[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/super.c b/ap/os/linux/linux-3.4.x/fs/btrfs/super.c
new file mode 100644
index 0000000..c5f8fca
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/super.c
@@ -0,0 +1,1578 @@
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/buffer_head.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/seq_file.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mount.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/statfs.h>
+#include <linux/compat.h>
+#include <linux/parser.h>
+#include <linux/ctype.h>
+#include <linux/namei.h>
+#include <linux/miscdevice.h>
+#include <linux/magic.h>
+#include <linux/slab.h>
+#include <linux/cleancache.h>
+#include <linux/ratelimit.h>
+#include "compat.h"
+#include "delayed-inode.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "ioctl.h"
+#include "print-tree.h"
+#include "xattr.h"
+#include "volumes.h"
+#include "version.h"
+#include "export.h"
+#include "compression.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/btrfs.h>
+
+static const struct super_operations btrfs_super_ops;
+static struct file_system_type btrfs_fs_type;
+
+static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
+				      char nbuf[16])
+{
+	char *errstr = NULL;
+
+	switch (errno) {
+	case -EIO:
+		errstr = "IO failure";
+		break;
+	case -ENOMEM:
+		errstr = "Out of memory";
+		break;
+	case -EROFS:
+		errstr = "Readonly filesystem";
+		break;
+	case -EEXIST:
+		errstr = "Object already exists";
+		break;
+	default:
+		if (nbuf) {
+			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
+				errstr = nbuf;
+		}
+		break;
+	}
+
+	return errstr;
+}
+
+static void __save_error_info(struct btrfs_fs_info *fs_info)
+{
+	/*
+	 * today we only save the error info into ram.  Long term we'll
+	 * also send it down to the disk
+	 */
+	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
+}
+
+/* NOTE:
+ *	We move write_super stuff at umount in order to avoid deadlock
+ *	for umount hold all lock.
+ */
+static void save_error_info(struct btrfs_fs_info *fs_info)
+{
+	__save_error_info(fs_info);
+}
+
+/* btrfs handle error by forcing the filesystem readonly */
+static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
+{
+	struct super_block *sb = fs_info->sb;
+
+	if (sb->s_flags & MS_RDONLY)
+		return;
+
+	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+		sb->s_flags |= MS_RDONLY;
+		printk(KERN_INFO "btrfs is forced readonly\n");
+		__btrfs_scrub_cancel(fs_info);
+//		WARN_ON(1);
+	}
+}
+
+/*
+ * __btrfs_std_error decodes expected errors from the caller and
+ * invokes the approciate error response.
+ */
+void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
+		       unsigned int line, int errno, const char *fmt, ...)
+{
+	struct super_block *sb = fs_info->sb;
+	char nbuf[16];
+	const char *errstr;
+	va_list args;
+	va_start(args, fmt);
+
+	/*
+	 * Special case: if the error is EROFS, and we're already
+	 * under MS_RDONLY, then it is safe here.
+	 */
+	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
+  		return;
+
+  	errstr = btrfs_decode_error(fs_info, errno, nbuf);
+	if (fmt) {
+		struct va_format vaf = {
+			.fmt = fmt,
+			.va = &args,
+		};
+
+		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
+			sb->s_id, function, line, errstr, &vaf);
+	} else {
+		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
+			sb->s_id, function, line, errstr);
+	}
+
+	/* Don't go through full error handling during mount */
+	if (sb->s_flags & MS_BORN) {
+		save_error_info(fs_info);
+		btrfs_handle_error(fs_info);
+	}
+	va_end(args);
+}
+
+const char *logtypes[] = {
+	"emergency",
+	"alert",
+	"critical",
+	"error",
+	"warning",
+	"notice",
+	"info",
+	"debug",
+};
+
+void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
+{
+	struct super_block *sb = fs_info->sb;
+	char lvl[4];
+	struct va_format vaf;
+	va_list args;
+	const char *type = logtypes[4];
+
+	va_start(args, fmt);
+
+	if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
+		strncpy(lvl, fmt, 3);
+		fmt += 3;
+		type = logtypes[fmt[1] - '0'];
+	} else
+		*lvl = '\0';
+
+	vaf.fmt = fmt;
+	vaf.va = &args;
+	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
+}
+
+/*
+ * We only mark the transaction aborted and then set the file system read-only.
+ * This will prevent new transactions from starting or trying to join this
+ * one.
+ *
+ * This means that error recovery at the call site is limited to freeing
+ * any local memory allocations and passing the error code up without
+ * further cleanup. The transaction should complete as it normally would
+ * in the call path but will return -EIO.
+ *
+ * We'll complete the cleanup in btrfs_end_transaction and
+ * btrfs_commit_transaction.
+ */
+void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root, const char *function,
+			       unsigned int line, int errno)
+{
+	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
+	trans->aborted = errno;
+	/* Nothing used. The other threads that have joined this
+	 * transaction may be able to continue. */
+	if (!trans->blocks_used) {
+		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
+		return;
+	}
+	trans->transaction->aborted = errno;
+	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
+}
+/*
+ * __btrfs_panic decodes unexpected, fatal errors from the caller,
+ * issues an alert, and either panics or BUGs, depending on mount options.
+ */
+void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
+		   unsigned int line, int errno, const char *fmt, ...)
+{
+	char nbuf[16];
+	char *s_id = "<unknown>";
+	const char *errstr;
+	struct va_format vaf = { .fmt = fmt };
+	va_list args;
+
+	if (fs_info)
+		s_id = fs_info->sb->s_id;
+
+	va_start(args, fmt);
+	vaf.va = &args;
+
+	errstr = btrfs_decode_error(fs_info, errno, nbuf);
+	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
+		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
+			s_id, function, line, &vaf, errstr);
+
+	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
+	       s_id, function, line, &vaf, errstr);
+	va_end(args);
+	/* Caller calls BUG() */
+}
+
+static void btrfs_put_super(struct super_block *sb)
+{
+	(void)close_ctree(btrfs_sb(sb)->tree_root);
+	/* FIXME: need to fix VFS to return error? */
+	/* AV: return it _where_?  ->put_super() can be triggered by any number
+	 * of async events, up to and including delivery of SIGKILL to the
+	 * last process that kept it busy.  Or segfault in the aforementioned
+	 * process...  Whom would you report that to?
