[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/ext4/extents.c b/ap/os/linux/linux-3.4.x/fs/ext4/extents.c
new file mode 100644
index 0000000..bbe09a9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/ext4/extents.c
@@ -0,0 +1,4954 @@
+/*
+ * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
+ * Written by Alex Tomas <alex@clusterfs.com>
+ *
+ * Architecture independence:
+ *   Copyright (c) 2005, Bull S.A.
+ *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public Licens
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
+ */
+
+/*
+ * Extents support for EXT4
+ *
+ * TODO:
+ *   - ext4*_error() should be used in some situations
+ *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
+ *   - smart tree reduction
+ */
+
+#include <linux/fs.h>
+#include <linux/time.h>
+#include <linux/jbd2.h>
+#include <linux/highuid.h>
+#include <linux/pagemap.h>
+#include <linux/quotaops.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/falloc.h>
+#include <asm/uaccess.h>
+#include <linux/fiemap.h>
+#include "ext4_jbd2.h"
+
+#include <trace/events/ext4.h>
+
+/*
+ * used by extent splitting.
+ */
+#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
+					due to ENOSPC */
+#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
+#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
+
+#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
+#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
+
+static int ext4_split_extent(handle_t *handle,
+				struct inode *inode,
+				struct ext4_ext_path *path,
+				struct ext4_map_blocks *map,
+				int split_flag,
+				int flags);
+
+static int ext4_split_extent_at(handle_t *handle,
+			     struct inode *inode,
+			     struct ext4_ext_path *path,
+			     ext4_lblk_t split,
+			     int split_flag,
+			     int flags);
+
+static int ext4_ext_truncate_extend_restart(handle_t *handle,
+					    struct inode *inode,
+					    int needed)
+{
+	int err;
+
+	if (!ext4_handle_valid(handle))
+		return 0;
+	if (handle->h_buffer_credits > needed)
+		return 0;
+	err = ext4_journal_extend(handle, needed);
+	if (err <= 0)
+		return err;
+	err = ext4_truncate_restart_trans(handle, inode, needed);
+	if (err == 0)
+		err = -EAGAIN;
+
+	return err;
+}
+
+/*
+ * could return:
+ *  - EROFS
+ *  - ENOMEM
+ */
+static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
+				struct ext4_ext_path *path)
+{
+	if (path->p_bh) {
+		/* path points to block */
+		return ext4_journal_get_write_access(handle, path->p_bh);
+	}
+	/* path points to leaf/index in inode body */
+	/* we use in-core data, no need to protect them */
+	return 0;
+}
+
+/*
+ * could return:
+ *  - EROFS
+ *  - ENOMEM
+ *  - EIO
+ */
+#define ext4_ext_dirty(handle, inode, path) \
+		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
+static int __ext4_ext_dirty(const char *where, unsigned int line,
+			    handle_t *handle, struct inode *inode,
+			    struct ext4_ext_path *path)
+{
+	int err;
+	if (path->p_bh) {
+		/* path points to block */
+		err = __ext4_handle_dirty_metadata(where, line, handle,
+						   inode, path->p_bh);
+	} else {
+		/* path points to leaf/index in inode body */
+		err = ext4_mark_inode_dirty(handle, inode);
+	}
+	return err;
+}
+
+static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
+			      struct ext4_ext_path *path,
+			      ext4_lblk_t block)
+{
+	if (path) {
+		int depth = path->p_depth;
+		struct ext4_extent *ex;
+
+		/*
+		 * Try to predict block placement assuming that we are
+		 * filling in a file which will eventually be
+		 * non-sparse --- i.e., in the case of libbfd writing
+		 * an ELF object sections out-of-order but in a way
+		 * the eventually results in a contiguous object or
+		 * executable file, or some database extending a table
+		 * space file.  However, this is actually somewhat
+		 * non-ideal if we are writing a sparse file such as
+		 * qemu or KVM writing a raw image file that is going
+		 * to stay fairly sparse, since it will end up
+		 * fragmenting the file system's free space.  Maybe we
+		 * should have some hueristics or some way to allow
+		 * userspace to pass a hint to file system,
+		 * especially if the latter case turns out to be
+		 * common.
+		 */
+		ex = path[depth].p_ext;
+		if (ex) {
+			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
+			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
+
+			if (block > ext_block)
+				return ext_pblk + (block - ext_block);
+			else
+				return ext_pblk - (ext_block - block);
+		}
+
+		/* it looks like index is empty;
+		 * try to find starting block from index itself */
+		if (path[depth].p_bh)
+			return path[depth].p_bh->b_blocknr;
+	}
+
+	/* OK. use inode's group */
+	return ext4_inode_to_goal_block(inode);
+}
+
+/*
+ * Allocation for a meta data block
+ */
+static ext4_fsblk_t
+ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
+			struct ext4_ext_path *path,
+			struct ext4_extent *ex, int *err, unsigned int flags)
+{
+	ext4_fsblk_t goal, newblock;
+
+	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
+	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
+					NULL, err);
+	return newblock;
+}
+
+static inline int ext4_ext_space_block(struct inode *inode, int check)
+{
+	int size;
+
+	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
+			/ sizeof(struct ext4_extent);
+#ifdef AGGRESSIVE_TEST
+	if (!check && size > 6)
+		size = 6;
+#endif
+	return size;
+}
+
+static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
+{
+	int size;
+
+	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
+			/ sizeof(struct ext4_extent_idx);
+#ifdef AGGRESSIVE_TEST
+	if (!check && size > 5)
+		size = 5;
+#endif
+	return size;
+}
+
+static inline int ext4_ext_space_root(struct inode *inode, int check)
+{
+	int size;
+
+	size = sizeof(EXT4_I(inode)->i_data);
+	size -= sizeof(struct ext4_extent_header);
+	size /= sizeof(struct ext4_extent);
+#ifdef AGGRESSIVE_TEST
+	if (!check && size > 3)
+		size = 3;
+#endif
+	return size;
+}
+
+static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
+{
+	int size;
+
+	size = sizeof(EXT4_I(inode)->i_data);
+	size -= sizeof(struct ext4_extent_header);
+	size /= sizeof(struct ext4_extent_idx);
+#ifdef AGGRESSIVE_TEST
+	if (!check && size > 4)
+		size = 4;
+#endif
+	return size;
+}
+
+/*
+ * Calculate the number of metadata blocks needed
+ * to allocate @blocks
+ * Worse case is one block per extent
+ */
+int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
+{
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	int idxs;
+
+	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
+		/ sizeof(struct ext4_extent_idx));
+
+	/*
+	 * If the new delayed allocation block is contiguous with the
+	 * previous da block, it can share index blocks with the
+	 * previous block, so we only need to allocate a new index
+	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
+	 * an additional index block, and at ldxs**3 blocks, yet
+	 * another index blocks.
+	 */
+	if (ei->i_da_metadata_calc_len &&
+	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
+		int num = 0;
+
+		if ((ei->i_da_metadata_calc_len % idxs) == 0)
+			num++;
+		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
+			num++;
+		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
+			num++;
+			ei->i_da_metadata_calc_len = 0;
+		} else
+			ei->i_da_metadata_calc_len++;
+		ei->i_da_metadata_calc_last_lblock++;
+		return num;
+	}
+
+	/*
+	 * In the worst case we need a new set of index blocks at
+	 * every level of the inode's extent tree.
+	 */
+	ei->i_da_metadata_calc_len = 1;
+	ei->i_da_metadata_calc_last_lblock = lblock;
+	return ext_depth(inode) + 1;
+}
+
+static int
+ext4_ext_max_entries(struct inode *inode, int depth)
+{
+	int max;
+
+	if (depth == ext_depth(inode)) {
+		if (depth == 0)
+			max = ext4_ext_space_root(inode, 1);
+		else
+			max = ext4_ext_space_root_idx(inode, 1);
+	} else {
+		if (depth == 0)
+			max = ext4_ext_space_block(inode, 1);
+		else
+			max = ext4_ext_space_block_idx(inode, 1);
+	}
+
+	return max;
+}
+
+static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
+{
+	ext4_fsblk_t block = ext4_ext_pblock(ext);
+	int len = ext4_ext_get_actual_len(ext);
+	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
+	ext4_lblk_t last = lblock + len - 1;
+
+	if (len == 0 || lblock > last)
+		return 0;
+	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
+}
+
+static int ext4_valid_extent_idx(struct inode *inode,
+				struct ext4_extent_idx *ext_idx)
+{
+	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
+
+	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
+}
+
+static int ext4_valid_extent_entries(struct inode *inode,
+				struct ext4_extent_header *eh,
+				int depth)
+{
+	unsigned short entries;
+	if (eh->eh_entries == 0)
+		return 1;
+
+	entries = le16_to_cpu(eh->eh_entries);
+
+	if (depth == 0) {
+		/* leaf entries */
+		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
+		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
+		ext4_fsblk_t pblock = 0;
+		ext4_lblk_t lblock = 0;
+		ext4_lblk_t prev = 0;
+		int len = 0;
+		while (entries) {
+			if (!ext4_valid_extent(inode, ext))
+				return 0;
+
+			/* Check for overlapping extents */
+			lblock = le32_to_cpu(ext->ee_block);
+			len = ext4_ext_get_actual_len(ext);
+			if ((lblock <= prev) && prev) {
+				pblock = ext4_ext_pblock(ext);
+				es->s_last_error_block = cpu_to_le64(pblock);
+				return 0;
+			}
+			ext++;
+			entries--;
+			prev = lblock + len - 1;
+		}
+	} else {
+		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
+		while (entries) {
+			if (!ext4_valid_extent_idx(inode, ext_idx))
+				return 0;
+			ext_idx++;
+			entries--;
+		}
+	}
+	return 1;
+}
+
+static int __ext4_ext_check(const char *function, unsigned int line,
+			    struct inode *inode, struct ext4_extent_header *eh,
+			    int depth)
+{
+	const char *error_msg;
+	int max = 0;
+
+	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
+		error_msg = "invalid magic";
+		goto corrupted;
+	}
+	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
+		error_msg = "unexpected eh_depth";
+		goto corrupted;
+	}
+	if (unlikely(eh->eh_max == 0)) {
+		error_msg = "invalid eh_max";
+		goto corrupted;
+	}
+	max = ext4_ext_max_entries(inode, depth);
+	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
+		error_msg = "too large eh_max";
+		goto corrupted;
+	}
+	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
+		error_msg = "invalid eh_entries";
+		goto corrupted;
+	}
+	if (!ext4_valid_extent_entries(inode, eh, depth)) {
+		error_msg = "invalid extent entries";
+		goto corrupted;
+	}
+	return 0;
+
+corrupted:
+	ext4_error_inode(inode, function, line, 0,
+			"bad header/extent: %s - magic %x, "
+			"entries %u, max %u(%u), depth %u(%u)",
+			error_msg, le16_to_cpu(eh->eh_magic),
+			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
+			max, le16_to_cpu(eh->eh_depth), depth);
+
+	return -EIO;
+}
+
+#define ext4_ext_check(inode, eh, depth)	\
+	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
+
+int ext4_ext_check_inode(struct inode *inode)
+{
+	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
+}
+
+#ifdef EXT_DEBUG
+static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
+{
+	int k, l = path->p_depth;
+
+	ext_debug("path:");
+	for (k = 0; k <= l; k++, path++) {
+		if (path->p_idx) {
+		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
+			    ext4_idx_pblock(path->p_idx));
+		} else if (path->p_ext) {
+			ext_debug("  %d:[%d]%d:%llu ",
+				  le32_to_cpu(path->p_ext->ee_block),
+				  ext4_ext_is_uninitialized(path->p_ext),
+				  ext4_ext_get_actual_len(path->p_ext),
+				  ext4_ext_pblock(path->p_ext));
+		} else
+			ext_debug("  []");
+	}
+	ext_debug("\n");
+}
+
+static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
+{
+	int depth = ext_depth(inode);
+	struct ext4_extent_header *eh;
+	struct ext4_extent *ex;
+	int i;
+
+	if (!path)
+		return;
+
+	eh = path[depth].p_hdr;
+	ex = EXT_FIRST_EXTENT(eh);
+
+	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
+
+	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
+		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
+			  ext4_ext_is_uninitialized(ex),
+			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
+	}
+	ext_debug("\n");
+}
+
+static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
+			ext4_fsblk_t newblock, int level)
+{
+	int depth = ext_depth(inode);
+	struct ext4_extent *ex;
+
+	if (depth != level) {
+		struct ext4_extent_idx *idx;
+		idx = path[level].p_idx;
+		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
+			ext_debug("%d: move %d:%llu in new index %llu\n", level,
+					le32_to_cpu(idx->ei_block),
+					ext4_idx_pblock(idx),
+					newblock);
+			idx++;
+		}
+
+		return;
+	}
+
+	ex = path[depth].p_ext;
+	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
+		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
+				le32_to_cpu(ex->ee_block),
+				ext4_ext_pblock(ex),
+				ext4_ext_is_uninitialized(ex),
+				ext4_ext_get_actual_len(ex),
+				newblock);
+		ex++;
+	}
+}
+
+#else
+#define ext4_ext_show_path(inode, path)
+#define ext4_ext_show_leaf(inode, path)
+#define ext4_ext_show_move(inode, path, newblock, level)
+#endif
+
+void ext4_ext_drop_refs(struct ext4_ext_path *path)
+{
+	int depth = path->p_depth;
+	int i;
+
+	for (i = 0; i <= depth; i++, path++)
+		if (path->p_bh) {
+			brelse(path->p_bh);
+			path->p_bh = NULL;
+		}
+}
+
+/*
+ * ext4_ext_binsearch_idx:
+ * binary search for the closest index of the given block
+ * the header must be checked before calling this
+ */
+static void
+ext4_ext_binsearch_idx(struct inode *inode,
+			struct ext4_ext_path *path, ext4_lblk_t block)
+{
+	struct ext4_extent_header *eh = path->p_hdr;
+	struct ext4_extent_idx *r, *l, *m;
+
+
+	ext_debug("binsearch for %u(idx):  ", block);
+
+	l = EXT_FIRST_INDEX(eh) + 1;
+	r = EXT_LAST_INDEX(eh);
+	while (l <= r) {
+		m = l + (r - l) / 2;
+		if (block < le32_to_cpu(m->ei_block))
+			r = m - 1;
+		else
+			l = m + 1;
+		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
+				m, le32_to_cpu(m->ei_block),
+				r, le32_to_cpu(r->ei_block));
+	}
+
+	path->p_idx = l - 1;
+	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
+		  ext4_idx_pblock(path->p_idx));
+
+#ifdef CHECK_BINSEARCH
+	{
+		struct ext4_extent_idx *chix, *ix;
+		int k;
+
+		chix = ix = EXT_FIRST_INDEX(eh);
+		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
+		  if (k != 0 &&
+		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
+				printk(KERN_DEBUG "k=%d, ix=0x%p, "
+				       "first=0x%p\n", k,
+				       ix, EXT_FIRST_INDEX(eh));
+				printk(KERN_DEBUG "%u <= %u\n",
+				       le32_to_cpu(ix->ei_block),
