
+	if (!page) {
+		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
+		goto out;
+	}
+
+	page_start = page_offset(page);
+	page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+	if (!PageUptodate(page)) {
+		ret = btrfs_readpage(NULL, page);
+		lock_page(page);
+		if (page->mapping != mapping) {
+			unlock_page(page);
+			page_cache_release(page);
+			goto again;
+		}
+		if (!PageUptodate(page)) {
+			ret = -EIO;
+			goto out_unlock;
+		}
+	}
+	wait_on_page_writeback(page);
+
+	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
+	set_page_extent_mapped(page);
+
+	ordered = btrfs_lookup_ordered_extent(inode, page_start);
+	if (ordered) {
+		unlock_extent_cached(io_tree, page_start, page_end,
+				     &cached_state, GFP_NOFS);
+		unlock_page(page);
+		page_cache_release(page);
+		btrfs_start_ordered_extent(inode, ordered, 1);
+		btrfs_put_ordered_extent(ordered);
+		goto again;
+	}
+
+	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
+			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
+			  0, 0, &cached_state, GFP_NOFS);
+
+	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
+					&cached_state);
+	if (ret) {
+		unlock_extent_cached(io_tree, page_start, page_end,
+				     &cached_state, GFP_NOFS);
+		goto out_unlock;
+	}
+
+	ret = 0;
+	if (offset != PAGE_CACHE_SIZE) {
+		kaddr = kmap(page);
+		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
+		flush_dcache_page(page);
+		kunmap(page);
+	}
+	ClearPageChecked(page);
+	set_page_dirty(page);
+	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
+			     GFP_NOFS);
+
+out_unlock:
+	if (ret)
+		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
+	unlock_page(page);
+	page_cache_release(page);
+out:
+	return ret;
+}
+
+/*
+ * This function puts in dummy file extents for the area we're creating a hole
+ * for.  So if we are truncating this file to a larger size we need to insert
+ * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
+ * the range between oldsize and size
+ */
+int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	struct extent_map *em = NULL;
+	struct extent_state *cached_state = NULL;
+	u64 mask = root->sectorsize - 1;
+	u64 hole_start = (oldsize + mask) & ~mask;
+	u64 block_end = (size + mask) & ~mask;
+	u64 last_byte;
+	u64 cur_offset;
+	u64 hole_size;
+	int err = 0;
+
+	if (size <= hole_start)
+		return 0;
+
+	while (1) {
+		struct btrfs_ordered_extent *ordered;
+		btrfs_wait_ordered_range(inode, hole_start,
+					 block_end - hole_start);
+		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
+				 &cached_state);
+		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
+		if (!ordered)
+			break;
+		unlock_extent_cached(io_tree, hole_start, block_end - 1,
+				     &cached_state, GFP_NOFS);
+		btrfs_put_ordered_extent(ordered);
+	}
+
+	cur_offset = hole_start;
+	while (1) {
+		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
+				block_end - cur_offset, 0);
+		if (IS_ERR(em)) {
+			err = PTR_ERR(em);
+			break;
+		}
+		last_byte = min(extent_map_end(em), block_end);
+		last_byte = (last_byte + mask) & ~mask;
+		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
+			u64 hint_byte = 0;
+			hole_size = last_byte - cur_offset;
+
+			trans = btrfs_start_transaction(root, 3);
+			if (IS_ERR(trans)) {
+				err = PTR_ERR(trans);
+				break;
+			}
+
+			err = btrfs_drop_extents(trans, inode, cur_offset,
+						 cur_offset + hole_size,
+						 &hint_byte, 1);
+			if (err) {
+				btrfs_abort_transaction(trans, root, err);
+				btrfs_end_transaction(trans, root);
+				break;
+			}
+
+			err = btrfs_insert_file_extent(trans, root,
+					btrfs_ino(inode), cur_offset, 0,
+					0, hole_size, 0, hole_size,
+					0, 0, 0);
+			if (err) {
+				btrfs_abort_transaction(trans, root, err);
+				btrfs_end_transaction(trans, root);
+				break;
+			}
+
+			btrfs_drop_extent_cache(inode, hole_start,
+					last_byte - 1, 0);
+
+			btrfs_update_inode(trans, root, inode);
+			btrfs_end_transaction(trans, root);
+		}
+		free_extent_map(em);
+		em = NULL;
+		cur_offset = last_byte;
+		if (cur_offset >= block_end)
+			break;
+	}
+
+	free_extent_map(em);
+	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
+			     GFP_NOFS);
+	return err;
+}
+
+static int btrfs_setsize(struct inode *inode, loff_t newsize)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	loff_t oldsize = i_size_read(inode);
+	int ret;
+
+	if (newsize == oldsize)
+		return 0;
+
+	if (newsize > oldsize) {
+		truncate_pagecache(inode, oldsize, newsize);
+		ret = btrfs_cont_expand(inode, oldsize, newsize);
+		if (ret)
+			return ret;
+
+		trans = btrfs_start_transaction(root, 1);
+		if (IS_ERR(trans))
+			return PTR_ERR(trans);
+
+		i_size_write(inode, newsize);
+		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
+		ret = btrfs_update_inode(trans, root, inode);
+		btrfs_end_transaction(trans, root);
+	} else {
+
+		/*
+		 * We're truncating a file that used to have good data down to
+		 * zero. Make sure it gets into the ordered flush list so that
+		 * any new writes get down to disk quickly.
+		 */
+		if (newsize == 0)
+			BTRFS_I(inode)->ordered_data_close = 1;
+
+		/* we don't support swapfiles, so vmtruncate shouldn't fail */
+		truncate_setsize(inode, newsize);
+		ret = btrfs_truncate(inode);
+	}
+
+	return ret;
+}
+
+static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
+{
+	struct inode *inode = dentry->d_inode;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	int err;
+
+	if (btrfs_root_readonly(root))
+		return -EROFS;
+
+	err = inode_change_ok(inode, attr);
+	if (err)
+		return err;
+
+	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
+		err = btrfs_setsize(inode, attr->ia_size);
+		if (err)
+			return err;
+	}
+
+	if (attr->ia_valid) {
+		setattr_copy(inode, attr);
+		err = btrfs_dirty_inode(inode);
+
+		if (!err && attr->ia_valid & ATTR_MODE)
+			err = btrfs_acl_chmod(inode);
+	}
+
+	return err;
+}
+
+void btrfs_evict_inode(struct inode *inode)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_block_rsv *rsv, *global_rsv;
+	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
+	unsigned long nr;
+	int ret;
+
+	trace_btrfs_inode_evict(inode);
+
+	truncate_inode_pages(&inode->i_data, 0);
+	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
+			       btrfs_is_free_space_inode(root, inode)))
+		goto no_delete;
+
+	if (is_bad_inode(inode)) {
+		btrfs_orphan_del(NULL, inode);
+		goto no_delete;
+	}
+	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
+	btrfs_wait_ordered_range(inode, 0, (u64)-1);
+
+	if (root->fs_info->log_root_recovering) {
+		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
+		goto no_delete;
+	}
+
+	if (inode->i_nlink > 0) {
+		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
+		goto no_delete;
+	}
+
+	rsv = btrfs_alloc_block_rsv(root);
+	if (!rsv) {
+		btrfs_orphan_del(NULL, inode);
+		goto no_delete;
+	}
+	rsv->size = min_size;
+	global_rsv = &root->fs_info->global_block_rsv;
+
+	btrfs_i_size_write(inode, 0);
+
+	/*
+	 * This is a bit simpler than btrfs_truncate since
+	 *
+	 * 1) We've already reserved our space for our orphan item in the
+	 *    unlink.
+	 * 2) We're going to delete the inode item, so we don't need to update
+	 *    it at all.
+	 *
+	 * So we just need to reserve some slack space in case we add bytes when
+	 * doing the truncate.
+	 */
+	while (1) {
+		ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
+
+		/*
+		 * Try and steal from the global reserve since we will
+		 * likely not use this space anyway, we want to try as
+		 * hard as possible to get this to work.
+		 */
+		if (ret)
+			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
+
+		if (ret) {
+			printk(KERN_WARNING "Could not get space for a "
+			       "delete, will truncate on mount %d\n", ret);
+			btrfs_orphan_del(NULL, inode);
+			btrfs_free_block_rsv(root, rsv);
+			goto no_delete;
+		}
+
+		trans = btrfs_start_transaction(root, 0);
+		if (IS_ERR(trans)) {
+			btrfs_orphan_del(NULL, inode);
+			btrfs_free_block_rsv(root, rsv);
+			goto no_delete;
+		}
+
+		trans->block_rsv = rsv;
+
+		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
+		if (ret != -EAGAIN)
+			break;
+
+		nr = trans->blocks_used;
+		btrfs_end_transaction(trans, root);
+		trans = NULL;
+		btrfs_btree_balance_dirty(root, nr);
+	}
+
+	btrfs_free_block_rsv(root, rsv);
+
+	if (ret == 0) {
+		trans->block_rsv = root->orphan_block_rsv;
+		ret = btrfs_orphan_del(trans, inode);
+		BUG_ON(ret);
+	}
+
+	trans->block_rsv = &root->fs_info->trans_block_rsv;
+	if (!(root == root->fs_info->tree_root ||
+	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
+		btrfs_return_ino(root, btrfs_ino(inode));
+
+	nr = trans->blocks_used;
+	btrfs_end_transaction(trans, root);
+	btrfs_btree_balance_dirty(root, nr);
+no_delete:
+	end_writeback(inode);
+	return;
+}
+
+/*
+ * this returns the key found in the dir entry in the location pointer.
+ * If no dir entries were found, location->objectid is 0.
+ */
+static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
+			       struct btrfs_key *location)
+{
+	const char *name = dentry->d_name.name;
+	int namelen = dentry->d_name.len;
+	struct btrfs_dir_item *di;
+	struct btrfs_path *path;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	int ret = 0;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
+				    namelen, 0);
+	if (IS_ERR(di))
+		ret = PTR_ERR(di);
+
+	if (IS_ERR_OR_NULL(di))
+		goto out_err;
+
+	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
+out:
+	btrfs_free_path(path);
+	return ret;
+out_err:
+	location->objectid = 0;
+	goto out;
+}
+
+/*
+ * when we hit a tree root in a directory, the btrfs part of the inode
+ * needs to be changed to reflect the root directory of the tree root.  This
+ * is kind of like crossing a mount point.
+ */
+static int fixup_tree_root_location(struct btrfs_root *root,
+				    struct inode *dir,
+				    struct dentry *dentry,
+				    struct btrfs_key *location,
+				    struct btrfs_root **sub_root)
+{
+	struct btrfs_path *path;
+	struct btrfs_root *new_root;
+	struct btrfs_root_ref *ref;
+	struct extent_buffer *leaf;
+	int ret;
+	int err = 0;
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		err = -ENOMEM;
+		goto out;
+	}
+
+	err = -ENOENT;
+	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
+				  BTRFS_I(dir)->root->root_key.objectid,
+				  location->objectid);
+	if (ret) {
+		if (ret < 0)
+			err = ret;
+		goto out;
+	}
+
+	leaf = path->nodes[0];
+	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
+	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
+	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
+		goto out;
+
+	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
+				   (unsigned long)(ref + 1),
+				   dentry->d_name.len);
+	if (ret)
+		goto out;
+
+	btrfs_release_path(path);
+
+	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
+	if (IS_ERR(new_root)) {
+		err = PTR_ERR(new_root);
+		goto out;
+	}
+
+	if (btrfs_root_refs(&new_root->root_item) == 0) {
+		err = -ENOENT;
+		goto out;
+	}
+
+	*sub_root = new_root;
+	location->objectid = btrfs_root_dirid(&new_root->root_item);
+	location->type = BTRFS_INODE_ITEM_KEY;
+	location->offset = 0;
+	err = 0;
+out:
+	btrfs_free_path(path);
+	return err;
+}
+
+static void inode_tree_add(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_inode *entry;
+	struct rb_node **p;
+	struct rb_node *parent;
+	u64 ino = btrfs_ino(inode);
+again:
+	p = &root->inode_tree.rb_node;
+	parent = NULL;
+
+	if (inode_unhashed(inode))
+		return;
+
+	spin_lock(&root->inode_lock);
+	while (*p) {
+		parent = *p;
+		entry = rb_entry(parent, struct btrfs_inode, rb_node);
+
+		if (ino < btrfs_ino(&entry->vfs_inode))
+			p = &parent->rb_left;
+		else if (ino > btrfs_ino(&entry->vfs_inode))
+			p = &parent->rb_right;
+		else {
+			WARN_ON(!(entry->vfs_inode.i_state &
+				  (I_WILL_FREE | I_FREEING)));
+			rb_erase(parent, &root->inode_tree);
+			RB_CLEAR_NODE(parent);
+			spin_unlock(&root->inode_lock);
+			goto again;
+		}
+	}
+	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
+	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
+	spin_unlock(&root->inode_lock);
+}
+
+static void inode_tree_del(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	int empty = 0;
+
+	spin_lock(&root->inode_lock);
+	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
+		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
+		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
+		empty = RB_EMPTY_ROOT(&root->inode_tree);
+	}
+	spin_unlock(&root->inode_lock);
+
+	/*
+	 * Free space cache has inodes in the tree root, but the tree root has a
+	 * root_refs of 0, so this could end up dropping the tree root as a
+	 * snapshot, so we need the extra !root->fs_info->tree_root check to
+	 * make sure we don't drop it.
+	 */
+	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
+	    root != root->fs_info->tree_root) {
+		synchronize_srcu(&root->fs_info->subvol_srcu);
+		spin_lock(&root->inode_lock);
+		empty = RB_EMPTY_ROOT(&root->inode_tree);
+		spin_unlock(&root->inode_lock);
+		if (empty)
+			btrfs_add_dead_root(root);
+	}
+}
+
+void btrfs_invalidate_inodes(struct btrfs_root *root)
+{
+	struct rb_node *node;
+	struct rb_node *prev;
+	struct btrfs_inode *entry;
+	struct inode *inode;
+	u64 objectid = 0;
+
+	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
+
+	spin_lock(&root->inode_lock);
+again:
+	node = root->inode_tree.rb_node;
+	prev = NULL;
+	while (node) {
+		prev = node;
+		entry = rb_entry(node, struct btrfs_inode, rb_node);
+
+		if (objectid < btrfs_ino(&entry->vfs_inode))
+			node = node->rb_left;
+		else if (objectid > btrfs_ino(&entry->vfs_inode))
+			node = node->rb_right;
+		else
+			break;
+	}
+	if (!node) {
+		while (prev) {
+			entry = rb_entry(prev, struct btrfs_inode, rb_node);
+			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
+				node = prev;
+				break;
+			}
+			prev = rb_next(prev);
+		}
+	}
+	while (node) {
+		entry = rb_entry(node, struct btrfs_inode, rb_node);
+		objectid = btrfs_ino(&entry->vfs_inode) + 1;
+		inode = igrab(&entry->vfs_inode);
+		if (inode) {
+			spin_unlock(&root->inode_lock);
+			if (atomic_read(&inode->i_count) > 1)
+				d_prune_aliases(inode);
+			/*
+			 * btrfs_drop_inode will have it removed from
+			 * the inode cache when its usage count
+			 * hits zero.