+	 */
+}
+
+enum {
+	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
+	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
+	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
+	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
+	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
+	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
+	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
+	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
+	Opt_check_integrity, Opt_check_integrity_including_extent_data,
+	Opt_check_integrity_print_mask, Opt_fatal_errors,
+	Opt_err,
+};
+
+static match_table_t tokens = {
+	{Opt_degraded, "degraded"},
+	{Opt_subvol, "subvol=%s"},
+	{Opt_subvolid, "subvolid=%d"},
+	{Opt_device, "device=%s"},
+	{Opt_nodatasum, "nodatasum"},
+	{Opt_nodatacow, "nodatacow"},
+	{Opt_nobarrier, "nobarrier"},
+	{Opt_max_inline, "max_inline=%s"},
+	{Opt_alloc_start, "alloc_start=%s"},
+	{Opt_thread_pool, "thread_pool=%d"},
+	{Opt_compress, "compress"},
+	{Opt_compress_type, "compress=%s"},
+	{Opt_compress_force, "compress-force"},
+	{Opt_compress_force_type, "compress-force=%s"},
+	{Opt_ssd, "ssd"},
+	{Opt_ssd_spread, "ssd_spread"},
+	{Opt_nossd, "nossd"},
+	{Opt_noacl, "noacl"},
+	{Opt_notreelog, "notreelog"},
+	{Opt_flushoncommit, "flushoncommit"},
+	{Opt_ratio, "metadata_ratio=%d"},
+	{Opt_discard, "discard"},
+	{Opt_space_cache, "space_cache"},
+	{Opt_clear_cache, "clear_cache"},
+	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
+	{Opt_enospc_debug, "enospc_debug"},
+	{Opt_subvolrootid, "subvolrootid=%d"},
+	{Opt_defrag, "autodefrag"},
+	{Opt_inode_cache, "inode_cache"},
+	{Opt_no_space_cache, "nospace_cache"},
+	{Opt_recovery, "recovery"},
+	{Opt_skip_balance, "skip_balance"},
+	{Opt_check_integrity, "check_int"},
+	{Opt_check_integrity_including_extent_data, "check_int_data"},
+	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
+	{Opt_fatal_errors, "fatal_errors=%s"},
+	{Opt_err, NULL},
+};
+
+/*
+ * Regular mount options parser.  Everything that is needed only when
+ * reading in a new superblock is parsed here.
+ * XXX JDM: This needs to be cleaned up for remount.
+ */
+int btrfs_parse_options(struct btrfs_root *root, char *options)
+{
+	struct btrfs_fs_info *info = root->fs_info;
+	substring_t args[MAX_OPT_ARGS];
+	char *p, *num, *orig = NULL;
+	u64 cache_gen;
+	int intarg;
+	int ret = 0;
+	char *compress_type;
+	bool compress_force = false;
+
+	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
+	if (cache_gen)
+		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
+
+	if (!options)
+		goto out;
+
+	/*
+	 * strsep changes the string, duplicate it because parse_options
+	 * gets called twice
+	 */
+	options = kstrdup(options, GFP_NOFS);
+	if (!options)
+		return -ENOMEM;
+
+	orig = options;
+
+	while ((p = strsep(&options, ",")) != NULL) {
+		int token;
+		if (!*p)
+			continue;
+
+		token = match_token(p, tokens, args);
+		switch (token) {
+		case Opt_degraded:
+			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
+			btrfs_set_opt(info->mount_opt, DEGRADED);
+			break;
+		case Opt_subvol:
+		case Opt_subvolid:
+		case Opt_subvolrootid:
+		case Opt_device:
+			/*
+			 * These are parsed by btrfs_parse_early_options
+			 * and can be happily ignored here.