+				       le32_to_cpu(ix[-1].ei_block));
+			}
+			BUG_ON(k && le32_to_cpu(ix->ei_block)
+					   <= le32_to_cpu(ix[-1].ei_block));
+			if (block < le32_to_cpu(ix->ei_block))
+				break;
+			chix = ix;
+		}
+		BUG_ON(chix != path->p_idx);
+	}
+#endif
+
+}
+
+/*
+ * ext4_ext_binsearch:
+ * binary search for closest extent of the given block
+ * the header must be checked before calling this
+ */
+static void
+ext4_ext_binsearch(struct inode *inode,
+		struct ext4_ext_path *path, ext4_lblk_t block)
+{
+	struct ext4_extent_header *eh = path->p_hdr;
+	struct ext4_extent *r, *l, *m;
+
+	if (eh->eh_entries == 0) {
+		/*
+		 * this leaf is empty:
+		 * we get such a leaf in split/add case
+		 */
+		return;
+	}
+
+	ext_debug("binsearch for %u:  ", block);
+
+	l = EXT_FIRST_EXTENT(eh) + 1;
+	r = EXT_LAST_EXTENT(eh);
+
+	while (l <= r) {
+		m = l + (r - l) / 2;
+		if (block < le32_to_cpu(m->ee_block))
+			r = m - 1;
+		else
+			l = m + 1;
+		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
+				m, le32_to_cpu(m->ee_block),
+				r, le32_to_cpu(r->ee_block));
+	}
+
+	path->p_ext = l - 1;
+	ext_debug("  -> %d:%llu:[%d]%d ",
+			le32_to_cpu(path->p_ext->ee_block),
+			ext4_ext_pblock(path->p_ext),
+			ext4_ext_is_uninitialized(path->p_ext),
+			ext4_ext_get_actual_len(path->p_ext));
+
+#ifdef CHECK_BINSEARCH
+	{
+		struct ext4_extent *chex, *ex;
+		int k;
+
+		chex = ex = EXT_FIRST_EXTENT(eh);
+		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
+			BUG_ON(k && le32_to_cpu(ex->ee_block)
+					  <= le32_to_cpu(ex[-1].ee_block));
+			if (block < le32_to_cpu(ex->ee_block))
+				break;
+			chex = ex;
+		}
+		BUG_ON(chex != path->p_ext);
+	}
+#endif
+
+}
+
+int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
+{
+	struct ext4_extent_header *eh;
+
+	eh = ext_inode_hdr(inode);
+	eh->eh_depth = 0;
+	eh->eh_entries = 0;
+	eh->eh_magic = EXT4_EXT_MAGIC;
+	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
+	ext4_mark_inode_dirty(handle, inode);
+	ext4_ext_invalidate_cache(inode);
+	return 0;
+}
+
+struct ext4_ext_path *
+ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
+					struct ext4_ext_path *path)
+{
+	struct ext4_extent_header *eh;
+	struct buffer_head *bh;
+	short int depth, i, ppos = 0, alloc = 0;
+	int ret;
+
+	eh = ext_inode_hdr(inode);
+	depth = ext_depth(inode);
+
+	/* account possible depth increase */
+	if (!path) {
+		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
+				GFP_NOFS);
+		if (!path)
+			return ERR_PTR(-ENOMEM);
+		alloc = 1;
+	}
+	path[0].p_hdr = eh;
+	path[0].p_bh = NULL;
+
+	i = depth;
+	/* walk through the tree */
+	while (i) {
+		int need_to_validate = 0;
+
+		ext_debug("depth %d: num %d, max %d\n",
+			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
+
+		ext4_ext_binsearch_idx(inode, path + ppos, block);
+		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
+		path[ppos].p_depth = i;
+		path[ppos].p_ext = NULL;
+
+		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
+		if (unlikely(!bh)) {
+			ret = -ENOMEM;
+			goto err;
+		}
+		if (!bh_uptodate_or_lock(bh)) {
+			trace_ext4_ext_load_extent(inode, block,
+						path[ppos].p_block);
+			ret = bh_submit_read(bh);
+			if (ret < 0) {
+				put_bh(bh);
+				goto err;
+			}
+			/* validate the extent entries */
+			need_to_validate = 1;
+		}
+		eh = ext_block_hdr(bh);
+		ppos++;
+		if (unlikely(ppos > depth)) {
+			put_bh(bh);
+			EXT4_ERROR_INODE(inode,
+					 "ppos %d > depth %d", ppos, depth);
+			ret = -EIO;
+			goto err;
+		}
+		path[ppos].p_bh = bh;
+		path[ppos].p_hdr = eh;
+		i--;
+
+		ret = need_to_validate ? ext4_ext_check(inode, eh, i) : 0;
+		if (ret < 0)
+			goto err;
+	}
+
+	path[ppos].p_depth = i;
+	path[ppos].p_ext = NULL;
+	path[ppos].p_idx = NULL;
+
+	/* find extent */
+	ext4_ext_binsearch(inode, path + ppos, block);
+	/* if not an empty leaf */
+	if (path[ppos].p_ext)
+		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
+
+	ext4_ext_show_path(inode, path);
+
+	return path;
+
+err:
+	ext4_ext_drop_refs(path);
+	if (alloc)
+		kfree(path);
+	return ERR_PTR(ret);
+}
+
+/*
+ * ext4_ext_insert_index:
+ * insert new index [@logical;@ptr] into the block at @curp;
+ * check where to insert: before @curp or after @curp
+ */
+static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
+				 struct ext4_ext_path *curp,
+				 int logical, ext4_fsblk_t ptr)
+{
+	struct ext4_extent_idx *ix;
+	int len, err;
+
+	err = ext4_ext_get_access(handle, inode, curp);
+	if (err)
+		return err;
+
+	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
+		EXT4_ERROR_INODE(inode,
+				 "logical %d == ei_block %d!",
+				 logical, le32_to_cpu(curp->p_idx->ei_block));
+		return -EIO;
+	}
+
+	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
+			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
+		EXT4_ERROR_INODE(inode,
+				 "eh_entries %d >= eh_max %d!",
+				 le16_to_cpu(curp->p_hdr->eh_entries),
+				 le16_to_cpu(curp->p_hdr->eh_max));
+		return -EIO;
+	}
+
+	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
+		/* insert after */
+		ext_debug("insert new index %d after: %llu\n", logical, ptr);
+		ix = curp->p_idx + 1;
+	} else {
+		/* insert before */
+		ext_debug("insert new index %d before: %llu\n", logical, ptr);
+		ix = curp->p_idx;
+	}
+
+	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
+	BUG_ON(len < 0);
+	if (len > 0) {
+		ext_debug("insert new index %d: "
+				"move %d indices from 0x%p to 0x%p\n",
+				logical, len, ix, ix + 1);
+		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
+	}
+
+	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
+		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
+		return -EIO;
+	}
+
+	ix->ei_block = cpu_to_le32(logical);
+	ext4_idx_store_pblock(ix, ptr);
+	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
+
+	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
+		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
+		return -EIO;
+	}
+
+	err = ext4_ext_dirty(handle, inode, curp);
+	ext4_std_error(inode->i_sb, err);
+
+	return err;
+}
+
+/*
+ * ext4_ext_split:
+ * inserts new subtree into the path, using free index entry
+ * at depth @at:
+ * - allocates all needed blocks (new leaf and all intermediate index blocks)
+ * - makes decision where to split
+ * - moves remaining extents and index entries (right to the split point)
+ *   into the newly allocated blocks
+ * - initializes subtree
+ */
+static int ext4_ext_split(handle_t *handle, struct inode *inode,
+			  unsigned int flags,
+			  struct ext4_ext_path *path,
+			  struct ext4_extent *newext, int at)
+{
+	struct buffer_head *bh = NULL;
+	int depth = ext_depth(inode);
+	struct ext4_extent_header *neh;
+	struct ext4_extent_idx *fidx;
+	int i = at, k, m, a;
+	ext4_fsblk_t newblock, oldblock;
+	__le32 border;
+	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
+	int err = 0;
+
+	/* make decision: where to split? */
+	/* FIXME: now decision is simplest: at current extent */
+
+	/* if current leaf will be split, then we should use
+	 * border from split point */
+	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
+		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
+		return -EIO;
+	}
+	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
+		border = path[depth].p_ext[1].ee_block;
+		ext_debug("leaf will be split."
+				" next leaf starts at %d\n",
+				  le32_to_cpu(border));
+	} else {
+		border = newext->ee_block;
+		ext_debug("leaf will be added."
+				" next leaf starts at %d\n",
+				le32_to_cpu(border));
+	}
+
+	/*
+	 * If error occurs, then we break processing
+	 * and mark filesystem read-only. index won't
+	 * be inserted and tree will be in consistent
+	 * state. Next mount will repair buffers too.
+	 */
+
+	/*
+	 * Get array to track all allocated blocks.
+	 * We need this to handle errors and free blocks
+	 * upon them.
+	 */
+	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
+	if (!ablocks)
+		return -ENOMEM;
+
+	/* allocate all needed blocks */
+	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
+	for (a = 0; a < depth - at; a++) {
+		newblock = ext4_ext_new_meta_block(handle, inode, path,
+						   newext, &err, flags);
+		if (newblock == 0)
+			goto cleanup;
+		ablocks[a] = newblock;
+	}
+
+	/* initialize new leaf */
+	newblock = ablocks[--a];
+	if (unlikely(newblock == 0)) {
+		EXT4_ERROR_INODE(inode, "newblock == 0!");
+		err = -EIO;
+		goto cleanup;
+	}
+	bh = sb_getblk(inode->i_sb, newblock);
+	if (!bh) {
+		err = -ENOMEM;
+		goto cleanup;
+	}
+	lock_buffer(bh);
+
+	err = ext4_journal_get_create_access(handle, bh);
+	if (err)
+		goto cleanup;
+
+	neh = ext_block_hdr(bh);
+	neh->eh_entries = 0;
+	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
+	neh->eh_magic = EXT4_EXT_MAGIC;
+	neh->eh_depth = 0;
+
+	/* move remainder of path[depth] to the new leaf */
+	if (unlikely(path[depth].p_hdr->eh_entries !=
+		     path[depth].p_hdr->eh_max)) {
+		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
+				 path[depth].p_hdr->eh_entries,
+				 path[depth].p_hdr->eh_max);
+		err = -EIO;
+		goto cleanup;
+	}
+	/* start copy from next extent */
+	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
+	ext4_ext_show_move(inode, path, newblock, depth);
+	if (m) {
+		struct ext4_extent *ex;
+		ex = EXT_FIRST_EXTENT(neh);
+		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
+		le16_add_cpu(&neh->eh_entries, m);
+	}
+
+	set_buffer_uptodate(bh);
+	unlock_buffer(bh);
+
+	err = ext4_handle_dirty_metadata(handle, inode, bh);
+	if (err)
+		goto cleanup;
+	brelse(bh);
+	bh = NULL;
+
+	/* correct old leaf */
+	if (m) {
+		err = ext4_ext_get_access(handle, inode, path + depth);
+		if (err)
+			goto cleanup;
+		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
+		err = ext4_ext_dirty(handle, inode, path + depth);
+		if (err)
+			goto cleanup;
+
+	}
+
+	/* create intermediate indexes */
+	k = depth - at - 1;
+	if (unlikely(k < 0)) {
+		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
+		err = -EIO;
+		goto cleanup;
+	}
+	if (k)
+		ext_debug("create %d intermediate indices\n", k);
+	/* insert new index into current index block */
+	/* current depth stored in i var */
+	i = depth - 1;
+	while (k--) {
+		oldblock = newblock;
+		newblock = ablocks[--a];
+		bh = sb_getblk(inode->i_sb, newblock);
+		if (!bh) {
+			err = -ENOMEM;
+			goto cleanup;
+		}
+		lock_buffer(bh);
+
+		err = ext4_journal_get_create_access(handle, bh);
+		if (err)
+			goto cleanup;
+
+		neh = ext_block_hdr(bh);
+		neh->eh_entries = cpu_to_le16(1);
+		neh->eh_magic = EXT4_EXT_MAGIC;
+		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
+		neh->eh_depth = cpu_to_le16(depth - i);
+		fidx = EXT_FIRST_INDEX(neh);
+		fidx->ei_block = border;
+		ext4_idx_store_pblock(fidx, oldblock);
+
+		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
+				i, newblock, le32_to_cpu(border), oldblock);
+
+		/* move remainder of path[i] to the new index block */
+		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
+					EXT_LAST_INDEX(path[i].p_hdr))) {
+			EXT4_ERROR_INODE(inode,
+					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
+					 le32_to_cpu(path[i].p_ext->ee_block));
+			err = -EIO;
+			goto cleanup;
+		}
+		/* start copy indexes */
+		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
+		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
+				EXT_MAX_INDEX(path[i].p_hdr));
+		ext4_ext_show_move(inode, path, newblock, i);
+		if (m) {
+			memmove(++fidx, path[i].p_idx,
+				sizeof(struct ext4_extent_idx) * m);
+			le16_add_cpu(&neh->eh_entries, m);
+		}
+		set_buffer_uptodate(bh);
+		unlock_buffer(bh);
+
+		err = ext4_handle_dirty_metadata(handle, inode, bh);
+		if (err)
+			goto cleanup;
+		brelse(bh);
+		bh = NULL;
+
+		/* correct old index */
+		if (m) {
+			err = ext4_ext_get_access(handle, inode, path + i);
+			if (err)
+				goto cleanup;
+			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
+			err = ext4_ext_dirty(handle, inode, path + i);
+			if (err)
+				goto cleanup;
+		}
+
+		i--;
+	}
+
+	/* insert new index */
+	err = ext4_ext_insert_index(handle, inode, path + at,
+				    le32_to_cpu(border), newblock);
+
+cleanup:
+	if (bh) {
+		if (buffer_locked(bh))
+			unlock_buffer(bh);
+		brelse(bh);
+	}
+
+	if (err) {
+		/* free all allocated blocks in error case */
+		for (i = 0; i < depth; i++) {
+			if (!ablocks[i])
+				continue;
+			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
+					 EXT4_FREE_BLOCKS_METADATA);
+		}
+	}
+	kfree(ablocks);
+
+	return err;
+}
+
+/*
+ * ext4_ext_grow_indepth:
+ * implements tree growing procedure:
+ * - allocates new block
+ * - moves top-level data (index block or leaf) into the new block
+ * - initializes new top-level, creating index that points to the
+ *   just created block
+ */
+static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
+				 unsigned int flags,
+				 struct ext4_extent *newext)
+{
+	struct ext4_extent_header *neh;
+	struct buffer_head *bh;
+	ext4_fsblk_t newblock;
+	int err = 0;
+
+	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
+		newext, &err, flags);
+	if (newblock == 0)
+		return err;
+
+	bh = sb_getblk(inode->i_sb, newblock);
+	if (!bh)
+		return -ENOMEM;
+	lock_buffer(bh);
+
+	err = ext4_journal_get_create_access(handle, bh);
+	if (err) {
+		unlock_buffer(bh);
+		goto out;
+	}
+
+	/* move top-level index/leaf into new block */
+	memmove(bh->b_data, EXT4_I(inode)->i_data,
+		sizeof(EXT4_I(inode)->i_data));
+
+	/* set size of new block */
+	neh = ext_block_hdr(bh);
+	/* old root could have indexes or leaves
+	 * so calculate e_max right way */
+	if (ext_depth(inode))
+		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
+	else
+		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
+	neh->eh_magic = EXT4_EXT_MAGIC;
+	set_buffer_uptodate(bh);
+	unlock_buffer(bh);
+
+	err = ext4_handle_dirty_metadata(handle, inode, bh);
+	if (err)
+		goto out;
+
+	/* Update top-level index: num,max,pointer */
+	neh = ext_inode_hdr(inode);
+	neh->eh_entries = cpu_to_le16(1);
+	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
+	if (neh->eh_depth == 0) {
+		/* Root extent block becomes index block */
+		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
+		EXT_FIRST_INDEX(neh)->ei_block =
+			EXT_FIRST_EXTENT(neh)->ee_block;
+	}
+	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
+		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
+		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
+		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
+
+	neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
+	ext4_mark_inode_dirty(handle, inode);
+out:
+	brelse(bh);
+
+	return err;
+}
+
+/*
+ * ext4_ext_create_new_leaf:
+ * finds empty index and adds new leaf.