+			 */
+			iput(inode);
+			cond_resched();
+			spin_lock(&root->inode_lock);
+			goto again;
+		}
+
+		if (cond_resched_lock(&root->inode_lock))
+			goto again;
+
+		node = rb_next(node);
+	}
+	spin_unlock(&root->inode_lock);
+}
+
+static int btrfs_init_locked_inode(struct inode *inode, void *p)
+{
+	struct btrfs_iget_args *args = p;
+	inode->i_ino = args->ino;
+	BTRFS_I(inode)->root = args->root;
+	btrfs_set_inode_space_info(args->root, inode);
+	return 0;
+}
+
+static int btrfs_find_actor(struct inode *inode, void *opaque)
+{
+	struct btrfs_iget_args *args = opaque;
+	return args->ino == btrfs_ino(inode) &&
+		args->root == BTRFS_I(inode)->root;
+}
+
+static struct inode *btrfs_iget_locked(struct super_block *s,
+				       u64 objectid,
+				       struct btrfs_root *root)
+{
+	struct inode *inode;
+	struct btrfs_iget_args args;
+	args.ino = objectid;
+	args.root = root;
+
+	inode = iget5_locked(s, objectid, btrfs_find_actor,
+			     btrfs_init_locked_inode,
+			     (void *)&args);
+	return inode;
+}
+
+/* Get an inode object given its location and corresponding root.
+ * Returns in *is_new if the inode was read from disk
+ */
+struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
+			 struct btrfs_root *root, int *new)
+{
+	struct inode *inode;
+
+	inode = btrfs_iget_locked(s, location->objectid, root);
+	if (!inode)
+		return ERR_PTR(-ENOMEM);
+
+	if (inode->i_state & I_NEW) {
+		BTRFS_I(inode)->root = root;
+		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
+		btrfs_read_locked_inode(inode);
+		if (!is_bad_inode(inode)) {
+			inode_tree_add(inode);
+			unlock_new_inode(inode);
+			if (new)
+				*new = 1;
+		} else {
+			unlock_new_inode(inode);
+			iput(inode);
+			inode = ERR_PTR(-ESTALE);
+		}
+	}
+
+	return inode;
+}
+
+static struct inode *new_simple_dir(struct super_block *s,
+				    struct btrfs_key *key,
+				    struct btrfs_root *root)
+{
+	struct inode *inode = new_inode(s);
+
+	if (!inode)
+		return ERR_PTR(-ENOMEM);
+
+	BTRFS_I(inode)->root = root;
+	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
+	BTRFS_I(inode)->dummy_inode = 1;
+
+	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
+	inode->i_op = &btrfs_dir_ro_inode_operations;
+	inode->i_fop = &simple_dir_operations;
+	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
+	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
+
+	return inode;
+}
+
+struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
+{
+	struct inode *inode;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct btrfs_root *sub_root = root;
+	struct btrfs_key location;
+	int index;
+	int ret = 0;
+
+	if (dentry->d_name.len > BTRFS_NAME_LEN)
+		return ERR_PTR(-ENAMETOOLONG);
+
+	if (unlikely(d_need_lookup(dentry))) {
+		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
+		kfree(dentry->d_fsdata);
+		dentry->d_fsdata = NULL;
+		/* This thing is hashed, drop it for now */
+		d_drop(dentry);
+	} else {
+		ret = btrfs_inode_by_name(dir, dentry, &location);
+	}
+
+	if (ret < 0)
+		return ERR_PTR(ret);
+
+	if (location.objectid == 0)
+		return NULL;
+
+	if (location.type == BTRFS_INODE_ITEM_KEY) {
+		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
+		return inode;
+	}
+
+	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
+
+	index = srcu_read_lock(&root->fs_info->subvol_srcu);
+	ret = fixup_tree_root_location(root, dir, dentry,
+				       &location, &sub_root);
+	if (ret < 0) {
+		if (ret != -ENOENT)
+			inode = ERR_PTR(ret);
+		else
+			inode = new_simple_dir(dir->i_sb, &location, sub_root);
+	} else {
+		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
+	}
+	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
+
+	if (!IS_ERR(inode) && root != sub_root) {
+		down_read(&root->fs_info->cleanup_work_sem);
+		if (!(inode->i_sb->s_flags & MS_RDONLY))
+			ret = btrfs_orphan_cleanup(sub_root);
+		up_read(&root->fs_info->cleanup_work_sem);
+		if (ret)
+			inode = ERR_PTR(ret);
+	}
+
+	return inode;
+}
+
+static int btrfs_dentry_delete(const struct dentry *dentry)
+{
+	struct btrfs_root *root;
+	struct inode *inode = dentry->d_inode;
+
+	if (!inode && !IS_ROOT(dentry))
+		inode = dentry->d_parent->d_inode;
+
+	if (inode) {
+		root = BTRFS_I(inode)->root;
+		if (btrfs_root_refs(&root->root_item) == 0)
+			return 1;
+
+		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
+			return 1;
+	}
+	return 0;
+}
+
+static void btrfs_dentry_release(struct dentry *dentry)
+{
+	if (dentry->d_fsdata)
+		kfree(dentry->d_fsdata);
+}
+
+static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
+				   struct nameidata *nd)
+{
+	struct dentry *ret;
+
+	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
+	if (unlikely(d_need_lookup(dentry))) {
+		spin_lock(&dentry->d_lock);
+		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
+		spin_unlock(&dentry->d_lock);
+	}
+	return ret;
+}
+
+unsigned char btrfs_filetype_table[] = {
+	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
+};
+
+static int btrfs_real_readdir(struct file *filp, void *dirent,
+			      filldir_t filldir)
+{
+	struct inode *inode = filp->f_dentry->d_inode;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_item *item;
+	struct btrfs_dir_item *di;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	struct btrfs_path *path;
+	struct list_head ins_list;
+	struct list_head del_list;
+	int ret;
+	struct extent_buffer *leaf;
+	int slot;
+	unsigned char d_type;
+	int over = 0;
+	u32 di_cur;
+	u32 di_total;
+	u32 di_len;
+	int key_type = BTRFS_DIR_INDEX_KEY;
+	char tmp_name[32];
+	char *name_ptr;
+	int name_len;
+	int is_curr = 0;	/* filp->f_pos points to the current index? */
+
+	/* FIXME, use a real flag for deciding about the key type */
+	if (root->fs_info->tree_root == root)
+		key_type = BTRFS_DIR_ITEM_KEY;
+
+	/* special case for "." */
+	if (filp->f_pos == 0) {
+		over = filldir(dirent, ".", 1,
+			       filp->f_pos, btrfs_ino(inode), DT_DIR);
+		if (over)
+			return 0;
+		filp->f_pos = 1;
+	}
+	/* special case for .., just use the back ref */
+	if (filp->f_pos == 1) {
+		u64 pino = parent_ino(filp->f_path.dentry);
+		over = filldir(dirent, "..", 2,
+			       filp->f_pos, pino, DT_DIR);
+		if (over)
+			return 0;
+		filp->f_pos = 2;
+	}
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->reada = 1;
+
+	if (key_type == BTRFS_DIR_INDEX_KEY) {
+		INIT_LIST_HEAD(&ins_list);
+		INIT_LIST_HEAD(&del_list);
+		btrfs_get_delayed_items(inode, &ins_list, &del_list);
+	}
+
+	btrfs_set_key_type(&key, key_type);
+	key.offset = filp->f_pos;
+	key.objectid = btrfs_ino(inode);
+
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto err;
+
+	while (1) {
+		leaf = path->nodes[0];
+		slot = path->slots[0];
+		if (slot >= btrfs_header_nritems(leaf)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret < 0)
+				goto err;
+			else if (ret > 0)
+				break;
+			continue;
+		}
+
+		item = btrfs_item_nr(leaf, slot);
+		btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+		if (found_key.objectid != key.objectid)
+			break;
+		if (btrfs_key_type(&found_key) != key_type)
+			break;
+		if (found_key.offset < filp->f_pos)
+			goto next;
+		if (key_type == BTRFS_DIR_INDEX_KEY &&
+		    btrfs_should_delete_dir_index(&del_list,
+						  found_key.offset))
+			goto next;
+
+		filp->f_pos = found_key.offset;
+		is_curr = 1;
+
+		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
+		di_cur = 0;
+		di_total = btrfs_item_size(leaf, item);
+
+		while (di_cur < di_total) {
+			struct btrfs_key location;
+
+			if (verify_dir_item(root, leaf, di))
+				break;
+
+			name_len = btrfs_dir_name_len(leaf, di);
+			if (name_len <= sizeof(tmp_name)) {
+				name_ptr = tmp_name;
+			} else {
+				name_ptr = kmalloc(name_len, GFP_NOFS);
+				if (!name_ptr) {
+					ret = -ENOMEM;
+					goto err;
+				}
+			}
+			read_extent_buffer(leaf, name_ptr,
+					   (unsigned long)(di + 1), name_len);
+
+			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
+			btrfs_dir_item_key_to_cpu(leaf, di, &location);
+
+
+			/* is this a reference to our own snapshot? If so
+			 * skip it.
+			 *
+			 * In contrast to old kernels, we insert the snapshot's
+			 * dir item and dir index after it has been created, so
+			 * we won't find a reference to our own snapshot. We
+			 * still keep the following code for backward
+			 * compatibility.
+			 */
+			if (location.type == BTRFS_ROOT_ITEM_KEY &&
+			    location.objectid == root->root_key.objectid) {
+				over = 0;
+				goto skip;
+			}
+			over = filldir(dirent, name_ptr, name_len,
+				       found_key.offset, location.objectid,
+				       d_type);
+
+skip:
+			if (name_ptr != tmp_name)
+				kfree(name_ptr);
+
+			if (over)
+				goto nopos;
+			di_len = btrfs_dir_name_len(leaf, di) +
+				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
+			di_cur += di_len;
+			di = (struct btrfs_dir_item *)((char *)di + di_len);
+		}
+next:
+		path->slots[0]++;
+	}
+
+	if (key_type == BTRFS_DIR_INDEX_KEY) {
+		if (is_curr)
+			filp->f_pos++;
+		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
+						      &ins_list);
+		if (ret)
+			goto nopos;
+	}
+
+	/* Reached end of directory/root. Bump pos past the last item. */
+	if (key_type == BTRFS_DIR_INDEX_KEY)
+		/*
+		 * 32-bit glibc will use getdents64, but then strtol -
+		 * so the last number we can serve is this.
+		 */
+		filp->f_pos = 0x7fffffff;
+	else
+		filp->f_pos++;
+nopos:
+	ret = 0;
+err:
+	if (key_type == BTRFS_DIR_INDEX_KEY)
+		btrfs_put_delayed_items(&ins_list, &del_list);
+	btrfs_free_path(path);
+	return ret;
+}
+
+int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	int ret = 0;
+	bool nolock = false;
+
+	if (BTRFS_I(inode)->dummy_inode)
+		return 0;
+
+	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
+		nolock = true;
+
+	if (wbc->sync_mode == WB_SYNC_ALL) {
+		if (nolock)
+			trans = btrfs_join_transaction_nolock(root);
+		else
+			trans = btrfs_join_transaction(root);
+		if (IS_ERR(trans))
+			return PTR_ERR(trans);
+		if (nolock)
+			ret = btrfs_end_transaction_nolock(trans, root);
+		else
+			ret = btrfs_commit_transaction(trans, root);
+	}
+	return ret;
+}
+
+/*
+ * This is somewhat expensive, updating the tree every time the
+ * inode changes.  But, it is most likely to find the inode in cache.
+ * FIXME, needs more benchmarking...there are no reasons other than performance
+ * to keep or drop this code.
+ */
+int btrfs_dirty_inode(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	int ret;
+
+	if (BTRFS_I(inode)->dummy_inode)
+		return 0;
+
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	ret = btrfs_update_inode(trans, root, inode);
+	if (ret && ret == -ENOSPC) {
+		/* whoops, lets try again with the full transaction */
+		btrfs_end_transaction(trans, root);
+		trans = btrfs_start_transaction(root, 1);
+		if (IS_ERR(trans))
+			return PTR_ERR(trans);
+
+		ret = btrfs_update_inode(trans, root, inode);
+	}
+	btrfs_end_transaction(trans, root);
+	if (BTRFS_I(inode)->delayed_node)
+		btrfs_balance_delayed_items(root);
+
+	return ret;
+}
+
+/*
+ * This is a copy of file_update_time.  We need this so we can return error on
+ * ENOSPC for updating the inode in the case of file write and mmap writes.
+ */
+int btrfs_update_time(struct file *file)
+{
+	struct inode *inode = file->f_path.dentry->d_inode;
+	struct timespec now;
+	int ret;
+	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
+
+	/* First try to exhaust all avenues to not sync */
+	if (IS_NOCMTIME(inode))
+		return 0;
+
+	now = current_fs_time(inode->i_sb);
+	if (!timespec_equal(&inode->i_mtime, &now))
+		sync_it = S_MTIME;
+
+	if (!timespec_equal(&inode->i_ctime, &now))
+		sync_it |= S_CTIME;
+
+	if (IS_I_VERSION(inode))
+		sync_it |= S_VERSION;
+
+	if (!sync_it)
+		return 0;
+
+	/* Finally allowed to write? Takes lock. */
+	if (mnt_want_write_file(file))
+		return 0;
+
+	/* Only change inode inside the lock region */
+	if (sync_it & S_VERSION)
+		inode_inc_iversion(inode);
+	if (sync_it & S_CTIME)
+		inode->i_ctime = now;
+	if (sync_it & S_MTIME)
+		inode->i_mtime = now;
+	ret = btrfs_dirty_inode(inode);
+	if (!ret)
+		mark_inode_dirty_sync(inode);
+	mnt_drop_write(file->f_path.mnt);
+	return ret;
+}
+
+/*
+ * find the highest existing sequence number in a directory
+ * and then set the in-memory index_cnt variable to reflect
+ * free sequence numbers
+ */
+static int btrfs_set_inode_index_count(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_key key, found_key;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	int ret;
+
+	key.objectid = btrfs_ino(inode);
+	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
+	key.offset = (u64)-1;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto out;
+	/* FIXME: we should be able to handle this */
+	if (ret == 0)
+		goto out;
+	ret = 0;
+
+	/*
+	 * MAGIC NUMBER EXPLANATION:
+	 * since we search a directory based on f_pos we have to start at 2
+	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
+	 * else has to start at 2
+	 */
+	if (path->slots[0] == 0) {
+		BTRFS_I(inode)->index_cnt = 2;
+		goto out;
+	}
+
+	path->slots[0]--;
+
+	leaf = path->nodes[0];
+	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+	if (found_key.objectid != btrfs_ino(inode) ||
+	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
+		BTRFS_I(inode)->index_cnt = 2;
+		goto out;
+	}
+
+	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * helper to find a free sequence number in a given directory.  This current
+ * code is very simple, later versions will do smarter things in the btree
+ */
+int btrfs_set_inode_index(struct inode *dir, u64 *index)
+{
+	int ret = 0;
+
+	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
+		ret = btrfs_inode_delayed_dir_index_count(dir);
+		if (ret) {
+			ret = btrfs_set_inode_index_count(dir);
+			if (ret)
+				return ret;
+		}
+	}
+
+	*index = BTRFS_I(dir)->index_cnt;
+	BTRFS_I(dir)->index_cnt++;
+
+	return ret;
+}
+
+static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
+				     struct btrfs_root *root,
+				     struct inode *dir,
+				     const char *name, int name_len,
+				     u64 ref_objectid, u64 objectid,
+				     umode_t mode, u64 *index)
+{
+	struct inode *inode;
+	struct btrfs_inode_item *inode_item;
+	struct btrfs_key *location;
+	struct btrfs_path *path;
+	struct btrfs_inode_ref *ref;
+	struct btrfs_key key[2];
+	u32 sizes[2];
+	unsigned long ptr;
+	int ret;
+	int owner;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return ERR_PTR(-ENOMEM);
+
+	inode = new_inode(root->fs_info->sb);
+	if (!inode) {
+		btrfs_free_path(path);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	/*
+	 * we have to initialize this early, so we can reclaim the inode
+	 * number if we fail afterwards in this function.
