[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/volumes.c b/ap/os/linux/linux-3.4.x/fs/btrfs/volumes.c
new file mode 100644
index 0000000..d5dc63c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/volumes.c
@@ -0,0 +1,4593 @@
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/buffer_head.h>
+#include <linux/blkdev.h>
+#include <linux/random.h>
+#include <linux/iocontext.h>
+#include <linux/capability.h>
+#include <linux/kthread.h>
+#include <asm/div64.h>
+#include "compat.h"
+#include "ctree.h"
+#include "extent_map.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+#include "volumes.h"
+#include "async-thread.h"
+#include "check-integrity.h"
+
+static int init_first_rw_device(struct btrfs_trans_handle *trans,
+				struct btrfs_root *root,
+				struct btrfs_device *device);
+static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
+
+static DEFINE_MUTEX(uuid_mutex);
+static LIST_HEAD(fs_uuids);
+
+static void lock_chunks(struct btrfs_root *root)
+{
+	mutex_lock(&root->fs_info->chunk_mutex);
+}
+
+static void unlock_chunks(struct btrfs_root *root)
+{
+	mutex_unlock(&root->fs_info->chunk_mutex);
+}
+
+static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
+{
+	struct btrfs_device *device;
+	WARN_ON(fs_devices->opened);
+	while (!list_empty(&fs_devices->devices)) {
+		device = list_entry(fs_devices->devices.next,
+				    struct btrfs_device, dev_list);
+		list_del(&device->dev_list);
+		kfree(device->name);
+		kfree(device);
+	}
+	kfree(fs_devices);
+}
+
+void btrfs_cleanup_fs_uuids(void)
+{
+	struct btrfs_fs_devices *fs_devices;
+
+	while (!list_empty(&fs_uuids)) {
+		fs_devices = list_entry(fs_uuids.next,
+					struct btrfs_fs_devices, list);
+		list_del(&fs_devices->list);
+		free_fs_devices(fs_devices);
+	}
+}
+
+static noinline struct btrfs_device *__find_device(struct list_head *head,
+						   u64 devid, u8 *uuid)
+{
+	struct btrfs_device *dev;
+
+	list_for_each_entry(dev, head, dev_list) {
+		if (dev->devid == devid &&
+		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
+			return dev;
+		}
+	}
+	return NULL;
+}
+
+static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
+{
+	struct btrfs_fs_devices *fs_devices;
+
+	list_for_each_entry(fs_devices, &fs_uuids, list) {
+		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
+			return fs_devices;
+	}
+	return NULL;
+}
+
+static void requeue_list(struct btrfs_pending_bios *pending_bios,
+			struct bio *head, struct bio *tail)
+{
+
+	struct bio *old_head;
+
+	old_head = pending_bios->head;
+	pending_bios->head = head;
+	if (pending_bios->tail)
+		tail->bi_next = old_head;
+	else
+		pending_bios->tail = tail;
+}
+
+/*
+ * we try to collect pending bios for a device so we don't get a large
+ * number of procs sending bios down to the same device.  This greatly
+ * improves the schedulers ability to collect and merge the bios.
+ *
+ * But, it also turns into a long list of bios to process and that is sure
+ * to eventually make the worker thread block.  The solution here is to
+ * make some progress and then put this work struct back at the end of
+ * the list if the block device is congested.  This way, multiple devices
+ * can make progress from a single worker thread.
+ */
+static noinline void run_scheduled_bios(struct btrfs_device *device)
+{
+	struct bio *pending;
+	struct backing_dev_info *bdi;
+	struct btrfs_fs_info *fs_info;
+	struct btrfs_pending_bios *pending_bios;
+	struct bio *tail;
+	struct bio *cur;
+	int again = 0;
+	unsigned long num_run;
+	unsigned long batch_run = 0;
+	unsigned long limit;
+	unsigned long last_waited = 0;
+	int force_reg = 0;
+	int sync_pending = 0;
+	struct blk_plug plug;
+
+	/*
+	 * this function runs all the bios we've collected for
+	 * a particular device.  We don't want to wander off to
+	 * another device without first sending all of these down.
+	 * So, setup a plug here and finish it off before we return
+	 */
+	blk_start_plug(&plug);
+
+	bdi = blk_get_backing_dev_info(device->bdev);
+	fs_info = device->dev_root->fs_info;
+	limit = btrfs_async_submit_limit(fs_info);
+	limit = limit * 2 / 3;
+
+loop:
+	spin_lock(&device->io_lock);
+
+loop_lock:
+	num_run = 0;
+
+	/* take all the bios off the list at once and process them
+	 * later on (without the lock held).  But, remember the
+	 * tail and other pointers so the bios can be properly reinserted
+	 * into the list if we hit congestion
+	 */
+	if (!force_reg && device->pending_sync_bios.head) {
+		pending_bios = &device->pending_sync_bios;
+		force_reg = 1;
+	} else {
+		pending_bios = &device->pending_bios;
+		force_reg = 0;
+	}
+
+	pending = pending_bios->head;
+	tail = pending_bios->tail;
+	WARN_ON(pending && !tail);
+
+	/*
+	 * if pending was null this time around, no bios need processing
+	 * at all and we can stop.  Otherwise it'll loop back up again
+	 * and do an additional check so no bios are missed.
+	 *
+	 * device->running_pending is used to synchronize with the
+	 * schedule_bio code.
+	 */
+	if (device->pending_sync_bios.head == NULL &&
+	    device->pending_bios.head == NULL) {
+		again = 0;
+		device->running_pending = 0;
+	} else {
+		again = 1;
+		device->running_pending = 1;
+	}
+
+	pending_bios->head = NULL;
+	pending_bios->tail = NULL;
+
+	spin_unlock(&device->io_lock);
+
+	while (pending) {
+
+		rmb();
+		/* we want to work on both lists, but do more bios on the
+		 * sync list than the regular list
+		 */
+		if ((num_run > 32 &&
+		    pending_bios != &device->pending_sync_bios &&
+		    device->pending_sync_bios.head) ||
+		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
+		    device->pending_bios.head)) {
+			spin_lock(&device->io_lock);
+			requeue_list(pending_bios, pending, tail);
+			goto loop_lock;
+		}
+
+		cur = pending;
+		pending = pending->bi_next;
+		cur->bi_next = NULL;
+		atomic_dec(&fs_info->nr_async_bios);
+
+		if (atomic_read(&fs_info->nr_async_bios) < limit &&
+		    waitqueue_active(&fs_info->async_submit_wait))
+			wake_up(&fs_info->async_submit_wait);
+
+		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
+
+		/*
+		 * if we're doing the sync list, record that our
+		 * plug has some sync requests on it
+		 *
+		 * If we're doing the regular list and there are
+		 * sync requests sitting around, unplug before
+		 * we add more
+		 */
+		if (pending_bios == &device->pending_sync_bios) {
+			sync_pending = 1;
+		} else if (sync_pending) {
+			blk_finish_plug(&plug);
+			blk_start_plug(&plug);
+			sync_pending = 0;
+		}
+
+		btrfsic_submit_bio(cur->bi_rw, cur);
+		num_run++;
+		batch_run++;
+		if (need_resched())
+			cond_resched();
+
+		/*
+		 * we made progress, there is more work to do and the bdi
+		 * is now congested.  Back off and let other work structs
+		 * run instead
+		 */
+		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
+		    fs_info->fs_devices->open_devices > 1) {
+			struct io_context *ioc;
+
+			ioc = current->io_context;
+
+			/*
+			 * the main goal here is that we don't want to
+			 * block if we're going to be able to submit
+			 * more requests without blocking.
+			 *
+			 * This code does two great things, it pokes into
+			 * the elevator code from a filesystem _and_
+			 * it makes assumptions about how batching works.
+			 */
+			if (ioc && ioc->nr_batch_requests > 0 &&
+			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
+			    (last_waited == 0 ||
+			     ioc->last_waited == last_waited)) {
+				/*
+				 * we want to go through our batch of
+				 * requests and stop.  So, we copy out
+				 * the ioc->last_waited time and test
+				 * against it before looping
+				 */
+				last_waited = ioc->last_waited;
+				if (need_resched())
+					cond_resched();
+				continue;
+			}
+			spin_lock(&device->io_lock);
+			requeue_list(pending_bios, pending, tail);
+			device->running_pending = 1;
+
+			spin_unlock(&device->io_lock);
+			btrfs_requeue_work(&device->work);
+			goto done;
+		}
+		/* unplug every 64 requests just for good measure */
+		if (batch_run % 64 == 0) {
+			blk_finish_plug(&plug);
+			blk_start_plug(&plug);
+			sync_pending = 0;
+		}
+	}
+
+	cond_resched();
+	if (again)
+		goto loop;
+
+	spin_lock(&device->io_lock);
+	if (device->pending_bios.head || device->pending_sync_bios.head)
+		goto loop_lock;
+	spin_unlock(&device->io_lock);
+
+done:
+	blk_finish_plug(&plug);
+}
+
+static void pending_bios_fn(struct btrfs_work *work)
+{
+	struct btrfs_device *device;
+
+	device = container_of(work, struct btrfs_device, work);
+	run_scheduled_bios(device);
+}
+
+static noinline int device_list_add(const char *path,
+			   struct btrfs_super_block *disk_super,
+			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
+{
+	struct btrfs_device *device;
+	struct btrfs_fs_devices *fs_devices;
+	u64 found_transid = btrfs_super_generation(disk_super);
+	char *name;
+
+	fs_devices = find_fsid(disk_super->fsid);
+	if (!fs_devices) {
+		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+		if (!fs_devices)
+			return -ENOMEM;
+		INIT_LIST_HEAD(&fs_devices->devices);
+		INIT_LIST_HEAD(&fs_devices->alloc_list);
+		list_add(&fs_devices->list, &fs_uuids);
+		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
+		fs_devices->latest_devid = devid;
+		fs_devices->latest_trans = found_transid;
+		mutex_init(&fs_devices->device_list_mutex);
+		device = NULL;
+	} else {
+		device = __find_device(&fs_devices->devices, devid,
+				       disk_super->dev_item.uuid);
+	}
+	if (!device) {
+		if (fs_devices->opened)
+			return -EBUSY;
+
+		device = kzalloc(sizeof(*device), GFP_NOFS);
+		if (!device) {
+			/* we can safely leave the fs_devices entry around */
+			return -ENOMEM;
+		}
+		device->devid = devid;
+		device->work.func = pending_bios_fn;
+		memcpy(device->uuid, disk_super->dev_item.uuid,
+		       BTRFS_UUID_SIZE);
+		spin_lock_init(&device->io_lock);
+		device->name = kstrdup(path, GFP_NOFS);
+		if (!device->name) {
+			kfree(device);
+			return -ENOMEM;
+		}
+		INIT_LIST_HEAD(&device->dev_alloc_list);
+
+		/* init readahead state */
+		spin_lock_init(&device->reada_lock);
+		device->reada_curr_zone = NULL;
+		atomic_set(&device->reada_in_flight, 0);
+		device->reada_next = 0;
+		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
+		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
+
+		mutex_lock(&fs_devices->device_list_mutex);
+		list_add_rcu(&device->dev_list, &fs_devices->devices);
+		mutex_unlock(&fs_devices->device_list_mutex);
+
+		device->fs_devices = fs_devices;
+		fs_devices->num_devices++;
+	} else if (!device->name || strcmp(device->name, path)) {
+		name = kstrdup(path, GFP_NOFS);
+		if (!name)
+			return -ENOMEM;
+		kfree(device->name);
+		device->name = name;
+		if (device->missing) {
+			fs_devices->missing_devices--;
+			device->missing = 0;
+		}
+	}
+
+	if (found_transid > fs_devices->latest_trans) {
+		fs_devices->latest_devid = devid;
+		fs_devices->latest_trans = found_transid;
+	}
+	*fs_devices_ret = fs_devices;
+	return 0;
+}
+
+static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
+{
+	struct btrfs_fs_devices *fs_devices;
+	struct btrfs_device *device;
+	struct btrfs_device *orig_dev;
+
+	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+	if (!fs_devices)
+		return ERR_PTR(-ENOMEM);
+
+	INIT_LIST_HEAD(&fs_devices->devices);
+	INIT_LIST_HEAD(&fs_devices->alloc_list);
+	INIT_LIST_HEAD(&fs_devices->list);
+	mutex_init(&fs_devices->device_list_mutex);
+	fs_devices->latest_devid = orig->latest_devid;
+	fs_devices->latest_trans = orig->latest_trans;
+	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
+
+	/* We have held the volume lock, it is safe to get the devices. */
+	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
+		device = kzalloc(sizeof(*device), GFP_NOFS);
+		if (!device)
+			goto error;
+
+		device->name = kstrdup(orig_dev->name, GFP_NOFS);
+		if (!device->name) {
+			kfree(device);
+			goto error;
+		}
+
+		device->devid = orig_dev->devid;
+		device->work.func = pending_bios_fn;
+		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
+		spin_lock_init(&device->io_lock);
+		INIT_LIST_HEAD(&device->dev_list);
+		INIT_LIST_HEAD(&device->dev_alloc_list);
+
+		list_add(&device->dev_list, &fs_devices->devices);
+		device->fs_devices = fs_devices;
+		fs_devices->num_devices++;
+	}
+	return fs_devices;
+error:
+	free_fs_devices(fs_devices);
+	return ERR_PTR(-ENOMEM);
+}
+
+void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
+{
+	struct btrfs_device *device, *next;
+
+	struct block_device *latest_bdev = NULL;
+	u64 latest_devid = 0;
+	u64 latest_transid = 0;
+
+	mutex_lock(&uuid_mutex);
+again:
+	/* This is the initialized path, it is safe to release the devices. */
+	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
+		if (device->in_fs_metadata) {
+			if (!latest_transid ||
+			    device->generation > latest_transid) {
+				latest_devid = device->devid;
+				latest_transid = device->generation;
+				latest_bdev = device->bdev;
+			}
+			continue;
+		}
+
+		if (device->bdev) {
+			blkdev_put(device->bdev, device->mode);
+			device->bdev = NULL;
+			fs_devices->open_devices--;
+		}
+		if (device->writeable) {
+			list_del_init(&device->dev_alloc_list);
+			device->writeable = 0;
+			fs_devices->rw_devices--;
+		}
+		list_del_init(&device->dev_list);
+		fs_devices->num_devices--;
+		kfree(device->name);
+		kfree(device);
+	}
+
+	if (fs_devices->seed) {
+		fs_devices = fs_devices->seed;
+		goto again;
+	}
+
+	fs_devices->latest_bdev = latest_bdev;
+	fs_devices->latest_devid = latest_devid;
+	fs_devices->latest_trans = latest_transid;
+
+	mutex_unlock(&uuid_mutex);
+}
+
+static void __free_device(struct work_struct *work)
+{
+	struct btrfs_device *device;
+
+	device = container_of(work, struct btrfs_device, rcu_work);
+
+	if (device->bdev)
+		blkdev_put(device->bdev, device->mode);
+
+	kfree(device->name);
+	kfree(device);
+}
+
+static void free_device(struct rcu_head *head)
+{
+	struct btrfs_device *device;
+
+	device = container_of(head, struct btrfs_device, rcu);
+
+	INIT_WORK(&device->rcu_work, __free_device);
+	schedule_work(&device->rcu_work);
+}
+
+static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
+{
+	struct btrfs_device *device;
+
+	if (--fs_devices->opened > 0)
+		return 0;
+
+	mutex_lock(&fs_devices->device_list_mutex);
+	list_for_each_entry(device, &fs_devices->devices, dev_list) {
+		struct btrfs_device *new_device;
+
+		if (device->bdev)
+			fs_devices->open_devices--;
+
+		if (device->writeable) {
+			list_del_init(&device->dev_alloc_list);
+			fs_devices->rw_devices--;
+		}
+
+		if (device->can_discard)
+			fs_devices->num_can_discard--;
+
+		new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
+		BUG_ON(!new_device); /* -ENOMEM */
+		memcpy(new_device, device, sizeof(*new_device));
+		new_device->name = kstrdup(device->name, GFP_NOFS);
+		BUG_ON(device->name && !new_device->name); /* -ENOMEM */
+		new_device->bdev = NULL;
+		new_device->writeable = 0;
+		new_device->in_fs_metadata = 0;
+		new_device->can_discard = 0;
+		spin_lock_init(&new_device->io_lock);
+		list_replace_rcu(&device->dev_list, &new_device->dev_list);
+
+		call_rcu(&device->rcu, free_device);
+	}
+	mutex_unlock(&fs_devices->device_list_mutex);
+
+	WARN_ON(fs_devices->open_devices);
+	WARN_ON(fs_devices->rw_devices);
+	fs_devices->opened = 0;
+	fs_devices->seeding = 0;
+
+	return 0;
+}
+
+int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
+{
+	struct btrfs_fs_devices *seed_devices = NULL;
+	int ret;
+
+	mutex_lock(&uuid_mutex);
+	ret = __btrfs_close_devices(fs_devices);
+	if (!fs_devices->opened) {
+		seed_devices = fs_devices->seed;
+		fs_devices->seed = NULL;
+	}
+	mutex_unlock(&uuid_mutex);
+
+	while (seed_devices) {
+		fs_devices = seed_devices;
+		seed_devices = fs_devices->seed;
+		__btrfs_close_devices(fs_devices);
+		free_fs_devices(fs_devices);
+	}
+	/*
+	 * Wait for rcu kworkers under __btrfs_close_devices
+	 * to finish all blkdev_puts so device is really
+	 * free when umount is done.