+ * if no free index is found, then it requests in-depth growing.
+ */
+static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
+				    unsigned int flags,
+				    struct ext4_ext_path *path,
+				    struct ext4_extent *newext)
+{
+	struct ext4_ext_path *curp;
+	int depth, i, err = 0;
+
+repeat:
+	i = depth = ext_depth(inode);
+
+	/* walk up to the tree and look for free index entry */
+	curp = path + depth;
+	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
+		i--;
+		curp--;
+	}
+
+	/* we use already allocated block for index block,
+	 * so subsequent data blocks should be contiguous */
+	if (EXT_HAS_FREE_INDEX(curp)) {
+		/* if we found index with free entry, then use that
+		 * entry: create all needed subtree and add new leaf */
+		err = ext4_ext_split(handle, inode, flags, path, newext, i);
+		if (err)
+			goto out;
+
+		/* refill path */
+		ext4_ext_drop_refs(path);
+		path = ext4_ext_find_extent(inode,
+				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
+				    path);
+		if (IS_ERR(path))
+			err = PTR_ERR(path);
+	} else {
+		/* tree is full, time to grow in depth */
+		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
+		if (err)
+			goto out;
+
+		/* refill path */
+		ext4_ext_drop_refs(path);
+		path = ext4_ext_find_extent(inode,
+				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
+				    path);
+		if (IS_ERR(path)) {
+			err = PTR_ERR(path);
+			goto out;
+		}
+
+		/*
+		 * only first (depth 0 -> 1) produces free space;
+		 * in all other cases we have to split the grown tree
+		 */
+		depth = ext_depth(inode);
+		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
+			/* now we need to split */
+			goto repeat;
+		}
+	}
+
+out:
+	return err;
+}
+
+/*
+ * search the closest allocated block to the left for *logical
+ * and returns it at @logical + it's physical address at @phys
+ * if *logical is the smallest allocated block, the function
+ * returns 0 at @phys
+ * return value contains 0 (success) or error code
+ */
+static int ext4_ext_search_left(struct inode *inode,
+				struct ext4_ext_path *path,
+				ext4_lblk_t *logical, ext4_fsblk_t *phys)
+{
+	struct ext4_extent_idx *ix;
+	struct ext4_extent *ex;
+	int depth, ee_len;
+
+	if (unlikely(path == NULL)) {
+		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
+		return -EIO;
+	}
+	depth = path->p_depth;
+	*phys = 0;
+
+	if (depth == 0 && path->p_ext == NULL)
+		return 0;
+
+	/* usually extent in the path covers blocks smaller
+	 * then *logical, but it can be that extent is the
+	 * first one in the file */
+
+	ex = path[depth].p_ext;
+	ee_len = ext4_ext_get_actual_len(ex);
+	if (*logical < le32_to_cpu(ex->ee_block)) {
+		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
+			EXT4_ERROR_INODE(inode,
+					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
+					 *logical, le32_to_cpu(ex->ee_block));
+			return -EIO;
+		}
+		while (--depth >= 0) {
+			ix = path[depth].p_idx;
+			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
+				EXT4_ERROR_INODE(inode,
+				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
+				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
+				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
+		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
+				  depth);
+				return -EIO;
+			}
+		}
+		return 0;
+	}
+
+	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
+		EXT4_ERROR_INODE(inode,
+				 "logical %d < ee_block %d + ee_len %d!",
+				 *logical, le32_to_cpu(ex->ee_block), ee_len);
+		return -EIO;
+	}
+
+	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
+	*phys = ext4_ext_pblock(ex) + ee_len - 1;
+	return 0;
+}
+
+/*
+ * search the closest allocated block to the right for *logical
+ * and returns it at @logical + it's physical address at @phys
+ * if *logical is the largest allocated block, the function
+ * returns 0 at @phys
+ * return value contains 0 (success) or error code
+ */
+static int ext4_ext_search_right(struct inode *inode,
+				 struct ext4_ext_path *path,
+				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
+				 struct ext4_extent **ret_ex)
+{
+	struct buffer_head *bh = NULL;
+	struct ext4_extent_header *eh;
+	struct ext4_extent_idx *ix;
+	struct ext4_extent *ex;
+	ext4_fsblk_t block;
+	int depth;	/* Note, NOT eh_depth; depth from top of tree */
+	int ee_len;
+
+	if (unlikely(path == NULL)) {
+		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
+		return -EIO;
+	}
+	depth = path->p_depth;
+	*phys = 0;
+
+	if (depth == 0 && path->p_ext == NULL)
+		return 0;
+
+	/* usually extent in the path covers blocks smaller
+	 * then *logical, but it can be that extent is the
+	 * first one in the file */
+
+	ex = path[depth].p_ext;
+	ee_len = ext4_ext_get_actual_len(ex);
+	if (*logical < le32_to_cpu(ex->ee_block)) {
+		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
+			EXT4_ERROR_INODE(inode,
+					 "first_extent(path[%d].p_hdr) != ex",
+					 depth);
+			return -EIO;
+		}
+		while (--depth >= 0) {
+			ix = path[depth].p_idx;
+			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
+				EXT4_ERROR_INODE(inode,
+						 "ix != EXT_FIRST_INDEX *logical %d!",
+						 *logical);
+				return -EIO;
+			}
+		}
+		goto found_extent;
+	}
+
+	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
+		EXT4_ERROR_INODE(inode,
+				 "logical %d < ee_block %d + ee_len %d!",
+				 *logical, le32_to_cpu(ex->ee_block), ee_len);
+		return -EIO;
+	}
+
+	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
+		/* next allocated block in this leaf */
+		ex++;
+		goto found_extent;
+	}
+
+	/* go up and search for index to the right */
+	while (--depth >= 0) {
+		ix = path[depth].p_idx;
+		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
+			goto got_index;
+	}
+
+	/* we've gone up to the root and found no index to the right */
+	return 0;
+
+got_index:
+	/* we've found index to the right, let's
+	 * follow it and find the closest allocated
+	 * block to the right */
+	ix++;
+	block = ext4_idx_pblock(ix);
+	while (++depth < path->p_depth) {
+		bh = sb_bread(inode->i_sb, block);
+		if (bh == NULL)
+			return -EIO;
+		eh = ext_block_hdr(bh);
+		/* subtract from p_depth to get proper eh_depth */
+		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
+			put_bh(bh);
+			return -EIO;
+		}
+		ix = EXT_FIRST_INDEX(eh);
+		block = ext4_idx_pblock(ix);
+		put_bh(bh);
+	}
+
+	bh = sb_bread(inode->i_sb, block);
+	if (bh == NULL)
+		return -EIO;
+	eh = ext_block_hdr(bh);
+	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
+		put_bh(bh);
+		return -EIO;
+	}
+	ex = EXT_FIRST_EXTENT(eh);
+found_extent:
+	*logical = le32_to_cpu(ex->ee_block);
+	*phys = ext4_ext_pblock(ex);
+	*ret_ex = ex;
+	if (bh)
+		put_bh(bh);
+	return 0;
+}
+
+/*
+ * ext4_ext_next_allocated_block:
+ * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
+ * NOTE: it considers block number from index entry as
+ * allocated block. Thus, index entries have to be consistent
+ * with leaves.
+ */
+static ext4_lblk_t
+ext4_ext_next_allocated_block(struct ext4_ext_path *path)
+{
+	int depth;
+
+	BUG_ON(path == NULL);
+	depth = path->p_depth;
+
+	if (depth == 0 && path->p_ext == NULL)
+		return EXT_MAX_BLOCKS;
+
+	while (depth >= 0) {
+		if (depth == path->p_depth) {
+			/* leaf */
+			if (path[depth].p_ext &&
+				path[depth].p_ext !=
+					EXT_LAST_EXTENT(path[depth].p_hdr))
+			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
+		} else {
+			/* index */
+			if (path[depth].p_idx !=
+					EXT_LAST_INDEX(path[depth].p_hdr))
+			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
+		}
+		depth--;
+	}
+
+	return EXT_MAX_BLOCKS;
+}
+
+/*
+ * ext4_ext_next_leaf_block:
+ * returns first allocated block from next leaf or EXT_MAX_BLOCKS
+ */
+static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
+{
+	int depth;
+
+	BUG_ON(path == NULL);
+	depth = path->p_depth;
+
+	/* zero-tree has no leaf blocks at all */
+	if (depth == 0)
+		return EXT_MAX_BLOCKS;
+
+	/* go to index block */
+	depth--;
+
+	while (depth >= 0) {
+		if (path[depth].p_idx !=
+				EXT_LAST_INDEX(path[depth].p_hdr))
+			return (ext4_lblk_t)
+				le32_to_cpu(path[depth].p_idx[1].ei_block);
+		depth--;
+	}
+
+	return EXT_MAX_BLOCKS;
+}
+
+/*
+ * ext4_ext_correct_indexes:
+ * if leaf gets modified and modified extent is first in the leaf,
+ * then we have to correct all indexes above.
+ * TODO: do we need to correct tree in all cases?
+ */
+static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
+				struct ext4_ext_path *path)
+{
+	struct ext4_extent_header *eh;
+	int depth = ext_depth(inode);
+	struct ext4_extent *ex;
+	__le32 border;
+	int k, err = 0;
+
+	eh = path[depth].p_hdr;
+	ex = path[depth].p_ext;
+
+	if (unlikely(ex == NULL || eh == NULL)) {
+		EXT4_ERROR_INODE(inode,
+				 "ex %p == NULL or eh %p == NULL", ex, eh);
+		return -EIO;
+	}
+
+	if (depth == 0) {
+		/* there is no tree at all */
+		return 0;
+	}
+
+	if (ex != EXT_FIRST_EXTENT(eh)) {
+		/* we correct tree if first leaf got modified only */
+		return 0;
+	}
+
+	/*
+	 * TODO: we need correction if border is smaller than current one
+	 */
+	k = depth - 1;
+	border = path[depth].p_ext->ee_block;
+	err = ext4_ext_get_access(handle, inode, path + k);
+	if (err)
+		return err;
+	path[k].p_idx->ei_block = border;
+	err = ext4_ext_dirty(handle, inode, path + k);
+	if (err)
+		return err;
+
+	while (k--) {
+		/* change all left-side indexes */
+		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
+			break;
+		err = ext4_ext_get_access(handle, inode, path + k);
+		if (err)
+			break;
+		path[k].p_idx->ei_block = border;
+		err = ext4_ext_dirty(handle, inode, path + k);
+		if (err)
+			break;
+	}
+
+	return err;
+}
+
+int
+ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
+				struct ext4_extent *ex2)
+{
+	unsigned short ext1_ee_len, ext2_ee_len, max_len;
+
+	/*
+	 * Make sure that either both extents are uninitialized, or
+	 * both are _not_.
+	 */
+	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
+		return 0;
+
+	if (ext4_ext_is_uninitialized(ex1))
+		max_len = EXT_UNINIT_MAX_LEN;
+	else
+		max_len = EXT_INIT_MAX_LEN;
+
+	ext1_ee_len = ext4_ext_get_actual_len(ex1);
+	ext2_ee_len = ext4_ext_get_actual_len(ex2);
+
+	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
+			le32_to_cpu(ex2->ee_block))
+		return 0;
+
+	/*
+	 * To allow future support for preallocated extents to be added
+	 * as an RO_COMPAT feature, refuse to merge to extents if
+	 * this can result in the top bit of ee_len being set.
+	 */
+	if (ext1_ee_len + ext2_ee_len > max_len)
+		return 0;
+#ifdef AGGRESSIVE_TEST
+	if (ext1_ee_len >= 4)
+		return 0;
+#endif
+
+	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
+		return 1;
+	return 0;
+}
+
+/*
+ * This function tries to merge the "ex" extent to the next extent in the tree.
+ * It always tries to merge towards right. If you want to merge towards
+ * left, pass "ex - 1" as argument instead of "ex".
+ * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
+ * 1 if they got merged.