+	 */
+	inode->i_ino = objectid;
+
+	if (dir) {
+		trace_btrfs_inode_request(dir);
+
+		ret = btrfs_set_inode_index(dir, index);
+		if (ret) {
+			btrfs_free_path(path);
+			iput(inode);
+			return ERR_PTR(ret);
+		}
+	}
+	/*
+	 * index_cnt is ignored for everything but a dir,
+	 * btrfs_get_inode_index_count has an explanation for the magic
+	 * number
+	 */
+	BTRFS_I(inode)->index_cnt = 2;
+	BTRFS_I(inode)->root = root;
+	BTRFS_I(inode)->generation = trans->transid;
+	inode->i_generation = BTRFS_I(inode)->generation;
+	btrfs_set_inode_space_info(root, inode);
+
+	if (S_ISDIR(mode))
+		owner = 0;
+	else
+		owner = 1;
+
+	key[0].objectid = objectid;
+	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
+	key[0].offset = 0;
+
+	key[1].objectid = objectid;
+	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
+	key[1].offset = ref_objectid;
+
+	sizes[0] = sizeof(struct btrfs_inode_item);
+	sizes[1] = name_len + sizeof(*ref);
+
+	path->leave_spinning = 1;
+	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
+	if (ret != 0)
+		goto fail;
+
+	inode_init_owner(inode, dir, mode);
+	inode_set_bytes(inode, 0);
+	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
+	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+				  struct btrfs_inode_item);
+	fill_inode_item(trans, path->nodes[0], inode_item, inode);
+
+	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
+			     struct btrfs_inode_ref);
+	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
+	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
+	ptr = (unsigned long)(ref + 1);
+	write_extent_buffer(path->nodes[0], name, ptr, name_len);
+
+	btrfs_mark_buffer_dirty(path->nodes[0]);
+	btrfs_free_path(path);
+
+	location = &BTRFS_I(inode)->location;
+	location->objectid = objectid;
+	location->offset = 0;
+	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
+
+	btrfs_inherit_iflags(inode, dir);
+
+	if (S_ISREG(mode)) {
+		if (btrfs_test_opt(root, NODATASUM))
+			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
+		if (btrfs_test_opt(root, NODATACOW) ||
+		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
+			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
+	}
+
+	insert_inode_hash(inode);
+	inode_tree_add(inode);
+
+	trace_btrfs_inode_new(inode);
+	btrfs_set_inode_last_trans(trans, inode);
+
+	return inode;
+fail:
+	if (dir)
+		BTRFS_I(dir)->index_cnt--;
+	btrfs_free_path(path);
+	iput(inode);
+	return ERR_PTR(ret);
+}
+
+static inline u8 btrfs_inode_type(struct inode *inode)
+{
+	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
+}
+
+/*
+ * utility function to add 'inode' into 'parent_inode' with
+ * a give name and a given sequence number.
+ * if 'add_backref' is true, also insert a backref from the
+ * inode to the parent directory.
+ */
+int btrfs_add_link(struct btrfs_trans_handle *trans,
+		   struct inode *parent_inode, struct inode *inode,
+		   const char *name, int name_len, int add_backref, u64 index)
+{
+	int ret = 0;
+	struct btrfs_key key;
+	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
+	u64 ino = btrfs_ino(inode);
+	u64 parent_ino = btrfs_ino(parent_inode);
+
+	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
+		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
+	} else {
+		key.objectid = ino;
+		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
+		key.offset = 0;
+	}
+
+	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
+		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
+					 key.objectid, root->root_key.objectid,
+					 parent_ino, index, name, name_len);
+	} else if (add_backref) {
+		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
+					     parent_ino, index);
+	}
+
+	/* Nothing to clean up yet */
+	if (ret)
+		return ret;
+
+	ret = btrfs_insert_dir_item(trans, root, name, name_len,
+				    parent_inode, &key,
+				    btrfs_inode_type(inode), index);
+	if (ret == -EEXIST)
+		goto fail_dir_item;
+	else if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		return ret;
+	}
+
+	btrfs_i_size_write(parent_inode, parent_inode->i_size +
+			   name_len * 2);
+	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
+	ret = btrfs_update_inode(trans, root, parent_inode);
+	if (ret)
+		btrfs_abort_transaction(trans, root, ret);
+	return ret;
+
+fail_dir_item:
+	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
+		u64 local_index;
+		int err;
+		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
+				 key.objectid, root->root_key.objectid,
+				 parent_ino, &local_index, name, name_len);
+
+	} else if (add_backref) {
+		u64 local_index;
+		int err;
+
+		err = btrfs_del_inode_ref(trans, root, name, name_len,
+					  ino, parent_ino, &local_index);
+	}
+	return ret;
+}
+
+static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
+			    struct inode *dir, struct dentry *dentry,
+			    struct inode *inode, int backref, u64 index)
+{
+	int err = btrfs_add_link(trans, dir, inode,
+				 dentry->d_name.name, dentry->d_name.len,
+				 backref, index);
+	if (err > 0)
+		err = -EEXIST;
+	return err;
+}
+
+static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
+			umode_t mode, dev_t rdev)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct inode *inode = NULL;
+	int err;
+	int drop_inode = 0;
+	u64 objectid;
+	unsigned long nr = 0;
+	u64 index = 0;
+
+	if (!new_valid_dev(rdev))
+		return -EINVAL;
+
+	/*
+	 * 2 for inode item and ref
+	 * 2 for dir items
+	 * 1 for xattr if selinux is on
+	 */
+	trans = btrfs_start_transaction(root, 5);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	err = btrfs_find_free_ino(root, &objectid);
+	if (err)
+		goto out_unlock;
+
+	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+				dentry->d_name.len, btrfs_ino(dir), objectid,
+				mode, &index);
+	if (IS_ERR(inode)) {
+		err = PTR_ERR(inode);
+		goto out_unlock;
+	}
+
+	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+	if (err) {
+		drop_inode = 1;
+		goto out_unlock;
+	}
+
+	/*
+	* If the active LSM wants to access the inode during
+	* d_instantiate it needs these. Smack checks to see
+	* if the filesystem supports xattrs by looking at the
+	* ops vector.
+	*/
+
+	inode->i_op = &btrfs_special_inode_operations;
+	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
+	if (err)
+		drop_inode = 1;
+	else {
+		init_special_inode(inode, inode->i_mode, rdev);
+		btrfs_update_inode(trans, root, inode);
+		d_instantiate(dentry, inode);
+	}
+out_unlock:
+	nr = trans->blocks_used;
+	btrfs_end_transaction(trans, root);
+	btrfs_btree_balance_dirty(root, nr);
+	if (drop_inode) {
+		inode_dec_link_count(inode);
+		iput(inode);
+	}
+	return err;
+}
+
+static int btrfs_create(struct inode *dir, struct dentry *dentry,
+			umode_t mode, struct nameidata *nd)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct inode *inode = NULL;
+	int drop_inode = 0;
+	int err;
+	unsigned long nr = 0;
+	u64 objectid;
+	u64 index = 0;
+
+	/*
+	 * 2 for inode item and ref
+	 * 2 for dir items
+	 * 1 for xattr if selinux is on
+	 */
+	trans = btrfs_start_transaction(root, 5);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	err = btrfs_find_free_ino(root, &objectid);
+	if (err)
+		goto out_unlock;
+
+	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+				dentry->d_name.len, btrfs_ino(dir), objectid,
+				mode, &index);
+	if (IS_ERR(inode)) {
+		err = PTR_ERR(inode);
+		goto out_unlock;
+	}
+
+	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+	if (err) {
+		drop_inode = 1;
+		goto out_unlock;
+	}
+
+	/*
+	* If the active LSM wants to access the inode during
+	* d_instantiate it needs these. Smack checks to see
+	* if the filesystem supports xattrs by looking at the
+	* ops vector.
+	*/
+	inode->i_fop = &btrfs_file_operations;
+	inode->i_op = &btrfs_file_inode_operations;
+
+	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
+	if (err)
+		drop_inode = 1;
+	else {
+		inode->i_mapping->a_ops = &btrfs_aops;
+		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
+		d_instantiate(dentry, inode);
+	}
+out_unlock:
+	nr = trans->blocks_used;
+	btrfs_end_transaction(trans, root);
+	if (drop_inode) {
+		inode_dec_link_count(inode);
+		iput(inode);
+	}
+	btrfs_btree_balance_dirty(root, nr);
+	return err;
+}
+
+static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
+		      struct dentry *dentry)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct inode *inode = old_dentry->d_inode;
+	u64 index;
+	unsigned long nr = 0;
+	int err;
+	int drop_inode = 0;
+
+	/* do not allow sys_link's with other subvols of the same device */
+	if (root->objectid != BTRFS_I(inode)->root->objectid)
+		return -EXDEV;
+
+	if (inode->i_nlink == ~0U)
+		return -EMLINK;
+
+	err = btrfs_set_inode_index(dir, &index);
+	if (err)
+		goto fail;
+
+	/*
+	 * 2 items for inode and inode ref
+	 * 2 items for dir items
+	 * 1 item for parent inode
+	 */
+	trans = btrfs_start_transaction(root, 5);
+	if (IS_ERR(trans)) {
+		err = PTR_ERR(trans);
+		goto fail;
+	}
+
+	btrfs_inc_nlink(inode);
+	inode->i_ctime = CURRENT_TIME;
+	ihold(inode);
+
+	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
+
+	if (err) {
+		drop_inode = 1;
+	} else {
+		struct dentry *parent = dentry->d_parent;
+		err = btrfs_update_inode(trans, root, inode);
+		if (err)
+			goto fail;
+		d_instantiate(dentry, inode);
+		btrfs_log_new_name(trans, inode, NULL, parent);
+	}
+
+	nr = trans->blocks_used;
+	btrfs_end_transaction(trans, root);
+fail:
+	if (drop_inode) {
+		inode_dec_link_count(inode);
+		iput(inode);
+	}
+	btrfs_btree_balance_dirty(root, nr);
+	return err;
+}
+
+static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
+{
+	struct inode *inode = NULL;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	int err = 0;
+	int drop_on_err = 0;
+	u64 objectid = 0;
+	u64 index = 0;
+	unsigned long nr = 1;
+
+	/*
+	 * 2 items for inode and ref
+	 * 2 items for dir items
+	 * 1 for xattr if selinux is on
+	 */
+	trans = btrfs_start_transaction(root, 5);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	err = btrfs_find_free_ino(root, &objectid);
+	if (err)
+		goto out_fail;
+
+	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+				dentry->d_name.len, btrfs_ino(dir), objectid,
+				S_IFDIR | mode, &index);
+	if (IS_ERR(inode)) {
+		err = PTR_ERR(inode);
+		goto out_fail;
+	}
+
+	drop_on_err = 1;
+
+	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+	if (err)
+		goto out_fail;
+
+	inode->i_op = &btrfs_dir_inode_operations;
+	inode->i_fop = &btrfs_dir_file_operations;
+
+	btrfs_i_size_write(inode, 0);
+	err = btrfs_update_inode(trans, root, inode);
+	if (err)
+		goto out_fail;
+
+	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
+			     dentry->d_name.len, 0, index);
+	if (err)
+		goto out_fail;
+
+	d_instantiate(dentry, inode);
+	drop_on_err = 0;
+
+out_fail:
+	nr = trans->blocks_used;
+	btrfs_end_transaction(trans, root);
+	if (drop_on_err)
+		iput(inode);
+	btrfs_btree_balance_dirty(root, nr);
+	return err;
+}
+
+/* helper for btfs_get_extent.  Given an existing extent in the tree,
+ * and an extent that you want to insert, deal with overlap and insert
+ * the new extent into the tree.
+ */
+static int merge_extent_mapping(struct extent_map_tree *em_tree,
+				struct extent_map *existing,
+				struct extent_map *em,
+				u64 map_start, u64 map_len)
+{
+	u64 start_diff;
+
+	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
+	start_diff = map_start - em->start;
+	em->start = map_start;
+	em->len = map_len;
+	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
+	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
+		em->block_start += start_diff;
+		em->block_len -= start_diff;
+	}
+	return add_extent_mapping(em_tree, em);
+}
+
+static noinline int uncompress_inline(struct btrfs_path *path,
+				      struct inode *inode, struct page *page,
+				      size_t pg_offset, u64 extent_offset,
+				      struct btrfs_file_extent_item *item)
+{
+	int ret;
+	struct extent_buffer *leaf = path->nodes[0];
+	char *tmp;
+	size_t max_size;
+	unsigned long inline_size;
+	unsigned long ptr;
+	int compress_type;
+
+	WARN_ON(pg_offset != 0);
+	compress_type = btrfs_file_extent_compression(leaf, item);
+	max_size = btrfs_file_extent_ram_bytes(leaf, item);
+	inline_size = btrfs_file_extent_inline_item_len(leaf,
+					btrfs_item_nr(leaf, path->slots[0]));
+	tmp = kmalloc(inline_size, GFP_NOFS);
+	if (!tmp)
+		return -ENOMEM;
+	ptr = btrfs_file_extent_inline_start(item);
+
+	read_extent_buffer(leaf, tmp, ptr, inline_size);
+
+	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
+	ret = btrfs_decompress(compress_type, tmp, page,
+			       extent_offset, inline_size, max_size);
+	if (ret) {
+		char *kaddr = kmap_atomic(page);
+		unsigned long copy_size = min_t(u64,
+				  PAGE_CACHE_SIZE - pg_offset,
+				  max_size - extent_offset);
+		memset(kaddr + pg_offset, 0, copy_size);
+		kunmap_atomic(kaddr);
+	}
+	kfree(tmp);
+	return 0;
+}
+
+/*
+ * a bit scary, this does extent mapping from logical file offset to the disk.