+	 */
+	rcu_barrier();
+	return ret;
+}
+
+static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
+				fmode_t flags, void *holder)
+{
+	struct request_queue *q;
+	struct block_device *bdev;
+	struct list_head *head = &fs_devices->devices;
+	struct btrfs_device *device;
+	struct block_device *latest_bdev = NULL;
+	struct buffer_head *bh;
+	struct btrfs_super_block *disk_super;
+	u64 latest_devid = 0;
+	u64 latest_transid = 0;
+	u64 devid;
+	int seeding = 1;
+	int ret = 0;
+
+	flags |= FMODE_EXCL;
+
+	list_for_each_entry(device, head, dev_list) {
+		if (device->bdev)
+			continue;
+		if (!device->name)
+			continue;
+
+		bdev = blkdev_get_by_path(device->name, flags, holder);
+		if (IS_ERR(bdev)) {
+			printk(KERN_INFO "open %s failed\n", device->name);
+			goto error;
+		}
+		filemap_write_and_wait(bdev->bd_inode->i_mapping);
+		invalidate_bdev(bdev);
+		set_blocksize(bdev, 4096);
+
+		bh = btrfs_read_dev_super(bdev);
+		if (!bh)
+			goto error_close;
+
+		disk_super = (struct btrfs_super_block *)bh->b_data;
+		devid = btrfs_stack_device_id(&disk_super->dev_item);
+		if (devid != device->devid)
+			goto error_brelse;
+
+		if (memcmp(device->uuid, disk_super->dev_item.uuid,
+			   BTRFS_UUID_SIZE))
+			goto error_brelse;
+
+		device->generation = btrfs_super_generation(disk_super);
+		if (!latest_transid || device->generation > latest_transid) {
+			latest_devid = devid;
+			latest_transid = device->generation;
+			latest_bdev = bdev;
+		}
+
+		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
+			device->writeable = 0;
+		} else {
+			device->writeable = !bdev_read_only(bdev);
+			seeding = 0;
+		}
+
+		q = bdev_get_queue(bdev);
+		if (blk_queue_discard(q)) {
+			device->can_discard = 1;
+			fs_devices->num_can_discard++;
+		}
+
+		device->bdev = bdev;
+		device->in_fs_metadata = 0;
+		device->mode = flags;
+
+		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
+			fs_devices->rotating = 1;
+
+		fs_devices->open_devices++;
+		if (device->writeable) {
+			fs_devices->rw_devices++;
+			list_add(&device->dev_alloc_list,
+				 &fs_devices->alloc_list);
+		}
+		brelse(bh);
+		continue;
+
+error_brelse:
+		brelse(bh);
+error_close:
+		blkdev_put(bdev, flags);
+error:
+		continue;
+	}
+	if (fs_devices->open_devices == 0) {
+		ret = -EINVAL;
+		goto out;
+	}
+	fs_devices->seeding = seeding;
+	fs_devices->opened = 1;
+	fs_devices->latest_bdev = latest_bdev;
+	fs_devices->latest_devid = latest_devid;
+	fs_devices->latest_trans = latest_transid;
+	fs_devices->total_rw_bytes = 0;
+out:
+	return ret;
+}
+
+int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
+		       fmode_t flags, void *holder)
+{
+	int ret;
+
+	mutex_lock(&uuid_mutex);
+	if (fs_devices->opened) {
+		fs_devices->opened++;
+		ret = 0;
+	} else {
+		ret = __btrfs_open_devices(fs_devices, flags, holder);
+	}
+	mutex_unlock(&uuid_mutex);
+	return ret;
+}
+
+int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
+			  struct btrfs_fs_devices **fs_devices_ret)
+{
+	struct btrfs_super_block *disk_super;
+	struct block_device *bdev;
+	struct buffer_head *bh;
+	int ret;
+	u64 devid;
+	u64 transid;
+
+	flags |= FMODE_EXCL;
+	bdev = blkdev_get_by_path(path, flags, holder);
+
+	if (IS_ERR(bdev)) {
+		ret = PTR_ERR(bdev);
+		goto error;
+	}
+
+	mutex_lock(&uuid_mutex);
+	ret = set_blocksize(bdev, 4096);
+	if (ret)
+		goto error_close;
+	bh = btrfs_read_dev_super(bdev);
+	if (!bh) {
+		ret = -EINVAL;
+		goto error_close;
+	}
+	disk_super = (struct btrfs_super_block *)bh->b_data;
+	devid = btrfs_stack_device_id(&disk_super->dev_item);
+	transid = btrfs_super_generation(disk_super);
+	if (disk_super->label[0])
+		printk(KERN_INFO "device label %s ", disk_super->label);
+	else
+		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
+	printk(KERN_CONT "devid %llu transid %llu %s\n",
+	       (unsigned long long)devid, (unsigned long long)transid, path);
+	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
+
+	brelse(bh);
+error_close:
+	mutex_unlock(&uuid_mutex);
+	blkdev_put(bdev, flags);
+error:
+	return ret;
+}
+
+/* helper to account the used device space in the range */
+int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
+				   u64 end, u64 *length)
+{
+	struct btrfs_key key;
+	struct btrfs_root *root = device->dev_root;
+	struct btrfs_dev_extent *dev_extent;
+	struct btrfs_path *path;
+	u64 extent_end;
+	int ret;
+	int slot;
+	struct extent_buffer *l;
+
+	*length = 0;
+
+	if (start >= device->total_bytes)
+		return 0;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+	path->reada = 2;
+
+	key.objectid = device->devid;
+	key.offset = start;
+	key.type = BTRFS_DEV_EXTENT_KEY;
+
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto out;
+	if (ret > 0) {
+		ret = btrfs_previous_item(root, path, key.objectid, key.type);
+		if (ret < 0)
+			goto out;
+	}
+
+	while (1) {
+		l = path->nodes[0];
+		slot = path->slots[0];
+		if (slot >= btrfs_header_nritems(l)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret == 0)
+				continue;
+			if (ret < 0)
+				goto out;
+
+			break;
+		}
+		btrfs_item_key_to_cpu(l, &key, slot);
+
+		if (key.objectid < device->devid)
+			goto next;
+
+		if (key.objectid > device->devid)
+			break;
+
+		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
+			goto next;
+
+		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+		extent_end = key.offset + btrfs_dev_extent_length(l,
+								  dev_extent);
+		if (key.offset <= start && extent_end > end) {
+			*length = end - start + 1;
+			break;
+		} else if (key.offset <= start && extent_end > start)
+			*length += extent_end - start;
+		else if (key.offset > start && extent_end <= end)
+			*length += extent_end - key.offset;
+		else if (key.offset > start && key.offset <= end) {
+			*length += end - key.offset + 1;
+			break;
+		} else if (key.offset > end)
+			break;
+
+next:
+		path->slots[0]++;
+	}
+	ret = 0;
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * find_free_dev_extent - find free space in the specified device
+ * @device:	the device which we search the free space in
+ * @num_bytes:	the size of the free space that we need
+ * @start:	store the start of the free space.
+ * @len:	the size of the free space. that we find, or the size of the max
+ * 		free space if we don't find suitable free space
+ *
+ * this uses a pretty simple search, the expectation is that it is
+ * called very infrequently and that a given device has a small number
+ * of extents
+ *
+ * @start is used to store the start of the free space if we find. But if we
+ * don't find suitable free space, it will be used to store the start position
+ * of the max free space.
+ *
+ * @len is used to store the size of the free space that we find.
+ * But if we don't find suitable free space, it is used to store the size of
+ * the max free space.
+ */
+int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
+			 u64 *start, u64 *len)
+{
+	struct btrfs_key key;
+	struct btrfs_root *root = device->dev_root;
+	struct btrfs_dev_extent *dev_extent;
+	struct btrfs_path *path;
+	u64 hole_size;
+	u64 max_hole_start;
+	u64 max_hole_size;
+	u64 extent_end;
+	u64 search_start;
+	u64 search_end = device->total_bytes;
+	int ret;
+	int slot;
+	struct extent_buffer *l;
+
+	/* FIXME use last free of some kind */
+
+	/* we don't want to overwrite the superblock on the drive,
+	 * so we make sure to start at an offset of at least 1MB
+	 */
+	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
+
+	max_hole_start = search_start;
+	max_hole_size = 0;
+	hole_size = 0;
+
+	if (search_start >= search_end) {
+		ret = -ENOSPC;
+		goto error;
+	}
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		ret = -ENOMEM;
+		goto error;
+	}
+	path->reada = 2;
+
+	key.objectid = device->devid;
+	key.offset = search_start;
+	key.type = BTRFS_DEV_EXTENT_KEY;
+
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto out;
+	if (ret > 0) {
+		ret = btrfs_previous_item(root, path, key.objectid, key.type);
+		if (ret < 0)
+			goto out;
+	}
+
+	while (1) {
+		l = path->nodes[0];
+		slot = path->slots[0];
+		if (slot >= btrfs_header_nritems(l)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret == 0)
+				continue;
+			if (ret < 0)
+				goto out;
+
+			break;
+		}
+		btrfs_item_key_to_cpu(l, &key, slot);
+
+		if (key.objectid < device->devid)
+			goto next;
+
+		if (key.objectid > device->devid)
+			break;
+
+		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
+			goto next;
+
+		if (key.offset > search_start) {
+			hole_size = key.offset - search_start;
+
+			if (hole_size > max_hole_size) {
+				max_hole_start = search_start;
+				max_hole_size = hole_size;
+			}
+
+			/*
+			 * If this free space is greater than which we need,
+			 * it must be the max free space that we have found
+			 * until now, so max_hole_start must point to the start
+			 * of this free space and the length of this free space
+			 * is stored in max_hole_size. Thus, we return
+			 * max_hole_start and max_hole_size and go back to the
+			 * caller.
+			 */
+			if (hole_size >= num_bytes) {
+				ret = 0;
+				goto out;
+			}
+		}
+
+		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+		extent_end = key.offset + btrfs_dev_extent_length(l,
+								  dev_extent);
+		if (extent_end > search_start)
+			search_start = extent_end;
+next:
+		path->slots[0]++;
+		cond_resched();
+	}
+
+	/*
+	 * At this point, search_start should be the end of
+	 * allocated dev extents, and when shrinking the device,
+	 * search_end may be smaller than search_start.