+ */
+static int ext4_ext_try_to_merge_right(struct inode *inode,
+				 struct ext4_ext_path *path,
+				 struct ext4_extent *ex)
+{
+	struct ext4_extent_header *eh;
+	unsigned int depth, len;
+	int merge_done = 0;
+	int uninitialized = 0;
+
+	depth = ext_depth(inode);
+	BUG_ON(path[depth].p_hdr == NULL);
+	eh = path[depth].p_hdr;
+
+	while (ex < EXT_LAST_EXTENT(eh)) {
+		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
+			break;
+		/* merge with next extent! */
+		if (ext4_ext_is_uninitialized(ex))
+			uninitialized = 1;
+		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
+				+ ext4_ext_get_actual_len(ex + 1));
+		if (uninitialized)
+			ext4_ext_mark_uninitialized(ex);
+
+		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
+			len = (EXT_LAST_EXTENT(eh) - ex - 1)
+				* sizeof(struct ext4_extent);
+			memmove(ex + 1, ex + 2, len);
+		}
+		le16_add_cpu(&eh->eh_entries, -1);
+		merge_done = 1;
+		WARN_ON(eh->eh_entries == 0);
+		if (!eh->eh_entries)
+			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
+	}
+
+	return merge_done;
+}
+
+/*
+ * This function tries to merge the @ex extent to neighbours in the tree.
+ * return 1 if merge left else 0.
+ */
+static int ext4_ext_try_to_merge(struct inode *inode,
+				  struct ext4_ext_path *path,
+				  struct ext4_extent *ex) {
+	struct ext4_extent_header *eh;
+	unsigned int depth;
+	int merge_done = 0;
+	int ret = 0;
+
+	depth = ext_depth(inode);
+	BUG_ON(path[depth].p_hdr == NULL);
+	eh = path[depth].p_hdr;
+
+	if (ex > EXT_FIRST_EXTENT(eh))
+		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
+
+	if (!merge_done)
+		ret = ext4_ext_try_to_merge_right(inode, path, ex);
+
+	return ret;
+}
+
+/*
+ * check if a portion of the "newext" extent overlaps with an
+ * existing extent.
+ *
+ * If there is an overlap discovered, it updates the length of the newext
+ * such that there will be no overlap, and then returns 1.
+ * If there is no overlap found, it returns 0.
+ */
+static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
+					   struct inode *inode,
+					   struct ext4_extent *newext,
+					   struct ext4_ext_path *path)
+{
+	ext4_lblk_t b1, b2;
+	unsigned int depth, len1;
+	unsigned int ret = 0;
+
+	b1 = le32_to_cpu(newext->ee_block);
+	len1 = ext4_ext_get_actual_len(newext);
+	depth = ext_depth(inode);
+	if (!path[depth].p_ext)
+		goto out;
+	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
+	b2 &= ~(sbi->s_cluster_ratio - 1);
+
+	/*
+	 * get the next allocated block if the extent in the path
+	 * is before the requested block(s)
+	 */
+	if (b2 < b1) {
+		b2 = ext4_ext_next_allocated_block(path);
+		if (b2 == EXT_MAX_BLOCKS)
+			goto out;
+		b2 &= ~(sbi->s_cluster_ratio - 1);
+	}
+
+	/* check for wrap through zero on extent logical start block*/
+	if (b1 + len1 < b1) {
+		len1 = EXT_MAX_BLOCKS - b1;
+		newext->ee_len = cpu_to_le16(len1);
+		ret = 1;
+	}
+
+	/* check for overlap */
+	if (b1 + len1 > b2) {
+		newext->ee_len = cpu_to_le16(b2 - b1);
+		ret = 1;
+	}
+out:
+	return ret;
+}
+
+/*
+ * ext4_ext_insert_extent:
+ * tries to merge requsted extent into the existing extent or
+ * inserts requested extent as new one into the tree,
+ * creating new leaf in the no-space case.
+ */
+int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
+				struct ext4_ext_path *path,
+				struct ext4_extent *newext, int flag)
+{
+	struct ext4_extent_header *eh;
+	struct ext4_extent *ex, *fex;
+	struct ext4_extent *nearex; /* nearest extent */
+	struct ext4_ext_path *npath = NULL;
+	int depth, len, err;
+	ext4_lblk_t next;
+	unsigned uninitialized = 0;
+	int flags = 0;
+
+	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
+		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
+		return -EIO;
+	}
+	depth = ext_depth(inode);
+	ex = path[depth].p_ext;
+	if (unlikely(path[depth].p_hdr == NULL)) {
+		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
+		return -EIO;
+	}
+
+	/* try to insert block into found extent and return */
+	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
+		&& ext4_can_extents_be_merged(inode, ex, newext)) {
+		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
+			  ext4_ext_is_uninitialized(newext),
+			  ext4_ext_get_actual_len(newext),
+			  le32_to_cpu(ex->ee_block),
+			  ext4_ext_is_uninitialized(ex),
+			  ext4_ext_get_actual_len(ex),
+			  ext4_ext_pblock(ex));
+		err = ext4_ext_get_access(handle, inode, path + depth);
+		if (err)
+			return err;
+
+		/*
+		 * ext4_can_extents_be_merged should have checked that either
+		 * both extents are uninitialized, or both aren't. Thus we
+		 * need to check only one of them here.
+		 */
+		if (ext4_ext_is_uninitialized(ex))
+			uninitialized = 1;
+		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
+					+ ext4_ext_get_actual_len(newext));
+		if (uninitialized)
+			ext4_ext_mark_uninitialized(ex);
+		eh = path[depth].p_hdr;
+		nearex = ex;
+		goto merge;
+	}
+
+	depth = ext_depth(inode);
+	eh = path[depth].p_hdr;
+	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
+		goto has_space;
+
+	/* probably next leaf has space for us? */
+	fex = EXT_LAST_EXTENT(eh);
+	next = EXT_MAX_BLOCKS;
+	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
+		next = ext4_ext_next_leaf_block(path);
+	if (next != EXT_MAX_BLOCKS) {
+		ext_debug("next leaf block - %u\n", next);
+		BUG_ON(npath != NULL);
+		npath = ext4_ext_find_extent(inode, next, NULL);
+		if (IS_ERR(npath))
+			return PTR_ERR(npath);
+		BUG_ON(npath->p_depth != path->p_depth);
+		eh = npath[depth].p_hdr;
+		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
+			ext_debug("next leaf isn't full(%d)\n",
+				  le16_to_cpu(eh->eh_entries));
+			path = npath;
+			goto has_space;
+		}
+		ext_debug("next leaf has no free space(%d,%d)\n",
+			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
+	}
+
+	/*
+	 * There is no free space in the found leaf.
+	 * We're gonna add a new leaf in the tree.
+	 */
+	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
+		flags = EXT4_MB_USE_ROOT_BLOCKS;
+	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
+	if (err)
+		goto cleanup;
+	depth = ext_depth(inode);
+	eh = path[depth].p_hdr;
+
+has_space:
+	nearex = path[depth].p_ext;
+
+	err = ext4_ext_get_access(handle, inode, path + depth);
+	if (err)
+		goto cleanup;
+
+	if (!nearex) {
+		/* there is no extent in this leaf, create first one */
+		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
+				le32_to_cpu(newext->ee_block),
+				ext4_ext_pblock(newext),
+				ext4_ext_is_uninitialized(newext),
+				ext4_ext_get_actual_len(newext));
+		nearex = EXT_FIRST_EXTENT(eh);
+	} else {
+		if (le32_to_cpu(newext->ee_block)
+			   > le32_to_cpu(nearex->ee_block)) {
+			/* Insert after */
+			ext_debug("insert %u:%llu:[%d]%d before: "
+					"nearest %p\n",
+					le32_to_cpu(newext->ee_block),
+					ext4_ext_pblock(newext),
+					ext4_ext_is_uninitialized(newext),
+					ext4_ext_get_actual_len(newext),
+					nearex);
+			nearex++;
+		} else {
+			/* Insert before */
+			BUG_ON(newext->ee_block == nearex->ee_block);
+			ext_debug("insert %u:%llu:[%d]%d after: "
+					"nearest %p\n",
+					le32_to_cpu(newext->ee_block),
+					ext4_ext_pblock(newext),
+					ext4_ext_is_uninitialized(newext),
+					ext4_ext_get_actual_len(newext),
+					nearex);
+		}
+		len = EXT_LAST_EXTENT(eh) - nearex + 1;
+		if (len > 0) {
+			ext_debug("insert %u:%llu:[%d]%d: "
+					"move %d extents from 0x%p to 0x%p\n",
+					le32_to_cpu(newext->ee_block),
+					ext4_ext_pblock(newext),
+					ext4_ext_is_uninitialized(newext),
+					ext4_ext_get_actual_len(newext),
+					len, nearex, nearex + 1);
+			memmove(nearex + 1, nearex,
+				len * sizeof(struct ext4_extent));
+		}
+	}
+
+	le16_add_cpu(&eh->eh_entries, 1);
+	path[depth].p_ext = nearex;
+	nearex->ee_block = newext->ee_block;
+	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
+	nearex->ee_len = newext->ee_len;
+
+merge:
+	/* try to merge extents to the right */
+	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
+		ext4_ext_try_to_merge(inode, path, nearex);
+
+	/* try to merge extents to the left */
+
+	/* time to correct all indexes above */
+	err = ext4_ext_correct_indexes(handle, inode, path);
+	if (err)
+		goto cleanup;
+
+	err = ext4_ext_dirty(handle, inode, path + depth);
+
+cleanup:
+	if (npath) {
+		ext4_ext_drop_refs(npath);
+		kfree(npath);
+	}
+	ext4_ext_invalidate_cache(inode);
+	return err;
+}
+
+static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
+			       ext4_lblk_t num, ext_prepare_callback func,
+			       void *cbdata)
+{
+	struct ext4_ext_path *path = NULL;
+	struct ext4_ext_cache cbex;
+	struct ext4_extent *ex;
+	ext4_lblk_t next, start = 0, end = 0;
+	ext4_lblk_t last = block + num;
+	int depth, exists, err = 0;
+
+	BUG_ON(func == NULL);
+	BUG_ON(inode == NULL);
+
+	while (block < last && block != EXT_MAX_BLOCKS) {
+		num = last - block;
+		/* find extent for this block */
+		down_read(&EXT4_I(inode)->i_data_sem);
+		path = ext4_ext_find_extent(inode, block, path);
+		up_read(&EXT4_I(inode)->i_data_sem);
+		if (IS_ERR(path)) {
+			err = PTR_ERR(path);
+			path = NULL;
+			break;
+		}
+
+		depth = ext_depth(inode);
+		if (unlikely(path[depth].p_hdr == NULL)) {
+			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
+			err = -EIO;
+			break;
+		}
+		ex = path[depth].p_ext;
+		next = ext4_ext_next_allocated_block(path);
+
+		exists = 0;
+		if (!ex) {
+			/* there is no extent yet, so try to allocate
+			 * all requested space */
+			start = block;
+			end = block + num;
+		} else if (le32_to_cpu(ex->ee_block) > block) {
+			/* need to allocate space before found extent */
+			start = block;
+			end = le32_to_cpu(ex->ee_block);
+			if (block + num < end)
+				end = block + num;
+		} else if (block >= le32_to_cpu(ex->ee_block)
+					+ ext4_ext_get_actual_len(ex)) {
+			/* need to allocate space after found extent */
+			start = block;
+			end = block + num;
+			if (end >= next)
+				end = next;
+		} else if (block >= le32_to_cpu(ex->ee_block)) {
+			/*
+			 * some part of requested space is covered
+			 * by found extent
+			 */
+			start = block;
+			end = le32_to_cpu(ex->ee_block)
+				+ ext4_ext_get_actual_len(ex);
+			if (block + num < end)
+				end = block + num;
+			exists = 1;
+		} else {
+			BUG();
+		}
+		BUG_ON(end <= start);
+
+		if (!exists) {
+			cbex.ec_block = start;
+			cbex.ec_len = end - start;
+			cbex.ec_start = 0;
+		} else {
+			cbex.ec_block = le32_to_cpu(ex->ee_block);
+			cbex.ec_len = ext4_ext_get_actual_len(ex);
+			cbex.ec_start = ext4_ext_pblock(ex);
+		}
+
+		if (unlikely(cbex.ec_len == 0)) {
+			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
+			err = -EIO;
+			break;
+		}
+		err = func(inode, next, &cbex, ex, cbdata);
+		ext4_ext_drop_refs(path);
+
+		if (err < 0)
+			break;
+
+		if (err == EXT_REPEAT)
+			continue;
+		else if (err == EXT_BREAK) {
+			err = 0;
+			break;
+		}
+
+		if (ext_depth(inode) != depth) {
+			/* depth was changed. we have to realloc path */
+			kfree(path);
+			path = NULL;
+		}
+
+		block = cbex.ec_block + cbex.ec_len;
+	}
+
+	if (path) {
+		ext4_ext_drop_refs(path);
+		kfree(path);
+	}
+
+	return err;
+}
+
+static void
+ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
+			__u32 len, ext4_fsblk_t start)
+{
+	struct ext4_ext_cache *cex;
+	BUG_ON(len == 0);
+	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
+	trace_ext4_ext_put_in_cache(inode, block, len, start);
+	cex = &EXT4_I(inode)->i_cached_extent;
+	cex->ec_block = block;
+	cex->ec_len = len;
+	cex->ec_start = start;
+	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
+}
+
+/*
+ * ext4_ext_put_gap_in_cache:
+ * calculate boundaries of the gap that the requested block fits into
+ * and cache this gap
+ */
+static void
+ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
+				ext4_lblk_t block)
+{
+	int depth = ext_depth(inode);
+	unsigned long len;
+	ext4_lblk_t lblock;
+	struct ext4_extent *ex;
+
+	ex = path[depth].p_ext;
+	if (ex == NULL) {
+		/* there is no extent yet, so gap is [0;-] */
+		lblock = 0;
+		len = EXT_MAX_BLOCKS;
+		ext_debug("cache gap(whole file):");
+	} else if (block < le32_to_cpu(ex->ee_block)) {
+		lblock = block;
+		len = le32_to_cpu(ex->ee_block) - block;
+		ext_debug("cache gap(before): %u [%u:%u]",
+				block,
+				le32_to_cpu(ex->ee_block),
+				 ext4_ext_get_actual_len(ex));
+	} else if (block >= le32_to_cpu(ex->ee_block)
+			+ ext4_ext_get_actual_len(ex)) {
+		ext4_lblk_t next;
+		lblock = le32_to_cpu(ex->ee_block)
+			+ ext4_ext_get_actual_len(ex);
+
+		next = ext4_ext_next_allocated_block(path);
+		ext_debug("cache gap(after): [%u:%u] %u",
+				le32_to_cpu(ex->ee_block),
+				ext4_ext_get_actual_len(ex),
+				block);
+		BUG_ON(next == lblock);
+		len = next - lblock;
+	} else {
+		lblock = len = 0;
+		BUG();
+	}
+
+	ext_debug(" -> %u:%lu\n", lblock, len);
+	ext4_ext_put_in_cache(inode, lblock, len, 0);
+}
+
+/*
+ * ext4_ext_check_cache()
+ * Checks to see if the given block is in the cache.