+			 */
+			break;
+		case Opt_nodatasum:
+			printk(KERN_INFO "btrfs: setting nodatasum\n");
+			btrfs_set_opt(info->mount_opt, NODATASUM);
+			break;
+		case Opt_nodatacow:
+			printk(KERN_INFO "btrfs: setting nodatacow\n");
+			btrfs_set_opt(info->mount_opt, NODATACOW);
+			btrfs_set_opt(info->mount_opt, NODATASUM);
+			break;
+		case Opt_compress_force:
+		case Opt_compress_force_type:
+			compress_force = true;
+		case Opt_compress:
+		case Opt_compress_type:
+			if (token == Opt_compress ||
+			    token == Opt_compress_force ||
+			    strcmp(args[0].from, "zlib") == 0) {
+				compress_type = "zlib";
+				info->compress_type = BTRFS_COMPRESS_ZLIB;
+			} else if (strcmp(args[0].from, "lzo") == 0) {
+				compress_type = "lzo";
+				info->compress_type = BTRFS_COMPRESS_LZO;
+			} else {
+				ret = -EINVAL;
+				goto out;
+			}
+
+			btrfs_set_opt(info->mount_opt, COMPRESS);
+			if (compress_force) {
+				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
+				pr_info("btrfs: force %s compression\n",
+					compress_type);
+			} else
+				pr_info("btrfs: use %s compression\n",
+					compress_type);
+			break;
+		case Opt_ssd:
+			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
+			btrfs_set_opt(info->mount_opt, SSD);
+			break;
+		case Opt_ssd_spread:
+			printk(KERN_INFO "btrfs: use spread ssd "
+			       "allocation scheme\n");
+			btrfs_set_opt(info->mount_opt, SSD);
+			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
+			break;
+		case Opt_nossd:
+			printk(KERN_INFO "btrfs: not using ssd allocation "
+			       "scheme\n");
+			btrfs_set_opt(info->mount_opt, NOSSD);
+			btrfs_clear_opt(info->mount_opt, SSD);
+			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
+			break;
+		case Opt_nobarrier:
+			printk(KERN_INFO "btrfs: turning off barriers\n");
+			btrfs_set_opt(info->mount_opt, NOBARRIER);
+			break;
+		case Opt_thread_pool:
+			intarg = 0;
+			match_int(&args[0], &intarg);
+			if (intarg) {
+				info->thread_pool_size = intarg;
+				printk(KERN_INFO "btrfs: thread pool %d\n",
+				       info->thread_pool_size);
+			}
+			break;
+		case Opt_max_inline:
+			num = match_strdup(&args[0]);
+			if (num) {
+				info->max_inline = memparse(num, NULL);
+				kfree(num);
+
+				if (info->max_inline) {
+					info->max_inline = max_t(u64,
+						info->max_inline,
+						root->sectorsize);
+				}
+				printk(KERN_INFO "btrfs: max_inline at %llu\n",
+					(unsigned long long)info->max_inline);
+			}
+			break;
+		case Opt_alloc_start:
+			num = match_strdup(&args[0]);
+			if (num) {
+				info->alloc_start = memparse(num, NULL);
+				kfree(num);
+				printk(KERN_INFO
+					"btrfs: allocations start at %llu\n",
+					(unsigned long long)info->alloc_start);
+			}
+			break;
+		case Opt_noacl:
+			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
+			break;
+		case Opt_notreelog:
+			printk(KERN_INFO "btrfs: disabling tree log\n");
+			btrfs_set_opt(info->mount_opt, NOTREELOG);
+			break;
+		case Opt_flushoncommit:
+			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
+			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
+			break;
+		case Opt_ratio:
+			intarg = 0;
+			match_int(&args[0], &intarg);
+			if (intarg) {
+				info->metadata_ratio = intarg;
+				printk(KERN_INFO "btrfs: metadata ratio %d\n",
+				       info->metadata_ratio);
+			}
+			break;
+		case Opt_discard:
+			btrfs_set_opt(info->mount_opt, DISCARD);
+			break;
+		case Opt_space_cache:
+			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
+			break;
+		case Opt_no_space_cache:
+			printk(KERN_INFO "btrfs: disabling disk space caching\n");
+			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
+			break;
+		case Opt_inode_cache:
+			printk(KERN_INFO "btrfs: enabling inode map caching\n");
+			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
+			break;
+		case Opt_clear_cache:
+			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
+			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
+			break;
+		case Opt_user_subvol_rm_allowed:
+			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
+			break;
+		case Opt_enospc_debug:
+			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
+			break;
+		case Opt_defrag:
+			printk(KERN_INFO "btrfs: enabling auto defrag");
+			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
+			break;
+		case Opt_recovery:
+			printk(KERN_INFO "btrfs: enabling auto recovery");
+			btrfs_set_opt(info->mount_opt, RECOVERY);
+			break;
+		case Opt_skip_balance:
+			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
+			break;
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+		case Opt_check_integrity_including_extent_data:
+			printk(KERN_INFO "btrfs: enabling check integrity"
+			       " including extent data\n");
+			btrfs_set_opt(info->mount_opt,
+				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
+			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
+			break;
+		case Opt_check_integrity:
+			printk(KERN_INFO "btrfs: enabling check integrity\n");
+			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
+			break;
+		case Opt_check_integrity_print_mask:
+			intarg = 0;
+			match_int(&args[0], &intarg);
+			if (intarg) {
+				info->check_integrity_print_mask = intarg;
+				printk(KERN_INFO "btrfs:"
+				       " check_integrity_print_mask 0x%x\n",
+				       info->check_integrity_print_mask);
+			}
+			break;
+#else
+		case Opt_check_integrity_including_extent_data:
+		case Opt_check_integrity:
+		case Opt_check_integrity_print_mask:
+			printk(KERN_ERR "btrfs: support for check_integrity*"
+			       " not compiled in!\n");
+			ret = -EINVAL;
+			goto out;
+#endif
+		case Opt_fatal_errors:
+			if (strcmp(args[0].from, "panic") == 0)
+				btrfs_set_opt(info->mount_opt,
+					      PANIC_ON_FATAL_ERROR);
+			else if (strcmp(args[0].from, "bug") == 0)
+				btrfs_clear_opt(info->mount_opt,
+					      PANIC_ON_FATAL_ERROR);
+			else {
+				ret = -EINVAL;
+				goto out;
+			}
+			break;
+		case Opt_err:
+			printk(KERN_INFO "btrfs: unrecognized mount option "
+			       "'%s'\n", p);
+			ret = -EINVAL;
+			goto out;
+		default:
+			break;
+		}
+	}
+out:
+	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
+		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
+	kfree(orig);
+	return ret;
+}
+
+/*
+ * Parse mount options that are required early in the mount process.
+ *
+ * All other options will be parsed on much later in the mount process and
+ * only when we need to allocate a new super block.