+ * the ugly parts come from merging extents from the disk with the in-ram
+ * representation.  This gets more complex because of the data=ordered code,
+ * where the in-ram extents might be locked pending data=ordered completion.
+ *
+ * This also copies inline extents directly into the page.
+ */
+
+struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
+				    size_t pg_offset, u64 start, u64 len,
+				    int create)
+{
+	int ret;
+	int err = 0;
+	u64 bytenr;
+	u64 extent_start = 0;
+	u64 extent_end = 0;
+	u64 objectid = btrfs_ino(inode);
+	u32 found_type;
+	struct btrfs_path *path = NULL;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_file_extent_item *item;
+	struct extent_buffer *leaf;
+	struct btrfs_key found_key;
+	struct extent_map *em = NULL;
+	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	struct btrfs_trans_handle *trans = NULL;
+	int compress_type;
+
+again:
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree, start, len);
+	if (em)
+		em->bdev = root->fs_info->fs_devices->latest_bdev;
+	read_unlock(&em_tree->lock);
+
+	if (em) {
+		if (em->start > start || em->start + em->len <= start)
+			free_extent_map(em);
+		else if (em->block_start == EXTENT_MAP_INLINE && page)
+			free_extent_map(em);
+		else
+			goto out;
+	}
+	em = alloc_extent_map();
+	if (!em) {
+		err = -ENOMEM;
+		goto out;
+	}
+	em->bdev = root->fs_info->fs_devices->latest_bdev;
+	em->start = EXTENT_MAP_HOLE;
+	em->orig_start = EXTENT_MAP_HOLE;
+	em->len = (u64)-1;
+	em->block_len = (u64)-1;
+
+	if (!path) {
+		path = btrfs_alloc_path();
+		if (!path) {
+			err = -ENOMEM;
+			goto out;
+		}
+		/*
+		 * Chances are we'll be called again, so go ahead and do
+		 * readahead
+		 */
+		path->reada = 1;
+	}
+
+	ret = btrfs_lookup_file_extent(trans, root, path,
+				       objectid, start, trans != NULL);
+	if (ret < 0) {
+		err = ret;
+		goto out;
+	}
+
+	if (ret != 0) {
+		if (path->slots[0] == 0)
+			goto not_found;
+		path->slots[0]--;
+	}
+
+	leaf = path->nodes[0];
+	item = btrfs_item_ptr(leaf, path->slots[0],
+			      struct btrfs_file_extent_item);
+	/* are we inside the extent that was found? */
+	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+	found_type = btrfs_key_type(&found_key);
+	if (found_key.objectid != objectid ||
+	    found_type != BTRFS_EXTENT_DATA_KEY) {
+		goto not_found;
+	}
+
+	found_type = btrfs_file_extent_type(leaf, item);
+	extent_start = found_key.offset;
+	compress_type = btrfs_file_extent_compression(leaf, item);
+	if (found_type == BTRFS_FILE_EXTENT_REG ||
+	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
+		extent_end = extent_start +
+		       btrfs_file_extent_num_bytes(leaf, item);
+	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
+		size_t size;
+		size = btrfs_file_extent_inline_len(leaf, item);
+		extent_end = (extent_start + size + root->sectorsize - 1) &
+			~((u64)root->sectorsize - 1);
+	}
+
+	if (start >= extent_end) {
+		path->slots[0]++;
+		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret < 0) {
+				err = ret;
+				goto out;
+			}
+			if (ret > 0)
+				goto not_found;
+			leaf = path->nodes[0];
+		}
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+		if (found_key.objectid != objectid ||
+		    found_key.type != BTRFS_EXTENT_DATA_KEY)
+			goto not_found;
+		if (start + len <= found_key.offset)
+			goto not_found;
+		em->start = start;
+		em->len = found_key.offset - start;
+		goto not_found_em;
+	}
+
+	if (found_type == BTRFS_FILE_EXTENT_REG ||
+	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
+		em->start = extent_start;
+		em->len = extent_end - extent_start;
+		em->orig_start = extent_start -
+				 btrfs_file_extent_offset(leaf, item);
+		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
+		if (bytenr == 0) {
+			em->block_start = EXTENT_MAP_HOLE;
+			goto insert;
+		}
+		if (compress_type != BTRFS_COMPRESS_NONE) {
+			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+			em->compress_type = compress_type;
+			em->block_start = bytenr;
+			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
+									 item);
+		} else {
+			bytenr += btrfs_file_extent_offset(leaf, item);
+			em->block_start = bytenr;
+			em->block_len = em->len;
+			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
+				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
+		}
+		goto insert;
+	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
+		unsigned long ptr;
+		char *map;
+		size_t size;
+		size_t extent_offset;
+		size_t copy_size;
+
+		em->block_start = EXTENT_MAP_INLINE;
+		if (!page || create) {
+			em->start = extent_start;
+			em->len = extent_end - extent_start;
+			goto out;
+		}
+
+		size = btrfs_file_extent_inline_len(leaf, item);
+		extent_offset = page_offset(page) + pg_offset - extent_start;
+		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
+				size - extent_offset);
+		em->start = extent_start + extent_offset;
+		em->len = (copy_size + root->sectorsize - 1) &
+			~((u64)root->sectorsize - 1);
+		em->orig_start = EXTENT_MAP_INLINE;
+		if (compress_type) {
+			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+			em->compress_type = compress_type;
+		}
+		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
+		if (create == 0 && !PageUptodate(page)) {
+			if (btrfs_file_extent_compression(leaf, item) !=
+			    BTRFS_COMPRESS_NONE) {
+				ret = uncompress_inline(path, inode, page,
+							pg_offset,
+							extent_offset, item);
+				BUG_ON(ret); /* -ENOMEM */
+			} else {
+				map = kmap(page);
+				read_extent_buffer(leaf, map + pg_offset, ptr,
+						   copy_size);
+				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
+					memset(map + pg_offset + copy_size, 0,
+					       PAGE_CACHE_SIZE - pg_offset -
+					       copy_size);
+				}
+				kunmap(page);
+			}
+			flush_dcache_page(page);
+		} else if (create && PageUptodate(page)) {
+			BUG();
+			if (!trans) {
+				kunmap(page);
+				free_extent_map(em);
+				em = NULL;
+
+				btrfs_release_path(path);
+				trans = btrfs_join_transaction(root);
+
+				if (IS_ERR(trans))
+					return ERR_CAST(trans);
+				goto again;
+			}
+			map = kmap(page);
+			write_extent_buffer(leaf, map + pg_offset, ptr,
+					    copy_size);
+			kunmap(page);
+			btrfs_mark_buffer_dirty(leaf);
+		}
+		set_extent_uptodate(io_tree, em->start,
+				    extent_map_end(em) - 1, NULL, GFP_NOFS);
+		goto insert;
+	} else {
+		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
+		WARN_ON(1);
+	}
+not_found:
+	em->start = start;
+	em->len = len;
+not_found_em:
+	em->block_start = EXTENT_MAP_HOLE;
+	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
+insert:
+	btrfs_release_path(path);
+	if (em->start > start || extent_map_end(em) <= start) {
+		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
+		       "[%llu %llu]\n", (unsigned long long)em->start,
+		       (unsigned long long)em->len,
+		       (unsigned long long)start,
+		       (unsigned long long)len);
+		err = -EIO;
+		goto out;
+	}
+
+	err = 0;
+	write_lock(&em_tree->lock);
+	ret = add_extent_mapping(em_tree, em);
+	/* it is possible that someone inserted the extent into the tree
+	 * while we had the lock dropped.  It is also possible that
+	 * an overlapping map exists in the tree
+	 */
+	if (ret == -EEXIST) {
+		struct extent_map *existing;
+
+		ret = 0;
+
+		existing = lookup_extent_mapping(em_tree, start, len);
+		if (existing && (existing->start > start ||
+		    existing->start + existing->len <= start)) {
+			free_extent_map(existing);
+			existing = NULL;
+		}
+		if (!existing) {
+			existing = lookup_extent_mapping(em_tree, em->start,
+							 em->len);
+			if (existing) {
+				err = merge_extent_mapping(em_tree, existing,
+							   em, start,
+							   root->sectorsize);
+				free_extent_map(existing);
+				if (err) {
+					free_extent_map(em);
+					em = NULL;
+				}
+			} else {
+				err = -EIO;
+				free_extent_map(em);
+				em = NULL;
+			}
+		} else {
+			free_extent_map(em);
+			em = existing;
+			err = 0;
+		}
+	}
+	write_unlock(&em_tree->lock);
+out:
+
+	trace_btrfs_get_extent(root, em);
+
+	if (path)
+		btrfs_free_path(path);
+	if (trans) {
+		ret = btrfs_end_transaction(trans, root);
+		if (!err)
+			err = ret;
+	}
+	if (err) {
+		free_extent_map(em);
+		return ERR_PTR(err);
+	}
+	BUG_ON(!em); /* Error is always set */
+	return em;
+}
+
+struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
+					   size_t pg_offset, u64 start, u64 len,
+					   int create)
+{
+	struct extent_map *em;
+	struct extent_map *hole_em = NULL;
+	u64 range_start = start;
+	u64 end;
+	u64 found;
+	u64 found_end;
+	int err = 0;
+
+	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
+	if (IS_ERR(em))
+		return em;
+	if (em) {
+		/*
+		 * if our em maps to a hole, there might
+		 * actually be delalloc bytes behind it
+		 */
+		if (em->block_start != EXTENT_MAP_HOLE)
+			return em;
+		else
+			hole_em = em;
+	}
+
+	/* check to see if we've wrapped (len == -1 or similar) */
+	end = start + len;
+	if (end < start)
+		end = (u64)-1;
+	else
+		end -= 1;
+
+	em = NULL;
+
+	/* ok, we didn't find anything, lets look for delalloc */
+	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
+				 end, len, EXTENT_DELALLOC, 1);
+	found_end = range_start + found;
+	if (found_end < range_start)
+		found_end = (u64)-1;
+
+	/*
+	 * we didn't find anything useful, return
+	 * the original results from get_extent()
+	 */
+	if (range_start > end || found_end <= start) {
+		em = hole_em;
+		hole_em = NULL;
+		goto out;
+	}
+
+	/* adjust the range_start to make sure it doesn't
+	 * go backwards from the start they passed in
+	 */
+	range_start = max(start,range_start);
+	found = found_end - range_start;
+
+	if (found > 0) {
+		u64 hole_start = start;
+		u64 hole_len = len;
+
+		em = alloc_extent_map();
+		if (!em) {
+			err = -ENOMEM;
+			goto out;
+		}
+		/*
+		 * when btrfs_get_extent can't find anything it
+		 * returns one huge hole
+		 *
+		 * make sure what it found really fits our range, and
+		 * adjust to make sure it is based on the start from
+		 * the caller
+		 */
+		if (hole_em) {
+			u64 calc_end = extent_map_end(hole_em);
+
+			if (calc_end <= start || (hole_em->start > end)) {
+				free_extent_map(hole_em);
+				hole_em = NULL;
+			} else {
+				hole_start = max(hole_em->start, start);
+				hole_len = calc_end - hole_start;
+			}
+		}
+		em->bdev = NULL;
+		if (hole_em && range_start > hole_start) {
+			/* our hole starts before our delalloc, so we
+			 * have to return just the parts of the hole
+			 * that go until  the delalloc starts
+			 */
+			em->len = min(hole_len,
+				      range_start - hole_start);
+			em->start = hole_start;
+			em->orig_start = hole_start;
+			/*
+			 * don't adjust block start at all,
+			 * it is fixed at EXTENT_MAP_HOLE
+			 */
+			em->block_start = hole_em->block_start;
+			em->block_len = hole_len;
+		} else {
+			em->start = range_start;
+			em->len = found;
+			em->orig_start = range_start;
+			em->block_start = EXTENT_MAP_DELALLOC;
+			em->block_len = found;
+		}
+	} else if (hole_em) {
+		return hole_em;
+	}
+out:
+
+	free_extent_map(hole_em);
+	if (err) {
+		free_extent_map(em);
+		return ERR_PTR(err);
+	}
+	return em;
+}
+
+static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
+						  struct extent_map *em,
+						  u64 start, u64 len)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+	struct btrfs_key ins;
+	u64 alloc_hint;
+	int ret;
+	bool insert = false;
+
+	/*
+	 * Ok if the extent map we looked up is a hole and is for the exact
+	 * range we want, there is no reason to allocate a new one, however if
+	 * it is not right then we need to free this one and drop the cache for
+	 * our range.
+	 */
+	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
+	    em->len != len) {
+		free_extent_map(em);
+		em = NULL;
+		insert = true;
+		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
+	}
+
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans))
+		return ERR_CAST(trans);
+
+	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
+		btrfs_add_inode_defrag(trans, inode);
+
+	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+	alloc_hint = get_extent_allocation_hint(inode, start, len);
+	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
+				   alloc_hint, &ins, 1);
+	if (ret) {
+		em = ERR_PTR(ret);
+		goto out;
+	}
+
+	if (!em) {
+		em = alloc_extent_map();
+		if (!em) {
+			em = ERR_PTR(-ENOMEM);
+			goto out;
+		}
+	}
+
+	em->start = start;
+	em->orig_start = em->start;
+	em->len = ins.offset;
+
+	em->block_start = ins.objectid;
+	em->block_len = ins.offset;
+	em->bdev = root->fs_info->fs_devices->latest_bdev;
+
+	/*
+	 * We need to do this because if we're using the original em we searched
+	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
+	 */
+	em->flags = 0;
+	set_bit(EXTENT_FLAG_PINNED, &em->flags);
+
+	while (insert) {
+		write_lock(&em_tree->lock);
+		ret = add_extent_mapping(em_tree, em);
+		write_unlock(&em_tree->lock);
+		if (ret != -EEXIST)
+			break;
+		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
+	}
+
+	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
+					   ins.offset, ins.offset, 0);
+	if (ret) {
+		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
+		em = ERR_PTR(ret);
+	}
+out:
+	btrfs_end_transaction(trans, root);
+	return em;
+}
+
+/*
+ * returns 1 when the nocow is safe, < 1 on error, 0 if the
+ * block must be cow'd
+ */
+static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
+				      struct inode *inode, u64 offset, u64 len)
+{
+	struct btrfs_path *path;
+	int ret;
+	struct extent_buffer *leaf;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_file_extent_item *fi;
+	struct btrfs_key key;
+	u64 disk_bytenr;
+	u64 backref_offset;
+	u64 extent_end;
+	u64 num_bytes;
+	int slot;
+	int found_type;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
+				       offset, 0);
+	if (ret < 0)
+		goto out;
+
+	slot = path->slots[0];
+	if (ret == 1) {
+		if (slot == 0) {
+			/* can't find the item, must cow */
+			ret = 0;
+			goto out;
+		}
+		slot--;
+	}
+	ret = 0;
+	leaf = path->nodes[0];
+	btrfs_item_key_to_cpu(leaf, &key, slot);
+	if (key.objectid != btrfs_ino(inode) ||
+	    key.type != BTRFS_EXTENT_DATA_KEY) {
+		/* not our file or wrong item type, must cow */
+		goto out;
+	}
+
+	if (key.offset > offset) {
+		/* Wrong offset, must cow */
+		goto out;
+	}
+
+	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
+	found_type = btrfs_file_extent_type(leaf, fi);
+	if (found_type != BTRFS_FILE_EXTENT_REG &&
+	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
+		/* not a regular extent, must cow */
+		goto out;
+	}
+	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+	backref_offset = btrfs_file_extent_offset(leaf, fi);
+
+	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
+	if (extent_end < offset + len) {
+		/* extent doesn't include our full range, must cow */
+		goto out;
+	}
+
+	if (btrfs_extent_readonly(root, disk_bytenr))
+		goto out;
+
+	/*
+	 * look for other files referencing this extent, if we
+	 * find any we must cow
+	 */
+	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
+				  key.offset - backref_offset, disk_bytenr))
+		goto out;
+
+	/*
+	 * adjust disk_bytenr and num_bytes to cover just the bytes
+	 * in this extent we are about to write.  If there
+	 * are any csums in that range we have to cow in order
+	 * to keep the csums correct
+	 */
+	disk_bytenr += backref_offset;
+	disk_bytenr += offset - key.offset;
+	num_bytes = min(offset + len, extent_end) - offset;
+	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
+				goto out;
+	/*
+	 * all of the above have passed, it is safe to overwrite this extent
+	 * without cow
+	 */
+	ret = 1;
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
+				   struct buffer_head *bh_result, int create)
+{
+	struct extent_map *em;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u64 start = iblock << inode->i_blkbits;
+	u64 len = bh_result->b_size;
+	struct btrfs_trans_handle *trans;
+
+	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
+	if (IS_ERR(em))
+		return PTR_ERR(em);
+
+	/*
+	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
+	 * io.  INLINE is special, and we could probably kludge it in here, but
+	 * it's still buffered so for safety lets just fall back to the generic
+	 * buffered path.