+ * If it is, the cached extent is stored in the given
+ * cache extent pointer.  If the cached extent is a hole,
+ * this routine should be used instead of
+ * ext4_ext_in_cache if the calling function needs to
+ * know the size of the hole.
+ *
+ * @inode: The files inode
+ * @block: The block to look for in the cache
+ * @ex:    Pointer where the cached extent will be stored
+ *         if it contains block
+ *
+ * Return 0 if cache is invalid; 1 if the cache is valid
+ */
+static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
+	struct ext4_ext_cache *ex){
+	struct ext4_ext_cache *cex;
+	struct ext4_sb_info *sbi;
+	int ret = 0;
+
+	/*
+	 * We borrow i_block_reservation_lock to protect i_cached_extent
+	 */
+	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
+	cex = &EXT4_I(inode)->i_cached_extent;
+	sbi = EXT4_SB(inode->i_sb);
+
+	/* has cache valid data? */
+	if (cex->ec_len == 0)
+		goto errout;
+
+	if (in_range(block, cex->ec_block, cex->ec_len)) {
+		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
+		ext_debug("%u cached by %u:%u:%llu\n",
+				block,
+				cex->ec_block, cex->ec_len, cex->ec_start);
+		ret = 1;
+	}
+errout:
+	trace_ext4_ext_in_cache(inode, block, ret);
+	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
+	return ret;
+}
+
+/*
+ * ext4_ext_in_cache()
+ * Checks to see if the given block is in the cache.
+ * If it is, the cached extent is stored in the given
+ * extent pointer.
+ *
+ * @inode: The files inode
+ * @block: The block to look for in the cache
+ * @ex:    Pointer where the cached extent will be stored
+ *         if it contains block
+ *
+ * Return 0 if cache is invalid; 1 if the cache is valid
+ */
+static int
+ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
+			struct ext4_extent *ex)
+{
+	struct ext4_ext_cache cex;
+	int ret = 0;
+
+	if (ext4_ext_check_cache(inode, block, &cex)) {
+		ex->ee_block = cpu_to_le32(cex.ec_block);
+		ext4_ext_store_pblock(ex, cex.ec_start);
+		ex->ee_len = cpu_to_le16(cex.ec_len);
+		ret = 1;
+	}
+
+	return ret;
+}
+
+
+/*
+ * ext4_ext_rm_idx:
+ * removes index from the index block.
+ */
+static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
+			struct ext4_ext_path *path, int depth)
+{
+	int err;
+	ext4_fsblk_t leaf;
+
+	/* free index block */
+	depth--;
+	path = path + depth;
+	leaf = ext4_idx_pblock(path->p_idx);
+	if (unlikely(path->p_hdr->eh_entries == 0)) {
+		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
+		return -EIO;
+	}
+	err = ext4_ext_get_access(handle, inode, path);
+	if (err)
+		return err;
+
+	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
+		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
+		len *= sizeof(struct ext4_extent_idx);
+		memmove(path->p_idx, path->p_idx + 1, len);
+	}
+
+	le16_add_cpu(&path->p_hdr->eh_entries, -1);
+	err = ext4_ext_dirty(handle, inode, path);
+	if (err)
+		return err;
+	ext_debug("index is empty, remove it, free block %llu\n", leaf);
+	trace_ext4_ext_rm_idx(inode, leaf);
+
+	ext4_free_blocks(handle, inode, NULL, leaf, 1,
+			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
+
+	while (--depth >= 0) {
+		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
+			break;
+		path--;
+		err = ext4_ext_get_access(handle, inode, path);
+		if (err)
+			break;
+		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
+		err = ext4_ext_dirty(handle, inode, path);
+		if (err)
+			break;
+	}
+	return err;
+}
+
+/*
+ * ext4_ext_calc_credits_for_single_extent:
+ * This routine returns max. credits that needed to insert an extent
+ * to the extent tree.
+ * When pass the actual path, the caller should calculate credits
+ * under i_data_sem.
+ */
+int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
+						struct ext4_ext_path *path)
+{
+	if (path) {
+		int depth = ext_depth(inode);
+		int ret = 0;
+
+		/* probably there is space in leaf? */
+		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
+				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
+
+			/*
+			 *  There are some space in the leaf tree, no
+			 *  need to account for leaf block credit
+			 *
+			 *  bitmaps and block group descriptor blocks
+			 *  and other metadata blocks still need to be
+			 *  accounted.
+			 */
+			/* 1 bitmap, 1 block group descriptor */
+			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
+			return ret;
+		}
+	}
+
+	return ext4_chunk_trans_blocks(inode, nrblocks);
+}
+
+/*
+ * How many index/leaf blocks need to change/allocate to modify nrblocks?
+ *
+ * if nrblocks are fit in a single extent (chunk flag is 1), then
+ * in the worse case, each tree level index/leaf need to be changed
+ * if the tree split due to insert a new extent, then the old tree
+ * index/leaf need to be updated too
+ *
+ * If the nrblocks are discontiguous, they could cause
+ * the whole tree split more than once, but this is really rare.
+ */
+int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
+{
+	int index;
+	int depth = ext_depth(inode);
+
+	if (chunk)
+		index = depth * 2;
+	else
+		index = depth * 3;
+
+	return index;
+}
+
+static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
+			      struct ext4_extent *ex,
+			      ext4_fsblk_t *partial_cluster,
+			      ext4_lblk_t from, ext4_lblk_t to)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
+	ext4_fsblk_t pblk;
+	int flags = EXT4_FREE_BLOCKS_FORGET;
+
+	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+		flags |= EXT4_FREE_BLOCKS_METADATA;
+	/*
+	 * For bigalloc file systems, we never free a partial cluster
+	 * at the beginning of the extent.  Instead, we make a note
+	 * that we tried freeing the cluster, and check to see if we
+	 * need to free it on a subsequent call to ext4_remove_blocks,
+	 * or at the end of the ext4_truncate() operation.
+	 */
+	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
+
+	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
+	/*
+	 * If we have a partial cluster, and it's different from the
+	 * cluster of the last block, we need to explicitly free the
+	 * partial cluster here.
+	 */
+	pblk = ext4_ext_pblock(ex) + ee_len - 1;
+	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
+		ext4_free_blocks(handle, inode, NULL,
+				 EXT4_C2B(sbi, *partial_cluster),
+				 sbi->s_cluster_ratio, flags);
+		*partial_cluster = 0;
+	}
+
+#ifdef EXTENTS_STATS
+	{
+		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+		spin_lock(&sbi->s_ext_stats_lock);
+		sbi->s_ext_blocks += ee_len;
+		sbi->s_ext_extents++;
+		if (ee_len < sbi->s_ext_min)
+			sbi->s_ext_min = ee_len;
+		if (ee_len > sbi->s_ext_max)
+			sbi->s_ext_max = ee_len;
+		if (ext_depth(inode) > sbi->s_depth_max)
+			sbi->s_depth_max = ext_depth(inode);
+		spin_unlock(&sbi->s_ext_stats_lock);
+	}
+#endif
+	if (from >= le32_to_cpu(ex->ee_block)
+	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
+		/* tail removal */
+		ext4_lblk_t num;
+
+		num = le32_to_cpu(ex->ee_block) + ee_len - from;
+		pblk = ext4_ext_pblock(ex) + ee_len - num;
+		ext_debug("free last %u blocks starting %llu\n", num, pblk);
+		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
+		/*
+		 * If the block range to be freed didn't start at the
+		 * beginning of a cluster, and we removed the entire
+		 * extent, save the partial cluster here, since we
+		 * might need to delete if we determine that the
+		 * truncate operation has removed all of the blocks in
+		 * the cluster.
+		 */
+		if (pblk & (sbi->s_cluster_ratio - 1) &&
+		    (ee_len == num))
+			*partial_cluster = EXT4_B2C(sbi, pblk);
+		else
+			*partial_cluster = 0;
+	} else if (from == le32_to_cpu(ex->ee_block)
+		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
+		/* head removal */
+		ext4_lblk_t num;
+		ext4_fsblk_t start;
+
+		num = to - from;
+		start = ext4_ext_pblock(ex);
+
+		ext_debug("free first %u blocks starting %llu\n", num, start);
+		ext4_free_blocks(handle, inode, NULL, start, num, flags);
+
+	} else {
+		printk(KERN_INFO "strange request: removal(2) "
+				"%u-%u from %u:%u\n",
+				from, to, le32_to_cpu(ex->ee_block), ee_len);
+	}
+	return 0;
+}
+
+
+/*
+ * ext4_ext_rm_leaf() Removes the extents associated with the
+ * blocks appearing between "start" and "end", and splits the extents
+ * if "start" and "end" appear in the same extent
+ *
+ * @handle: The journal handle
+ * @inode:  The files inode
+ * @path:   The path to the leaf
+ * @start:  The first block to remove
+ * @end:   The last block to remove
+ */
+static int
+ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
+		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
+		 ext4_lblk_t start, ext4_lblk_t end)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	int err = 0, correct_index = 0;
+	int depth = ext_depth(inode), credits;
+	struct ext4_extent_header *eh;
+	ext4_lblk_t a, b;
+	unsigned num;
+	ext4_lblk_t ex_ee_block;
+	unsigned short ex_ee_len;
+	unsigned uninitialized = 0;
+	struct ext4_extent *ex;
+
+	/* the header must be checked already in ext4_ext_remove_space() */
+	ext_debug("truncate since %u in leaf to %u\n", start, end);
+	if (!path[depth].p_hdr)
+		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
+	eh = path[depth].p_hdr;
+	if (unlikely(path[depth].p_hdr == NULL)) {
+		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
+		return -EIO;
+	}
+	/* find where to start removing */
+	ex = EXT_LAST_EXTENT(eh);
+
+	ex_ee_block = le32_to_cpu(ex->ee_block);
+	ex_ee_len = ext4_ext_get_actual_len(ex);
+
+	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
+
+	while (ex >= EXT_FIRST_EXTENT(eh) &&
+			ex_ee_block + ex_ee_len > start) {
+
+		if (ext4_ext_is_uninitialized(ex))
+			uninitialized = 1;
+		else
+			uninitialized = 0;
+
+		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
+			 uninitialized, ex_ee_len);
+		path[depth].p_ext = ex;
+
+		a = ex_ee_block > start ? ex_ee_block : start;
+		b = ex_ee_block+ex_ee_len - 1 < end ?
+			ex_ee_block+ex_ee_len - 1 : end;
+
+		ext_debug("  border %u:%u\n", a, b);
+
+		/* If this extent is beyond the end of the hole, skip it */
+		if (end < ex_ee_block) {
+			ex--;
+			ex_ee_block = le32_to_cpu(ex->ee_block);
+			ex_ee_len = ext4_ext_get_actual_len(ex);
+			continue;
+		} else if (b != ex_ee_block + ex_ee_len - 1) {
+			EXT4_ERROR_INODE(inode,
+					 "can not handle truncate %u:%u "
+					 "on extent %u:%u",
+					 start, end, ex_ee_block,
+					 ex_ee_block + ex_ee_len - 1);
+			err = -EIO;
+			goto out;
+		} else if (a != ex_ee_block) {
+			/* remove tail of the extent */
+			num = a - ex_ee_block;
+		} else {
+			/* remove whole extent: excellent! */
+			num = 0;
+		}
+		/*
+		 * 3 for leaf, sb, and inode plus 2 (bmap and group
+		 * descriptor) for each block group; assume two block
+		 * groups plus ex_ee_len/blocks_per_block_group for
+		 * the worst case
+		 */
+		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
+		if (ex == EXT_FIRST_EXTENT(eh)) {
+			correct_index = 1;
+			credits += (ext_depth(inode)) + 1;
+		}
+		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
+
+		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
+		if (err)
+			goto out;
+
+		err = ext4_ext_get_access(handle, inode, path + depth);
+		if (err)
+			goto out;
+
+		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
+					 a, b);
+		if (err)
+			goto out;
+
+		if (num == 0)
+			/* this extent is removed; mark slot entirely unused */
+			ext4_ext_store_pblock(ex, 0);
+
+		ex->ee_len = cpu_to_le16(num);
+		/*
+		 * Do not mark uninitialized if all the blocks in the
+		 * extent have been removed.
+		 */
+		if (uninitialized && num)
+			ext4_ext_mark_uninitialized(ex);
+		/*
+		 * If the extent was completely released,
+		 * we need to remove it from the leaf
+		 */
+		if (num == 0) {
+			if (end != EXT_MAX_BLOCKS - 1) {
+				/*
+				 * For hole punching, we need to scoot all the
+				 * extents up when an extent is removed so that
+				 * we dont have blank extents in the middle
+				 */
+				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
+					sizeof(struct ext4_extent));
+
+				/* Now get rid of the one at the end */
+				memset(EXT_LAST_EXTENT(eh), 0,
+					sizeof(struct ext4_extent));
+			}
+			le16_add_cpu(&eh->eh_entries, -1);
+		} else
+			*partial_cluster = 0;
+
+		err = ext4_ext_dirty(handle, inode, path + depth);
+		if (err)
+			goto out;
+
+		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
+				ext4_ext_pblock(ex));
+		ex--;
+		ex_ee_block = le32_to_cpu(ex->ee_block);
+		ex_ee_len = ext4_ext_get_actual_len(ex);
+	}
+
+	if (correct_index && eh->eh_entries)
+		err = ext4_ext_correct_indexes(handle, inode, path);
+
+	/*
+	 * If there is still a entry in the leaf node, check to see if
+	 * it references the partial cluster.  This is the only place
+	 * where it could; if it doesn't, we can free the cluster.