+ */
+static int btrfs_parse_early_options(const char *options, fmode_t flags,
+		void *holder, char **subvol_name, u64 *subvol_objectid,
+		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
+{
+	substring_t args[MAX_OPT_ARGS];
+	char *device_name, *opts, *orig, *p;
+	int error = 0;
+	int intarg;
+
+	if (!options)
+		return 0;
+
+	/*
+	 * strsep changes the string, duplicate it because parse_options
+	 * gets called twice
+	 */
+	opts = kstrdup(options, GFP_KERNEL);
+	if (!opts)
+		return -ENOMEM;
+	orig = opts;
+
+	while ((p = strsep(&opts, ",")) != NULL) {
+		int token;
+		if (!*p)
+			continue;
+
+		token = match_token(p, tokens, args);
+		switch (token) {
+		case Opt_subvol:
+			kfree(*subvol_name);
+			*subvol_name = match_strdup(&args[0]);
+			break;
+		case Opt_subvolid:
+			intarg = 0;
+			error = match_int(&args[0], &intarg);
+			if (!error) {
+				/* we want the original fs_tree */
+				if (!intarg)
+					*subvol_objectid =
+						BTRFS_FS_TREE_OBJECTID;
+				else
+					*subvol_objectid = intarg;
+			}
+			break;
+		case Opt_subvolrootid:
+			intarg = 0;
+			error = match_int(&args[0], &intarg);
+			if (!error) {
+				/* we want the original fs_tree */
+				if (!intarg)
+					*subvol_rootid =
+						BTRFS_FS_TREE_OBJECTID;
+				else
+					*subvol_rootid = intarg;
+			}
+			break;
+		case Opt_device:
+			device_name = match_strdup(&args[0]);
+			if (!device_name) {
+				error = -ENOMEM;
+				goto out;
+			}
+			error = btrfs_scan_one_device(device_name,
+					flags, holder, fs_devices);
+			kfree(device_name);
+			if (error)
+				goto out;
+			break;
+		default:
+			break;
+		}
+	}
+
+out:
+	kfree(orig);
+	return error;
+}
+
+static struct dentry *get_default_root(struct super_block *sb,
+				       u64 subvol_objectid)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	struct btrfs_root *root = fs_info->tree_root;
+	struct btrfs_root *new_root;
+	struct btrfs_dir_item *di;
+	struct btrfs_path *path;
+	struct btrfs_key location;
+	struct inode *inode;
+	u64 dir_id;
+	int new = 0;
+
+	/*
+	 * We have a specific subvol we want to mount, just setup location and
+	 * go look up the root.
+	 */
+	if (subvol_objectid) {
+		location.objectid = subvol_objectid;
+		location.type = BTRFS_ROOT_ITEM_KEY;
+		location.offset = (u64)-1;
+		goto find_root;
+	}
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return ERR_PTR(-ENOMEM);
+	path->leave_spinning = 1;
+
+	/*
+	 * Find the "default" dir item which points to the root item that we
+	 * will mount by default if we haven't been given a specific subvolume
+	 * to mount.
+	 */
+	dir_id = btrfs_super_root_dir(fs_info->super_copy);
+	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
+	if (IS_ERR(di)) {
+		btrfs_free_path(path);
+		return ERR_CAST(di);
+	}
+	if (!di) {
+		/*
+		 * Ok the default dir item isn't there.  This is weird since
+		 * it's always been there, but don't freak out, just try and
+		 * mount to root most subvolume.
+		 */
+		btrfs_free_path(path);
+		dir_id = BTRFS_FIRST_FREE_OBJECTID;
+		new_root = fs_info->fs_root;
+		goto setup_root;
+	}
+
+	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
+	btrfs_free_path(path);
+
+find_root:
+	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
+	if (IS_ERR(new_root))
+		return ERR_CAST(new_root);
+
+	if (btrfs_root_refs(&new_root->root_item) == 0)
+		return ERR_PTR(-ENOENT);
+
+	dir_id = btrfs_root_dirid(&new_root->root_item);
+setup_root:
+	location.objectid = dir_id;
+	location.type = BTRFS_INODE_ITEM_KEY;
+	location.offset = 0;
+
+	inode = btrfs_iget(sb, &location, new_root, &new);
+	if (IS_ERR(inode))
+		return ERR_CAST(inode);
+
+	/*
+	 * If we're just mounting the root most subvol put the inode and return
+	 * a reference to the dentry.  We will have already gotten a reference
+	 * to the inode in btrfs_fill_super so we're good to go.
+	 */
+	if (!new && sb->s_root->d_inode == inode) {
+		iput(inode);
+		return dget(sb->s_root);
+	}
+
+	return d_obtain_alias(inode);
+}
+
+static int btrfs_fill_super(struct super_block *sb,
+			    struct btrfs_fs_devices *fs_devices,
+			    void *data, int silent)
+{
+	struct inode *inode;
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	struct btrfs_key key;
+	int err;
+
+	sb->s_maxbytes = MAX_LFS_FILESIZE;
+	sb->s_magic = BTRFS_SUPER_MAGIC;
+	sb->s_op = &btrfs_super_ops;
+	sb->s_d_op = &btrfs_dentry_operations;
+	sb->s_export_op = &btrfs_export_ops;
+	sb->s_xattr = btrfs_xattr_handlers;
+	sb->s_time_gran = 1;
+#ifdef CONFIG_BTRFS_FS_POSIX_ACL
+	sb->s_flags |= MS_POSIXACL;
+#endif
+
+	err = open_ctree(sb, fs_devices, (char *)data);
+	if (err) {
+		printk("btrfs: open_ctree failed\n");
+		return err;
+	}
+
+	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
+	key.type = BTRFS_INODE_ITEM_KEY;
+	key.offset = 0;
+	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
+	if (IS_ERR(inode)) {
+		err = PTR_ERR(inode);
+		goto fail_close;
+	}