+	 *
+	 * For COMPRESSED we _have_ to read the entire extent in so we can
+	 * decompress it, so there will be buffering required no matter what we
+	 * do, so go ahead and fallback to buffered.
+	 *
+	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
+	 * to buffered IO.  Don't blame me, this is the price we pay for using
+	 * the generic code.
+	 */
+	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
+	    em->block_start == EXTENT_MAP_INLINE) {
+		free_extent_map(em);
+		return -ENOTBLK;
+	}
+
+	/* Just a good old fashioned hole, return */
+	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
+			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
+		free_extent_map(em);
+		/* DIO will do one hole at a time, so just unlock a sector */
+		unlock_extent(&BTRFS_I(inode)->io_tree, start,
+			      start + root->sectorsize - 1);
+		return 0;
+	}
+
+	/*
+	 * We don't allocate a new extent in the following cases
+	 *
+	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
+	 * existing extent.
+	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
+	 * just use the extent.
+	 *
+	 */
+	if (!create) {
+		len = em->len - (start - em->start);
+		goto map;
+	}
+
+	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
+	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
+	     em->block_start != EXTENT_MAP_HOLE)) {
+		int type;
+		int ret;
+		u64 block_start;
+
+		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
+			type = BTRFS_ORDERED_PREALLOC;
+		else
+			type = BTRFS_ORDERED_NOCOW;
+		len = min(len, em->len - (start - em->start));
+		block_start = em->block_start + (start - em->start);
+
+		/*
+		 * we're not going to log anything, but we do need
+		 * to make sure the current transaction stays open
+		 * while we look for nocow cross refs
+		 */
+		trans = btrfs_join_transaction(root);
+		if (IS_ERR(trans))
+			goto must_cow;
+
+		if (can_nocow_odirect(trans, inode, start, len) == 1) {
+			ret = btrfs_add_ordered_extent_dio(inode, start,
+					   block_start, len, len, type);
+			btrfs_end_transaction(trans, root);
+			if (ret) {
+				free_extent_map(em);
+				return ret;
+			}
+			goto unlock;
+		}
+		btrfs_end_transaction(trans, root);
+	}
+must_cow:
+	/*
+	 * this will cow the extent, reset the len in case we changed
+	 * it above
+	 */
+	len = bh_result->b_size;
+	em = btrfs_new_extent_direct(inode, em, start, len);
+	if (IS_ERR(em))
+		return PTR_ERR(em);
+	len = min(len, em->len - (start - em->start));
+unlock:
+	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
+			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
+			  0, NULL, GFP_NOFS);
+map:
+	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
+		inode->i_blkbits;
+	bh_result->b_size = len;
+	bh_result->b_bdev = em->bdev;
+	set_buffer_mapped(bh_result);
+	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
+		set_buffer_new(bh_result);
+
+	free_extent_map(em);
+
+	return 0;
+}
+
+struct btrfs_dio_private {
+	struct inode *inode;
+	u64 logical_offset;
+	u64 disk_bytenr;
+	u64 bytes;
+	u32 *csums;
+	void *private;
+
+	/* number of bios pending for this dio */
+	atomic_t pending_bios;
+
+	/* IO errors */
+	int errors;
+
+	struct bio *orig_bio;
+};
+
+static void btrfs_endio_direct_read(struct bio *bio, int err)
+{
+	struct btrfs_dio_private *dip = bio->bi_private;
+	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
+	struct bio_vec *bvec = bio->bi_io_vec;
+	struct inode *inode = dip->inode;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	u64 start;
+	u32 *private = dip->csums;
+
+	start = dip->logical_offset;
+	do {
+		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+			struct page *page = bvec->bv_page;
+			char *kaddr;
+			u32 csum = ~(u32)0;
+			unsigned long flags;
+
+			local_irq_save(flags);
+			kaddr = kmap_atomic(page);
+			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
+					       csum, bvec->bv_len);
+			btrfs_csum_final(csum, (char *)&csum);
+			kunmap_atomic(kaddr);
+			local_irq_restore(flags);
+
+			flush_dcache_page(bvec->bv_page);
+			if (csum != *private) {
+				printk(KERN_ERR "btrfs csum failed ino %llu off"
+				      " %llu csum %u private %u\n",
+				      (unsigned long long)btrfs_ino(inode),
+				      (unsigned long long)start,
+				      csum, *private);
+				err = -EIO;
+			}
+		}
+
+		start += bvec->bv_len;
+		private++;
+		bvec++;
+	} while (bvec <= bvec_end);
+
+	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
+		      dip->logical_offset + dip->bytes - 1);
+	bio->bi_private = dip->private;
+
+	kfree(dip->csums);
+	kfree(dip);
+
+	/* If we had a csum failure make sure to clear the uptodate flag */
+	if (err)
+		clear_bit(BIO_UPTODATE, &bio->bi_flags);
+	dio_end_io(bio, err);
+}
+
+static void btrfs_endio_direct_write(struct bio *bio, int err)
+{
+	struct btrfs_dio_private *dip = bio->bi_private;
+	struct inode *inode = dip->inode;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_ordered_extent *ordered = NULL;
+	struct extent_state *cached_state = NULL;
+	u64 ordered_offset = dip->logical_offset;
+	u64 ordered_bytes = dip->bytes;
+	int ret;
+
+	if (err)
+		goto out_done;
+again:
+	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
+						   &ordered_offset,
+						   ordered_bytes);
+	if (!ret)
+		goto out_test;
+
+	BUG_ON(!ordered);
+
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans)) {
+		err = -ENOMEM;
+		goto out;
+	}
+	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
+		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
+		if (!ret)
+			err = btrfs_update_inode_fallback(trans, root, inode);
+		goto out;
+	}
+
+	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
+			 ordered->file_offset + ordered->len - 1, 0,
+			 &cached_state);
+
+	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
+		ret = btrfs_mark_extent_written(trans, inode,
+						ordered->file_offset,
+						ordered->file_offset +
+						ordered->len);
+		if (ret) {
+			err = ret;
+			goto out_unlock;
+		}
+	} else {
+		ret = insert_reserved_file_extent(trans, inode,
+						  ordered->file_offset,
+						  ordered->start,
+						  ordered->disk_len,
+						  ordered->len,
+						  ordered->len,
+						  0, 0, 0,
+						  BTRFS_FILE_EXTENT_REG);
+		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
+				   ordered->file_offset, ordered->len);
+		if (ret) {
+			err = ret;
+			WARN_ON(1);
+			goto out_unlock;
+		}
+	}
+
+	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
+	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
+	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
+		btrfs_update_inode_fallback(trans, root, inode);
+	ret = 0;
+out_unlock:
+	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
+			     ordered->file_offset + ordered->len - 1,
+			     &cached_state, GFP_NOFS);
+out:
+	btrfs_delalloc_release_metadata(inode, ordered->len);
+	btrfs_end_transaction(trans, root);
+	ordered_offset = ordered->file_offset + ordered->len;
+	btrfs_put_ordered_extent(ordered);
+	btrfs_put_ordered_extent(ordered);
+
+out_test:
+	/*
+	 * our bio might span multiple ordered extents.  If we haven't
+	 * completed the accounting for the whole dio, go back and try again
+	 */
+	if (ordered_offset < dip->logical_offset + dip->bytes) {
+		ordered_bytes = dip->logical_offset + dip->bytes -
+			ordered_offset;
+		goto again;
+	}
+out_done:
+	bio->bi_private = dip->private;
+
+	kfree(dip->csums);
+	kfree(dip);
+
+	/* If we had an error make sure to clear the uptodate flag */
+	if (err)
+		clear_bit(BIO_UPTODATE, &bio->bi_flags);
+	dio_end_io(bio, err);
+}
+
+static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
+				    struct bio *bio, int mirror_num,
+				    unsigned long bio_flags, u64 offset)
+{
+	int ret;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
+	BUG_ON(ret); /* -ENOMEM */
+	return 0;
+}
+
+static void btrfs_end_dio_bio(struct bio *bio, int err)
+{
+	struct btrfs_dio_private *dip = bio->bi_private;
+
+	if (err) {
+		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
+		      "sector %#Lx len %u err no %d\n",
+		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
+		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
+		dip->errors = 1;
+
+		/*
+		 * before atomic variable goto zero, we must make sure
+		 * dip->errors is perceived to be set.
+		 */
+		smp_mb__before_atomic_dec();
+	}
+
+	/* if there are more bios still pending for this dio, just exit */
+	if (!atomic_dec_and_test(&dip->pending_bios))
+		goto out;
+
+	if (dip->errors)
+		bio_io_error(dip->orig_bio);
+	else {
+		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
+		bio_endio(dip->orig_bio, 0);
+	}
+out:
+	bio_put(bio);
+}
+
+static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
+				       u64 first_sector, gfp_t gfp_flags)
+{
+	int nr_vecs = bio_get_nr_vecs(bdev);
+	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
+}
+
+static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
+					 int rw, u64 file_offset, int skip_sum,
+					 u32 *csums, int async_submit)
+{
+	int write = rw & REQ_WRITE;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	int ret;
+
+	bio_get(bio);
+	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
+	if (ret)
+		goto err;
+
+	if (skip_sum)
+		goto map;
+
+	if (write && async_submit) {
+		ret = btrfs_wq_submit_bio(root->fs_info,
+				   inode, rw, bio, 0, 0,
+				   file_offset,
+				   __btrfs_submit_bio_start_direct_io,
+				   __btrfs_submit_bio_done);
+		goto err;
+	} else if (write) {
+		/*
+		 * If we aren't doing async submit, calculate the csum of the
+		 * bio now.
+		 */
+		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
+		if (ret)
+			goto err;
+	} else if (!skip_sum) {
+		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
+					  file_offset, csums);
+		if (ret)
+			goto err;
+	}
+
+map:
+	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
+err:
+	bio_put(bio);
+	return ret;
+}
+
+static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
+				    int skip_sum)
+{
+	struct inode *inode = dip->inode;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+	struct bio *bio;
+	struct bio *orig_bio = dip->orig_bio;
+	struct bio_vec *bvec = orig_bio->bi_io_vec;
+	u64 start_sector = orig_bio->bi_sector;
+	u64 file_offset = dip->logical_offset;
+	u64 submit_len = 0;
+	u64 map_length;
+	int nr_pages = 0;
+	u32 *csums = dip->csums;
+	int ret = 0;
+	int async_submit = 0;
+	int write = rw & REQ_WRITE;
+
+	map_length = orig_bio->bi_size;
+	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
+			      &map_length, NULL, 0);
+	if (ret) {
+		bio_put(orig_bio);
+		return -EIO;
+	}
+
+	if (map_length >= orig_bio->bi_size) {
+		bio = orig_bio;
+		goto submit;
+	}
+
+	async_submit = 1;
+	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
+	if (!bio)
+		return -ENOMEM;
+	bio->bi_private = dip;
+	bio->bi_end_io = btrfs_end_dio_bio;
+	atomic_inc(&dip->pending_bios);
+
+	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
+		if (unlikely(map_length < submit_len + bvec->bv_len ||
+		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
+				 bvec->bv_offset) < bvec->bv_len)) {
+			/*
+			 * inc the count before we submit the bio so
+			 * we know the end IO handler won't happen before
+			 * we inc the count. Otherwise, the dip might get freed
+			 * before we're done setting it up
+			 */
+			atomic_inc(&dip->pending_bios);
+			ret = __btrfs_submit_dio_bio(bio, inode, rw,
+						     file_offset, skip_sum,
+						     csums, async_submit);
+			if (ret) {
+				bio_put(bio);
+				atomic_dec(&dip->pending_bios);
+				goto out_err;
+			}
+
+			/* Write's use the ordered csums */
+			if (!write && !skip_sum)
+				csums = csums + nr_pages;
+			start_sector += submit_len >> 9;
+			file_offset += submit_len;
+
+			submit_len = 0;
+			nr_pages = 0;
+
+			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
+						  start_sector, GFP_NOFS);
+			if (!bio)
+				goto out_err;
+			bio->bi_private = dip;
+			bio->bi_end_io = btrfs_end_dio_bio;
+
+			map_length = orig_bio->bi_size;
+			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
+					      &map_length, NULL, 0);
+			if (ret) {
+				bio_put(bio);
+				goto out_err;
+			}
+		} else {
+			submit_len += bvec->bv_len;
+			nr_pages ++;
+			bvec++;
+		}
+	}
+
+submit:
+	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
+				     csums, async_submit);
+	if (!ret)
+		return 0;
+
+	bio_put(bio);
+out_err:
+	dip->errors = 1;
+	/*
+	 * before atomic variable goto zero, we must
+	 * make sure dip->errors is perceived to be set.