+	 */
+	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
+	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
+	     *partial_cluster)) {
+		int flags = EXT4_FREE_BLOCKS_FORGET;
+
+		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+			flags |= EXT4_FREE_BLOCKS_METADATA;
+
+		ext4_free_blocks(handle, inode, NULL,
+				 EXT4_C2B(sbi, *partial_cluster),
+				 sbi->s_cluster_ratio, flags);
+		*partial_cluster = 0;
+	}
+
+	/* if this leaf is free, then we should
+	 * remove it from index block above */
+	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
+		err = ext4_ext_rm_idx(handle, inode, path, depth);
+
+out:
+	return err;
+}
+
+/*
+ * ext4_ext_more_to_rm:
+ * returns 1 if current index has to be freed (even partial)
+ */
+static int
+ext4_ext_more_to_rm(struct ext4_ext_path *path)
+{
+	BUG_ON(path->p_idx == NULL);
+
+	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
+		return 0;
+
+	/*
+	 * if truncate on deeper level happened, it wasn't partial,
+	 * so we have to consider current index for truncation
+	 */
+	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
+		return 0;
+	return 1;
+}
+
+static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
+				 ext4_lblk_t end)
+{
+	struct super_block *sb = inode->i_sb;
+	int depth = ext_depth(inode);
+	struct ext4_ext_path *path = NULL;
+	ext4_fsblk_t partial_cluster = 0;
+	handle_t *handle;
+	int i = 0, err;
+
+	ext_debug("truncate since %u to %u\n", start, end);
+
+	/* probably first extent we're gonna free will be last in block */
+	handle = ext4_journal_start(inode, depth + 1);
+	if (IS_ERR(handle))
+		return PTR_ERR(handle);
+
+again:
+	ext4_ext_invalidate_cache(inode);
+
+	trace_ext4_ext_remove_space(inode, start, depth);
+
+	/*
+	 * Check if we are removing extents inside the extent tree. If that
+	 * is the case, we are going to punch a hole inside the extent tree
+	 * so we have to check whether we need to split the extent covering
+	 * the last block to remove so we can easily remove the part of it
+	 * in ext4_ext_rm_leaf().
+	 */
+	if (end < EXT_MAX_BLOCKS - 1) {
+		struct ext4_extent *ex;
+		ext4_lblk_t ee_block;
+
+		/* find extent for this block */
+		path = ext4_ext_find_extent(inode, end, NULL);
+		if (IS_ERR(path)) {
+			ext4_journal_stop(handle);
+			return PTR_ERR(path);
+		}
+		depth = ext_depth(inode);
+		ex = path[depth].p_ext;
+		if (!ex) {
+			ext4_ext_drop_refs(path);
+			kfree(path);
+			path = NULL;
+			goto cont;
+		}
+
+		ee_block = le32_to_cpu(ex->ee_block);
+
+		/*
+		 * See if the last block is inside the extent, if so split
+		 * the extent at 'end' block so we can easily remove the
+		 * tail of the first part of the split extent in
+		 * ext4_ext_rm_leaf().
+		 */
+		if (end >= ee_block &&
+		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
+			int split_flag = 0;
+
+			if (ext4_ext_is_uninitialized(ex))
+				split_flag = EXT4_EXT_MARK_UNINIT1 |
+					     EXT4_EXT_MARK_UNINIT2;
+
+			/*
+			 * Split the extent in two so that 'end' is the last
+			 * block in the first new extent
+			 */
+			err = ext4_split_extent_at(handle, inode, path,
+						end + 1, split_flag,
+						EXT4_GET_BLOCKS_PRE_IO |
+						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
+
+			if (err < 0)
+				goto out;
+		}
+	}
+cont:
+
+	/*
+	 * We start scanning from right side, freeing all the blocks
+	 * after i_size and walking into the tree depth-wise.
+	 */
+	depth = ext_depth(inode);
+	if (path) {
+		int k = i = depth;
+		while (--k > 0)
+			path[k].p_block =
+				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
+	} else {
+		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
+			       GFP_NOFS);
+		if (path == NULL) {
+			ext4_journal_stop(handle);
+			return -ENOMEM;
+		}
+		path[0].p_depth = depth;
+		path[0].p_hdr = ext_inode_hdr(inode);
+		i = 0;
+
+		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
+			err = -EIO;
+			goto out;
+		}
+	}
+	err = 0;
+
+	while (i >= 0 && err == 0) {
+		if (i == depth) {
+			/* this is leaf block */
+			err = ext4_ext_rm_leaf(handle, inode, path,
+					       &partial_cluster, start,
+					       end);
+			/* root level has p_bh == NULL, brelse() eats this */
+			brelse(path[i].p_bh);
+			path[i].p_bh = NULL;
+			i--;
+			continue;
+		}
+
+		/* this is index block */
+		if (!path[i].p_hdr) {
+			ext_debug("initialize header\n");
+			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
+		}
+
+		if (!path[i].p_idx) {
+			/* this level hasn't been touched yet */
+			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
+			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
+			ext_debug("init index ptr: hdr 0x%p, num %d\n",
+				  path[i].p_hdr,
+				  le16_to_cpu(path[i].p_hdr->eh_entries));
+		} else {
+			/* we were already here, see at next index */
+			path[i].p_idx--;
+		}
+
+		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
+				i, EXT_FIRST_INDEX(path[i].p_hdr),
+				path[i].p_idx);
+		if (ext4_ext_more_to_rm(path + i)) {
+			struct buffer_head *bh;
+			/* go to the next level */
+			ext_debug("move to level %d (block %llu)\n",
+				  i + 1, ext4_idx_pblock(path[i].p_idx));
+			memset(path + i + 1, 0, sizeof(*path));
+			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
+			if (!bh) {
+				/* should we reset i_size? */
+				err = -EIO;
+				break;
+			}
+			if (WARN_ON(i + 1 > depth)) {
+				err = -EIO;
+				break;
+			}
+			if (ext4_ext_check(inode, ext_block_hdr(bh),
+							depth - i - 1)) {
+				err = -EIO;
+				break;
+			}
+			path[i + 1].p_bh = bh;
+
+			/* save actual number of indexes since this
+			 * number is changed at the next iteration */
+			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
+			i++;
+		} else {
+			/* we finished processing this index, go up */
+			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
+				/* index is empty, remove it;
+				 * handle must be already prepared by the
+				 * truncatei_leaf() */
+				err = ext4_ext_rm_idx(handle, inode, path, i);
+			}
+			/* root level has p_bh == NULL, brelse() eats this */
+			brelse(path[i].p_bh);
+			path[i].p_bh = NULL;
+			i--;
+			ext_debug("return to level %d\n", i);
+		}
+	}
+
+	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
+			path->p_hdr->eh_entries);
+
+	/* If we still have something in the partial cluster and we have removed
+	 * even the first extent, then we should free the blocks in the partial
+	 * cluster as well. */
+	if (partial_cluster && path->p_hdr->eh_entries == 0) {
+		int flags = EXT4_FREE_BLOCKS_FORGET;
+
+		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+			flags |= EXT4_FREE_BLOCKS_METADATA;
+
+		ext4_free_blocks(handle, inode, NULL,
+				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
+				 EXT4_SB(sb)->s_cluster_ratio, flags);
+		partial_cluster = 0;
+	}
+
+	/* TODO: flexible tree reduction should be here */
+	if (path->p_hdr->eh_entries == 0) {
+		/*
+		 * truncate to zero freed all the tree,
+		 * so we need to correct eh_depth
+		 */
+		err = ext4_ext_get_access(handle, inode, path);
+		if (err == 0) {
+			ext_inode_hdr(inode)->eh_depth = 0;
+			ext_inode_hdr(inode)->eh_max =
+				cpu_to_le16(ext4_ext_space_root(inode, 0));
+			err = ext4_ext_dirty(handle, inode, path);
+		}
+	}
+out:
+	ext4_ext_drop_refs(path);
+	kfree(path);
+	if (err == -EAGAIN) {
+		path = NULL;
+		goto again;
+	}
+	ext4_journal_stop(handle);
+
+	return err;
+}
+
+/*
+ * called at mount time
+ */
+void ext4_ext_init(struct super_block *sb)
+{
+	/*
+	 * possible initialization would be here
+	 */
+
+	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
+#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
+		printk(KERN_INFO "EXT4-fs: file extents enabled"
+#ifdef AGGRESSIVE_TEST
+		       ", aggressive tests"
+#endif
+#ifdef CHECK_BINSEARCH
+		       ", check binsearch"
+#endif
+#ifdef EXTENTS_STATS
+		       ", stats"
+#endif
+		       "\n");
+#endif
+#ifdef EXTENTS_STATS
+		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
+		EXT4_SB(sb)->s_ext_min = 1 << 30;
+		EXT4_SB(sb)->s_ext_max = 0;
+#endif
+	}
+}
+
+/*
+ * called at umount time
+ */
+void ext4_ext_release(struct super_block *sb)
+{
+	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
+		return;
+
+#ifdef EXTENTS_STATS
+	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
+		struct ext4_sb_info *sbi = EXT4_SB(sb);
+		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
+			sbi->s_ext_blocks, sbi->s_ext_extents,
+			sbi->s_ext_blocks / sbi->s_ext_extents);
+		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
+			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
+	}
+#endif
+}
+
+/* FIXME!! we need to try to merge to left or right after zero-out  */
+static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
+{
+	ext4_fsblk_t ee_pblock;
+	unsigned int ee_len;
+	int ret;
+
+	ee_len    = ext4_ext_get_actual_len(ex);
+	ee_pblock = ext4_ext_pblock(ex);
+
+	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
+	if (ret > 0)
+		ret = 0;
+
+	return ret;
+}
+
+/*
+ * ext4_split_extent_at() splits an extent at given block.
+ *
+ * @handle: the journal handle
+ * @inode: the file inode
+ * @path: the path to the extent
+ * @split: the logical block where the extent is splitted.
+ * @split_flags: indicates if the extent could be zeroout if split fails, and
+ *		 the states(init or uninit) of new extents.
+ * @flags: flags used to insert new extent to extent tree.
+ *
+ *
+ * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
+ * of which are deterimined by split_flag.
+ *
+ * There are two cases:
+ *  a> the extent are splitted into two extent.
+ *  b> split is not needed, and just mark the extent.
+ *
+ * return 0 on success.
+ */
+static int ext4_split_extent_at(handle_t *handle,
+			     struct inode *inode,
+			     struct ext4_ext_path *path,
+			     ext4_lblk_t split,
+			     int split_flag,
+			     int flags)
+{
+	ext4_fsblk_t newblock;
+	ext4_lblk_t ee_block;
+	struct ext4_extent *ex, newex, orig_ex;
+	struct ext4_extent *ex2 = NULL;
+	unsigned int ee_len, depth;
+	int err = 0;
+
+	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
+	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
+
+	ext_debug("ext4_split_extents_at: inode %lu, logical"
+		"block %llu\n", inode->i_ino, (unsigned long long)split);
+
+	ext4_ext_show_leaf(inode, path);
+
+	depth = ext_depth(inode);
+	ex = path[depth].p_ext;
+	ee_block = le32_to_cpu(ex->ee_block);
+	ee_len = ext4_ext_get_actual_len(ex);
+	newblock = split - ee_block + ext4_ext_pblock(ex);
+
+	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
+
+	err = ext4_ext_get_access(handle, inode, path + depth);
+	if (err)
+		goto out;
+
+	if (split == ee_block) {
+		/*
+		 * case b: block @split is the block that the extent begins with
+		 * then we just change the state of the extent, and splitting
+		 * is not needed.
+		 */
+		if (split_flag & EXT4_EXT_MARK_UNINIT2)
+			ext4_ext_mark_uninitialized(ex);
+		else
+			ext4_ext_mark_initialized(ex);
+
+		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
+			ext4_ext_try_to_merge(inode, path, ex);
+
+		err = ext4_ext_dirty(handle, inode, path + depth);
+		goto out;
+	}
+
+	/* case a */
+	memcpy(&orig_ex, ex, sizeof(orig_ex));
+	ex->ee_len = cpu_to_le16(split - ee_block);
+	if (split_flag & EXT4_EXT_MARK_UNINIT1)
+		ext4_ext_mark_uninitialized(ex);
+
+	/*
+	 * path may lead to new leaf, not to original leaf any more
+	 * after ext4_ext_insert_extent() returns,
+	 */
+	err = ext4_ext_dirty(handle, inode, path + depth);
+	if (err)
+		goto fix_extent_len;
+
+	ex2 = &newex;
+	ex2->ee_block = cpu_to_le32(split);
+	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
+	ext4_ext_store_pblock(ex2, newblock);
+	if (split_flag & EXT4_EXT_MARK_UNINIT2)
+		ext4_ext_mark_uninitialized(ex2);
+
+	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
+	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
+		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
+			if (split_flag & EXT4_EXT_DATA_VALID1)
+				err = ext4_ext_zeroout(inode, ex2);
+			else
+				err = ext4_ext_zeroout(inode, ex);
+		} else
+			err = ext4_ext_zeroout(inode, &orig_ex);
+
+		if (err)
+			goto fix_extent_len;
+		/* update the extent length and mark as initialized */
+		ex->ee_len = cpu_to_le16(ee_len);
+		ext4_ext_try_to_merge(inode, path, ex);
+		err = ext4_ext_dirty(handle, inode, path + depth);
+		goto out;
+	} else if (err)
+		goto fix_extent_len;
+
+out:
+	ext4_ext_show_leaf(inode, path);
+	return err;
+
+fix_extent_len:
+	ex->ee_len = orig_ex.ee_len;
+	ext4_ext_dirty(handle, inode, path + depth);
+	return err;
+}
+
+/*
+ * ext4_split_extents() splits an extent and mark extent which is covered
+ * by @map as split_flags indicates
+ *
+ * It may result in splitting the extent into multiple extents (upto three)
+ * There are three possibilities:
+ *   a> There is no split required
+ *   b> Splits in two extents: Split is happening at either end of the extent
+ *   c> Splits in three extents: Somone is splitting in middle of the extent
+ *
+ */
+static int ext4_split_extent(handle_t *handle,
+			      struct inode *inode,
+			      struct ext4_ext_path *path,
+			      struct ext4_map_blocks *map,
+			      int split_flag,
+			      int flags)
+{
+	ext4_lblk_t ee_block;
+	struct ext4_extent *ex;
+	unsigned int ee_len, depth;
+	int err = 0;
+	int uninitialized;
+	int split_flag1, flags1;
+	int allocated = map->m_len;
+
+	depth = ext_depth(inode);
+	ex = path[depth].p_ext;
+	ee_block = le32_to_cpu(ex->ee_block);
+	ee_len = ext4_ext_get_actual_len(ex);
+	uninitialized = ext4_ext_is_uninitialized(ex);
+
+	if (map->m_lblk + map->m_len < ee_block + ee_len) {
+		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
+		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
+		if (uninitialized)
+			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
+				       EXT4_EXT_MARK_UNINIT2;
+		if (split_flag & EXT4_EXT_DATA_VALID2)
+			split_flag1 |= EXT4_EXT_DATA_VALID1;
+		err = ext4_split_extent_at(handle, inode, path,
+				map->m_lblk + map->m_len, split_flag1, flags1);
+		if (err)
+			goto out;
+	} else {
+		allocated = ee_len - (map->m_lblk - ee_block);
+	}
+
+	ext4_ext_drop_refs(path);
+	path = ext4_ext_find_extent(inode, map->m_lblk, path);
+	if (IS_ERR(path))
+		return PTR_ERR(path);
+
+	if (map->m_lblk >= ee_block) {
+		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
+					    EXT4_EXT_DATA_VALID2);
+		if (uninitialized)
+			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
+		if (split_flag & EXT4_EXT_MARK_UNINIT2)
+			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
+		err = ext4_split_extent_at(handle, inode, path,
+				map->m_lblk, split_flag1, flags);
+		if (err)
+			goto out;
+	}
+
+	ext4_ext_show_leaf(inode, path);
+out:
+	return err ? err : allocated;
+}
+
+#define EXT4_EXT_ZERO_LEN 7
+/*
+ * This function is called by ext4_ext_map_blocks() if someone tries to write
+ * to an uninitialized extent. It may result in splitting the uninitialized
+ * extent into multiple extents (up to three - one initialized and two
+ * uninitialized).