+
+	sb->s_root = d_make_root(inode);
+	if (!sb->s_root) {
+		err = -ENOMEM;
+		goto fail_close;
+	}
+
+	save_mount_options(sb, data);
+	cleancache_init_fs(sb);
+	sb->s_flags |= MS_ACTIVE;
+	return 0;
+
+fail_close:
+	close_ctree(fs_info->tree_root);
+	return err;
+}
+
+int btrfs_sync_fs(struct super_block *sb, int wait)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	struct btrfs_root *root = fs_info->tree_root;
+	int ret;
+
+	trace_btrfs_sync_fs(wait);
+
+	if (!wait) {
+		filemap_flush(fs_info->btree_inode->i_mapping);
+		return 0;
+	}
+
+	btrfs_wait_ordered_extents(root, 0, 0);
+
+	trans = btrfs_start_transaction(root, 0);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+	ret = btrfs_commit_transaction(trans, root);
+	return ret;
+}
+
+static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
+{
+	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
+	struct btrfs_root *root = info->tree_root;
+	char *compress_type;
+
+	if (btrfs_test_opt(root, DEGRADED))
+		seq_puts(seq, ",degraded");
+	if (btrfs_test_opt(root, NODATASUM))
+		seq_puts(seq, ",nodatasum");
+	if (btrfs_test_opt(root, NODATACOW))
+		seq_puts(seq, ",nodatacow");
+	if (btrfs_test_opt(root, NOBARRIER))
+		seq_puts(seq, ",nobarrier");
+	if (info->max_inline != 8192 * 1024)
+		seq_printf(seq, ",max_inline=%llu",
+			   (unsigned long long)info->max_inline);
+	if (info->alloc_start != 0)
+		seq_printf(seq, ",alloc_start=%llu",
+			   (unsigned long long)info->alloc_start);
+	if (info->thread_pool_size !=  min_t(unsigned long,
+					     num_online_cpus() + 2, 8))
+		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
+	if (btrfs_test_opt(root, COMPRESS)) {
+		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
+			compress_type = "zlib";
+		else
+			compress_type = "lzo";
+		if (btrfs_test_opt(root, FORCE_COMPRESS))
+			seq_printf(seq, ",compress-force=%s", compress_type);
+		else
+			seq_printf(seq, ",compress=%s", compress_type);
+	}
+	if (btrfs_test_opt(root, NOSSD))
+		seq_puts(seq, ",nossd");
+	if (btrfs_test_opt(root, SSD_SPREAD))
+		seq_puts(seq, ",ssd_spread");
+	else if (btrfs_test_opt(root, SSD))
+		seq_puts(seq, ",ssd");
+	if (btrfs_test_opt(root, NOTREELOG))
+		seq_puts(seq, ",notreelog");
+	if (btrfs_test_opt(root, FLUSHONCOMMIT))
+		seq_puts(seq, ",flushoncommit");
+	if (btrfs_test_opt(root, DISCARD))
+		seq_puts(seq, ",discard");
+	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
+		seq_puts(seq, ",noacl");
+	if (btrfs_test_opt(root, SPACE_CACHE))
+		seq_puts(seq, ",space_cache");
+	else
+		seq_puts(seq, ",nospace_cache");
+	if (btrfs_test_opt(root, CLEAR_CACHE))
+		seq_puts(seq, ",clear_cache");
+	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
+		seq_puts(seq, ",user_subvol_rm_allowed");
+	if (btrfs_test_opt(root, ENOSPC_DEBUG))
+		seq_puts(seq, ",enospc_debug");
+	if (btrfs_test_opt(root, AUTO_DEFRAG))
+		seq_puts(seq, ",autodefrag");
+	if (btrfs_test_opt(root, INODE_MAP_CACHE))
+		seq_puts(seq, ",inode_cache");
+	if (btrfs_test_opt(root, SKIP_BALANCE))
+		seq_puts(seq, ",skip_balance");
+	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
+		seq_puts(seq, ",fatal_errors=panic");
+	return 0;
+}
+
+static int btrfs_test_super(struct super_block *s, void *data)
+{
+	struct btrfs_fs_info *p = data;
+	struct btrfs_fs_info *fs_info = btrfs_sb(s);
+
+	return fs_info->fs_devices == p->fs_devices;
+}
+
+static int btrfs_set_super(struct super_block *s, void *data)
+{
+	int err = set_anon_super(s, data);
+	if (!err)
+		s->s_fs_info = data;
+	return err;
+}
+
+/*
+ * subvolumes are identified by ino 256
+ */
+static inline int is_subvolume_inode(struct inode *inode)
+{
+	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
+		return 1;
+	return 0;
+}
+
+/*
+ * This will strip out the subvol=%s argument for an argument string and add
+ * subvolid=0 to make sure we get the actual tree root for path walking to the
+ * subvol we want.
+ */
+static char *setup_root_args(char *args)
+{
+	unsigned copied = 0;
+	unsigned len = strlen(args) + 2;
+	char *pos;
+	char *ret;
+
+	/*
+	 * We need the same args as before, but minus
+	 *
+	 * subvol=a
+	 *
+	 * and add
+	 *
+	 * subvolid=0
+	 *
+	 * which is a difference of 2 characters, so we allocate strlen(args) +
+	 * 2 characters.
+	 */
+	ret = kzalloc(len * sizeof(char), GFP_NOFS);
+	if (!ret)
+		return NULL;
+	pos = strstr(args, "subvol=");
+
+	/* This shouldn't happen, but just in case.. */
+	if (!pos) {
+		kfree(ret);
+		return NULL;
+	}
+
+	/*
+	 * The subvol=<> arg is not at the front of the string, copy everybody
+	 * up to that into ret.
+	 */
+	if (pos != args) {
+		*pos = '\0';
+		strcpy(ret, args);
+		copied += strlen(args);
+		pos++;
+	}
+
+	strncpy(ret + copied, "subvolid=0", len - copied);
+
+	/* Length of subvolid=0 */
+	copied += 10;
+
+	/*
+	 * If there is no , after the subvol= option then we know there's no
+	 * other options and we can just return.