+	 */
+	if (search_end > search_start)
+		hole_size = search_end - search_start;
+
+	if (hole_size > max_hole_size) {
+		max_hole_start = search_start;
+		max_hole_size = hole_size;
+	}
+
+	/* See above. */
+	if (hole_size < num_bytes)
+		ret = -ENOSPC;
+	else
+		ret = 0;
+
+out:
+	btrfs_free_path(path);
+error:
+	*start = max_hole_start;
+	if (len)
+		*len = max_hole_size;
+	return ret;
+}
+
+static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
+			  struct btrfs_device *device,
+			  u64 start)
+{
+	int ret;
+	struct btrfs_path *path;
+	struct btrfs_root *root = device->dev_root;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	struct extent_buffer *leaf = NULL;
+	struct btrfs_dev_extent *extent = NULL;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = device->devid;
+	key.offset = start;
+	key.type = BTRFS_DEV_EXTENT_KEY;
+again:
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret > 0) {
+		ret = btrfs_previous_item(root, path, key.objectid,
+					  BTRFS_DEV_EXTENT_KEY);
+		if (ret)
+			goto out;
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+		extent = btrfs_item_ptr(leaf, path->slots[0],
+					struct btrfs_dev_extent);
+		BUG_ON(found_key.offset > start || found_key.offset +
+		       btrfs_dev_extent_length(leaf, extent) < start);
+		key = found_key;
+		btrfs_release_path(path);
+		goto again;
+	} else if (ret == 0) {
+		leaf = path->nodes[0];
+		extent = btrfs_item_ptr(leaf, path->slots[0],
+					struct btrfs_dev_extent);
+	} else {
+		btrfs_error(root->fs_info, ret, "Slot search failed");
+		goto out;
+	}
+
+	if (device->bytes_used > 0) {
+		u64 len = btrfs_dev_extent_length(leaf, extent);
+		device->bytes_used -= len;
+		spin_lock(&root->fs_info->free_chunk_lock);
+		root->fs_info->free_chunk_space += len;
+		spin_unlock(&root->fs_info->free_chunk_lock);
+	}
+	ret = btrfs_del_item(trans, root, path);
+	if (ret) {
+		btrfs_error(root->fs_info, ret,
+			    "Failed to remove dev extent item");
+	}
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
+			   struct btrfs_device *device,
+			   u64 chunk_tree, u64 chunk_objectid,
+			   u64 chunk_offset, u64 start, u64 num_bytes)
+{
+	int ret;
+	struct btrfs_path *path;
+	struct btrfs_root *root = device->dev_root;
+	struct btrfs_dev_extent *extent;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+
+	WARN_ON(!device->in_fs_metadata);
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = device->devid;
+	key.offset = start;
+	key.type = BTRFS_DEV_EXTENT_KEY;
+	ret = btrfs_insert_empty_item(trans, root, path, &key,
+				      sizeof(*extent));
+	if (ret)
+		goto out;
+
+	leaf = path->nodes[0];
+	extent = btrfs_item_ptr(leaf, path->slots[0],
+				struct btrfs_dev_extent);
+	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
+	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
+	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
+
+	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
+		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
+		    BTRFS_UUID_SIZE);
+
+	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
+	btrfs_mark_buffer_dirty(leaf);
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static noinline int find_next_chunk(struct btrfs_root *root,
+				    u64 objectid, u64 *offset)
+{
+	struct btrfs_path *path;
+	int ret;
+	struct btrfs_key key;
+	struct btrfs_chunk *chunk;
+	struct btrfs_key found_key;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = objectid;
+	key.offset = (u64)-1;
+	key.type = BTRFS_CHUNK_ITEM_KEY;
+
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto error;
+
+	BUG_ON(ret == 0); /* Corruption */
+
+	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
+	if (ret) {
+		*offset = 0;
+	} else {
+		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+				      path->slots[0]);
+		if (found_key.objectid != objectid)
+			*offset = 0;
+		else {
+			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
+					       struct btrfs_chunk);
+			*offset = found_key.offset +
+				btrfs_chunk_length(path->nodes[0], chunk);
+		}
+	}
+	ret = 0;
+error:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
+{
+	int ret;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	struct btrfs_path *path;
+
+	root = root->fs_info->chunk_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+	key.type = BTRFS_DEV_ITEM_KEY;
+	key.offset = (u64)-1;
+
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto error;
+
+	BUG_ON(ret == 0); /* Corruption */
+
+	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
+				  BTRFS_DEV_ITEM_KEY);
+	if (ret) {
+		*objectid = 1;
+	} else {
+		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+				      path->slots[0]);
+		*objectid = found_key.offset + 1;
+	}
+	ret = 0;
+error:
+	btrfs_free_path(path);
+	return ret;
+}
+
+/*
+ * the device information is stored in the chunk root
+ * the btrfs_device struct should be fully filled in
+ */
+int btrfs_add_device(struct btrfs_trans_handle *trans,
+		     struct btrfs_root *root,
+		     struct btrfs_device *device)
+{
+	int ret;
+	struct btrfs_path *path;
+	struct btrfs_dev_item *dev_item;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	unsigned long ptr;
+
+	root = root->fs_info->chunk_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+	key.type = BTRFS_DEV_ITEM_KEY;
+	key.offset = device->devid;
+
+	ret = btrfs_insert_empty_item(trans, root, path, &key,
+				      sizeof(*dev_item));
+	if (ret)
+		goto out;
+
+	leaf = path->nodes[0];
+	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
+
+	btrfs_set_device_id(leaf, dev_item, device->devid);
+	btrfs_set_device_generation(leaf, dev_item, 0);
+	btrfs_set_device_type(leaf, dev_item, device->type);
+	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
+	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
+	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
+	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
+	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
+	btrfs_set_device_group(leaf, dev_item, 0);
+	btrfs_set_device_seek_speed(leaf, dev_item, 0);
+	btrfs_set_device_bandwidth(leaf, dev_item, 0);
+	btrfs_set_device_start_offset(leaf, dev_item, 0);
+
+	ptr = (unsigned long)btrfs_device_uuid(dev_item);
+	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
+	ptr = (unsigned long)btrfs_device_fsid(dev_item);
+	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
+	btrfs_mark_buffer_dirty(leaf);
+
+	ret = 0;
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int btrfs_rm_dev_item(struct btrfs_root *root,
+			     struct btrfs_device *device)
+{
+	int ret;
+	struct btrfs_path *path;
+	struct btrfs_key key;
+	struct btrfs_trans_handle *trans;
+
+	root = root->fs_info->chunk_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	trans = btrfs_start_transaction(root, 0);
+	if (IS_ERR(trans)) {
+		btrfs_free_path(path);
+		return PTR_ERR(trans);
+	}
+	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+	key.type = BTRFS_DEV_ITEM_KEY;
+	key.offset = device->devid;
+	lock_chunks(root);
+
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret < 0)
+		goto out;
+
+	if (ret > 0) {
+		ret = -ENOENT;
+		goto out;
+	}
+
+	ret = btrfs_del_item(trans, root, path);
+	if (ret)
+		goto out;
+out:
+	btrfs_free_path(path);
+	unlock_chunks(root);
+	btrfs_commit_transaction(trans, root);
+	return ret;
+}
+
+int btrfs_rm_device(struct btrfs_root *root, char *device_path)
+{
+	struct btrfs_device *device;
+	struct btrfs_device *next_device;
+	struct block_device *bdev;
+	struct buffer_head *bh = NULL;
+	struct btrfs_super_block *disk_super;
+	struct btrfs_fs_devices *cur_devices;
+	u64 all_avail;
+	u64 devid;
+	u64 num_devices;
+	u8 *dev_uuid;
+	int ret = 0;
+	bool clear_super = false;
+
+	mutex_lock(&uuid_mutex);
+
+	all_avail = root->fs_info->avail_data_alloc_bits |
+		root->fs_info->avail_system_alloc_bits |
+		root->fs_info->avail_metadata_alloc_bits;
+
+	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
+	    root->fs_info->fs_devices->num_devices <= 4) {
+		printk(KERN_ERR "btrfs: unable to go below four devices "
+		       "on raid10\n");
+		ret = -EINVAL;
+		goto out;
+	}
+
+	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
+	    root->fs_info->fs_devices->num_devices <= 2) {
+		printk(KERN_ERR "btrfs: unable to go below two "
+		       "devices on raid1\n");
+		ret = -EINVAL;
+		goto out;
+	}
+
+	if (strcmp(device_path, "missing") == 0) {
+		struct list_head *devices;
+		struct btrfs_device *tmp;
+
+		device = NULL;
+		devices = &root->fs_info->fs_devices->devices;
+		/*
+		 * It is safe to read the devices since the volume_mutex
+		 * is held.
+		 */
+		list_for_each_entry(tmp, devices, dev_list) {
+			if (tmp->in_fs_metadata && !tmp->bdev) {
+				device = tmp;
+				break;
+			}
+		}
+		bdev = NULL;
+		bh = NULL;
+		disk_super = NULL;
+		if (!device) {
+			printk(KERN_ERR "btrfs: no missing devices found to "
+			       "remove\n");
+			goto out;
+		}
+	} else {
+		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
+					  root->fs_info->bdev_holder);
+		if (IS_ERR(bdev)) {
+			ret = PTR_ERR(bdev);
+			goto out;
+		}
+
+		set_blocksize(bdev, 4096);
+		invalidate_bdev(bdev);
+		bh = btrfs_read_dev_super(bdev);
+		if (!bh) {
+			ret = -EINVAL;
+			goto error_close;
+		}
+		disk_super = (struct btrfs_super_block *)bh->b_data;
+		devid = btrfs_stack_device_id(&disk_super->dev_item);
+		dev_uuid = disk_super->dev_item.uuid;
+		device = btrfs_find_device(root, devid, dev_uuid,
+					   disk_super->fsid);
+		if (!device) {
+			ret = -ENOENT;
+			goto error_brelse;
+		}
+	}
+
+	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
+		printk(KERN_ERR "btrfs: unable to remove the only writeable "
+		       "device\n");
+		ret = -EINVAL;
+		goto error_brelse;
+	}
+
+	if (device->writeable) {
+		lock_chunks(root);
+		list_del_init(&device->dev_alloc_list);
+		unlock_chunks(root);
+		root->fs_info->fs_devices->rw_devices--;
+		clear_super = true;
+	}
+
+	ret = btrfs_shrink_device(device, 0);
+	if (ret)
+		goto error_undo;
+
+	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
+	if (ret)
+		goto error_undo;
+
+	spin_lock(&root->fs_info->free_chunk_lock);
+	root->fs_info->free_chunk_space = device->total_bytes -
+		device->bytes_used;
+	spin_unlock(&root->fs_info->free_chunk_lock);
+
+	device->in_fs_metadata = 0;
+	btrfs_scrub_cancel_dev(root, device);
+
+	/*
+	 * the device list mutex makes sure that we don't change
+	 * the device list while someone else is writing out all
+	 * the device supers.
+	 */
+
+	cur_devices = device->fs_devices;
+	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+	list_del_rcu(&device->dev_list);
+
+	device->fs_devices->num_devices--;
+
+	if (device->missing)
+		root->fs_info->fs_devices->missing_devices--;
+
+	next_device = list_entry(root->fs_info->fs_devices->devices.next,
+				 struct btrfs_device, dev_list);
+	if (device->bdev == root->fs_info->sb->s_bdev)
+		root->fs_info->sb->s_bdev = next_device->bdev;
+	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
+		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
+
+	if (device->bdev)
+		device->fs_devices->open_devices--;
+
+	call_rcu(&device->rcu, free_device);
+	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
+	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
+
+	if (cur_devices->open_devices == 0) {
+		struct btrfs_fs_devices *fs_devices;
+		fs_devices = root->fs_info->fs_devices;
+		while (fs_devices) {
+			if (fs_devices->seed == cur_devices) {
+				fs_devices->seed = cur_devices->seed;
+				break;
+			}
+			fs_devices = fs_devices->seed;
+		}
+		cur_devices->seed = NULL;
+		lock_chunks(root);
+		__btrfs_close_devices(cur_devices);
+		unlock_chunks(root);
+		free_fs_devices(cur_devices);
+	}
+
+	/*
+	 * at this point, the device is zero sized.  We want to
+	 * remove it from the devices list and zero out the old super
+	 */
+	if (clear_super) {
+		/* make sure this device isn't detected as part of
+		 * the FS anymore
+		 */
+		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
+		set_buffer_dirty(bh);
+		sync_dirty_buffer(bh);
+	}
+
+	ret = 0;
+
+error_brelse:
+	brelse(bh);
+error_close:
+	if (bdev)
+		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
+out:
+	mutex_unlock(&uuid_mutex);
+	return ret;
+error_undo:
+	if (device->writeable) {
+		lock_chunks(root);
+		list_add(&device->dev_alloc_list,
+			 &root->fs_info->fs_devices->alloc_list);
+		unlock_chunks(root);
+		root->fs_info->fs_devices->rw_devices++;
+	}
+	goto error_brelse;
+}
+
+/*
+ * does all the dirty work required for changing file system's UUID.
+ */
+static int btrfs_prepare_sprout(struct btrfs_root *root)
+{
+	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+	struct btrfs_fs_devices *old_devices;
+	struct btrfs_fs_devices *seed_devices;
+	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
+	struct btrfs_device *device;
+	u64 super_flags;
+
+	BUG_ON(!mutex_is_locked(&uuid_mutex));
+	if (!fs_devices->seeding)
+		return -EINVAL;
+
+	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+	if (!seed_devices)
+		return -ENOMEM;
+
+	old_devices = clone_fs_devices(fs_devices);
+	if (IS_ERR(old_devices)) {
+		kfree(seed_devices);
+		return PTR_ERR(old_devices);
+	}
+
+	list_add(&old_devices->list, &fs_uuids);
+
+	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
+	seed_devices->opened = 1;
+	INIT_LIST_HEAD(&seed_devices->devices);
+	INIT_LIST_HEAD(&seed_devices->alloc_list);
+	mutex_init(&seed_devices->device_list_mutex);
+
+	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
+			      synchronize_rcu);
+	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
+	list_for_each_entry(device, &seed_devices->devices, dev_list) {
+		device->fs_devices = seed_devices;
+	}
+
+	fs_devices->seeding = 0;
+	fs_devices->num_devices = 0;
+	fs_devices->open_devices = 0;
+	fs_devices->seed = seed_devices;
+
+	generate_random_uuid(fs_devices->fsid);
+	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
+	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
+	super_flags = btrfs_super_flags(disk_super) &
+		      ~BTRFS_SUPER_FLAG_SEEDING;
+	btrfs_set_super_flags(disk_super, super_flags);
+
+	return 0;
+}
+
+/*
+ * strore the expected generation for seed devices in device items.
+ */
+static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *root)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_dev_item *dev_item;
+	struct btrfs_device *device;
+	struct btrfs_key key;
+	u8 fs_uuid[BTRFS_UUID_SIZE];
+	u8 dev_uuid[BTRFS_UUID_SIZE];
+	u64 devid;
+	int ret;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	root = root->fs_info->chunk_root;
+	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+	key.offset = 0;
+	key.type = BTRFS_DEV_ITEM_KEY;
+
+	while (1) {
+		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+		if (ret < 0)
+			goto error;
+
+		leaf = path->nodes[0];
+next_slot:
+		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret > 0)
+				break;
+			if (ret < 0)
+				goto error;
+			leaf = path->nodes[0];
+			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+			btrfs_release_path(path);
+			continue;
+		}
+
+		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
+		    key.type != BTRFS_DEV_ITEM_KEY)
+			break;
+
+		dev_item = btrfs_item_ptr(leaf, path->slots[0],
+					  struct btrfs_dev_item);
+		devid = btrfs_device_id(leaf, dev_item);
+		read_extent_buffer(leaf, dev_uuid,
+				   (unsigned long)btrfs_device_uuid(dev_item),
+				   BTRFS_UUID_SIZE);
+		read_extent_buffer(leaf, fs_uuid,
+				   (unsigned long)btrfs_device_fsid(dev_item),
+				   BTRFS_UUID_SIZE);
+		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
+		BUG_ON(!device); /* Logic error */
+
+		if (device->fs_devices->seeding) {
+			btrfs_set_device_generation(leaf, dev_item,
+						    device->generation);
+			btrfs_mark_buffer_dirty(leaf);
+		}
+
+		path->slots[0]++;
+		goto next_slot;
+	}
+	ret = 0;
+error:
+	btrfs_free_path(path);
+	return ret;
+}
+
+int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
+{
+	struct request_queue *q;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_device *device;
+	struct block_device *bdev;
+	struct list_head *devices;
+	struct super_block *sb = root->fs_info->sb;
+	u64 total_bytes;
+	int seeding_dev = 0;
+	int ret = 0;
+
+	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
+		return -EINVAL;
+
+	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
+				  root->fs_info->bdev_holder);
+	if (IS_ERR(bdev))
+		return PTR_ERR(bdev);
+
+	if (root->fs_info->fs_devices->seeding) {
+		seeding_dev = 1;
+		down_write(&sb->s_umount);
+		mutex_lock(&uuid_mutex);
+	}
+
+	filemap_write_and_wait(bdev->bd_inode->i_mapping);
+
+	devices = &root->fs_info->fs_devices->devices;
+	/*
+	 * we have the volume lock, so we don't need the extra
+	 * device list mutex while reading the list here.