+ * There are three possibilities:
+ *   a> There is no split required: Entire extent should be initialized
+ *   b> Splits in two extents: Write is happening at either end of the extent
+ *   c> Splits in three extents: Somone is writing in middle of the extent
+ *
+ * Pre-conditions:
+ *  - The extent pointed to by 'path' is uninitialized.
+ *  - The extent pointed to by 'path' contains a superset
+ *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
+ *
+ * Post-conditions on success:
+ *  - the returned value is the number of blocks beyond map->l_lblk
+ *    that are allocated and initialized.
+ *    It is guaranteed to be >= map->m_len.
+ */
+static int ext4_ext_convert_to_initialized(handle_t *handle,
+					   struct inode *inode,
+					   struct ext4_map_blocks *map,
+					   struct ext4_ext_path *path)
+{
+	struct ext4_extent_header *eh;
+	struct ext4_map_blocks split_map;
+	struct ext4_extent zero_ex;
+	struct ext4_extent *ex;
+	ext4_lblk_t ee_block, eof_block;
+	unsigned int ee_len, depth;
+	int allocated;
+	int err = 0;
+	int split_flag = 0;
+
+	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
+		"block %llu, max_blocks %u\n", inode->i_ino,
+		(unsigned long long)map->m_lblk, map->m_len);
+
+	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
+		inode->i_sb->s_blocksize_bits;
+	if (eof_block < map->m_lblk + map->m_len)
+		eof_block = map->m_lblk + map->m_len;
+
+	depth = ext_depth(inode);
+	eh = path[depth].p_hdr;
+	ex = path[depth].p_ext;
+	ee_block = le32_to_cpu(ex->ee_block);
+	ee_len = ext4_ext_get_actual_len(ex);
+	allocated = ee_len - (map->m_lblk - ee_block);
+
+	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
+
+	/* Pre-conditions */
+	BUG_ON(!ext4_ext_is_uninitialized(ex));
+	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
+
+	/*
+	 * Attempt to transfer newly initialized blocks from the currently
+	 * uninitialized extent to its left neighbor. This is much cheaper
+	 * than an insertion followed by a merge as those involve costly
+	 * memmove() calls. This is the common case in steady state for
+	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
+	 * writes.
+	 *
+	 * Limitations of the current logic:
+	 *  - L1: we only deal with writes at the start of the extent.
+	 *    The approach could be extended to writes at the end
+	 *    of the extent but this scenario was deemed less common.
+	 *  - L2: we do not deal with writes covering the whole extent.
+	 *    This would require removing the extent if the transfer
+	 *    is possible.
+	 *  - L3: we only attempt to merge with an extent stored in the
+	 *    same extent tree node.
+	 */
+	if ((map->m_lblk == ee_block) &&	/*L1*/
+		(map->m_len < ee_len) &&	/*L2*/
+		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
+		struct ext4_extent *prev_ex;
+		ext4_lblk_t prev_lblk;
+		ext4_fsblk_t prev_pblk, ee_pblk;
+		unsigned int prev_len, write_len;
+
+		prev_ex = ex - 1;
+		prev_lblk = le32_to_cpu(prev_ex->ee_block);
+		prev_len = ext4_ext_get_actual_len(prev_ex);
+		prev_pblk = ext4_ext_pblock(prev_ex);
+		ee_pblk = ext4_ext_pblock(ex);
+		write_len = map->m_len;
+
+		/*
+		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
+		 * upon those conditions:
+		 * - C1: prev_ex is initialized,
+		 * - C2: prev_ex is logically abutting ex,
+		 * - C3: prev_ex is physically abutting ex,
+		 * - C4: prev_ex can receive the additional blocks without
+		 *   overflowing the (initialized) length limit.
+		 */
+		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
+			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
+			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
+			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
+			err = ext4_ext_get_access(handle, inode, path + depth);
+			if (err)
+				goto out;
+
+			trace_ext4_ext_convert_to_initialized_fastpath(inode,
+				map, ex, prev_ex);
+
+			/* Shift the start of ex by 'write_len' blocks */
+			ex->ee_block = cpu_to_le32(ee_block + write_len);
+			ext4_ext_store_pblock(ex, ee_pblk + write_len);
+			ex->ee_len = cpu_to_le16(ee_len - write_len);
+			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
+
+			/* Extend prev_ex by 'write_len' blocks */
+			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
+
+			/* Mark the block containing both extents as dirty */
+			ext4_ext_dirty(handle, inode, path + depth);
+
+			/* Update path to point to the right extent */
+			path[depth].p_ext = prev_ex;
+
+			/* Result: number of initialized blocks past m_lblk */
+			allocated = write_len;
+			goto out;
+		}
+	}
+
+	WARN_ON(map->m_lblk < ee_block);
+	/*
+	 * It is safe to convert extent to initialized via explicit
+	 * zeroout only if extent is fully insde i_size or new_size.
+	 */
+	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
+
+	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
+	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
+	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
+		err = ext4_ext_zeroout(inode, ex);
+		if (err)
+			goto out;
+
+		err = ext4_ext_get_access(handle, inode, path + depth);
+		if (err)
+			goto out;
+		ext4_ext_mark_initialized(ex);
+		ext4_ext_try_to_merge(inode, path, ex);
+		err = ext4_ext_dirty(handle, inode, path + depth);
+		goto out;
+	}
+
+	/*
+	 * four cases:
+	 * 1. split the extent into three extents.
+	 * 2. split the extent into two extents, zeroout the first half.
+	 * 3. split the extent into two extents, zeroout the second half.
+	 * 4. split the extent into two extents with out zeroout.
+	 */
+	split_map.m_lblk = map->m_lblk;
+	split_map.m_len = map->m_len;
+
+	if (allocated > map->m_len) {
+		if (allocated <= EXT4_EXT_ZERO_LEN &&
+		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
+			/* case 3 */
+			zero_ex.ee_block =
+					 cpu_to_le32(map->m_lblk);
+			zero_ex.ee_len = cpu_to_le16(allocated);
+			ext4_ext_store_pblock(&zero_ex,
+				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
+			err = ext4_ext_zeroout(inode, &zero_ex);
+			if (err)
+				goto out;
+			split_map.m_lblk = map->m_lblk;
+			split_map.m_len = allocated;
+		} else if ((map->m_lblk - ee_block + map->m_len <
+			   EXT4_EXT_ZERO_LEN) &&
+			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
+			/* case 2 */
+			if (map->m_lblk != ee_block) {
+				zero_ex.ee_block = ex->ee_block;
+				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
+							ee_block);
+				ext4_ext_store_pblock(&zero_ex,
+						      ext4_ext_pblock(ex));
+				err = ext4_ext_zeroout(inode, &zero_ex);
+				if (err)
+					goto out;
+			}
+
+			split_map.m_lblk = ee_block;
+			split_map.m_len = map->m_lblk - ee_block + map->m_len;
+			allocated = map->m_len;
+		}
+	}
+
+	allocated = ext4_split_extent(handle, inode, path,
+				       &split_map, split_flag, 0);
+	if (allocated < 0)
+		err = allocated;
+
+out:
+	return err ? err : allocated;
+}
+
+/*
+ * This function is called by ext4_ext_map_blocks() from
+ * ext4_get_blocks_dio_write() when DIO to write
+ * to an uninitialized extent.
+ *
+ * Writing to an uninitialized extent may result in splitting the uninitialized
+ * extent into multiple /initialized uninitialized extents (up to three)
+ * There are three possibilities:
+ *   a> There is no split required: Entire extent should be uninitialized
+ *   b> Splits in two extents: Write is happening at either end of the extent
+ *   c> Splits in three extents: Somone is writing in middle of the extent
+ *
+ * One of more index blocks maybe needed if the extent tree grow after
+ * the uninitialized extent split. To prevent ENOSPC occur at the IO
+ * complete, we need to split the uninitialized extent before DIO submit
+ * the IO. The uninitialized extent called at this time will be split
+ * into three uninitialized extent(at most). After IO complete, the part
+ * being filled will be convert to initialized by the end_io callback function
+ * via ext4_convert_unwritten_extents().
+ *
+ * Returns the size of uninitialized extent to be written on success.
+ */
+static int ext4_split_unwritten_extents(handle_t *handle,
+					struct inode *inode,
+					struct ext4_map_blocks *map,
+					struct ext4_ext_path *path,
+					int flags)
+{
+	ext4_lblk_t eof_block;
+	ext4_lblk_t ee_block;
+	struct ext4_extent *ex;
+	unsigned int ee_len;
+	int split_flag = 0, depth;
+
+	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
+		"block %llu, max_blocks %u\n", inode->i_ino,
+		(unsigned long long)map->m_lblk, map->m_len);
+
+	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
+		inode->i_sb->s_blocksize_bits;
+	if (eof_block < map->m_lblk + map->m_len)
+		eof_block = map->m_lblk + map->m_len;
+	/*
+	 * It is safe to convert extent to initialized via explicit
+	 * zeroout only if extent is fully insde i_size or new_size.
+	 */
+	depth = ext_depth(inode);
+	ex = path[depth].p_ext;
+	ee_block = le32_to_cpu(ex->ee_block);
+	ee_len = ext4_ext_get_actual_len(ex);
+
+	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
+	split_flag |= EXT4_EXT_MARK_UNINIT2;
+	if (flags & EXT4_GET_BLOCKS_CONVERT)
+		split_flag |= EXT4_EXT_DATA_VALID2;
+	flags |= EXT4_GET_BLOCKS_PRE_IO;
+	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
+}
+
+static int ext4_convert_unwritten_extents_endio(handle_t *handle,
+						struct inode *inode,
+						struct ext4_map_blocks *map,
+						struct ext4_ext_path *path)
+{
+	struct ext4_extent *ex;
+	ext4_lblk_t ee_block;
+	unsigned int ee_len;
+	int depth;
+	int err = 0;
+
+	depth = ext_depth(inode);
+	ex = path[depth].p_ext;
+	ee_block = le32_to_cpu(ex->ee_block);
+	ee_len = ext4_ext_get_actual_len(ex);
+
+	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
+		"block %llu, max_blocks %u\n", inode->i_ino,
+		  (unsigned long long)ee_block, ee_len);
+
+	/* If extent is larger than requested then split is required */
+	if (ee_block != map->m_lblk || ee_len > map->m_len) {
+		err = ext4_split_unwritten_extents(handle, inode, map, path,
+						   EXT4_GET_BLOCKS_CONVERT);
+		if (err < 0)
+			goto out;
+		ext4_ext_drop_refs(path);
+		path = ext4_ext_find_extent(inode, map->m_lblk, path);
+		if (IS_ERR(path)) {
+			err = PTR_ERR(path);
+			goto out;
+		}
+		depth = ext_depth(inode);
+		ex = path[depth].p_ext;
+	}
+
+	err = ext4_ext_get_access(handle, inode, path + depth);
+	if (err)
+		goto out;
+	/* first mark the extent as initialized */
+	ext4_ext_mark_initialized(ex);
+
+	/* note: ext4_ext_correct_indexes() isn't needed here because
+	 * borders are not changed
+	 */
+	ext4_ext_try_to_merge(inode, path, ex);
+
+	/* Mark modified extent as dirty */
+	err = ext4_ext_dirty(handle, inode, path + depth);
+out:
+	ext4_ext_show_leaf(inode, path);
+	return err;
+}
+
+static void unmap_underlying_metadata_blocks(struct block_device *bdev,
+			sector_t block, int count)
+{
+	int i;
+	for (i = 0; i < count; i++)
+                unmap_underlying_metadata(bdev, block + i);
+}
+
+/*
+ * Handle EOFBLOCKS_FL flag, clearing it if necessary
+ */
+static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
+			      ext4_lblk_t lblk,
+			      struct ext4_ext_path *path,
+			      unsigned int len)
+{
+	int i, depth;
+	struct ext4_extent_header *eh;
+	struct ext4_extent *last_ex;
+
+	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
+		return 0;
+
+	depth = ext_depth(inode);
+	eh = path[depth].p_hdr;
+
+	/*
+	 * We're going to remove EOFBLOCKS_FL entirely in future so we
+	 * do not care for this case anymore. Simply remove the flag
+	 * if there are no extents.
+	 */
+	if (unlikely(!eh->eh_entries))
+		goto out;
+	last_ex = EXT_LAST_EXTENT(eh);
+	/*
+	 * We should clear the EOFBLOCKS_FL flag if we are writing the
+	 * last block in the last extent in the file.  We test this by
+	 * first checking to see if the caller to
+	 * ext4_ext_get_blocks() was interested in the last block (or
+	 * a block beyond the last block) in the current extent.  If
+	 * this turns out to be false, we can bail out from this
+	 * function immediately.
+	 */
+	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
+	    ext4_ext_get_actual_len(last_ex))
+		return 0;
+	/*
+	 * If the caller does appear to be planning to write at or
+	 * beyond the end of the current extent, we then test to see
+	 * if the current extent is the last extent in the file, by
+	 * checking to make sure it was reached via the rightmost node
+	 * at each level of the tree.
+	 */
+	for (i = depth-1; i >= 0; i--)
+		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
+			return 0;
+out:
+	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
+	return ext4_mark_inode_dirty(handle, inode);
+}
+
+/**
+ * ext4_find_delalloc_range: find delayed allocated block in the given range.
+ *
+ * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
+ * whether there are any buffers marked for delayed allocation. It returns '1'
+ * on the first delalloc'ed buffer head found. If no buffer head in the given
+ * range is marked for delalloc, it returns 0.
+ * lblk_start should always be <= lblk_end.