+	 */
+	pos = strchr(pos, ',');
+	if (!pos)
+		return ret;
+
+	/* Copy the rest of the arguments into our buffer */
+	strncpy(ret + copied, pos, len - copied);
+	copied += strlen(pos);
+
+	return ret;
+}
+
+static struct dentry *mount_subvol(const char *subvol_name, int flags,
+				   const char *device_name, char *data)
+{
+	struct dentry *root;
+	struct vfsmount *mnt;
+	char *newargs;
+
+	newargs = setup_root_args(data);
+	if (!newargs)
+		return ERR_PTR(-ENOMEM);
+	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
+			     newargs);
+	kfree(newargs);
+	if (IS_ERR(mnt))
+		return ERR_CAST(mnt);
+
+	root = mount_subtree(mnt, subvol_name);
+
+	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
+		struct super_block *s = root->d_sb;
+		dput(root);
+		root = ERR_PTR(-EINVAL);
+		deactivate_locked_super(s);
+		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
+				subvol_name);
+	}
+
+	return root;
+}
+
+/*
+ * Find a superblock for the given device / mount point.
+ *
+ * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
+ *	  for multiple device setup.  Make sure to keep it in sync.
+ */
+static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
+		const char *device_name, void *data)
+{
+	struct block_device *bdev = NULL;
+	struct super_block *s;
+	struct dentry *root;
+	struct btrfs_fs_devices *fs_devices = NULL;
+	struct btrfs_fs_info *fs_info = NULL;
+	fmode_t mode = FMODE_READ;
+	char *subvol_name = NULL;
+	u64 subvol_objectid = 0;
+	u64 subvol_rootid = 0;
+	int error = 0;
+
+	if (!(flags & MS_RDONLY))
+		mode |= FMODE_WRITE;
+
+	error = btrfs_parse_early_options(data, mode, fs_type,
+					  &subvol_name, &subvol_objectid,
+					  &subvol_rootid, &fs_devices);
+	if (error) {
+		kfree(subvol_name);
+		return ERR_PTR(error);
+	}
+
+	if (subvol_name) {
+		root = mount_subvol(subvol_name, flags, device_name, data);
+		kfree(subvol_name);
+		return root;
+	}
+
+	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
+	if (error)
+		return ERR_PTR(error);
+
+	/*
+	 * Setup a dummy root and fs_info for test/set super.  This is because
+	 * we don't actually fill this stuff out until open_ctree, but we need
+	 * it for searching for existing supers, so this lets us do that and
+	 * then open_ctree will properly initialize everything later.
+	 */
+	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
+	if (!fs_info)
+		return ERR_PTR(-ENOMEM);
+
+	fs_info->fs_devices = fs_devices;
+
+	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
+	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
+	if (!fs_info->super_copy || !fs_info->super_for_commit) {
+		error = -ENOMEM;
+		goto error_fs_info;
+	}
+
+	error = btrfs_open_devices(fs_devices, mode, fs_type);
+	if (error)
+		goto error_fs_info;
+
+	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
+		error = -EACCES;
+		goto error_close_devices;
+	}
+
+	bdev = fs_devices->latest_bdev;
+	s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
+	if (IS_ERR(s)) {
+		error = PTR_ERR(s);
+		goto error_close_devices;
+	}
+
+	if (s->s_root) {
+		btrfs_close_devices(fs_devices);
+		free_fs_info(fs_info);
+		if ((flags ^ s->s_flags) & MS_RDONLY)
+			error = -EBUSY;
+	} else {
+		char b[BDEVNAME_SIZE];
+
+		s->s_flags = flags | MS_NOSEC;
+		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
+		btrfs_sb(s)->bdev_holder = fs_type;
+		error = btrfs_fill_super(s, fs_devices, data,
+					 flags & MS_SILENT ? 1 : 0);
+	}
+
+	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
+	if (IS_ERR(root))
+		deactivate_locked_super(s);
+
+	return root;
+
+error_close_devices:
+	btrfs_close_devices(fs_devices);
+error_fs_info:
+	free_fs_info(fs_info);
+	return ERR_PTR(error);
+}
+
+static int btrfs_remount(struct super_block *sb, int *flags, char *data)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	struct btrfs_root *root = fs_info->tree_root;
+	unsigned old_flags = sb->s_flags;
+	unsigned long old_opts = fs_info->mount_opt;
+	unsigned long old_compress_type = fs_info->compress_type;
+	u64 old_max_inline = fs_info->max_inline;
+	u64 old_alloc_start = fs_info->alloc_start;
+	int old_thread_pool_size = fs_info->thread_pool_size;
+	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
+	int ret;
+
+	ret = btrfs_parse_options(root, data);
+	if (ret) {
+		ret = -EINVAL;
+		goto restore;
+	}
+
+	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
+		return 0;
+
+	if (*flags & MS_RDONLY) {
+		sb->s_flags |= MS_RDONLY;
+
+		ret = btrfs_commit_super(root);
+		if (ret)
+			goto restore;
+	} else {
+		if (fs_info->fs_devices->rw_devices == 0) {
+			ret = -EACCES;
+			goto restore;
+		}
+
+		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
+			ret = -EINVAL;
+			goto restore;
+		}
+
+		ret = btrfs_cleanup_fs_roots(fs_info);
+		if (ret)
+			goto restore;
+
+		/* recover relocation */
+		ret = btrfs_recover_relocation(root);
+		if (ret)
+			goto restore;
+
+		sb->s_flags &= ~MS_RDONLY;
+	}
+
+	return 0;
+
+restore:
+	/* We've hit an error - don't reset MS_RDONLY */
+	if (sb->s_flags & MS_RDONLY)
+		old_flags |= MS_RDONLY;
+	sb->s_flags = old_flags;
+	fs_info->mount_opt = old_opts;
+	fs_info->compress_type = old_compress_type;
+	fs_info->max_inline = old_max_inline;
+	fs_info->alloc_start = old_alloc_start;
+	fs_info->thread_pool_size = old_thread_pool_size;
+	fs_info->metadata_ratio = old_metadata_ratio;
+	return ret;
+}
+
+/* Used to sort the devices by max_avail(descending sort) */
+static int btrfs_cmp_device_free_bytes(const void *dev_info1,
+				       const void *dev_info2)
+{
+	if (((struct btrfs_device_info *)dev_info1)->max_avail >
+	    ((struct btrfs_device_info *)dev_info2)->max_avail)
+		return -1;
+	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
+		 ((struct btrfs_device_info *)dev_info2)->max_avail)
+		return 1;
+	else
+	return 0;
+}
+
+/*
+ * sort the devices by max_avail, in which max free extent size of each device
+ * is stored.(Descending Sort)
+ */
+static inline void btrfs_descending_sort_devices(
+					struct btrfs_device_info *devices,
+					size_t nr_devices)
+{
+	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
+	     btrfs_cmp_device_free_bytes, NULL);
+}
+
+/*
+ * The helper to calc the free space on the devices that can be used to store
+ * file data.