+	 */
+	list_for_each_entry(device, devices, dev_list) {
+		if (device->bdev == bdev) {
+			ret = -EEXIST;
+			goto error;
+		}
+	}
+
+	device = kzalloc(sizeof(*device), GFP_NOFS);
+	if (!device) {
+		/* we can safely leave the fs_devices entry around */
+		ret = -ENOMEM;
+		goto error;
+	}
+
+	device->name = kstrdup(device_path, GFP_NOFS);
+	if (!device->name) {
+		kfree(device);
+		ret = -ENOMEM;
+		goto error;
+	}
+
+	ret = find_next_devid(root, &device->devid);
+	if (ret) {
+		kfree(device->name);
+		kfree(device);
+		goto error;
+	}
+
+	trans = btrfs_start_transaction(root, 0);
+	if (IS_ERR(trans)) {
+		kfree(device->name);
+		kfree(device);
+		ret = PTR_ERR(trans);
+		goto error;
+	}
+
+	lock_chunks(root);
+
+	q = bdev_get_queue(bdev);
+	if (blk_queue_discard(q))
+		device->can_discard = 1;
+	device->writeable = 1;
+	device->work.func = pending_bios_fn;
+	generate_random_uuid(device->uuid);
+	spin_lock_init(&device->io_lock);
+	device->generation = trans->transid;
+	device->io_width = root->sectorsize;
+	device->io_align = root->sectorsize;
+	device->sector_size = root->sectorsize;
+	device->total_bytes = i_size_read(bdev->bd_inode);
+	device->disk_total_bytes = device->total_bytes;
+	device->dev_root = root->fs_info->dev_root;
+	device->bdev = bdev;
+	device->in_fs_metadata = 1;
+	device->mode = FMODE_EXCL;
+	set_blocksize(device->bdev, 4096);
+
+	if (seeding_dev) {
+		sb->s_flags &= ~MS_RDONLY;
+		ret = btrfs_prepare_sprout(root);
+		BUG_ON(ret); /* -ENOMEM */
+	}
+
+	device->fs_devices = root->fs_info->fs_devices;
+
+	/*
+	 * we don't want write_supers to jump in here with our device
+	 * half setup
+	 */
+	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
+	list_add(&device->dev_alloc_list,
+		 &root->fs_info->fs_devices->alloc_list);
+	root->fs_info->fs_devices->num_devices++;
+	root->fs_info->fs_devices->open_devices++;
+	root->fs_info->fs_devices->rw_devices++;
+	if (device->can_discard)
+		root->fs_info->fs_devices->num_can_discard++;
+	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
+
+	spin_lock(&root->fs_info->free_chunk_lock);
+	root->fs_info->free_chunk_space += device->total_bytes;
+	spin_unlock(&root->fs_info->free_chunk_lock);
+
+	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
+		root->fs_info->fs_devices->rotating = 1;
+
+	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
+	btrfs_set_super_total_bytes(root->fs_info->super_copy,
+				    total_bytes + device->total_bytes);
+
+	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
+	btrfs_set_super_num_devices(root->fs_info->super_copy,
+				    total_bytes + 1);
+	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+	if (seeding_dev) {
+		ret = init_first_rw_device(trans, root, device);
+		if (ret)
+			goto error_trans;
+		ret = btrfs_finish_sprout(trans, root);
+		if (ret)
+			goto error_trans;
+	} else {
+		ret = btrfs_add_device(trans, root, device);
+		if (ret)
+			goto error_trans;
+	}
+
+	/*
+	 * we've got more storage, clear any full flags on the space
+	 * infos
+	 */
+	btrfs_clear_space_info_full(root->fs_info);
+
+	unlock_chunks(root);
+	ret = btrfs_commit_transaction(trans, root);
+
+	if (seeding_dev) {
+		mutex_unlock(&uuid_mutex);
+		up_write(&sb->s_umount);
+
+		if (ret) /* transaction commit */
+			return ret;
+
+		ret = btrfs_relocate_sys_chunks(root);
+		if (ret < 0)
+			btrfs_error(root->fs_info, ret,
+				    "Failed to relocate sys chunks after "
+				    "device initialization. This can be fixed "
+				    "using the \"btrfs balance\" command.");
+	}
+
+	return ret;
+
+error_trans:
+	unlock_chunks(root);
+	btrfs_abort_transaction(trans, root, ret);
+	btrfs_end_transaction(trans, root);
+	kfree(device->name);
+	kfree(device);
+error:
+	blkdev_put(bdev, FMODE_EXCL);
+	if (seeding_dev) {
+		mutex_unlock(&uuid_mutex);
+		up_write(&sb->s_umount);
+	}
+	return ret;
+}
+
+static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
+					struct btrfs_device *device)
+{
+	int ret;
+	struct btrfs_path *path;
+	struct btrfs_root *root;
+	struct btrfs_dev_item *dev_item;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+
+	root = device->dev_root->fs_info->chunk_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+	key.type = BTRFS_DEV_ITEM_KEY;
+	key.offset = device->devid;
+
+	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+	if (ret < 0)
+		goto out;
+
+	if (ret > 0) {
+		ret = -ENOENT;
+		goto out;
+	}
+
+	leaf = path->nodes[0];
+	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
+
+	btrfs_set_device_id(leaf, dev_item, device->devid);
+	btrfs_set_device_type(leaf, dev_item, device->type);
+	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
+	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
+	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
+	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
+	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
+	btrfs_mark_buffer_dirty(leaf);
+
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
+		      struct btrfs_device *device, u64 new_size)
+{
+	struct btrfs_super_block *super_copy =
+		device->dev_root->fs_info->super_copy;
+	u64 old_total = btrfs_super_total_bytes(super_copy);
+	u64 diff = new_size - device->total_bytes;
+
+	if (!device->writeable)
+		return -EACCES;
+	if (new_size <= device->total_bytes)
+		return -EINVAL;
+
+	btrfs_set_super_total_bytes(super_copy, old_total + diff);
+	device->fs_devices->total_rw_bytes += diff;
+
+	device->total_bytes = new_size;
+	device->disk_total_bytes = new_size;
+	btrfs_clear_space_info_full(device->dev_root->fs_info);
+
+	return btrfs_update_device(trans, device);
+}
+
+int btrfs_grow_device(struct btrfs_trans_handle *trans,
+		      struct btrfs_device *device, u64 new_size)
+{
+	int ret;
+	lock_chunks(device->dev_root);
+	ret = __btrfs_grow_device(trans, device, new_size);
+	unlock_chunks(device->dev_root);
+	return ret;
+}
+
+static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
+			    struct btrfs_root *root,
+			    u64 chunk_tree, u64 chunk_objectid,
+			    u64 chunk_offset)
+{
+	int ret;
+	struct btrfs_path *path;
+	struct btrfs_key key;
+
+	root = root->fs_info->chunk_root;
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	key.objectid = chunk_objectid;
+	key.offset = chunk_offset;
+	key.type = BTRFS_CHUNK_ITEM_KEY;
+
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret < 0)
+		goto out;
+	else if (ret > 0) { /* Logic error or corruption */
+		btrfs_error(root->fs_info, -ENOENT,
+			    "Failed lookup while freeing chunk.");
+		ret = -ENOENT;
+		goto out;
+	}
+
+	ret = btrfs_del_item(trans, root, path);
+	if (ret < 0)
+		btrfs_error(root->fs_info, ret,
+			    "Failed to delete chunk item.");
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
+			chunk_offset)
+{
+	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+	struct btrfs_disk_key *disk_key;
+	struct btrfs_chunk *chunk;
+	u8 *ptr;
+	int ret = 0;
+	u32 num_stripes;
+	u32 array_size;
+	u32 len = 0;
+	u32 cur;
+	struct btrfs_key key;
+
+	array_size = btrfs_super_sys_array_size(super_copy);
+
+	ptr = super_copy->sys_chunk_array;
+	cur = 0;
+
+	while (cur < array_size) {
+		disk_key = (struct btrfs_disk_key *)ptr;
+		btrfs_disk_key_to_cpu(&key, disk_key);
+
+		len = sizeof(*disk_key);
+
+		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
+			chunk = (struct btrfs_chunk *)(ptr + len);
+			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
+			len += btrfs_chunk_item_size(num_stripes);
+		} else {
+			ret = -EIO;
+			break;
+		}
+		if (key.objectid == chunk_objectid &&
+		    key.offset == chunk_offset) {
+			memmove(ptr, ptr + len, array_size - (cur + len));
+			array_size -= len;
+			btrfs_set_super_sys_array_size(super_copy, array_size);
+		} else {
+			ptr += len;
+			cur += len;
+		}
+	}
+	return ret;
+}
+
+static int btrfs_relocate_chunk(struct btrfs_root *root,
+			 u64 chunk_tree, u64 chunk_objectid,
+			 u64 chunk_offset)
+{
+	struct extent_map_tree *em_tree;
+	struct btrfs_root *extent_root;
+	struct btrfs_trans_handle *trans;
+	struct extent_map *em;
+	struct map_lookup *map;
+	int ret;
+	int i;
+
+	root = root->fs_info->chunk_root;
+	extent_root = root->fs_info->extent_root;
+	em_tree = &root->fs_info->mapping_tree.map_tree;
+
+	ret = btrfs_can_relocate(extent_root, chunk_offset);
+	if (ret)
+		return -ENOSPC;
+
+	/* step one, relocate all the extents inside this chunk */
+	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
+	if (ret)
+		return ret;
+
+	trans = btrfs_start_transaction(root, 0);
+	BUG_ON(IS_ERR(trans));
+
+	lock_chunks(root);
+
+	/*
+	 * step two, delete the device extents and the
+	 * chunk tree entries
+	 */
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
+	read_unlock(&em_tree->lock);
+
+	BUG_ON(!em || em->start > chunk_offset ||
+	       em->start + em->len < chunk_offset);
+	map = (struct map_lookup *)em->bdev;
+
+	for (i = 0; i < map->num_stripes; i++) {
+		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
+					    map->stripes[i].physical);
+		BUG_ON(ret);
+
+		if (map->stripes[i].dev) {
+			ret = btrfs_update_device(trans, map->stripes[i].dev);
+			BUG_ON(ret);
+		}
+	}
+	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
+			       chunk_offset);
+
+	BUG_ON(ret);
+
+	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
+
+	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
+		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
+		BUG_ON(ret);
+	}
+
+	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
+	BUG_ON(ret);
+
+	write_lock(&em_tree->lock);
+	remove_extent_mapping(em_tree, em);
+	write_unlock(&em_tree->lock);
+
+	kfree(map);
+	em->bdev = NULL;
+
+	/* once for the tree */
+	free_extent_map(em);
+	/* once for us */
+	free_extent_map(em);
+
+	unlock_chunks(root);
+	btrfs_end_transaction(trans, root);
+	return 0;
+}
+
+static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
+{
+	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_chunk *chunk;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	u64 chunk_tree = chunk_root->root_key.objectid;
+	u64 chunk_type;
+	bool retried = false;
+	int failed = 0;
+	int ret;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+again:
+	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+	key.offset = (u64)-1;
+	key.type = BTRFS_CHUNK_ITEM_KEY;
+
+	while (1) {
+		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
+		if (ret < 0)
+			goto error;
+		BUG_ON(ret == 0); /* Corruption */
+
+		ret = btrfs_previous_item(chunk_root, path, key.objectid,
+					  key.type);
+		if (ret < 0)
+			goto error;
+		if (ret > 0)
+			break;
+
+		leaf = path->nodes[0];
+		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+		chunk = btrfs_item_ptr(leaf, path->slots[0],
+				       struct btrfs_chunk);
+		chunk_type = btrfs_chunk_type(leaf, chunk);
+		btrfs_release_path(path);
+
+		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
+			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
+						   found_key.objectid,
+						   found_key.offset);
+			if (ret == -ENOSPC)
+				failed++;
+			else if (ret)
+				BUG();
+		}
+
+		if (found_key.offset == 0)
+			break;
+		key.offset = found_key.offset - 1;
+	}
+	ret = 0;
+	if (failed && !retried) {
+		failed = 0;
+		retried = true;
+		goto again;
+	} else if (failed && retried) {
+		WARN_ON(1);
+		ret = -ENOSPC;
+	}
+error:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int insert_balance_item(struct btrfs_root *root,
+			       struct btrfs_balance_control *bctl)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_balance_item *item;
+	struct btrfs_disk_balance_args disk_bargs;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	int ret, err;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	trans = btrfs_start_transaction(root, 0);
+	if (IS_ERR(trans)) {
+		btrfs_free_path(path);
+		return PTR_ERR(trans);
+	}
+
+	key.objectid = BTRFS_BALANCE_OBJECTID;
+	key.type = BTRFS_BALANCE_ITEM_KEY;
+	key.offset = 0;
+
+	ret = btrfs_insert_empty_item(trans, root, path, &key,
+				      sizeof(*item));
+	if (ret)
+		goto out;
+
+	leaf = path->nodes[0];
+	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
+
+	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
+
+	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
+	btrfs_set_balance_data(leaf, item, &disk_bargs);
+	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
+	btrfs_set_balance_meta(leaf, item, &disk_bargs);
+	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
+	btrfs_set_balance_sys(leaf, item, &disk_bargs);
+
+	btrfs_set_balance_flags(leaf, item, bctl->flags);
+
+	btrfs_mark_buffer_dirty(leaf);
+out:
+	btrfs_free_path(path);
+	err = btrfs_commit_transaction(trans, root);
+	if (err && !ret)
+		ret = err;
+	return ret;
+}
+
+static int del_balance_item(struct btrfs_root *root)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_path *path;
+	struct btrfs_key key;
+	int ret, err;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	trans = btrfs_start_transaction(root, 0);
+	if (IS_ERR(trans)) {
+		btrfs_free_path(path);
+		return PTR_ERR(trans);
+	}
+
+	key.objectid = BTRFS_BALANCE_OBJECTID;
+	key.type = BTRFS_BALANCE_ITEM_KEY;
+	key.offset = 0;
+
+	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+	if (ret < 0)
+		goto out;
+	if (ret > 0) {
+		ret = -ENOENT;
+		goto out;
+	}
+
+	ret = btrfs_del_item(trans, root, path);
+out:
+	btrfs_free_path(path);
+	err = btrfs_commit_transaction(trans, root);
+	if (err && !ret)
+		ret = err;
+	return ret;
+}
+
+/*
+ * This is a heuristic used to reduce the number of chunks balanced on
+ * resume after balance was interrupted.
+ */
+static void update_balance_args(struct btrfs_balance_control *bctl)
+{
+	/*
+	 * Turn on soft mode for chunk types that were being converted.
+	 */
+	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
+		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
+	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
+		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
+	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
+		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
+
+	/*
+	 * Turn on usage filter if is not already used.  The idea is
+	 * that chunks that we have already balanced should be
+	 * reasonably full.  Don't do it for chunks that are being
+	 * converted - that will keep us from relocating unconverted
+	 * (albeit full) chunks.
+	 */
+	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
+	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
+		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
+		bctl->data.usage = 90;
+	}
+	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
+	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
+		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
+		bctl->sys.usage = 90;
+	}
+	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
+	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
+		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
+		bctl->meta.usage = 90;
+	}
+}
+
+/*
+ * Should be called with both balance and volume mutexes held to
+ * serialize other volume operations (add_dev/rm_dev/resize) with
+ * restriper.  Same goes for unset_balance_control.
+ */
+static void set_balance_control(struct btrfs_balance_control *bctl)
+{
+	struct btrfs_fs_info *fs_info = bctl->fs_info;
+
+	BUG_ON(fs_info->balance_ctl);
+
+	spin_lock(&fs_info->balance_lock);
+	fs_info->balance_ctl = bctl;
+	spin_unlock(&fs_info->balance_lock);
+}
+
+static void unset_balance_control(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+
+	BUG_ON(!fs_info->balance_ctl);
+
+	spin_lock(&fs_info->balance_lock);
+	fs_info->balance_ctl = NULL;
+	spin_unlock(&fs_info->balance_lock);
+
+	kfree(bctl);
+}
+
+/*
+ * Balance filters.  Return 1 if chunk should be filtered out
+ * (should not be balanced).