+	 */
+	smp_mb__before_atomic_dec();
+	if (atomic_dec_and_test(&dip->pending_bios))
+		bio_io_error(dip->orig_bio);
+
+	/* bio_end_io() will handle error, so we needn't return it */
+	return 0;
+}
+
+static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
+				loff_t file_offset)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_dio_private *dip;
+	struct bio_vec *bvec = bio->bi_io_vec;
+	int skip_sum;
+	int write = rw & REQ_WRITE;
+	int ret = 0;
+
+	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+	dip = kmalloc(sizeof(*dip), GFP_NOFS);
+	if (!dip) {
+		ret = -ENOMEM;
+		goto free_ordered;
+	}
+	dip->csums = NULL;
+
+	/* Write's use the ordered csum stuff, so we don't need dip->csums */
+	if (!write && !skip_sum) {
+		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
+		if (!dip->csums) {
+			kfree(dip);
+			ret = -ENOMEM;
+			goto free_ordered;
+		}
+	}
+
+	dip->private = bio->bi_private;
+	dip->inode = inode;
+	dip->logical_offset = file_offset;
+
+	dip->bytes = 0;
+	do {
+		dip->bytes += bvec->bv_len;
+		bvec++;
+	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
+
+	dip->disk_bytenr = (u64)bio->bi_sector << 9;
+	bio->bi_private = dip;
+	dip->errors = 0;
+	dip->orig_bio = bio;
+	atomic_set(&dip->pending_bios, 0);
+
+	if (write)
+		bio->bi_end_io = btrfs_endio_direct_write;
+	else
+		bio->bi_end_io = btrfs_endio_direct_read;
+
+	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
+	if (!ret)
+		return;
+free_ordered:
+	/*
+	 * If this is a write, we need to clean up the reserved space and kill
+	 * the ordered extent.
+	 */
+	if (write) {
+		struct btrfs_ordered_extent *ordered;
+		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
+		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
+		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
+			btrfs_free_reserved_extent(root, ordered->start,
+						   ordered->disk_len);
+		btrfs_put_ordered_extent(ordered);
+		btrfs_put_ordered_extent(ordered);
+	}
+	bio_endio(bio, ret);
+}
+
+static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
+			const struct iovec *iov, loff_t offset,
+			unsigned long nr_segs)
+{
+	int seg;
+	int i;
+	size_t size;
+	unsigned long addr;
+	unsigned blocksize_mask = root->sectorsize - 1;
+	ssize_t retval = -EINVAL;
+	loff_t end = offset;
+
+	if (offset & blocksize_mask)
+		goto out;
+
+	/* Check the memory alignment.  Blocks cannot straddle pages */
+	for (seg = 0; seg < nr_segs; seg++) {
+		addr = (unsigned long)iov[seg].iov_base;
+		size = iov[seg].iov_len;
+		end += size;
+		if ((addr & blocksize_mask) || (size & blocksize_mask))
+			goto out;
+
+		/* If this is a write we don't need to check anymore */
+		if (rw & WRITE)
+			continue;
+
+		/*
+		 * Check to make sure we don't have duplicate iov_base's in this
+		 * iovec, if so return EINVAL, otherwise we'll get csum errors
+		 * when reading back.
+		 */
+		for (i = seg + 1; i < nr_segs; i++) {
+			if (iov[seg].iov_base == iov[i].iov_base)
+				goto out;
+		}
+	}
+	retval = 0;
+out:
+	return retval;
+}
+static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
+			const struct iovec *iov, loff_t offset,
+			unsigned long nr_segs)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	struct btrfs_ordered_extent *ordered;
+	struct extent_state *cached_state = NULL;
+	u64 lockstart, lockend;
+	ssize_t ret;
+	int writing = rw & WRITE;
+	int write_bits = 0;
+	size_t count = iov_length(iov, nr_segs);
+
+	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
+			    offset, nr_segs)) {
+		return 0;
+	}
+
+	lockstart = offset;
+	lockend = offset + count - 1;
+
+	if (writing) {
+		ret = btrfs_delalloc_reserve_space(inode, count);
+		if (ret)
+			goto out;
+	}
+
+	while (1) {
+		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+				 0, &cached_state);
+		/*
+		 * We're concerned with the entire range that we're going to be
+		 * doing DIO to, so we need to make sure theres no ordered
+		 * extents in this range.
+		 */
+		ordered = btrfs_lookup_ordered_range(inode, lockstart,
+						     lockend - lockstart + 1);
+		if (!ordered)
+			break;
+		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+				     &cached_state, GFP_NOFS);
+		btrfs_start_ordered_extent(inode, ordered, 1);
+		btrfs_put_ordered_extent(ordered);
+		cond_resched();
+	}
+
+	/*
+	 * we don't use btrfs_set_extent_delalloc because we don't want
+	 * the dirty or uptodate bits
+	 */
+	if (writing) {
+		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
+		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+				     EXTENT_DELALLOC, NULL, &cached_state,
+				     GFP_NOFS);
+		if (ret) {
+			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
+					 lockend, EXTENT_LOCKED | write_bits,
+					 1, 0, &cached_state, GFP_NOFS);
+			goto out;
+		}
+	}
+
+	free_extent_state(cached_state);
+	cached_state = NULL;
+
+	ret = __blockdev_direct_IO(rw, iocb, inode,
+		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
+		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
+		   btrfs_submit_direct, 0);
+
+	if (ret < 0 && ret != -EIOCBQUEUED) {
+		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
+			      offset + iov_length(iov, nr_segs) - 1,
+			      EXTENT_LOCKED | write_bits, 1, 0,
+			      &cached_state, GFP_NOFS);
+	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
+		/*
+		 * We're falling back to buffered, unlock the section we didn't
+		 * do IO on.
+		 */
+		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
+			      offset + iov_length(iov, nr_segs) - 1,
+			      EXTENT_LOCKED | write_bits, 1, 0,
+			      &cached_state, GFP_NOFS);
+	}
+out:
+	free_extent_state(cached_state);
+	return ret;
+}
+
+static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
+		__u64 start, __u64 len)
+{
+	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
+}
+
+int btrfs_readpage(struct file *file, struct page *page)
+{
+	struct extent_io_tree *tree;
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
+}
+
+static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
+{
+	struct extent_io_tree *tree;
+
+
+	if (current->flags & PF_MEMALLOC) {
+		redirty_page_for_writepage(wbc, page);
+		unlock_page(page);
+		return 0;
+	}
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
+}
+
+int btrfs_writepages(struct address_space *mapping,
+		     struct writeback_control *wbc)
+{
+	struct extent_io_tree *tree;
+
+	tree = &BTRFS_I(mapping->host)->io_tree;
+	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
+}
+
+static int
+btrfs_readpages(struct file *file, struct address_space *mapping,
+		struct list_head *pages, unsigned nr_pages)
+{
+	struct extent_io_tree *tree;
+	tree = &BTRFS_I(mapping->host)->io_tree;
+	return extent_readpages(tree, mapping, pages, nr_pages,
+				btrfs_get_extent);
+}
+static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
+{
+	struct extent_io_tree *tree;
+	struct extent_map_tree *map;
+	int ret;
+
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	map = &BTRFS_I(page->mapping->host)->extent_tree;
+	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
+	if (ret == 1) {
+		ClearPagePrivate(page);
+		set_page_private(page, 0);
+		page_cache_release(page);
+	}
+	return ret;
+}
+
+static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
+{
+	if (PageWriteback(page) || PageDirty(page))
+		return 0;
+	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
+}
+
+static void btrfs_invalidatepage(struct page *page, unsigned long offset)
+{
+	struct extent_io_tree *tree;
+	struct btrfs_ordered_extent *ordered;
+	struct extent_state *cached_state = NULL;
+	u64 page_start = page_offset(page);
+	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+
+	/*
+	 * we have the page locked, so new writeback can't start,
+	 * and the dirty bit won't be cleared while we are here.
+	 *
+	 * Wait for IO on this page so that we can safely clear
+	 * the PagePrivate2 bit and do ordered accounting
+	 */
+	wait_on_page_writeback(page);
+
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	if (offset) {
+		btrfs_releasepage(page, GFP_NOFS);
+		return;
+	}
+	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
+	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
+					   page_offset(page));
+	if (ordered) {
+		/*
+		 * IO on this page will never be started, so we need
+		 * to account for any ordered extents now
+		 */
+		clear_extent_bit(tree, page_start, page_end,
+				 EXTENT_DIRTY | EXTENT_DELALLOC |
+				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
+				 &cached_state, GFP_NOFS);
+		/*
+		 * whoever cleared the private bit is responsible
+		 * for the finish_ordered_io
+		 */
+		if (TestClearPagePrivate2(page)) {
+			btrfs_finish_ordered_io(page->mapping->host,
+						page_start, page_end);
+		}
+		btrfs_put_ordered_extent(ordered);
+		cached_state = NULL;
+		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
+	}
+	clear_extent_bit(tree, page_start, page_end,
+		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
+		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
+	__btrfs_releasepage(page, GFP_NOFS);
+
+	ClearPageChecked(page);
+	if (PagePrivate(page)) {
+		ClearPagePrivate(page);
+		set_page_private(page, 0);
+		page_cache_release(page);
+	}
+}
+
+/*
+ * btrfs_page_mkwrite() is not allowed to change the file size as it gets
+ * called from a page fault handler when a page is first dirtied. Hence we must
+ * be careful to check for EOF conditions here. We set the page up correctly
+ * for a written page which means we get ENOSPC checking when writing into
+ * holes and correct delalloc and unwritten extent mapping on filesystems that
+ * support these features.
+ *
+ * We are not allowed to take the i_mutex here so we have to play games to
+ * protect against truncate races as the page could now be beyond EOF.  Because
+ * vmtruncate() writes the inode size before removing pages, once we have the
+ * page lock we can determine safely if the page is beyond EOF. If it is not
+ * beyond EOF, then the page is guaranteed safe against truncation until we
+ * unlock the page.
+ */
+int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+	struct page *page = vmf->page;
+	struct inode *inode = fdentry(vma->vm_file)->d_inode;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+	struct btrfs_ordered_extent *ordered;
+	struct extent_state *cached_state = NULL;
+	char *kaddr;
+	unsigned long zero_start;
+	loff_t size;
+	int ret;
+	int reserved = 0;
+	u64 page_start;
+	u64 page_end;
+
+	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
+	if (!ret) {
+		ret = btrfs_update_time(vma->vm_file);
+		reserved = 1;
+	}
+	if (ret) {
+		if (ret == -ENOMEM)
+			ret = VM_FAULT_OOM;
+		else /* -ENOSPC, -EIO, etc */
+			ret = VM_FAULT_SIGBUS;
+		if (reserved)
+			goto out;
+		goto out_noreserve;
+	}
+
+	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
+again:
+	lock_page(page);
+	size = i_size_read(inode);
+	page_start = page_offset(page);
+	page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+	if ((page->mapping != inode->i_mapping) ||
+	    (page_start >= size)) {
+		/* page got truncated out from underneath us */
+		goto out_unlock;
+	}
+	wait_on_page_writeback(page);
+
+	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
+	set_page_extent_mapped(page);
+
+	/*
+	 * we can't set the delalloc bits if there are pending ordered
+	 * extents.  Drop our locks and wait for them to finish
+	 */
+	ordered = btrfs_lookup_ordered_extent(inode, page_start);
+	if (ordered) {
+		unlock_extent_cached(io_tree, page_start, page_end,
+				     &cached_state, GFP_NOFS);
+		unlock_page(page);
+		btrfs_start_ordered_extent(inode, ordered, 1);
+		btrfs_put_ordered_extent(ordered);
+		goto again;
+	}
+
+	/*
+	 * XXX - page_mkwrite gets called every time the page is dirtied, even
+	 * if it was already dirty, so for space accounting reasons we need to
+	 * clear any delalloc bits for the range we are fixing to save.  There
+	 * is probably a better way to do this, but for now keep consistent with
+	 * prepare_pages in the normal write path.
+	 */
+	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
+			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
+			  0, 0, &cached_state, GFP_NOFS);
+
+	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
+					&cached_state);
+	if (ret) {
+		unlock_extent_cached(io_tree, page_start, page_end,
+				     &cached_state, GFP_NOFS);
+		ret = VM_FAULT_SIGBUS;
+		goto out_unlock;
+	}
+	ret = 0;
+
+	/* page is wholly or partially inside EOF */
+	if (page_start + PAGE_CACHE_SIZE > size)
+		zero_start = size & ~PAGE_CACHE_MASK;
+	else
+		zero_start = PAGE_CACHE_SIZE;
+
+	if (zero_start != PAGE_CACHE_SIZE) {
+		kaddr = kmap(page);
+		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
+		flush_dcache_page(page);
+		kunmap(page);
+	}
+	ClearPageChecked(page);
+	set_page_dirty(page);
+	SetPageUptodate(page);
+
+	BTRFS_I(inode)->last_trans = root->fs_info->generation;
+	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
+
+	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
+
+out_unlock:
+	if (!ret)
+		return VM_FAULT_LOCKED;
+	unlock_page(page);
+out:
+	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
+out_noreserve:
+	return ret;
+}
+
+static int btrfs_truncate(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_block_rsv *rsv;
+	int ret;
+	int err = 0;
+	struct btrfs_trans_handle *trans;
+	unsigned long nr;
+	u64 mask = root->sectorsize - 1;
+	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
+
+	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
+	if (ret)
+		return ret;
+
+	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
+	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
+
+	/*
+	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
+	 * 3 things going on here
+	 *
+	 * 1) We need to reserve space for our orphan item and the space to
+	 * delete our orphan item.  Lord knows we don't want to have a dangling
+	 * orphan item because we didn't reserve space to remove it.
+	 *
+	 * 2) We need to reserve space to update our inode.
+	 *
+	 * 3) We need to have something to cache all the space that is going to
+	 * be free'd up by the truncate operation, but also have some slack
+	 * space reserved in case it uses space during the truncate (thank you
+	 * very much snapshotting).
+	 *
+	 * And we need these to all be seperate.  The fact is we can use alot of
+	 * space doing the truncate, and we have no earthly idea how much space
+	 * we will use, so we need the truncate reservation to be seperate so it
+	 * doesn't end up using space reserved for updating the inode or
+	 * removing the orphan item.  We also need to be able to stop the
+	 * transaction and start a new one, which means we need to be able to
+	 * update the inode several times, and we have no idea of knowing how
+	 * many times that will be, so we can't just reserve 1 item for the
+	 * entirety of the opration, so that has to be done seperately as well.
+	 * Then there is the orphan item, which does indeed need to be held on
+	 * to for the whole operation, and we need nobody to touch this reserved
+	 * space except the orphan code.
+	 *
+	 * So that leaves us with
+	 *
+	 * 1) root->orphan_block_rsv - for the orphan deletion.
+	 * 2) rsv - for the truncate reservation, which we will steal from the
+	 * transaction reservation.
+	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
+	 * updating the inode.
+	 */
+	rsv = btrfs_alloc_block_rsv(root);
+	if (!rsv)
+		return -ENOMEM;
+	rsv->size = min_size;
+
+	/*
+	 * 1 for the truncate slack space
+	 * 1 for the orphan item we're going to add
+	 * 1 for the orphan item deletion
+	 * 1 for updating the inode.