+ */
+static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_device_info *devices_info;
+	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
+	struct btrfs_device *device;
+	u64 skip_space;
+	u64 type;
+	u64 avail_space;
+	u64 used_space;
+	u64 min_stripe_size;
+	int min_stripes = 1, num_stripes = 1;
+	int i = 0, nr_devices;
+	int ret;
+
+	nr_devices = fs_info->fs_devices->open_devices;
+	BUG_ON(!nr_devices);
+
+	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
+			       GFP_NOFS);
+	if (!devices_info)
+		return -ENOMEM;
+
+	/* calc min stripe number for data space alloction */
+	type = btrfs_get_alloc_profile(root, 1);
+	if (type & BTRFS_BLOCK_GROUP_RAID0) {
+		min_stripes = 2;
+		num_stripes = nr_devices;
+	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
+		min_stripes = 2;
+		num_stripes = 2;
+	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
+		min_stripes = 4;
+		num_stripes = 4;
+	}
+
+	if (type & BTRFS_BLOCK_GROUP_DUP)
+		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
+	else
+		min_stripe_size = BTRFS_STRIPE_LEN;
+
+	list_for_each_entry(device, &fs_devices->devices, dev_list) {
+		if (!device->in_fs_metadata || !device->bdev)
+			continue;
+
+		avail_space = device->total_bytes - device->bytes_used;
+
+		/* align with stripe_len */
+		do_div(avail_space, BTRFS_STRIPE_LEN);
+		avail_space *= BTRFS_STRIPE_LEN;
+
+		/*
+		 * In order to avoid overwritting the superblock on the drive,
+		 * btrfs starts at an offset of at least 1MB when doing chunk
+		 * allocation.
+		 */
+		skip_space = 1024 * 1024;
+
+		/* user can set the offset in fs_info->alloc_start. */
+		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
+		    device->total_bytes)
+			skip_space = max(fs_info->alloc_start, skip_space);
+
+		/*
+		 * btrfs can not use the free space in [0, skip_space - 1],
+		 * we must subtract it from the total. In order to implement
+		 * it, we account the used space in this range first.
+		 */
+		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
+						     &used_space);
+		if (ret) {
+			kfree(devices_info);
+			return ret;
+		}
+
+		/* calc the free space in [0, skip_space - 1] */
+		skip_space -= used_space;
+
+		/*
+		 * we can use the free space in [0, skip_space - 1], subtract
+		 * it from the total.
+		 */
+		if (avail_space && avail_space >= skip_space)
+			avail_space -= skip_space;
+		else
+			avail_space = 0;
+
+		if (avail_space < min_stripe_size)
+			continue;
+
+		devices_info[i].dev = device;
+		devices_info[i].max_avail = avail_space;
+
+		i++;
+	}
+
+	nr_devices = i;
+
+	btrfs_descending_sort_devices(devices_info, nr_devices);
+
+	i = nr_devices - 1;
+	avail_space = 0;
+	while (nr_devices >= min_stripes) {
+		if (num_stripes > nr_devices)
+			num_stripes = nr_devices;
+
+		if (devices_info[i].max_avail >= min_stripe_size) {
+			int j;
+			u64 alloc_size;
+
+			avail_space += devices_info[i].max_avail * num_stripes;
+			alloc_size = devices_info[i].max_avail;
+			for (j = i + 1 - num_stripes; j <= i; j++)
+				devices_info[j].max_avail -= alloc_size;
+		}
+		i--;
+		nr_devices--;
+	}
+
+	kfree(devices_info);
+	*free_bytes = avail_space;
+	return 0;
+}
+
+static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
+	struct btrfs_super_block *disk_super = fs_info->super_copy;
+	struct list_head *head = &fs_info->space_info;
+	struct btrfs_space_info *found;
+	u64 total_used = 0;
+	u64 total_free_data = 0;
+	int bits = dentry->d_sb->s_blocksize_bits;
+	__be32 *fsid = (__be32 *)fs_info->fsid;
+	int ret;
+
+	/* holding chunk_muext to avoid allocating new chunks */
+	mutex_lock(&fs_info->chunk_mutex);
+	rcu_read_lock();
+	list_for_each_entry_rcu(found, head, list) {
+		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
+			total_free_data += found->disk_total - found->disk_used;
+			total_free_data -=
+				btrfs_account_ro_block_groups_free_space(found);
+		}
+
+		total_used += found->disk_used;
+	}
+	rcu_read_unlock();
+
+	buf->f_namelen = BTRFS_NAME_LEN;
+	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
+	buf->f_bfree = buf->f_blocks - (total_used >> bits);
+	buf->f_bsize = dentry->d_sb->s_blocksize;
+	buf->f_type = BTRFS_SUPER_MAGIC;
+	buf->f_bavail = total_free_data;
+	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
+	if (ret) {
+		mutex_unlock(&fs_info->chunk_mutex);
+		return ret;
+	}
+	buf->f_bavail += total_free_data;
+	buf->f_bavail = buf->f_bavail >> bits;
+	mutex_unlock(&fs_info->chunk_mutex);
+
+	/* We treat it as constant endianness (it doesn't matter _which_)