+ */
+static int chunk_profiles_filter(u64 chunk_type,
+				 struct btrfs_balance_args *bargs)
+{
+	chunk_type = chunk_to_extended(chunk_type) &
+				BTRFS_EXTENDED_PROFILE_MASK;
+
+	if (bargs->profiles & chunk_type)
+		return 0;
+
+	return 1;
+}
+
+static u64 div_factor_fine(u64 num, int factor)
+{
+	if (factor <= 0)
+		return 0;
+	if (factor >= 100)
+		return num;
+
+	num *= factor;
+	do_div(num, 100);
+	return num;
+}
+
+static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
+			      struct btrfs_balance_args *bargs)
+{
+	struct btrfs_block_group_cache *cache;
+	u64 chunk_used, user_thresh;
+	int ret = 1;
+
+	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
+	chunk_used = btrfs_block_group_used(&cache->item);
+
+	user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
+	if (chunk_used < user_thresh)
+		ret = 0;
+
+	btrfs_put_block_group(cache);
+	return ret;
+}
+
+static int chunk_devid_filter(struct extent_buffer *leaf,
+			      struct btrfs_chunk *chunk,
+			      struct btrfs_balance_args *bargs)
+{
+	struct btrfs_stripe *stripe;
+	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+	int i;
+
+	for (i = 0; i < num_stripes; i++) {
+		stripe = btrfs_stripe_nr(chunk, i);
+		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
+			return 0;
+	}
+
+	return 1;
+}
+
+/* [pstart, pend) */
+static int chunk_drange_filter(struct extent_buffer *leaf,
+			       struct btrfs_chunk *chunk,
+			       u64 chunk_offset,
+			       struct btrfs_balance_args *bargs)
+{
+	struct btrfs_stripe *stripe;
+	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+	u64 stripe_offset;
+	u64 stripe_length;
+	int factor;
+	int i;
+
+	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
+		return 0;
+
+	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
+	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
+		factor = 2;
+	else
+		factor = 1;
+	factor = num_stripes / factor;
+
+	for (i = 0; i < num_stripes; i++) {
+		stripe = btrfs_stripe_nr(chunk, i);
+		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
+			continue;
+
+		stripe_offset = btrfs_stripe_offset(leaf, stripe);
+		stripe_length = btrfs_chunk_length(leaf, chunk);
+		do_div(stripe_length, factor);
+
+		if (stripe_offset < bargs->pend &&
+		    stripe_offset + stripe_length > bargs->pstart)
+			return 0;
+	}
+
+	return 1;
+}
+
+/* [vstart, vend) */
+static int chunk_vrange_filter(struct extent_buffer *leaf,
+			       struct btrfs_chunk *chunk,
+			       u64 chunk_offset,
+			       struct btrfs_balance_args *bargs)
+{
+	if (chunk_offset < bargs->vend &&
+	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
+		/* at least part of the chunk is inside this vrange */
+		return 0;
+
+	return 1;
+}
+
+static int chunk_soft_convert_filter(u64 chunk_type,
+				     struct btrfs_balance_args *bargs)
+{
+	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
+		return 0;
+
+	chunk_type = chunk_to_extended(chunk_type) &
+				BTRFS_EXTENDED_PROFILE_MASK;
+
+	if (bargs->target == chunk_type)
+		return 1;
+
+	return 0;
+}
+
+static int should_balance_chunk(struct btrfs_root *root,
+				struct extent_buffer *leaf,
+				struct btrfs_chunk *chunk, u64 chunk_offset)
+{
+	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
+	struct btrfs_balance_args *bargs = NULL;
+	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
+
+	/* type filter */
+	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
+	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
+		return 0;
+	}
+
+	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
+		bargs = &bctl->data;
+	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
+		bargs = &bctl->sys;
+	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
+		bargs = &bctl->meta;
+
+	/* profiles filter */
+	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
+	    chunk_profiles_filter(chunk_type, bargs)) {
+		return 0;
+	}
+
+	/* usage filter */
+	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
+	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
+		return 0;
+	}
+
+	/* devid filter */
+	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
+	    chunk_devid_filter(leaf, chunk, bargs)) {
+		return 0;
+	}
+
+	/* drange filter, makes sense only with devid filter */
+	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
+	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
+		return 0;
+	}
+
+	/* vrange filter */
+	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
+	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
+		return 0;
+	}
+
+	/* soft profile changing mode */
+	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
+	    chunk_soft_convert_filter(chunk_type, bargs)) {
+		return 0;
+	}
+
+	return 1;
+}
+
+static u64 div_factor(u64 num, int factor)
+{
+	if (factor == 10)
+		return num;
+	num *= factor;
+	do_div(num, 10);
+	return num;
+}
+
+static int __btrfs_balance(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+	struct btrfs_root *chunk_root = fs_info->chunk_root;
+	struct btrfs_root *dev_root = fs_info->dev_root;
+	struct list_head *devices;
+	struct btrfs_device *device;
+	u64 old_size;
+	u64 size_to_free;
+	struct btrfs_chunk *chunk;
+	struct btrfs_path *path;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	struct btrfs_trans_handle *trans;
+	struct extent_buffer *leaf;
+	int slot;
+	int ret;
+	int enospc_errors = 0;
+	bool counting = true;
+
+	/* step one make some room on all the devices */
+	devices = &fs_info->fs_devices->devices;
+	list_for_each_entry(device, devices, dev_list) {
+		old_size = device->total_bytes;
+		size_to_free = div_factor(old_size, 1);
+		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
+		if (!device->writeable ||
+		    device->total_bytes - device->bytes_used > size_to_free)
+			continue;
+
+		ret = btrfs_shrink_device(device, old_size - size_to_free);
+		if (ret == -ENOSPC)
+			break;
+		BUG_ON(ret);
+
+		trans = btrfs_start_transaction(dev_root, 0);
+		BUG_ON(IS_ERR(trans));
+
+		ret = btrfs_grow_device(trans, device, old_size);
+		BUG_ON(ret);
+
+		btrfs_end_transaction(trans, dev_root);
+	}
+
+	/* step two, relocate all the chunks */
+	path = btrfs_alloc_path();
+	if (!path) {
+		ret = -ENOMEM;
+		goto error;
+	}
+
+	/* zero out stat counters */
+	spin_lock(&fs_info->balance_lock);
+	memset(&bctl->stat, 0, sizeof(bctl->stat));
+	spin_unlock(&fs_info->balance_lock);
+again:
+	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+	key.offset = (u64)-1;
+	key.type = BTRFS_CHUNK_ITEM_KEY;
+
+	while (1) {
+		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
+		    atomic_read(&fs_info->balance_cancel_req)) {
+			ret = -ECANCELED;
+			goto error;
+		}
+
+		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
+		if (ret < 0)
+			goto error;
+
+		/*
+		 * this shouldn't happen, it means the last relocate
+		 * failed
+		 */
+		if (ret == 0)
+			BUG(); /* FIXME break ? */
+
+		ret = btrfs_previous_item(chunk_root, path, 0,
+					  BTRFS_CHUNK_ITEM_KEY);
+		if (ret) {
+			ret = 0;
+			break;
+		}
+
+		leaf = path->nodes[0];
+		slot = path->slots[0];
+		btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+		if (found_key.objectid != key.objectid)
+			break;
+
+		/* chunk zero is special */
+		if (found_key.offset == 0)
+			break;
+
+		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
+
+		if (!counting) {
+			spin_lock(&fs_info->balance_lock);
+			bctl->stat.considered++;
+			spin_unlock(&fs_info->balance_lock);
+		}
+
+		ret = should_balance_chunk(chunk_root, leaf, chunk,
+					   found_key.offset);
+		btrfs_release_path(path);
+		if (!ret)
+			goto loop;
+
+		if (counting) {
+			spin_lock(&fs_info->balance_lock);
+			bctl->stat.expected++;
+			spin_unlock(&fs_info->balance_lock);
+			goto loop;
+		}
+
+		ret = btrfs_relocate_chunk(chunk_root,
+					   chunk_root->root_key.objectid,
+					   found_key.objectid,
+					   found_key.offset);
+		if (ret && ret != -ENOSPC)
+			goto error;
+		if (ret == -ENOSPC) {
+			enospc_errors++;
+		} else {
+			spin_lock(&fs_info->balance_lock);
+			bctl->stat.completed++;
+			spin_unlock(&fs_info->balance_lock);
+		}
+loop:
+		key.offset = found_key.offset - 1;
+	}
+
+	if (counting) {
+		btrfs_release_path(path);
+		counting = false;
+		goto again;
+	}
+error:
+	btrfs_free_path(path);
+	if (enospc_errors) {
+		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
+		       enospc_errors);
+		if (!ret)
+			ret = -ENOSPC;
+	}
+
+	return ret;
+}
+
+/**
+ * alloc_profile_is_valid - see if a given profile is valid and reduced
+ * @flags: profile to validate
+ * @extended: if true @flags is treated as an extended profile
+ */
+static int alloc_profile_is_valid(u64 flags, int extended)
+{
+	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
+			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
+
+	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
+
+	/* 1) check that all other bits are zeroed */
+	if (flags & ~mask)
+		return 0;
+
+	/* 2) see if profile is reduced */
+	if (flags == 0)
+		return !extended; /* "0" is valid for usual profiles */
+
+	/* true if exactly one bit set */
+	return (flags & (flags - 1)) == 0;
+}
+
+static inline int balance_need_close(struct btrfs_fs_info *fs_info)
+{
+	/* cancel requested || normal exit path */
+	return atomic_read(&fs_info->balance_cancel_req) ||
+		(atomic_read(&fs_info->balance_pause_req) == 0 &&
+		 atomic_read(&fs_info->balance_cancel_req) == 0);
+}
+
+static void __cancel_balance(struct btrfs_fs_info *fs_info)
+{
+	int ret;
+
+	unset_balance_control(fs_info);
+	ret = del_balance_item(fs_info->tree_root);
+	BUG_ON(ret);
+}
+
+void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
+			       struct btrfs_ioctl_balance_args *bargs);
+
+/*
+ * Should be called with both balance and volume mutexes held
+ */
+int btrfs_balance(struct btrfs_balance_control *bctl,
+		  struct btrfs_ioctl_balance_args *bargs)
+{
+	struct btrfs_fs_info *fs_info = bctl->fs_info;
+	u64 allowed;
+	int mixed = 0;
+	int ret;
+
+	if (btrfs_fs_closing(fs_info) ||
+	    atomic_read(&fs_info->balance_pause_req) ||
+	    atomic_read(&fs_info->balance_cancel_req)) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
+	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
+		mixed = 1;
+
+	/*
+	 * In case of mixed groups both data and meta should be picked,
+	 * and identical options should be given for both of them.
+	 */
+	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
+	if (mixed && (bctl->flags & allowed)) {
+		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
+		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
+		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
+			printk(KERN_ERR "btrfs: with mixed groups data and "
+			       "metadata balance options must be the same\n");
+			ret = -EINVAL;
+			goto out;
+		}
+	}
+
+	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+	if (fs_info->fs_devices->num_devices == 1)
+		allowed |= BTRFS_BLOCK_GROUP_DUP;
+	else if (fs_info->fs_devices->num_devices < 4)
+		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
+	else
+		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
+				BTRFS_BLOCK_GROUP_RAID10);
+
+	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
+	     (bctl->data.target & ~allowed))) {
+		printk(KERN_ERR "btrfs: unable to start balance with target "
+		       "data profile %llu\n",
+		       (unsigned long long)bctl->data.target);
+		ret = -EINVAL;
+		goto out;
+	}
+	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
+	     (bctl->meta.target & ~allowed))) {
+		printk(KERN_ERR "btrfs: unable to start balance with target "
+		       "metadata profile %llu\n",
+		       (unsigned long long)bctl->meta.target);
+		ret = -EINVAL;
+		goto out;
+	}
+	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
+	     (bctl->sys.target & ~allowed))) {
+		printk(KERN_ERR "btrfs: unable to start balance with target "
+		       "system profile %llu\n",
+		       (unsigned long long)bctl->sys.target);
+		ret = -EINVAL;
+		goto out;
+	}
+
+	/* allow dup'ed data chunks only in mixed mode */
+	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
+		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
+		ret = -EINVAL;
+		goto out;
+	}
+
+	/* allow to reduce meta or sys integrity only if force set */
+	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
+			BTRFS_BLOCK_GROUP_RAID10;
+	if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+	     (fs_info->avail_system_alloc_bits & allowed) &&
+	     !(bctl->sys.target & allowed)) ||
+	    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+	     (fs_info->avail_metadata_alloc_bits & allowed) &&
+	     !(bctl->meta.target & allowed))) {
+		if (bctl->flags & BTRFS_BALANCE_FORCE) {
+			printk(KERN_INFO "btrfs: force reducing metadata "
+			       "integrity\n");
+		} else {
+			printk(KERN_ERR "btrfs: balance will reduce metadata "
+			       "integrity, use force if you want this\n");
+			ret = -EINVAL;
+			goto out;
+		}
+	}
+
+	ret = insert_balance_item(fs_info->tree_root, bctl);
+	if (ret && ret != -EEXIST)
+		goto out;
+
+	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
+		BUG_ON(ret == -EEXIST);
+		set_balance_control(bctl);
+	} else {
+		BUG_ON(ret != -EEXIST);
+		spin_lock(&fs_info->balance_lock);
+		update_balance_args(bctl);
+		spin_unlock(&fs_info->balance_lock);
+	}
+
+	atomic_inc(&fs_info->balance_running);
+	mutex_unlock(&fs_info->balance_mutex);
+
+	ret = __btrfs_balance(fs_info);
+
+	mutex_lock(&fs_info->balance_mutex);
+	atomic_dec(&fs_info->balance_running);
+
+	if (bargs) {
+		memset(bargs, 0, sizeof(*bargs));
+		update_ioctl_balance_args(fs_info, 0, bargs);
+	}
+
+	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
+	    balance_need_close(fs_info)) {
+		__cancel_balance(fs_info);
+	}
+
+	wake_up(&fs_info->balance_wait_q);
+
+	return ret;
+out:
+	if (bctl->flags & BTRFS_BALANCE_RESUME)
+		__cancel_balance(fs_info);
+	else
+		kfree(bctl);
+	return ret;
+}
+
+static int balance_kthread(void *data)
+{
+	struct btrfs_balance_control *bctl =
+			(struct btrfs_balance_control *)data;
+	struct btrfs_fs_info *fs_info = bctl->fs_info;
+	int ret = 0;
+
+	mutex_lock(&fs_info->volume_mutex);
+	mutex_lock(&fs_info->balance_mutex);
+
+	set_balance_control(bctl);
+
+	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
+		printk(KERN_INFO "btrfs: force skipping balance\n");
+	} else {
+		printk(KERN_INFO "btrfs: continuing balance\n");
+		ret = btrfs_balance(bctl, NULL);
+	}
+
+	mutex_unlock(&fs_info->balance_mutex);
+	mutex_unlock(&fs_info->volume_mutex);
+	return ret;
+}
+
+int btrfs_recover_balance(struct btrfs_root *tree_root)
+{
+	struct task_struct *tsk;
+	struct btrfs_balance_control *bctl;
+	struct btrfs_balance_item *item;
+	struct btrfs_disk_balance_args disk_bargs;
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	int ret;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
+	if (!bctl) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	key.objectid = BTRFS_BALANCE_OBJECTID;
+	key.type = BTRFS_BALANCE_ITEM_KEY;
+	key.offset = 0;
+
+	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
+	if (ret < 0)
+		goto out_bctl;
+	if (ret > 0) { /* ret = -ENOENT; */
+		ret = 0;
+		goto out_bctl;
+	}
+
+	leaf = path->nodes[0];
+	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
+
+	bctl->fs_info = tree_root->fs_info;
+	bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
+
+	btrfs_balance_data(leaf, item, &disk_bargs);
+	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
+	btrfs_balance_meta(leaf, item, &disk_bargs);
+	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
+	btrfs_balance_sys(leaf, item, &disk_bargs);
+	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
+
+	tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
+	if (IS_ERR(tsk))
+		ret = PTR_ERR(tsk);
+	else
+		goto out;
+
+out_bctl:
+	kfree(bctl);
+out:
+	btrfs_free_path(path);
+	return ret;
+}
+
+int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
+{
+	int ret = 0;
+
+	mutex_lock(&fs_info->balance_mutex);
+	if (!fs_info->balance_ctl) {
+		mutex_unlock(&fs_info->balance_mutex);
+		return -ENOTCONN;
+	}
+
+	if (atomic_read(&fs_info->balance_running)) {
+		atomic_inc(&fs_info->balance_pause_req);
+		mutex_unlock(&fs_info->balance_mutex);
+
+		wait_event(fs_info->balance_wait_q,
+			   atomic_read(&fs_info->balance_running) == 0);
+
+		mutex_lock(&fs_info->balance_mutex);
+		/* we are good with balance_ctl ripped off from under us */
+		BUG_ON(atomic_read(&fs_info->balance_running));
+		atomic_dec(&fs_info->balance_pause_req);
+	} else {
+		ret = -ENOTCONN;
+	}
+
+	mutex_unlock(&fs_info->balance_mutex);
+	return ret;
+}
+
+int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
+{
+	mutex_lock(&fs_info->balance_mutex);
+	if (!fs_info->balance_ctl) {
+		mutex_unlock(&fs_info->balance_mutex);
+		return -ENOTCONN;
+	}
+
+	atomic_inc(&fs_info->balance_cancel_req);
+	/*
+	 * if we are running just wait and return, balance item is
+	 * deleted in btrfs_balance in this case
+	 */
+	if (atomic_read(&fs_info->balance_running)) {
+		mutex_unlock(&fs_info->balance_mutex);
+		wait_event(fs_info->balance_wait_q,
+			   atomic_read(&fs_info->balance_running) == 0);
+		mutex_lock(&fs_info->balance_mutex);
+	} else {
+		/* __cancel_balance needs volume_mutex */
+		mutex_unlock(&fs_info->balance_mutex);
+		mutex_lock(&fs_info->volume_mutex);
+		mutex_lock(&fs_info->balance_mutex);
+
+		if (fs_info->balance_ctl)
+			__cancel_balance(fs_info);
+
+		mutex_unlock(&fs_info->volume_mutex);
+	}
+
+	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
+	atomic_dec(&fs_info->balance_cancel_req);
+	mutex_unlock(&fs_info->balance_mutex);
+	return 0;
+}
+
+/*
+ * shrinking a device means finding all of the device extents past
+ * the new size, and then following the back refs to the chunks.