+	 */
+	trans = btrfs_start_transaction(root, 4);
+	if (IS_ERR(trans)) {
+		err = PTR_ERR(trans);
+		goto out;
+	}
+
+	/* Migrate the slack space for the truncate to our reserve */
+	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
+				      min_size);
+	BUG_ON(ret);
+
+	ret = btrfs_orphan_add(trans, inode);
+	if (ret) {
+		btrfs_end_transaction(trans, root);
+		goto out;
+	}
+
+	/*
+	 * setattr is responsible for setting the ordered_data_close flag,
+	 * but that is only tested during the last file release.  That
+	 * could happen well after the next commit, leaving a great big
+	 * window where new writes may get lost if someone chooses to write
+	 * to this file after truncating to zero
+	 *
+	 * The inode doesn't have any dirty data here, and so if we commit
+	 * this is a noop.  If someone immediately starts writing to the inode
+	 * it is very likely we'll catch some of their writes in this
+	 * transaction, and the commit will find this file on the ordered
+	 * data list with good things to send down.
+	 *
+	 * This is a best effort solution, there is still a window where
+	 * using truncate to replace the contents of the file will
+	 * end up with a zero length file after a crash.
+	 */
+	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
+		btrfs_add_ordered_operation(trans, root, inode);
+
+	while (1) {
+		ret = btrfs_block_rsv_refill(root, rsv, min_size);
+		if (ret) {
+			/*
+			 * This can only happen with the original transaction we
+			 * started above, every other time we shouldn't have a
+			 * transaction started yet.
+			 */
+			if (ret == -EAGAIN)
+				goto end_trans;
+			err = ret;
+			break;
+		}
+
+		if (!trans) {
+			/* Just need the 1 for updating the inode */
+			trans = btrfs_start_transaction(root, 1);
+			if (IS_ERR(trans)) {
+				ret = err = PTR_ERR(trans);
+				trans = NULL;
+				break;
+			}
+		}
+
+		trans->block_rsv = rsv;
+
+		ret = btrfs_truncate_inode_items(trans, root, inode,
+						 inode->i_size,
+						 BTRFS_EXTENT_DATA_KEY);
+		if (ret != -EAGAIN) {
+			err = ret;
+			break;
+		}
+
+		trans->block_rsv = &root->fs_info->trans_block_rsv;
+		ret = btrfs_update_inode(trans, root, inode);
+		if (ret) {
+			err = ret;
+			break;
+		}
+end_trans:
+		nr = trans->blocks_used;
+		btrfs_end_transaction(trans, root);
+		trans = NULL;
+		btrfs_btree_balance_dirty(root, nr);
+	}
+
+	if (ret == 0 && inode->i_nlink > 0) {
+		trans->block_rsv = root->orphan_block_rsv;
+		ret = btrfs_orphan_del(trans, inode);
+		if (ret)
+			err = ret;
+	} else if (ret && inode->i_nlink > 0) {
+		/*
+		 * Failed to do the truncate, remove us from the in memory
+		 * orphan list.
+		 */
+		ret = btrfs_orphan_del(NULL, inode);
+	}
+
+	if (trans) {
+		trans->block_rsv = &root->fs_info->trans_block_rsv;
+		ret = btrfs_update_inode(trans, root, inode);
+		if (ret && !err)
+			err = ret;
+
+		nr = trans->blocks_used;
+		ret = btrfs_end_transaction(trans, root);
+		btrfs_btree_balance_dirty(root, nr);
+	}
+
+out:
+	btrfs_free_block_rsv(root, rsv);
+
+	if (ret && !err)
+		err = ret;
+
+	return err;
+}
+
+/*
+ * create a new subvolume directory/inode (helper for the ioctl).
+ */
+int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
+			     struct btrfs_root *new_root, u64 new_dirid)
+{
+	struct inode *inode;
+	int err;
+	u64 index = 0;
+
+	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
+				new_dirid, new_dirid,
+				S_IFDIR | (~current_umask() & S_IRWXUGO),
+				&index);
+	if (IS_ERR(inode))
+		return PTR_ERR(inode);
+	inode->i_op = &btrfs_dir_inode_operations;
+	inode->i_fop = &btrfs_dir_file_operations;
+
+	set_nlink(inode, 1);
+	btrfs_i_size_write(inode, 0);
+
+	err = btrfs_update_inode(trans, new_root, inode);
+
+	iput(inode);
+	return err;
+}
+
+struct inode *btrfs_alloc_inode(struct super_block *sb)
+{
+	struct btrfs_inode *ei;
+	struct inode *inode;
+
+	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
+	if (!ei)
+		return NULL;
+
+	ei->root = NULL;
+	ei->space_info = NULL;
+	ei->generation = 0;
+	ei->sequence = 0;
+	ei->last_trans = 0;
+	ei->last_sub_trans = 0;
+	ei->logged_trans = 0;
+	ei->delalloc_bytes = 0;
+	ei->disk_i_size = 0;
+	ei->flags = 0;
+	ei->csum_bytes = 0;
+	ei->index_cnt = (u64)-1;
+	ei->last_unlink_trans = 0;
+
+	spin_lock_init(&ei->lock);
+	ei->outstanding_extents = 0;
+	ei->reserved_extents = 0;
+
+	ei->ordered_data_close = 0;
+	ei->orphan_meta_reserved = 0;
+	ei->dummy_inode = 0;
+	ei->in_defrag = 0;
+	ei->delalloc_meta_reserved = 0;
+	ei->force_compress = BTRFS_COMPRESS_NONE;
+
+	ei->delayed_node = NULL;
+
+	inode = &ei->vfs_inode;
+	extent_map_tree_init(&ei->extent_tree);
+	extent_io_tree_init(&ei->io_tree, &inode->i_data);
+	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
+	ei->io_tree.track_uptodate = 1;
+	ei->io_failure_tree.track_uptodate = 1;
+	mutex_init(&ei->log_mutex);
+	mutex_init(&ei->delalloc_mutex);
+	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
+	INIT_LIST_HEAD(&ei->i_orphan);
+	INIT_LIST_HEAD(&ei->delalloc_inodes);
+	INIT_LIST_HEAD(&ei->ordered_operations);
+	RB_CLEAR_NODE(&ei->rb_node);
+
+	return inode;
+}
+
+static void btrfs_i_callback(struct rcu_head *head)
+{
+	struct inode *inode = container_of(head, struct inode, i_rcu);
+	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
+}
+
+void btrfs_destroy_inode(struct inode *inode)
+{
+	struct btrfs_ordered_extent *ordered;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+
+	WARN_ON(!list_empty(&inode->i_dentry));
+	WARN_ON(inode->i_data.nrpages);
+	WARN_ON(BTRFS_I(inode)->outstanding_extents);
+	WARN_ON(BTRFS_I(inode)->reserved_extents);
+	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
+	WARN_ON(BTRFS_I(inode)->csum_bytes);
+
+	/*
+	 * This can happen where we create an inode, but somebody else also
+	 * created the same inode and we need to destroy the one we already
+	 * created.
+	 */
+	if (!root)
+		goto free;
+
+	/*
+	 * Make sure we're properly removed from the ordered operation
+	 * lists.
+	 */
+	smp_mb();
+	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
+		spin_lock(&root->fs_info->ordered_extent_lock);
+		list_del_init(&BTRFS_I(inode)->ordered_operations);
+		spin_unlock(&root->fs_info->ordered_extent_lock);
+	}
+
+	spin_lock(&root->orphan_lock);
+	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
+		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
+		       (unsigned long long)btrfs_ino(inode));
+		list_del_init(&BTRFS_I(inode)->i_orphan);
+	}
+	spin_unlock(&root->orphan_lock);
+
+	while (1) {
+		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
+		if (!ordered)
+			break;
+		else {
+			printk(KERN_ERR "btrfs found ordered "
+			       "extent %llu %llu on inode cleanup\n",
+			       (unsigned long long)ordered->file_offset,
+			       (unsigned long long)ordered->len);
+			btrfs_remove_ordered_extent(inode, ordered);
+			btrfs_put_ordered_extent(ordered);
+			btrfs_put_ordered_extent(ordered);
+		}
+	}
+	inode_tree_del(inode);
+	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
+free:
+	btrfs_remove_delayed_node(inode);
+	call_rcu(&inode->i_rcu, btrfs_i_callback);
+}
+
+int btrfs_drop_inode(struct inode *inode)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+
+	if (btrfs_root_refs(&root->root_item) == 0 &&
+	    !btrfs_is_free_space_inode(root, inode))
+		return 1;
+	else
+		return generic_drop_inode(inode);
+}
+
+static void init_once(void *foo)
+{
+	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
+
+	inode_init_once(&ei->vfs_inode);
+}
+
+void btrfs_destroy_cachep(void)
+{
+	if (btrfs_inode_cachep)
+		kmem_cache_destroy(btrfs_inode_cachep);
+	if (btrfs_trans_handle_cachep)
+		kmem_cache_destroy(btrfs_trans_handle_cachep);
+	if (btrfs_transaction_cachep)
+		kmem_cache_destroy(btrfs_transaction_cachep);
+	if (btrfs_path_cachep)
+		kmem_cache_destroy(btrfs_path_cachep);
+	if (btrfs_free_space_cachep)
+		kmem_cache_destroy(btrfs_free_space_cachep);
+}
+
+int btrfs_init_cachep(void)
+{
+	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
+			sizeof(struct btrfs_inode), 0,
+			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
+	if (!btrfs_inode_cachep)
+		goto fail;
+
+	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
+			sizeof(struct btrfs_trans_handle), 0,
+			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+	if (!btrfs_trans_handle_cachep)
+		goto fail;
+
+	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
+			sizeof(struct btrfs_transaction), 0,
+			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+	if (!btrfs_transaction_cachep)
+		goto fail;
+
+	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
+			sizeof(struct btrfs_path), 0,
+			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+	if (!btrfs_path_cachep)
+		goto fail;
+
+	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
+			sizeof(struct btrfs_free_space), 0,
+			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+	if (!btrfs_free_space_cachep)
+		goto fail;
+
+	return 0;
+fail:
+	btrfs_destroy_cachep();
+	return -ENOMEM;
+}
+
+static int btrfs_getattr(struct vfsmount *mnt,
+			 struct dentry *dentry, struct kstat *stat)
+{
+	struct inode *inode = dentry->d_inode;
+	u32 blocksize = inode->i_sb->s_blocksize;
+
+	generic_fillattr(inode, stat);
+	stat->dev = BTRFS_I(inode)->root->anon_dev;
+	stat->blksize = PAGE_CACHE_SIZE;
+	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
+		ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
+	return 0;
+}
+
+/*
+ * If a file is moved, it will inherit the cow and compression flags of the new
+ * directory.
+ */
+static void fixup_inode_flags(struct inode *dir, struct inode *inode)
+{
+	struct btrfs_inode *b_dir = BTRFS_I(dir);
+	struct btrfs_inode *b_inode = BTRFS_I(inode);
+
+	if (b_dir->flags & BTRFS_INODE_NODATACOW)
+		b_inode->flags |= BTRFS_INODE_NODATACOW;
+	else
+		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
+
+	if (b_dir->flags & BTRFS_INODE_COMPRESS)
+		b_inode->flags |= BTRFS_INODE_COMPRESS;
+	else
+		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
+}
+
+static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
+			   struct inode *new_dir, struct dentry *new_dentry)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(old_dir)->root;
+	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
+	struct inode *new_inode = new_dentry->d_inode;
+	struct inode *old_inode = old_dentry->d_inode;
+	struct timespec ctime = CURRENT_TIME;
+	u64 index = 0;
+	u64 root_objectid;
+	int ret;
+	u64 old_ino = btrfs_ino(old_inode);
+
+	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
+		return -EPERM;
+
+	/* we only allow rename subvolume link between subvolumes */
+	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
+		return -EXDEV;
+
+	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
+	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
+		return -ENOTEMPTY;
+
+	if (S_ISDIR(old_inode->i_mode) && new_inode &&
+	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
+		return -ENOTEMPTY;
+	/*
+	 * we're using rename to replace one file with another.
+	 * and the replacement file is large.  Start IO on it now so
+	 * we don't add too much work to the end of the transaction
+	 */
+	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
+	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
+		filemap_flush(old_inode->i_mapping);
+
+	/* close the racy window with snapshot create/destroy ioctl */
+	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
+		down_read(&root->fs_info->subvol_sem);
+	/*
+	 * We want to reserve the absolute worst case amount of items.  So if
+	 * both inodes are subvols and we need to unlink them then that would
+	 * require 4 item modifications, but if they are both normal inodes it
+	 * would require 5 item modifications, so we'll assume their normal
+	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
+	 * should cover the worst case number of items we'll modify.
+	 */
+	trans = btrfs_start_transaction(root, 20);
+	if (IS_ERR(trans)) {
+                ret = PTR_ERR(trans);
+                goto out_notrans;
+        }
+
+	if (dest != root)
+		btrfs_record_root_in_trans(trans, dest);
+
+	ret = btrfs_set_inode_index(new_dir, &index);
+	if (ret)
+		goto out_fail;
+
+	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
+		/* force full log commit if subvolume involved. */
+		root->fs_info->last_trans_log_full_commit = trans->transid;
+	} else {
+		ret = btrfs_insert_inode_ref(trans, dest,
+					     new_dentry->d_name.name,
+					     new_dentry->d_name.len,
+					     old_ino,
+					     btrfs_ino(new_dir), index);
+		if (ret)
+			goto out_fail;
+		/*
+		 * this is an ugly little race, but the rename is required
+		 * to make sure that if we crash, the inode is either at the
+		 * old name or the new one.  pinning the log transaction lets
+		 * us make sure we don't allow a log commit to come in after
+		 * we unlink the name but before we add the new name back in.
+		 */
+		btrfs_pin_log_trans(root);
+	}
+	/*
+	 * make sure the inode gets flushed if it is replacing
+	 * something.