+	   because we want the fsid to come out the same whether mounted
+	   on a big-endian or little-endian host */
+	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
+	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
+	/* Mask in the root object ID too, to disambiguate subvols */
+	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
+	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
+
+	return 0;
+}
+
+static void btrfs_kill_super(struct super_block *sb)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	kill_anon_super(sb);
+	free_fs_info(fs_info);
+}
+
+static struct file_system_type btrfs_fs_type = {
+	.owner		= THIS_MODULE,
+	.name		= "btrfs",
+	.mount		= btrfs_mount,
+	.kill_sb	= btrfs_kill_super,
+	.fs_flags	= FS_REQUIRES_DEV,
+};
+
+/*
+ * used by btrfsctl to scan devices when no FS is mounted
+ */
+static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
+				unsigned long arg)
+{
+	struct btrfs_ioctl_vol_args *vol;
+	struct btrfs_fs_devices *fs_devices;
+	int ret = -ENOTTY;
+
+	if (!capable(CAP_SYS_ADMIN))
+		return -EPERM;
+
+	vol = memdup_user((void __user *)arg, sizeof(*vol));
+	if (IS_ERR(vol))
+		return PTR_ERR(vol);
+
+	switch (cmd) {
+	case BTRFS_IOC_SCAN_DEV:
+		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
+					    &btrfs_fs_type, &fs_devices);
+		break;
+	}
+
+	kfree(vol);
+	return ret;
+}
+
+static int btrfs_freeze(struct super_block *sb)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	mutex_lock(&fs_info->transaction_kthread_mutex);
+	mutex_lock(&fs_info->cleaner_mutex);
+	return 0;
+}
+
+static int btrfs_unfreeze(struct super_block *sb)
+{
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	mutex_unlock(&fs_info->cleaner_mutex);
+	mutex_unlock(&fs_info->transaction_kthread_mutex);
+	return 0;
+}
+
+static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
+{
+	int ret;
+
+	ret = btrfs_dirty_inode(inode);
+	if (ret)
+		printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
+				   "error %d\n", btrfs_ino(inode), ret);
+}
+
+static const struct super_operations btrfs_super_ops = {
+	.drop_inode	= btrfs_drop_inode,
+	.evict_inode	= btrfs_evict_inode,
+	.put_super	= btrfs_put_super,
+	.sync_fs	= btrfs_sync_fs,
+	.show_options	= btrfs_show_options,
+	.write_inode	= btrfs_write_inode,
+	.dirty_inode	= btrfs_fs_dirty_inode,
+	.alloc_inode	= btrfs_alloc_inode,
+	.destroy_inode	= btrfs_destroy_inode,
+	.statfs		= btrfs_statfs,
+	.remount_fs	= btrfs_remount,
+	.freeze_fs	= btrfs_freeze,
+	.unfreeze_fs	= btrfs_unfreeze,
+};
+
+static const struct file_operations btrfs_ctl_fops = {
+	.unlocked_ioctl	 = btrfs_control_ioctl,
+	.compat_ioctl = btrfs_control_ioctl,
+	.owner	 = THIS_MODULE,
+	.llseek = noop_llseek,
+};
+
+static struct miscdevice btrfs_misc = {
+	.minor		= BTRFS_MINOR,
+	.name		= "btrfs-control",
+	.fops		= &btrfs_ctl_fops
+};
+
+MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
+MODULE_ALIAS("devname:btrfs-control");
+
+static int btrfs_interface_init(void)
+{
+	return misc_register(&btrfs_misc);
+}
+
+static void btrfs_interface_exit(void)
+{
+	if (misc_deregister(&btrfs_misc) < 0)
+		printk(KERN_INFO "misc_deregister failed for control device");
+}
+
+static int __init init_btrfs_fs(void)
+{
+	int err;
+
+	err = btrfs_init_sysfs();
+	if (err)
+		return err;
+
+	btrfs_init_compress();
+
+	err = btrfs_init_cachep();
+	if (err)
+		goto free_compress;
+
+	err = extent_io_init();
+	if (err)
+		goto free_cachep;
+
+	err = extent_map_init();
+	if (err)
+		goto free_extent_io;
+
+	err = btrfs_delayed_inode_init();
+	if (err)
+		goto free_extent_map;
+
+	err = btrfs_interface_init();
+	if (err)
+		goto free_delayed_inode;
+
+	err = register_filesystem(&btrfs_fs_type);
+	if (err)
+		goto unregister_ioctl;
+
+	btrfs_init_lockdep();
+
+	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
+	return 0;
+
+unregister_ioctl:
+	btrfs_interface_exit();
+free_delayed_inode:
+	btrfs_delayed_inode_exit();
+free_extent_map:
+	extent_map_exit();
+free_extent_io:
+	extent_io_exit();
+free_cachep:
+	btrfs_destroy_cachep();
+free_compress:
+	btrfs_exit_compress();
+	btrfs_exit_sysfs();
+	return err;
+}
+
+static void __exit exit_btrfs_fs(void)
+{
+	btrfs_destroy_cachep();
+	btrfs_delayed_inode_exit();
+	extent_map_exit();
+	extent_io_exit();
+	btrfs_interface_exit();
+	unregister_filesystem(&btrfs_fs_type);
+	btrfs_exit_sysfs();
+	btrfs_cleanup_fs_uuids();
+	btrfs_exit_compress();
+}
+
+module_init(init_btrfs_fs)
+module_exit(exit_btrfs_fs)
+
+MODULE_LICENSE("GPL");