+ * The chunk relocation code actually frees the device extent
+ */
+int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
+{
+	struct btrfs_trans_handle *trans;
+	struct btrfs_root *root = device->dev_root;
+	struct btrfs_dev_extent *dev_extent = NULL;
+	struct btrfs_path *path;
+	u64 length;
+	u64 chunk_tree;
+	u64 chunk_objectid;
+	u64 chunk_offset;
+	int ret;
+	int slot;
+	int failed = 0;
+	bool retried = false;
+	struct extent_buffer *l;
+	struct btrfs_key key;
+	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+	u64 old_total = btrfs_super_total_bytes(super_copy);
+	u64 old_size = device->total_bytes;
+	u64 diff = device->total_bytes - new_size;
+
+	if (new_size >= device->total_bytes)
+		return -EINVAL;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	path->reada = 2;
+
+	lock_chunks(root);
+
+	device->total_bytes = new_size;
+	if (device->writeable) {
+		device->fs_devices->total_rw_bytes -= diff;
+		spin_lock(&root->fs_info->free_chunk_lock);
+		root->fs_info->free_chunk_space -= diff;
+		spin_unlock(&root->fs_info->free_chunk_lock);
+	}
+	unlock_chunks(root);
+
+again:
+	key.objectid = device->devid;
+	key.offset = (u64)-1;
+	key.type = BTRFS_DEV_EXTENT_KEY;
+
+	do {
+		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+		if (ret < 0)
+			goto done;
+
+		ret = btrfs_previous_item(root, path, 0, key.type);
+		if (ret < 0)
+			goto done;
+		if (ret) {
+			ret = 0;
+			btrfs_release_path(path);
+			break;
+		}
+
+		l = path->nodes[0];
+		slot = path->slots[0];
+		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
+
+		if (key.objectid != device->devid) {
+			btrfs_release_path(path);
+			break;
+		}
+
+		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+		length = btrfs_dev_extent_length(l, dev_extent);
+
+		if (key.offset + length <= new_size) {
+			btrfs_release_path(path);
+			break;
+		}
+
+		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
+		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
+		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
+		btrfs_release_path(path);
+
+		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
+					   chunk_offset);
+		if (ret && ret != -ENOSPC)
+			goto done;
+		if (ret == -ENOSPC)
+			failed++;
+	} while (key.offset-- > 0);
+
+	if (failed && !retried) {
+		failed = 0;
+		retried = true;
+		goto again;
+	} else if (failed && retried) {
+		ret = -ENOSPC;
+		lock_chunks(root);
+
+		device->total_bytes = old_size;
+		if (device->writeable)
+			device->fs_devices->total_rw_bytes += diff;
+		spin_lock(&root->fs_info->free_chunk_lock);
+		root->fs_info->free_chunk_space += diff;
+		spin_unlock(&root->fs_info->free_chunk_lock);
+		unlock_chunks(root);
+		goto done;
+	}
+
+	/* Shrinking succeeded, else we would be at "done". */
+	trans = btrfs_start_transaction(root, 0);
+	if (IS_ERR(trans)) {
+		ret = PTR_ERR(trans);
+		goto done;
+	}
+
+	lock_chunks(root);
+
+	device->disk_total_bytes = new_size;
+	/* Now btrfs_update_device() will change the on-disk size. */
+	ret = btrfs_update_device(trans, device);
+	if (ret) {
+		unlock_chunks(root);
+		btrfs_end_transaction(trans, root);
+		goto done;
+	}
+	WARN_ON(diff > old_total);
+	btrfs_set_super_total_bytes(super_copy, old_total - diff);
+	unlock_chunks(root);
+	btrfs_end_transaction(trans, root);
+done:
+	btrfs_free_path(path);
+	return ret;
+}
+
+static int btrfs_add_system_chunk(struct btrfs_root *root,
+			   struct btrfs_key *key,
+			   struct btrfs_chunk *chunk, int item_size)
+{
+	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+	struct btrfs_disk_key disk_key;
+	u32 array_size;
+	u8 *ptr;
+
+	array_size = btrfs_super_sys_array_size(super_copy);
+	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
+		return -EFBIG;
+
+	ptr = super_copy->sys_chunk_array + array_size;
+	btrfs_cpu_key_to_disk(&disk_key, key);
+	memcpy(ptr, &disk_key, sizeof(disk_key));
+	ptr += sizeof(disk_key);
+	memcpy(ptr, chunk, item_size);
+	item_size += sizeof(disk_key);
+	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
+	return 0;
+}
+
+/*
+ * sort the devices in descending order by max_avail, total_avail
+ */
+static int btrfs_cmp_device_info(const void *a, const void *b)
+{
+	const struct btrfs_device_info *di_a = a;
+	const struct btrfs_device_info *di_b = b;
+
+	if (di_a->max_avail > di_b->max_avail)
+		return -1;
+	if (di_a->max_avail < di_b->max_avail)
+		return 1;
+	if (di_a->total_avail > di_b->total_avail)
+		return -1;
+	if (di_a->total_avail < di_b->total_avail)
+		return 1;
+	return 0;
+}
+
+static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
+			       struct btrfs_root *extent_root,
+			       struct map_lookup **map_ret,
+			       u64 *num_bytes_out, u64 *stripe_size_out,
+			       u64 start, u64 type)
+{
+	struct btrfs_fs_info *info = extent_root->fs_info;
+	struct btrfs_fs_devices *fs_devices = info->fs_devices;
+	struct list_head *cur;
+	struct map_lookup *map = NULL;
+	struct extent_map_tree *em_tree;
+	struct extent_map *em;
+	struct btrfs_device_info *devices_info = NULL;
+	u64 total_avail;
+	int num_stripes;	/* total number of stripes to allocate */
+	int sub_stripes;	/* sub_stripes info for map */
+	int dev_stripes;	/* stripes per dev */
+	int devs_max;		/* max devs to use */
+	int devs_min;		/* min devs needed */
+	int devs_increment;	/* ndevs has to be a multiple of this */
+	int ncopies;		/* how many copies to data has */
+	int ret;
+	u64 max_stripe_size;
+	u64 max_chunk_size;
+	u64 stripe_size;
+	u64 num_bytes;
+	int ndevs;
+	int i;
+	int j;
+
+	BUG_ON(!alloc_profile_is_valid(type, 0));
+
+	if (list_empty(&fs_devices->alloc_list))
+		return -ENOSPC;
+
+	sub_stripes = 1;
+	dev_stripes = 1;
+	devs_increment = 1;
+	ncopies = 1;
+	devs_max = 0;	/* 0 == as many as possible */
+	devs_min = 1;
+
+	/*
+	 * define the properties of each RAID type.
+	 * FIXME: move this to a global table and use it in all RAID
+	 * calculation code
+	 */
+	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
+		dev_stripes = 2;
+		ncopies = 2;
+		devs_max = 1;
+	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
+		devs_min = 2;
+	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
+		devs_increment = 2;
+		ncopies = 2;
+		devs_max = 2;
+		devs_min = 2;
+	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
+		sub_stripes = 2;
+		devs_increment = 2;
+		ncopies = 2;
+		devs_min = 4;
+	} else {
+		devs_max = 1;
+	}
+
+	if (type & BTRFS_BLOCK_GROUP_DATA) {
+		max_stripe_size = 1024 * 1024 * 1024;
+		max_chunk_size = 10 * max_stripe_size;
+	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
+		/* for larger filesystems, use larger metadata chunks */
+		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
+			max_stripe_size = 1024 * 1024 * 1024;
+		else
+			max_stripe_size = 256 * 1024 * 1024;
+		max_chunk_size = max_stripe_size;
+	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
+		max_stripe_size = 32 * 1024 * 1024;
+		max_chunk_size = 2 * max_stripe_size;
+	} else {
+		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
+		       type);
+		BUG_ON(1);
+	}
+
+	/* we don't want a chunk larger than 10% of writeable space */
+	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
+			     max_chunk_size);
+
+	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
+			       GFP_NOFS);
+	if (!devices_info)
+		return -ENOMEM;
+
+	cur = fs_devices->alloc_list.next;
+
+	/*
+	 * in the first pass through the devices list, we gather information
+	 * about the available holes on each device.
+	 */
+	ndevs = 0;
+	while (cur != &fs_devices->alloc_list) {
+		struct btrfs_device *device;
+		u64 max_avail;
+		u64 dev_offset;
+
+		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
+
+		cur = cur->next;
+
+		if (!device->writeable) {
+			printk(KERN_ERR
+			       "btrfs: read-only device in alloc_list\n");
+			WARN_ON(1);
+			continue;
+		}
+
+		if (!device->in_fs_metadata)
+			continue;
+
+		if (device->total_bytes > device->bytes_used)
+			total_avail = device->total_bytes - device->bytes_used;
+		else
+			total_avail = 0;
+
+		/* If there is no space on this device, skip it. */
+		if (total_avail == 0)
+			continue;
+
+		ret = find_free_dev_extent(device,
+					   max_stripe_size * dev_stripes,
+					   &dev_offset, &max_avail);
+		if (ret && ret != -ENOSPC)
+			goto error;
+
+		if (ret == 0)
+			max_avail = max_stripe_size * dev_stripes;
+
+		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
+			continue;
+
+		devices_info[ndevs].dev_offset = dev_offset;
+		devices_info[ndevs].max_avail = max_avail;
+		devices_info[ndevs].total_avail = total_avail;
+		devices_info[ndevs].dev = device;
+		++ndevs;
+	}
+
+	/*
+	 * now sort the devices by hole size / available space
+	 */
+	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
+	     btrfs_cmp_device_info, NULL);
+
+	/* round down to number of usable stripes */
+	ndevs -= ndevs % devs_increment;
+
+	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
+		ret = -ENOSPC;
+		goto error;
+	}
+
+	if (devs_max && ndevs > devs_max)
+		ndevs = devs_max;
+	/*
+	 * the primary goal is to maximize the number of stripes, so use as many
+	 * devices as possible, even if the stripes are not maximum sized.
+	 */
+	stripe_size = devices_info[ndevs-1].max_avail;
+	num_stripes = ndevs * dev_stripes;
+
+	if (stripe_size * ndevs > max_chunk_size * ncopies) {
+		stripe_size = max_chunk_size * ncopies;
+		do_div(stripe_size, ndevs);
+	}
+
+	do_div(stripe_size, dev_stripes);
+
+	/* align to BTRFS_STRIPE_LEN */
+	do_div(stripe_size, BTRFS_STRIPE_LEN);
+	stripe_size *= BTRFS_STRIPE_LEN;
+
+	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
+	if (!map) {
+		ret = -ENOMEM;
+		goto error;
+	}
+	map->num_stripes = num_stripes;
+
+	for (i = 0; i < ndevs; ++i) {
+		for (j = 0; j < dev_stripes; ++j) {
+			int s = i * dev_stripes + j;
+			map->stripes[s].dev = devices_info[i].dev;
+			map->stripes[s].physical = devices_info[i].dev_offset +
+						   j * stripe_size;
+		}
+	}
+	map->sector_size = extent_root->sectorsize;
+	map->stripe_len = BTRFS_STRIPE_LEN;
+	map->io_align = BTRFS_STRIPE_LEN;
+	map->io_width = BTRFS_STRIPE_LEN;
+	map->type = type;
+	map->sub_stripes = sub_stripes;
+
+	*map_ret = map;
+	num_bytes = stripe_size * (num_stripes / ncopies);
+
+	*stripe_size_out = stripe_size;
+	*num_bytes_out = num_bytes;
+
+	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
+
+	em = alloc_extent_map();
+	if (!em) {
+		ret = -ENOMEM;
+		goto error;
+	}
+	em->bdev = (struct block_device *)map;
+	em->start = start;
+	em->len = num_bytes;
+	em->block_start = 0;
+	em->block_len = em->len;
+
+	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
+	write_lock(&em_tree->lock);
+	ret = add_extent_mapping(em_tree, em);
+	write_unlock(&em_tree->lock);
+	free_extent_map(em);
+	if (ret)
+		goto error;
+
+	ret = btrfs_make_block_group(trans, extent_root, 0, type,
+				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+				     start, num_bytes);
+	if (ret)
+		goto error;
+
+	for (i = 0; i < map->num_stripes; ++i) {
+		struct btrfs_device *device;
+		u64 dev_offset;
+
+		device = map->stripes[i].dev;
+		dev_offset = map->stripes[i].physical;
+
+		ret = btrfs_alloc_dev_extent(trans, device,
+				info->chunk_root->root_key.objectid,
+				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+				start, dev_offset, stripe_size);
+		if (ret) {
+			btrfs_abort_transaction(trans, extent_root, ret);
+			goto error;
+		}
+	}
+
+	kfree(devices_info);
+	return 0;
+
+error:
+	kfree(map);
+	kfree(devices_info);
+	return ret;
+}
+
+static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
+				struct btrfs_root *extent_root,
+				struct map_lookup *map, u64 chunk_offset,
+				u64 chunk_size, u64 stripe_size)
+{
+	u64 dev_offset;
+	struct btrfs_key key;
+	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
+	struct btrfs_device *device;
+	struct btrfs_chunk *chunk;
+	struct btrfs_stripe *stripe;
+	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
+	int index = 0;
+	int ret;
+
+	chunk = kzalloc(item_size, GFP_NOFS);
+	if (!chunk)
+		return -ENOMEM;
+
+	index = 0;
+	while (index < map->num_stripes) {
+		device = map->stripes[index].dev;
+		device->bytes_used += stripe_size;
+		ret = btrfs_update_device(trans, device);
+		if (ret)
+			goto out_free;
+		index++;
+	}
+
+	spin_lock(&extent_root->fs_info->free_chunk_lock);
+	extent_root->fs_info->free_chunk_space -= (stripe_size *
+						   map->num_stripes);
+	spin_unlock(&extent_root->fs_info->free_chunk_lock);
+
+	index = 0;
+	stripe = &chunk->stripe;
+	while (index < map->num_stripes) {
+		device = map->stripes[index].dev;
+		dev_offset = map->stripes[index].physical;
+
+		btrfs_set_stack_stripe_devid(stripe, device->devid);
+		btrfs_set_stack_stripe_offset(stripe, dev_offset);
+		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
+		stripe++;
+		index++;
+	}
+
+	btrfs_set_stack_chunk_length(chunk, chunk_size);
+	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
+	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
+	btrfs_set_stack_chunk_type(chunk, map->type);
+	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
+	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
+	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
+	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
+	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
+
+	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+	key.type = BTRFS_CHUNK_ITEM_KEY;
+	key.offset = chunk_offset;
+
+	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
+
+	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
+		/*
+		 * TODO: Cleanup of inserted chunk root in case of
+		 * failure.