+	 */
+	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
+		btrfs_add_ordered_operation(trans, root, old_inode);
+
+	old_dir->i_ctime = old_dir->i_mtime = ctime;
+	new_dir->i_ctime = new_dir->i_mtime = ctime;
+	old_inode->i_ctime = ctime;
+
+	if (old_dentry->d_parent != new_dentry->d_parent)
+		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
+
+	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
+		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
+		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
+					old_dentry->d_name.name,
+					old_dentry->d_name.len);
+	} else {
+		ret = __btrfs_unlink_inode(trans, root, old_dir,
+					old_dentry->d_inode,
+					old_dentry->d_name.name,
+					old_dentry->d_name.len);
+		if (!ret)
+			ret = btrfs_update_inode(trans, root, old_inode);
+	}
+	if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto out_fail;
+	}
+
+	if (new_inode) {
+		new_inode->i_ctime = CURRENT_TIME;
+		if (unlikely(btrfs_ino(new_inode) ==
+			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
+			root_objectid = BTRFS_I(new_inode)->location.objectid;
+			ret = btrfs_unlink_subvol(trans, dest, new_dir,
+						root_objectid,
+						new_dentry->d_name.name,
+						new_dentry->d_name.len);
+			BUG_ON(new_inode->i_nlink == 0);
+		} else {
+			ret = btrfs_unlink_inode(trans, dest, new_dir,
+						 new_dentry->d_inode,
+						 new_dentry->d_name.name,
+						 new_dentry->d_name.len);
+		}
+		if (!ret && new_inode->i_nlink == 0) {
+			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
+			BUG_ON(ret);
+		}
+		if (ret) {
+			btrfs_abort_transaction(trans, root, ret);
+			goto out_fail;
+		}
+	}
+
+	fixup_inode_flags(new_dir, old_inode);
+
+	ret = btrfs_add_link(trans, new_dir, old_inode,
+			     new_dentry->d_name.name,
+			     new_dentry->d_name.len, 0, index);
+	if (ret) {
+		btrfs_abort_transaction(trans, root, ret);
+		goto out_fail;
+	}
+
+	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
+		struct dentry *parent = new_dentry->d_parent;
+		btrfs_log_new_name(trans, old_inode, old_dir, parent);
+		btrfs_end_log_trans(root);
+	}
+out_fail:
+	btrfs_end_transaction(trans, root);
+out_notrans:
+	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
+		up_read(&root->fs_info->subvol_sem);
+
+	return ret;
+}
+
+/*
+ * some fairly slow code that needs optimization. This walks the list
+ * of all the inodes with pending delalloc and forces them to disk.
+ */
+int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
+{
+	struct list_head *head = &root->fs_info->delalloc_inodes;
+	struct btrfs_inode *binode;
+	struct inode *inode;
+
+	if (root->fs_info->sb->s_flags & MS_RDONLY)
+		return -EROFS;
+
+	spin_lock(&root->fs_info->delalloc_lock);
+	while (!list_empty(head)) {
+		binode = list_entry(head->next, struct btrfs_inode,
+				    delalloc_inodes);
+		inode = igrab(&binode->vfs_inode);
+		if (!inode)
+			list_del_init(&binode->delalloc_inodes);
+		spin_unlock(&root->fs_info->delalloc_lock);
+		if (inode) {
+			filemap_flush(inode->i_mapping);
+			if (delay_iput)
+				btrfs_add_delayed_iput(inode);
+			else
+				iput(inode);
+		}
+		cond_resched();
+		spin_lock(&root->fs_info->delalloc_lock);
+	}
+	spin_unlock(&root->fs_info->delalloc_lock);
+
+	/* the filemap_flush will queue IO into the worker threads, but
+	 * we have to make sure the IO is actually started and that
+	 * ordered extents get created before we return
+	 */
+	atomic_inc(&root->fs_info->async_submit_draining);
+	while (atomic_read(&root->fs_info->nr_async_submits) ||
+	      atomic_read(&root->fs_info->async_delalloc_pages)) {
+		wait_event(root->fs_info->async_submit_wait,
+		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
+		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
+	}
+	atomic_dec(&root->fs_info->async_submit_draining);
+	return 0;
+}
+
+static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
+			 const char *symname)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = BTRFS_I(dir)->root;
+	struct btrfs_path *path;
+	struct btrfs_key key;
+	struct inode *inode = NULL;
+	int err;
+	int drop_inode = 0;
+	u64 objectid;
+	u64 index = 0 ;
+	int name_len;
+	int datasize;
+	unsigned long ptr;
+	struct btrfs_file_extent_item *ei;
+	struct extent_buffer *leaf;
+	unsigned long nr = 0;
+
+	name_len = strlen(symname) + 1;
+	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
+		return -ENAMETOOLONG;
+
+	/*
+	 * 2 items for inode item and ref
+	 * 2 items for dir items
+	 * 1 item for xattr if selinux is on
+	 */
+	trans = btrfs_start_transaction(root, 5);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+
+	err = btrfs_find_free_ino(root, &objectid);
+	if (err)
+		goto out_unlock;
+
+	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+				dentry->d_name.len, btrfs_ino(dir), objectid,
+				S_IFLNK|S_IRWXUGO, &index);
+	if (IS_ERR(inode)) {
+		err = PTR_ERR(inode);
+		goto out_unlock;
+	}
+
+	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+	if (err) {
+		drop_inode = 1;
+		goto out_unlock;
+	}
+
+	/*
+	* If the active LSM wants to access the inode during
+	* d_instantiate it needs these. Smack checks to see
+	* if the filesystem supports xattrs by looking at the
+	* ops vector.
+	*/
+	inode->i_fop = &btrfs_file_operations;
+	inode->i_op = &btrfs_file_inode_operations;
+
+	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
+	if (err)
+		drop_inode = 1;
+	else {
+		inode->i_mapping->a_ops = &btrfs_aops;
+		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
+	}
+	if (drop_inode)
+		goto out_unlock;
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		err = -ENOMEM;
+		drop_inode = 1;
+		goto out_unlock;
+	}
+	key.objectid = btrfs_ino(inode);
+	key.offset = 0;
+	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
+	datasize = btrfs_file_extent_calc_inline_size(name_len);
+	err = btrfs_insert_empty_item(trans, root, path, &key,
+				      datasize);
+	if (err) {
+		drop_inode = 1;
+		btrfs_free_path(path);
+		goto out_unlock;
+	}
+	leaf = path->nodes[0];
+	ei = btrfs_item_ptr(leaf, path->slots[0],
+			    struct btrfs_file_extent_item);
+	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
+	btrfs_set_file_extent_type(leaf, ei,
+				   BTRFS_FILE_EXTENT_INLINE);
+	btrfs_set_file_extent_encryption(leaf, ei, 0);
+	btrfs_set_file_extent_compression(leaf, ei, 0);
+	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
+	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
+
+	ptr = btrfs_file_extent_inline_start(ei);
+	write_extent_buffer(leaf, symname, ptr, name_len);
+	btrfs_mark_buffer_dirty(leaf);
+	btrfs_free_path(path);
+
+	inode->i_op = &btrfs_symlink_inode_operations;
+	inode->i_mapping->a_ops = &btrfs_symlink_aops;
+	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+	inode_set_bytes(inode, name_len);
+	btrfs_i_size_write(inode, name_len - 1);
+	err = btrfs_update_inode(trans, root, inode);
+	if (err)
+		drop_inode = 1;
+
+out_unlock:
+	if (!err)
+		d_instantiate(dentry, inode);
+	nr = trans->blocks_used;
+	btrfs_end_transaction(trans, root);
+	if (drop_inode) {
+		inode_dec_link_count(inode);
+		iput(inode);
+	}
+	btrfs_btree_balance_dirty(root, nr);
+	return err;
+}
+
+static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
+				       u64 start, u64 num_bytes, u64 min_size,
+				       loff_t actual_len, u64 *alloc_hint,
+				       struct btrfs_trans_handle *trans)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct btrfs_key ins;
+	u64 cur_offset = start;
+	u64 i_size;
+	int ret = 0;
+	bool own_trans = true;
+
+	if (trans)
+		own_trans = false;
+	while (num_bytes > 0) {
+		if (own_trans) {
+			trans = btrfs_start_transaction(root, 3);
+			if (IS_ERR(trans)) {
+				ret = PTR_ERR(trans);
+				break;
+			}
+		}
+
+		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
+					   0, *alloc_hint, &ins, 1);
+		if (ret) {
+			if (own_trans)
+				btrfs_end_transaction(trans, root);
+			break;
+		}
+
+		ret = insert_reserved_file_extent(trans, inode,
+						  cur_offset, ins.objectid,
+						  ins.offset, ins.offset,
+						  ins.offset, 0, 0, 0,
+						  BTRFS_FILE_EXTENT_PREALLOC);
+		if (ret) {
+			btrfs_abort_transaction(trans, root, ret);
+			if (own_trans)
+				btrfs_end_transaction(trans, root);
+			break;
+		}
+		btrfs_drop_extent_cache(inode, cur_offset,
+					cur_offset + ins.offset -1, 0);
+
+		num_bytes -= ins.offset;
+		cur_offset += ins.offset;
+		*alloc_hint = ins.objectid + ins.offset;
+
+		inode->i_ctime = CURRENT_TIME;
+		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
+		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+		    (actual_len > inode->i_size) &&
+		    (cur_offset > inode->i_size)) {
+			if (cur_offset > actual_len)
+				i_size = actual_len;
+			else
+				i_size = cur_offset;
+			i_size_write(inode, i_size);
+			btrfs_ordered_update_i_size(inode, i_size, NULL);
+		}
+
+		ret = btrfs_update_inode(trans, root, inode);
+
+		if (ret) {
+			btrfs_abort_transaction(trans, root, ret);
+			if (own_trans)
+				btrfs_end_transaction(trans, root);
+			break;
+		}
+
+		if (own_trans)
+			btrfs_end_transaction(trans, root);
+	}
+	return ret;
+}
+
+int btrfs_prealloc_file_range(struct inode *inode, int mode,
+			      u64 start, u64 num_bytes, u64 min_size,
+			      loff_t actual_len, u64 *alloc_hint)
+{
+	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
+					   min_size, actual_len, alloc_hint,
+					   NULL);
+}
+
+int btrfs_prealloc_file_range_trans(struct inode *inode,
+				    struct btrfs_trans_handle *trans, int mode,
+				    u64 start, u64 num_bytes, u64 min_size,
+				    loff_t actual_len, u64 *alloc_hint)
+{
+	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
+					   min_size, actual_len, alloc_hint, trans);
+}
+
+static int btrfs_set_page_dirty(struct page *page)
+{
+	return __set_page_dirty_nobuffers(page);
+}
+
+static int btrfs_permission(struct inode *inode, int mask)
+{
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	umode_t mode = inode->i_mode;
+
+	if (mask & MAY_WRITE &&
+	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
+		if (btrfs_root_readonly(root))
+			return -EROFS;
+		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
+			return -EACCES;
+	}
+	return generic_permission(inode, mask);
+}
+
+static const struct inode_operations btrfs_dir_inode_operations = {
+	.getattr	= btrfs_getattr,
+	.lookup		= btrfs_lookup,
+	.create		= btrfs_create,
+	.unlink		= btrfs_unlink,
+	.link		= btrfs_link,
+	.mkdir		= btrfs_mkdir,
+	.rmdir		= btrfs_rmdir,
+	.rename		= btrfs_rename,
+	.symlink	= btrfs_symlink,
+	.setattr	= btrfs_setattr,
+	.mknod		= btrfs_mknod,
+	.setxattr	= btrfs_setxattr,
+	.getxattr	= btrfs_getxattr,
+	.listxattr	= btrfs_listxattr,
+	.removexattr	= btrfs_removexattr,
+	.permission	= btrfs_permission,
+	.get_acl	= btrfs_get_acl,
+};
+static const struct inode_operations btrfs_dir_ro_inode_operations = {
+	.lookup		= btrfs_lookup,
+	.permission	= btrfs_permission,
+	.get_acl	= btrfs_get_acl,
+};
+
+static const struct file_operations btrfs_dir_file_operations = {
+	.llseek		= generic_file_llseek,
+	.read		= generic_read_dir,
+	.readdir	= btrfs_real_readdir,
+	.unlocked_ioctl	= btrfs_ioctl,
+#ifdef CONFIG_COMPAT
+	.compat_ioctl	= btrfs_ioctl,
+#endif
+	.release        = btrfs_release_file,
+	.fsync		= btrfs_sync_file,
+};
+
+static struct extent_io_ops btrfs_extent_io_ops = {
+	.fill_delalloc = run_delalloc_range,
+	.submit_bio_hook = btrfs_submit_bio_hook,
+	.merge_bio_hook = btrfs_merge_bio_hook,
+	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
+	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
+	.writepage_start_hook = btrfs_writepage_start_hook,
+	.set_bit_hook = btrfs_set_bit_hook,
+	.clear_bit_hook = btrfs_clear_bit_hook,
+	.merge_extent_hook = btrfs_merge_extent_hook,
+	.split_extent_hook = btrfs_split_extent_hook,
+};
+
+/*
+ * btrfs doesn't support the bmap operation because swapfiles
+ * use bmap to make a mapping of extents in the file.  They assume
+ * these extents won't change over the life of the file and they
+ * use the bmap result to do IO directly to the drive.
+ *
+ * the btrfs bmap call would return logical addresses that aren't
+ * suitable for IO and they also will change frequently as COW
+ * operations happen.  So, swapfile + btrfs == corruption.
+ *
+ * For now we're avoiding this by dropping bmap.
+ */
+static const struct address_space_operations btrfs_aops = {
+	.readpage	= btrfs_readpage,
+	.writepage	= btrfs_writepage,
+	.writepages	= btrfs_writepages,
+	.readpages	= btrfs_readpages,
+	.direct_IO	= btrfs_direct_IO,
+	.invalidatepage = btrfs_invalidatepage,
+	.releasepage	= btrfs_releasepage,
+	.set_page_dirty	= btrfs_set_page_dirty,
+	.error_remove_page = generic_error_remove_page,
+};
+
+static const struct address_space_operations btrfs_symlink_aops = {
+	.readpage	= btrfs_readpage,
+	.writepage	= btrfs_writepage,
+	.invalidatepage = btrfs_invalidatepage,
+	.releasepage	= btrfs_releasepage,
+};
+
+static const struct inode_operations btrfs_file_inode_operations = {
+	.getattr	= btrfs_getattr,
+	.setattr	= btrfs_setattr,
+	.setxattr	= btrfs_setxattr,
+	.getxattr	= btrfs_getxattr,
+	.listxattr      = btrfs_listxattr,
+	.removexattr	= btrfs_removexattr,
+	.permission	= btrfs_permission,
+	.fiemap		= btrfs_fiemap,
+	.get_acl	= btrfs_get_acl,
+};
+static const struct inode_operations btrfs_special_inode_operations = {
+	.getattr	= btrfs_getattr,
+	.setattr	= btrfs_setattr,
+	.permission	= btrfs_permission,
+	.setxattr	= btrfs_setxattr,
+	.getxattr	= btrfs_getxattr,
+	.listxattr	= btrfs_listxattr,
+	.removexattr	= btrfs_removexattr,
+	.get_acl	= btrfs_get_acl,
+};
+static const struct inode_operations btrfs_symlink_inode_operations = {
+	.readlink	= generic_readlink,
+	.follow_link	= page_follow_link_light,
+	.put_link	= page_put_link,
+	.getattr	= btrfs_getattr,
+	.setattr	= btrfs_setattr,
+	.permission	= btrfs_permission,
+	.setxattr	= btrfs_setxattr,
+	.getxattr	= btrfs_getxattr,
+	.listxattr	= btrfs_listxattr,
+	.removexattr	= btrfs_removexattr,
+	.get_acl	= btrfs_get_acl,
+};
+
+const struct dentry_operations btrfs_dentry_operations = {
+	.d_delete	= btrfs_dentry_delete,
+	.d_release	= btrfs_dentry_release,
+};