+		 */
+		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
+					     item_size);
+	}
+
+out_free:
+	kfree(chunk);
+	return ret;
+}
+
+/*
+ * Chunk allocation falls into two parts. The first part does works
+ * that make the new allocated chunk useable, but not do any operation
+ * that modifies the chunk tree. The second part does the works that
+ * require modifying the chunk tree. This division is important for the
+ * bootstrap process of adding storage to a seed btrfs.
+ */
+int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
+		      struct btrfs_root *extent_root, u64 type)
+{
+	u64 chunk_offset;
+	u64 chunk_size;
+	u64 stripe_size;
+	struct map_lookup *map;
+	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
+	int ret;
+
+	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+			      &chunk_offset);
+	if (ret)
+		return ret;
+
+	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
+				  &stripe_size, chunk_offset, type);
+	if (ret)
+		return ret;
+
+	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
+				   chunk_size, stripe_size);
+	if (ret)
+		return ret;
+	return 0;
+}
+
+static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
+					 struct btrfs_root *root,
+					 struct btrfs_device *device)
+{
+	u64 chunk_offset;
+	u64 sys_chunk_offset;
+	u64 chunk_size;
+	u64 sys_chunk_size;
+	u64 stripe_size;
+	u64 sys_stripe_size;
+	u64 alloc_profile;
+	struct map_lookup *map;
+	struct map_lookup *sys_map;
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	struct btrfs_root *extent_root = fs_info->extent_root;
+	int ret;
+
+	ret = find_next_chunk(fs_info->chunk_root,
+			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
+	if (ret)
+		return ret;
+
+	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
+				fs_info->avail_metadata_alloc_bits;
+	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
+
+	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
+				  &stripe_size, chunk_offset, alloc_profile);
+	if (ret)
+		return ret;
+
+	sys_chunk_offset = chunk_offset + chunk_size;
+
+	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
+				fs_info->avail_system_alloc_bits;
+	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
+
+	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
+				  &sys_chunk_size, &sys_stripe_size,
+				  sys_chunk_offset, alloc_profile);
+	if (ret)
+		goto abort;
+
+	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
+	if (ret)
+		goto abort;
+
+	/*
+	 * Modifying chunk tree needs allocating new blocks from both
+	 * system block group and metadata block group. So we only can
+	 * do operations require modifying the chunk tree after both
+	 * block groups were created.
+	 */
+	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
+				   chunk_size, stripe_size);
+	if (ret)
+		goto abort;
+
+	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
+				   sys_chunk_offset, sys_chunk_size,
+				   sys_stripe_size);
+	if (ret)
+		goto abort;
+
+	return 0;
+
+abort:
+	btrfs_abort_transaction(trans, root, ret);
+	return ret;
+}
+
+int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
+{
+	struct extent_map *em;
+	struct map_lookup *map;
+	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+	int readonly = 0;
+	int i;
+
+	read_lock(&map_tree->map_tree.lock);
+	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
+	read_unlock(&map_tree->map_tree.lock);
+	if (!em)
+		return 1;
+
+	if (btrfs_test_opt(root, DEGRADED)) {
+		free_extent_map(em);
+		return 0;
+	}
+
+	map = (struct map_lookup *)em->bdev;
+	for (i = 0; i < map->num_stripes; i++) {
+		if (!map->stripes[i].dev->writeable) {
+			readonly = 1;
+			break;
+		}
+	}
+	free_extent_map(em);
+	return readonly;
+}
+
+void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
+{
+	extent_map_tree_init(&tree->map_tree);
+}
+
+void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
+{
+	struct extent_map *em;
+
+	while (1) {
+		write_lock(&tree->map_tree.lock);
+		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
+		if (em)
+			remove_extent_mapping(&tree->map_tree, em);
+		write_unlock(&tree->map_tree.lock);
+		if (!em)
+			break;
+		kfree(em->bdev);
+		/* once for us */
+		free_extent_map(em);
+		/* once for the tree */
+		free_extent_map(em);
+	}
+}
+
+int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
+{
+	struct extent_map *em;
+	struct map_lookup *map;
+	struct extent_map_tree *em_tree = &map_tree->map_tree;
+	int ret;
+
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree, logical, len);
+	read_unlock(&em_tree->lock);
+	BUG_ON(!em);
+
+	BUG_ON(em->start > logical || em->start + em->len < logical);
+	map = (struct map_lookup *)em->bdev;
+	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
+		ret = map->num_stripes;
+	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+		ret = map->sub_stripes;
+	else
+		ret = 1;
+	free_extent_map(em);
+	return ret;
+}
+
+static int find_live_mirror(struct map_lookup *map, int first, int num,
+			    int optimal)
+{
+	int i;
+	if (map->stripes[optimal].dev->bdev)
+		return optimal;
+	for (i = first; i < first + num; i++) {
+		if (map->stripes[i].dev->bdev)
+			return i;
+	}
+	/* we couldn't find one that doesn't fail.  Just return something
+	 * and the io error handling code will clean up eventually
+	 */
+	return optimal;
+}
+
+static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+			     u64 logical, u64 *length,
+			     struct btrfs_bio **bbio_ret,
+			     int mirror_num)
+{
+	struct extent_map *em;
+	struct map_lookup *map;
+	struct extent_map_tree *em_tree = &map_tree->map_tree;
+	u64 offset;
+	u64 stripe_offset;
+	u64 stripe_end_offset;
+	u64 stripe_nr;
+	u64 stripe_nr_orig;
+	u64 stripe_nr_end;
+	int stripe_index;
+	int i;
+	int ret = 0;
+	int num_stripes;
+	int max_errors = 0;
+	struct btrfs_bio *bbio = NULL;
+
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree, logical, *length);
+	read_unlock(&em_tree->lock);
+
+	if (!em) {
+		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
+		       (unsigned long long)logical,
+		       (unsigned long long)*length);
+		BUG();
+	}
+
+	BUG_ON(em->start > logical || em->start + em->len < logical);
+	map = (struct map_lookup *)em->bdev;
+	offset = logical - em->start;
+
+	if (mirror_num > map->num_stripes)
+		mirror_num = 0;
+
+	stripe_nr = offset;
+	/*
+	 * stripe_nr counts the total number of stripes we have to stride
+	 * to get to this block
+	 */
+	do_div(stripe_nr, map->stripe_len);
+
+	stripe_offset = stripe_nr * map->stripe_len;
+	BUG_ON(offset < stripe_offset);
+
+	/* stripe_offset is the offset of this block in its stripe*/
+	stripe_offset = offset - stripe_offset;
+
+	if (rw & REQ_DISCARD)
+		*length = min_t(u64, em->len - offset, *length);
+	else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
+		/* we limit the length of each bio to what fits in a stripe */
+		*length = min_t(u64, em->len - offset,
+				map->stripe_len - stripe_offset);
+	} else {
+		*length = em->len - offset;
+	}
+
+	if (!bbio_ret)
+		goto out;
+
+	num_stripes = 1;
+	stripe_index = 0;
+	stripe_nr_orig = stripe_nr;
+	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
+			(~(map->stripe_len - 1));
+	do_div(stripe_nr_end, map->stripe_len);
+	stripe_end_offset = stripe_nr_end * map->stripe_len -
+			    (offset + *length);
+	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+		if (rw & REQ_DISCARD)
+			num_stripes = min_t(u64, map->num_stripes,
+					    stripe_nr_end - stripe_nr_orig);
+		stripe_index = do_div(stripe_nr, map->num_stripes);
+	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
+		if (rw & (REQ_WRITE | REQ_DISCARD))
+			num_stripes = map->num_stripes;
+		else if (mirror_num)
+			stripe_index = mirror_num - 1;
+		else {
+			stripe_index = find_live_mirror(map, 0,
+					    map->num_stripes,
+					    current->pid % map->num_stripes);
+			mirror_num = stripe_index + 1;
+		}
+
+	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
+		if (rw & (REQ_WRITE | REQ_DISCARD)) {
+			num_stripes = map->num_stripes;
+		} else if (mirror_num) {
+			stripe_index = mirror_num - 1;
+		} else {
+			mirror_num = 1;
+		}
+
+	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+		int factor = map->num_stripes / map->sub_stripes;
+
+		stripe_index = do_div(stripe_nr, factor);
+		stripe_index *= map->sub_stripes;
+
+		if (rw & REQ_WRITE)
+			num_stripes = map->sub_stripes;
+		else if (rw & REQ_DISCARD)
+			num_stripes = min_t(u64, map->sub_stripes *
+					    (stripe_nr_end - stripe_nr_orig),
+					    map->num_stripes);
+		else if (mirror_num)
+			stripe_index += mirror_num - 1;
+		else {
+			int old_stripe_index = stripe_index;
+			stripe_index = find_live_mirror(map, stripe_index,
+					      map->sub_stripes, stripe_index +
+					      current->pid % map->sub_stripes);
+			mirror_num = stripe_index - old_stripe_index + 1;
+		}
+	} else {
+		/*
+		 * after this do_div call, stripe_nr is the number of stripes
+		 * on this device we have to walk to find the data, and
+		 * stripe_index is the number of our device in the stripe array
+		 */
+		stripe_index = do_div(stripe_nr, map->num_stripes);
+		mirror_num = stripe_index + 1;
+	}
+	BUG_ON(stripe_index >= map->num_stripes);
+
+	bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
+	if (!bbio) {
+		ret = -ENOMEM;
+		goto out;
+	}
+	atomic_set(&bbio->error, 0);
+
+	if (rw & REQ_DISCARD) {
+		int factor = 0;
+		int sub_stripes = 0;
+		u64 stripes_per_dev = 0;
+		u32 remaining_stripes = 0;
+		u32 last_stripe = 0;
+
+		if (map->type &
+		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
+			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
+				sub_stripes = 1;
+			else
+				sub_stripes = map->sub_stripes;
+
+			factor = map->num_stripes / sub_stripes;
+			stripes_per_dev = div_u64_rem(stripe_nr_end -
+						      stripe_nr_orig,
+						      factor,
+						      &remaining_stripes);
+			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
+			last_stripe *= sub_stripes;
+		}
+
+		for (i = 0; i < num_stripes; i++) {
+			bbio->stripes[i].physical =
+				map->stripes[stripe_index].physical +
+				stripe_offset + stripe_nr * map->stripe_len;
+			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
+
+			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+					 BTRFS_BLOCK_GROUP_RAID10)) {
+				bbio->stripes[i].length = stripes_per_dev *
+							  map->stripe_len;
+
+				if (i / sub_stripes < remaining_stripes)
+					bbio->stripes[i].length +=
+						map->stripe_len;
+
+				/*
+				 * Special for the first stripe and
+				 * the last stripe:
+				 *
+				 * |-------|...|-------|
+				 *     |----------|
+				 *    off     end_off
+				 */
+				if (i < sub_stripes)
+					bbio->stripes[i].length -=
+						stripe_offset;
+
+				if (stripe_index >= last_stripe &&
+				    stripe_index <= (last_stripe +
+						     sub_stripes - 1))
+					bbio->stripes[i].length -=
+						stripe_end_offset;
+
+				if (i == sub_stripes - 1)
+					stripe_offset = 0;
+			} else
+				bbio->stripes[i].length = *length;
+
+			stripe_index++;
+			if (stripe_index == map->num_stripes) {
+				/* This could only happen for RAID0/10 */
+				stripe_index = 0;
+				stripe_nr++;
+			}
+		}
+	} else {
+		for (i = 0; i < num_stripes; i++) {
+			bbio->stripes[i].physical =
+				map->stripes[stripe_index].physical +
+				stripe_offset +
+				stripe_nr * map->stripe_len;
+			bbio->stripes[i].dev =
+				map->stripes[stripe_index].dev;
+			stripe_index++;
+		}
+	}
+
+	if (rw & REQ_WRITE) {
+		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
+				 BTRFS_BLOCK_GROUP_RAID10 |
+				 BTRFS_BLOCK_GROUP_DUP)) {
+			max_errors = 1;
+		}
+	}
+
+	*bbio_ret = bbio;
+	bbio->num_stripes = num_stripes;
+	bbio->max_errors = max_errors;
+	bbio->mirror_num = mirror_num;
+out:
+	free_extent_map(em);
+	return ret;
+}
+
+int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+		      u64 logical, u64 *length,
+		      struct btrfs_bio **bbio_ret, int mirror_num)
+{
+	return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
+				 mirror_num);
+}
+
+int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
+		     u64 chunk_start, u64 physical, u64 devid,
+		     u64 **logical, int *naddrs, int *stripe_len)
+{
+	struct extent_map_tree *em_tree = &map_tree->map_tree;
+	struct extent_map *em;
+	struct map_lookup *map;
+	u64 *buf;
+	u64 bytenr;
+	u64 length;
+	u64 stripe_nr;
+	int i, j, nr = 0;
+
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree, chunk_start, 1);
+	read_unlock(&em_tree->lock);
+
+	BUG_ON(!em || em->start != chunk_start);
+	map = (struct map_lookup *)em->bdev;
+
+	length = em->len;
+	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+		do_div(length, map->num_stripes / map->sub_stripes);
+	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
+		do_div(length, map->num_stripes);
+
+	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
+	BUG_ON(!buf); /* -ENOMEM */
+
+	for (i = 0; i < map->num_stripes; i++) {
+		if (devid && map->stripes[i].dev->devid != devid)
+			continue;
+		if (map->stripes[i].physical > physical ||
+		    map->stripes[i].physical + length <= physical)
+			continue;
+
+		stripe_nr = physical - map->stripes[i].physical;
+		do_div(stripe_nr, map->stripe_len);
+
+		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+			stripe_nr = stripe_nr * map->num_stripes + i;
+			do_div(stripe_nr, map->sub_stripes);
+		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+			stripe_nr = stripe_nr * map->num_stripes + i;
+		}
+		bytenr = chunk_start + stripe_nr * map->stripe_len;
+		WARN_ON(nr >= map->num_stripes);
+		for (j = 0; j < nr; j++) {
+			if (buf[j] == bytenr)
+				break;
+		}
+		if (j == nr) {
+			WARN_ON(nr >= map->num_stripes);
+			buf[nr++] = bytenr;
+		}
+	}
+
+	*logical = buf;
+	*naddrs = nr;
+	*stripe_len = map->stripe_len;
+
+	free_extent_map(em);
+	return 0;
+}
+
+static void btrfs_end_bio(struct bio *bio, int err)
+{
+	struct btrfs_bio *bbio = bio->bi_private;
+	int is_orig_bio = 0;
+
+	if (err)
+		atomic_inc(&bbio->error);
+
+	if (bio == bbio->orig_bio)
+		is_orig_bio = 1;
+
+	if (atomic_dec_and_test(&bbio->stripes_pending)) {
+		if (!is_orig_bio) {
+			bio_put(bio);
+			bio = bbio->orig_bio;
+		}
+		bio->bi_private = bbio->private;
+		bio->bi_end_io = bbio->end_io;
+		bio->bi_bdev = (struct block_device *)
+					(unsigned long)bbio->mirror_num;
+		/* only send an error to the higher layers if it is
+		 * beyond the tolerance of the multi-bio
+		 */
+		if (atomic_read(&bbio->error) > bbio->max_errors) {
+			err = -EIO;
+		} else {
+			/*
+			 * this bio is actually up to date, we didn't
+			 * go over the max number of errors
+			 */
+			set_bit(BIO_UPTODATE, &bio->bi_flags);
+			err = 0;
+		}
+		kfree(bbio);
+
+		bio_endio(bio, err);
+	} else if (!is_orig_bio) {
+		bio_put(bio);
+	}
+}
+
+struct async_sched {
+	struct bio *bio;
+	int rw;
+	struct btrfs_fs_info *info;
+	struct btrfs_work work;
+};
+
+/*
+ * see run_scheduled_bios for a description of why bios are collected for
+ * async submit.
+ *
+ * This will add one bio to the pending list for a device and make sure
+ * the work struct is scheduled.
+ */
+static noinline void schedule_bio(struct btrfs_root *root,
+				 struct btrfs_device *device,
+				 int rw, struct bio *bio)
+{
+	int should_queue = 1;
+	struct btrfs_pending_bios *pending_bios;
+
+	/* don't bother with additional async steps for reads, right now */
+	if (!(rw & REQ_WRITE)) {
+		bio_get(bio);
+		btrfsic_submit_bio(rw, bio);
+		bio_put(bio);
+		return;
+	}
+
+	/*
+	 * nr_async_bios allows us to reliably return congestion to the
+	 * higher layers.  Otherwise, the async bio makes it appear we have
+	 * made progress against dirty pages when we've really just put it
+	 * on a queue for later
+	 */
+	atomic_inc(&root->fs_info->nr_async_bios);
+	WARN_ON(bio->bi_next);
+	bio->bi_next = NULL;
+	bio->bi_rw |= rw;
+
+	spin_lock(&device->io_lock);
+	if (bio->bi_rw & REQ_SYNC)
+		pending_bios = &device->pending_sync_bios;
+	else
+		pending_bios = &device->pending_bios;
+
+	if (pending_bios->tail)
+		pending_bios->tail->bi_next = bio;
+
+	pending_bios->tail = bio;
+	if (!pending_bios->head)
+		pending_bios->head = bio;
+	if (device->running_pending)
+		should_queue = 0;
+
+	spin_unlock(&device->io_lock);
+
+	if (should_queue)
+		btrfs_queue_worker(&root->fs_info->submit_workers,
+				   &device->work);
+}
+
+int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
+		  int mirror_num, int async_submit)
+{
+	struct btrfs_mapping_tree *map_tree;
+	struct btrfs_device *dev;
+	struct bio *first_bio = bio;
+	u64 logical = (u64)bio->bi_sector << 9;
+	u64 length = 0;
+	u64 map_length;
+	int ret;
+	int dev_nr = 0;
+	int total_devs = 1;
+	struct btrfs_bio *bbio = NULL;
+
+	length = bio->bi_size;
+	map_tree = &root->fs_info->mapping_tree;
+	map_length = length;
+
+	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
+			      mirror_num);
+	if (ret) /* -ENOMEM */
+		return ret;
+
+	total_devs = bbio->num_stripes;
+	if (map_length < length) {
+		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
+		       "len %llu\n", (unsigned long long)logical,
+		       (unsigned long long)length,
+		       (unsigned long long)map_length);
+		BUG();
+	}
+
+	bbio->orig_bio = first_bio;
+	bbio->private = first_bio->bi_private;
+	bbio->end_io = first_bio->bi_end_io;
+	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
+
+	while (dev_nr < total_devs) {
+		if (dev_nr < total_devs - 1) {
+			bio = bio_clone(first_bio, GFP_NOFS);
+			BUG_ON(!bio); /* -ENOMEM */
+		} else {
+			bio = first_bio;
+		}
+		bio->bi_private = bbio;
+		bio->bi_end_io = btrfs_end_bio;
+		bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
+		dev = bbio->stripes[dev_nr].dev;
+		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
+			pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
+				 "(%s id %llu), size=%u\n", rw,
+				 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
+				 dev->name, dev->devid, bio->bi_size);
+			bio->bi_bdev = dev->bdev;
+			if (async_submit)
+				schedule_bio(root, dev, rw, bio);
+			else
+				btrfsic_submit_bio(rw, bio);
+		} else {
+			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
+			bio->bi_sector = logical >> 9;
+			bio_endio(bio, -EIO);
+		}
+		dev_nr++;
+	}
+	return 0;
+}
+
+struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
+				       u8 *uuid, u8 *fsid)
+{
+	struct btrfs_device *device;
+	struct btrfs_fs_devices *cur_devices;
+
+	cur_devices = root->fs_info->fs_devices;
+	while (cur_devices) {
+		if (!fsid ||
+		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
+			device = __find_device(&cur_devices->devices,
+					       devid, uuid);
+			if (device)
+				return device;
+		}
+		cur_devices = cur_devices->seed;
+	}
+	return NULL;
+}
+
+static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
+					    u64 devid, u8 *dev_uuid)
+{
+	struct btrfs_device *device;
+	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+
+	device = kzalloc(sizeof(*device), GFP_NOFS);
+	if (!device)
+		return NULL;
+	list_add(&device->dev_list,
+		 &fs_devices->devices);
+	device->dev_root = root->fs_info->dev_root;
+	device->devid = devid;
+	device->work.func = pending_bios_fn;
+	device->fs_devices = fs_devices;
+	device->missing = 1;
+	fs_devices->num_devices++;
+	fs_devices->missing_devices++;
+	spin_lock_init(&device->io_lock);
+	INIT_LIST_HEAD(&device->dev_alloc_list);
+	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
+	return device;
+}
+
+static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
+			  struct extent_buffer *leaf,
+			  struct btrfs_chunk *chunk)
+{
+	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+	struct map_lookup *map;
+	struct extent_map *em;
+	u64 logical;
+	u64 length;
+	u64 devid;
+	u8 uuid[BTRFS_UUID_SIZE];
+	int num_stripes;
+	int ret;
+	int i;
+
+	logical = key->offset;
+	length = btrfs_chunk_length(leaf, chunk);
+
+	read_lock(&map_tree->map_tree.lock);
+	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
+	read_unlock(&map_tree->map_tree.lock);
+
+	/* already mapped? */
+	if (em && em->start <= logical && em->start + em->len > logical) {
+		free_extent_map(em);
+		return 0;
+	} else if (em) {
+		free_extent_map(em);
+	}
+
+	em = alloc_extent_map();
+	if (!em)
+		return -ENOMEM;
+	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
+	if (!map) {
+		free_extent_map(em);
+		return -ENOMEM;
+	}
+
+	em->bdev = (struct block_device *)map;
+	em->start = logical;
+	em->len = length;
+	em->block_start = 0;
+	em->block_len = em->len;
+
+	map->num_stripes = num_stripes;
+	map->io_width = btrfs_chunk_io_width(leaf, chunk);
+	map->io_align = btrfs_chunk_io_align(leaf, chunk);
+	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
+	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
+	map->type = btrfs_chunk_type(leaf, chunk);
+	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
+	for (i = 0; i < num_stripes; i++) {
+		map->stripes[i].physical =
+			btrfs_stripe_offset_nr(leaf, chunk, i);
+		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
+		read_extent_buffer(leaf, uuid, (unsigned long)
+				   btrfs_stripe_dev_uuid_nr(chunk, i),
+				   BTRFS_UUID_SIZE);
+		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
+							NULL);
+		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
+			kfree(map);
+			free_extent_map(em);
+			return -EIO;
+		}
+		if (!map->stripes[i].dev) {
+			map->stripes[i].dev =
+				add_missing_dev(root, devid, uuid);
+			if (!map->stripes[i].dev) {
+				kfree(map);
+				free_extent_map(em);
+				return -EIO;
+			}
+		}
+		map->stripes[i].dev->in_fs_metadata = 1;
+	}
+
+	write_lock(&map_tree->map_tree.lock);
+	ret = add_extent_mapping(&map_tree->map_tree, em);
+	write_unlock(&map_tree->map_tree.lock);
+	BUG_ON(ret); /* Tree corruption */
+	free_extent_map(em);
+
+	return 0;
+}
+
+static void fill_device_from_item(struct extent_buffer *leaf,
+				 struct btrfs_dev_item *dev_item,
+				 struct btrfs_device *device)
+{
+	unsigned long ptr;
+
+	device->devid = btrfs_device_id(leaf, dev_item);
+	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
+	device->total_bytes = device->disk_total_bytes;
+	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
+	device->type = btrfs_device_type(leaf, dev_item);
+	device->io_align = btrfs_device_io_align(leaf, dev_item);
+	device->io_width = btrfs_device_io_width(leaf, dev_item);
+	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
+
+	ptr = (unsigned long)btrfs_device_uuid(dev_item);
+	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
+}
+
+static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
+{
+	struct btrfs_fs_devices *fs_devices;
+	int ret;
+
+	BUG_ON(!mutex_is_locked(&uuid_mutex));
+
+	fs_devices = root->fs_info->fs_devices->seed;
+	while (fs_devices) {
+		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
+			ret = 0;
+			goto out;
+		}
+		fs_devices = fs_devices->seed;
+	}
+
+	fs_devices = find_fsid(fsid);
+	if (!fs_devices) {
+		ret = -ENOENT;
+		goto out;
+	}
+
+	fs_devices = clone_fs_devices(fs_devices);
+	if (IS_ERR(fs_devices)) {
+		ret = PTR_ERR(fs_devices);
+		goto out;
+	}
+
+	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
+				   root->fs_info->bdev_holder);
+	if (ret) {
+		free_fs_devices(fs_devices);
+		goto out;
+	}
+
+	if (!fs_devices->seeding) {
+		__btrfs_close_devices(fs_devices);
+		free_fs_devices(fs_devices);
+		ret = -EINVAL;
+		goto out;
+	}
+
+	fs_devices->seed = root->fs_info->fs_devices->seed;
+	root->fs_info->fs_devices->seed = fs_devices;
+out:
+	return ret;
+}
+
+static int read_one_dev(struct btrfs_root *root,
+			struct extent_buffer *leaf,
+			struct btrfs_dev_item *dev_item)
+{
+	struct btrfs_device *device;
+	u64 devid;
+	int ret;
+	u8 fs_uuid[BTRFS_UUID_SIZE];
+	u8 dev_uuid[BTRFS_UUID_SIZE];
+
+	devid = btrfs_device_id(leaf, dev_item);
+	read_extent_buffer(leaf, dev_uuid,
+			   (unsigned long)btrfs_device_uuid(dev_item),
+			   BTRFS_UUID_SIZE);
+	read_extent_buffer(leaf, fs_uuid,
+			   (unsigned long)btrfs_device_fsid(dev_item),
+			   BTRFS_UUID_SIZE);
+
+	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
+		ret = open_seed_devices(root, fs_uuid);
+		if (ret && !btrfs_test_opt(root, DEGRADED))
+			return ret;
+	}
+
+	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
+	if (!device || !device->bdev) {
+		if (!btrfs_test_opt(root, DEGRADED))
+			return -EIO;
+
+		if (!device) {
+			printk(KERN_WARNING "warning devid %llu missing\n",
+			       (unsigned long long)devid);
+			device = add_missing_dev(root, devid, dev_uuid);
+			if (!device)
+				return -ENOMEM;
+		} else if (!device->missing) {
+			/*
+			 * this happens when a device that was properly setup
+			 * in the device info lists suddenly goes bad.
+			 * device->bdev is NULL, and so we have to set
+			 * device->missing to one here
+			 */
+			root->fs_info->fs_devices->missing_devices++;
+			device->missing = 1;
+		}
+	}
+
+	if (device->fs_devices != root->fs_info->fs_devices) {
+		BUG_ON(device->writeable);
+		if (device->generation !=
+		    btrfs_device_generation(leaf, dev_item))
+			return -EINVAL;
+	}
+
+	fill_device_from_item(leaf, dev_item, device);
+	device->dev_root = root->fs_info->dev_root;
+	device->in_fs_metadata = 1;
+	if (device->writeable) {
+		device->fs_devices->total_rw_bytes += device->total_bytes;
+		spin_lock(&root->fs_info->free_chunk_lock);
+		root->fs_info->free_chunk_space += device->total_bytes -
+			device->bytes_used;
+		spin_unlock(&root->fs_info->free_chunk_lock);
+	}
+	ret = 0;
+	return ret;
+}
+
+int btrfs_read_sys_array(struct btrfs_root *root)
+{
+	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+	struct extent_buffer *sb;
+	struct btrfs_disk_key *disk_key;
+	struct btrfs_chunk *chunk;
+	u8 *ptr;
+	unsigned long sb_ptr;
+	int ret = 0;
+	u32 num_stripes;
+	u32 array_size;
+	u32 len = 0;
+	u32 cur;
+	struct btrfs_key key;
+
+	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
+					  BTRFS_SUPER_INFO_SIZE);
+	if (!sb)
+		return -ENOMEM;
+	btrfs_set_buffer_uptodate(sb);
+	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
+	/*
+	 * The sb extent buffer is artifical and just used to read the system array.
+	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
+	 * pages up-to-date when the page is larger: extent does not cover the
+	 * whole page and consequently check_page_uptodate does not find all
+	 * the page's extents up-to-date (the hole beyond sb),
+	 * write_extent_buffer then triggers a WARN_ON.
+	 *
+	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
+	 * but sb spans only this function. Add an explicit SetPageUptodate call
+	 * to silence the warning eg. on PowerPC 64.
+	 */
+	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
+		SetPageUptodate(sb->pages[0]);
+
+	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
+	array_size = btrfs_super_sys_array_size(super_copy);
+
+	ptr = super_copy->sys_chunk_array;
+	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
+	cur = 0;
+
+	while (cur < array_size) {
+		disk_key = (struct btrfs_disk_key *)ptr;
+		btrfs_disk_key_to_cpu(&key, disk_key);
+
+		len = sizeof(*disk_key); ptr += len;
+		sb_ptr += len;
+		cur += len;
+
+		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
+			chunk = (struct btrfs_chunk *)sb_ptr;
+			ret = read_one_chunk(root, &key, sb, chunk);
+			if (ret)
+				break;
+			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
+			len = btrfs_chunk_item_size(num_stripes);
+		} else {
+			ret = -EIO;
+			break;
+		}
+		ptr += len;
+		sb_ptr += len;
+		cur += len;
+	}
+	free_extent_buffer(sb);
+	return ret;
+}
+
+int btrfs_read_chunk_tree(struct btrfs_root *root)
+{
+	struct btrfs_path *path;
+	struct extent_buffer *leaf;
+	struct btrfs_key key;
+	struct btrfs_key found_key;
+	int ret;
+	int slot;
+
+	root = root->fs_info->chunk_root;
+
+	path = btrfs_alloc_path();
+	if (!path)
+		return -ENOMEM;
+
+	mutex_lock(&uuid_mutex);
+	lock_chunks(root);
+
+	/* first we search for all of the device items, and then we
+	 * read in all of the chunk items.  This way we can create chunk
+	 * mappings that reference all of the devices that are afound
+	 */
+	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+	key.offset = 0;
+	key.type = 0;
+again:
+	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+	if (ret < 0)
+		goto error;
+	while (1) {
+		leaf = path->nodes[0];
+		slot = path->slots[0];
+		if (slot >= btrfs_header_nritems(leaf)) {
+			ret = btrfs_next_leaf(root, path);
+			if (ret == 0)
+				continue;
+			if (ret < 0)
+				goto error;
+			break;
+		}
+		btrfs_item_key_to_cpu(leaf, &found_key, slot);
+		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
+			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
+				break;
+			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
+				struct btrfs_dev_item *dev_item;
+				dev_item = btrfs_item_ptr(leaf, slot,
+						  struct btrfs_dev_item);
+				ret = read_one_dev(root, leaf, dev_item);
+				if (ret)
+					goto error;
+			}
+		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
+			struct btrfs_chunk *chunk;
+			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
+			ret = read_one_chunk(root, &found_key, leaf, chunk);
+			if (ret)
+				goto error;
+		}
+		path->slots[0]++;
+	}
+	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
+		key.objectid = 0;
+		btrfs_release_path(path);
+		goto again;
+	}
+	ret = 0;
+error:
+	unlock_chunks(root);
+	mutex_unlock(&uuid_mutex);
+
+	btrfs_free_path(path);
+	return ret;
+}