+ * search_hint_reverse is to indicate that searching in reverse from lblk_end to
+ * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
+ * block sooner). This is useful when blocks are truncated sequentially from
+ * lblk_start towards lblk_end.
+ */
+static int ext4_find_delalloc_range(struct inode *inode,
+				    ext4_lblk_t lblk_start,
+				    ext4_lblk_t lblk_end,
+				    int search_hint_reverse)
+{
+	struct address_space *mapping = inode->i_mapping;
+	struct buffer_head *head, *bh = NULL;
+	struct page *page;
+	ext4_lblk_t i, pg_lblk;
+	pgoff_t index;
+
+	if (!test_opt(inode->i_sb, DELALLOC))
+		return 0;
+
+	/* reverse search wont work if fs block size is less than page size */
+	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
+		search_hint_reverse = 0;
+
+	if (search_hint_reverse)
+		i = lblk_end;
+	else
+		i = lblk_start;
+
+	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
+
+	while ((i >= lblk_start) && (i <= lblk_end)) {
+		page = find_get_page(mapping, index);
+		if (!page)
+			goto nextpage;
+
+		if (!page_has_buffers(page))
+			goto nextpage;
+
+		head = page_buffers(page);
+		if (!head)
+			goto nextpage;
+
+		bh = head;
+		pg_lblk = index << (PAGE_CACHE_SHIFT -
+						inode->i_blkbits);
+		do {
+			if (unlikely(pg_lblk < lblk_start)) {
+				/*
+				 * This is possible when fs block size is less
+				 * than page size and our cluster starts/ends in
+				 * middle of the page. So we need to skip the
+				 * initial few blocks till we reach the 'lblk'
+				 */
+				pg_lblk++;
+				continue;
+			}
+
+			/* Check if the buffer is delayed allocated and that it
+			 * is not yet mapped. (when da-buffers are mapped during
+			 * their writeout, their da_mapped bit is set.)
+			 */
+			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
+				page_cache_release(page);
+				trace_ext4_find_delalloc_range(inode,
+						lblk_start, lblk_end,
+						search_hint_reverse,
+						1, i);
+				return 1;
+			}
+			if (search_hint_reverse)
+				i--;
+			else
+				i++;
+		} while ((i >= lblk_start) && (i <= lblk_end) &&
+				((bh = bh->b_this_page) != head));
+nextpage:
+		if (page)
+			page_cache_release(page);
+		/*
+		 * Move to next page. 'i' will be the first lblk in the next
+		 * page.
+		 */
+		if (search_hint_reverse)
+			index--;
+		else
+			index++;
+		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
+	}
+
+	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
+					search_hint_reverse, 0, 0);
+	return 0;
+}
+
+int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
+			       int search_hint_reverse)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	ext4_lblk_t lblk_start, lblk_end;
+	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
+	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
+
+	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
+					search_hint_reverse);
+}
+
+/**
+ * Determines how many complete clusters (out of those specified by the 'map')
+ * are under delalloc and were reserved quota for.
+ * This function is called when we are writing out the blocks that were
+ * originally written with their allocation delayed, but then the space was
+ * allocated using fallocate() before the delayed allocation could be resolved.
+ * The cases to look for are:
+ * ('=' indicated delayed allocated blocks
+ *  '-' indicates non-delayed allocated blocks)
+ * (a) partial clusters towards beginning and/or end outside of allocated range
+ *     are not delalloc'ed.
+ *	Ex:
+ *	|----c---=|====c====|====c====|===-c----|
+ *	         |++++++ allocated ++++++|
+ *	==> 4 complete clusters in above example
+ *
+ * (b) partial cluster (outside of allocated range) towards either end is
+ *     marked for delayed allocation. In this case, we will exclude that
+ *     cluster.
+ *	Ex:
+ *	|----====c========|========c========|
+ *	     |++++++ allocated ++++++|
+ *	==> 1 complete clusters in above example
+ *
+ *	Ex:
+ *	|================c================|
+ *            |++++++ allocated ++++++|
+ *	==> 0 complete clusters in above example
+ *
+ * The ext4_da_update_reserve_space will be called only if we
+ * determine here that there were some "entire" clusters that span
+ * this 'allocated' range.
+ * In the non-bigalloc case, this function will just end up returning num_blks
+ * without ever calling ext4_find_delalloc_range.
+ */
+static unsigned int
+get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
+			   unsigned int num_blks)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
+	ext4_lblk_t lblk_from, lblk_to, c_offset;
+	unsigned int allocated_clusters = 0;
+
+	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
+	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
+
+	/* max possible clusters for this allocation */
+	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
+
+	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
+
+	/* Check towards left side */
+	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
+	if (c_offset) {
+		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
+		lblk_to = lblk_from + c_offset - 1;
+
+		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
+			allocated_clusters--;
+	}
+
+	/* Now check towards right. */
+	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
+	if (allocated_clusters && c_offset) {
+		lblk_from = lblk_start + num_blks;
+		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
+
+		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
+			allocated_clusters--;
+	}
+
+	return allocated_clusters;
+}
+
+static int
+ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
+			struct ext4_map_blocks *map,
+			struct ext4_ext_path *path, int flags,
+			unsigned int allocated, ext4_fsblk_t newblock)
+{
+	int ret = 0;
+	int err = 0;
+	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
+
+	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
+		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
+		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
+		  flags, allocated);
+	ext4_ext_show_leaf(inode, path);
+
+	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
+						    newblock);
+
+	/* get_block() before submit the IO, split the extent */
+	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
+		ret = ext4_split_unwritten_extents(handle, inode, map,
+						   path, flags);
+		/*
+		 * Flag the inode(non aio case) or end_io struct (aio case)
+		 * that this IO needs to conversion to written when IO is
+		 * completed
+		 */
+		if (io)
+			ext4_set_io_unwritten_flag(inode, io);
+		else
+			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
+		if (ext4_should_dioread_nolock(inode))
+			map->m_flags |= EXT4_MAP_UNINIT;
+		goto out;
+	}
+	/* IO end_io complete, convert the filled extent to written */
+	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
+		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
+							path);
+		if (ret >= 0) {
+			ext4_update_inode_fsync_trans(handle, inode, 1);
+			err = check_eofblocks_fl(handle, inode, map->m_lblk,
+						 path, map->m_len);
+		} else
+			err = ret;
+		goto out2;
+	}
+	/* buffered IO case */
+	/*
+	 * repeat fallocate creation request
+	 * we already have an unwritten extent
+	 */
+	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
+		goto map_out;
+
+	/* buffered READ or buffered write_begin() lookup */
+	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
+		/*
+		 * We have blocks reserved already.  We
+		 * return allocated blocks so that delalloc
+		 * won't do block reservation for us.  But
+		 * the buffer head will be unmapped so that
+		 * a read from the block returns 0s.
+		 */
+		map->m_flags |= EXT4_MAP_UNWRITTEN;
+		goto out1;
+	}
+
+	/* buffered write, writepage time, convert*/
+	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
+	if (ret >= 0)
+		ext4_update_inode_fsync_trans(handle, inode, 1);
+out:
+	if (ret <= 0) {
+		err = ret;
+		goto out2;
+	} else
+		allocated = ret;
+	map->m_flags |= EXT4_MAP_NEW;
+	/*
+	 * if we allocated more blocks than requested
+	 * we need to make sure we unmap the extra block
+	 * allocated. The actual needed block will get
+	 * unmapped later when we find the buffer_head marked
+	 * new.
+	 */
+	if (allocated > map->m_len) {
+		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
+					newblock + map->m_len,
+					allocated - map->m_len);
+		allocated = map->m_len;
+	}
+	map->m_len = allocated;
+
+	/*
+	 * If we have done fallocate with the offset that is already
+	 * delayed allocated, we would have block reservation
+	 * and quota reservation done in the delayed write path.
+	 * But fallocate would have already updated quota and block
+	 * count for this offset. So cancel these reservation
+	 */
+	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
+		unsigned int reserved_clusters;
+		reserved_clusters = get_reserved_cluster_alloc(inode,
+				map->m_lblk, map->m_len);
+		if (reserved_clusters)
+			ext4_da_update_reserve_space(inode,
+						     reserved_clusters,
+						     0);
+	}
+
+map_out:
+	map->m_flags |= EXT4_MAP_MAPPED;
+	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
+		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
+					 map->m_len);
+		if (err < 0)
+			goto out2;
+	}
+out1:
+	if (allocated > map->m_len)
+		allocated = map->m_len;
+	ext4_ext_show_leaf(inode, path);
+	map->m_pblk = newblock;
+	map->m_len = allocated;
+out2:
+	if (path) {
+		ext4_ext_drop_refs(path);
+		kfree(path);
+	}
+	return err ? err : allocated;
+}
+
+/*
+ * get_implied_cluster_alloc - check to see if the requested
+ * allocation (in the map structure) overlaps with a cluster already
+ * allocated in an extent.
+ *	@sb	The filesystem superblock structure
+ *	@map	The requested lblk->pblk mapping
+ *	@ex	The extent structure which might contain an implied
+ *			cluster allocation
+ *
+ * This function is called by ext4_ext_map_blocks() after we failed to
+ * find blocks that were already in the inode's extent tree.  Hence,
+ * we know that the beginning of the requested region cannot overlap
+ * the extent from the inode's extent tree.  There are three cases we
+ * want to catch.  The first is this case:
+ *
+ *		 |--- cluster # N--|
+ *    |--- extent ---|	|---- requested region ---|
+ *			|==========|
+ *
+ * The second case that we need to test for is this one:
+ *
+ *   |--------- cluster # N ----------------|
+ *	   |--- requested region --|   |------- extent ----|
+ *	   |=======================|
+ *
+ * The third case is when the requested region lies between two extents
+ * within the same cluster:
+ *          |------------- cluster # N-------------|
+ * |----- ex -----|                  |---- ex_right ----|
+ *                  |------ requested region ------|
+ *                  |================|
+ *
+ * In each of the above cases, we need to set the map->m_pblk and
+ * map->m_len so it corresponds to the return the extent labelled as
+ * "|====|" from cluster #N, since it is already in use for data in
+ * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
+ * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
+ * as a new "allocated" block region.  Otherwise, we will return 0 and
+ * ext4_ext_map_blocks() will then allocate one or more new clusters
+ * by calling ext4_mb_new_blocks().
+ */
+static int get_implied_cluster_alloc(struct super_block *sb,
+				     struct ext4_map_blocks *map,
+				     struct ext4_extent *ex,
+				     struct ext4_ext_path *path)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
+	ext4_lblk_t ex_cluster_start, ex_cluster_end;
+	ext4_lblk_t rr_cluster_start;
+	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
+	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
+	unsigned short ee_len = ext4_ext_get_actual_len(ex);
+
+	/* The extent passed in that we are trying to match */
+	ex_cluster_start = EXT4_B2C(sbi, ee_block);
+	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
+
+	/* The requested region passed into ext4_map_blocks() */
+	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
+
+	if ((rr_cluster_start == ex_cluster_end) ||
+	    (rr_cluster_start == ex_cluster_start)) {
+		if (rr_cluster_start == ex_cluster_end)
+			ee_start += ee_len - 1;
+		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
+			c_offset;
+		map->m_len = min(map->m_len,
+				 (unsigned) sbi->s_cluster_ratio - c_offset);
+		/*
+		 * Check for and handle this case:
+		 *
+		 *   |--------- cluster # N-------------|
+		 *		       |------- extent ----|
+		 *	   |--- requested region ---|
+		 *	   |===========|
+		 */
+
+		if (map->m_lblk < ee_block)
+			map->m_len = min(map->m_len, ee_block - map->m_lblk);
+
+		/*
+		 * Check for the case where there is already another allocated
+		 * block to the right of 'ex' but before the end of the cluster.
+		 *
+		 *          |------------- cluster # N-------------|
+		 * |----- ex -----|                  |---- ex_right ----|
+		 *                  |------ requested region ------|
+		 *                  |================|
+		 */
+		if (map->m_lblk > ee_block) {
+			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
+			map->m_len = min(map->m_len, next - map->m_lblk);
+		}
+
+		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
+		return 1;
+	}
+
+	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
+	return 0;
+}
+
+
+/*
+ * Block allocation/map/preallocation routine for extents based files
+ *
+ *
+ * Need to be called with
+ * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
+ * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
+ *
+ * return > 0, number of of blocks already mapped/allocated
+ *          if create == 0 and these are pre-allocated blocks
+ *          	buffer head is unmapped
+ *          otherwise blocks are mapped
+ *
+ * return = 0, if plain look up failed (blocks have not been allocated)
+ *          buffer head is unmapped
+ *
+ * return < 0, error case.
+ */
+int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
+			struct ext4_map_blocks *map, int flags)
+{
+	struct ext4_ext_path *path = NULL;
+	struct ext4_extent newex, *ex, *ex2;
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	ext4_fsblk_t newblock = 0;
+	int free_on_err = 0, err = 0, depth, ret;
+	unsigned int allocated = 0, offset = 0;
+	unsigned int allocated_clusters = 0;
+	struct ext4_allocation_request ar;
+	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
+	ext4_lblk_t cluster_offset;
+
+	ext_debug("blocks %u/%u requested for inode %lu\n",
+		  map->m_lblk, map->m_len, inode->i_ino);
+	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
+
+	/* check in cache */
+	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
+		if (!newex.ee_start_lo && !newex.ee_start_hi) {
+			if ((sbi->s_cluster_ratio > 1) &&
+			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
+				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
+
+			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
+				/*
+				 * block isn't allocated yet and
+				 * user doesn't want to allocate it
+				 */
+				goto out2;
+			}
+			/* we should allocate requested block */
+		} else {
+			/* block is already allocated */
+			if (sbi->s_cluster_ratio > 1)
+				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
+			newblock = map->m_lblk
+				   - le32_to_cpu(newex.ee_block)
+				   + ext4_ext_pblock(&newex);
+			/* number of remaining blocks in the extent */
+			allocated = ext4_ext_get_actual_len(&newex) -
+				(map->m_lblk - le32_to_cpu(newex.ee_block));
+			goto out;
+		}
+	}
+
+	/* find extent for this block */
+	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
+	if (IS_ERR(path)) {
+		err = PTR_ERR(path);
+		path = NULL;
+		goto out2;
+	}
+
+	depth = ext_depth(inode);
+
+	/*
+	 * consistent leaf must not be empty;
+	 * this situation is possible, though, _during_ tree modification;
+	 * this is why assert can't be put in ext4_ext_find_extent()
+	 */
+	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
+		EXT4_ERROR_INODE(inode, "bad extent address "
+				 "lblock: %lu, depth: %d pblock %lld",
+				 (unsigned long) map->m_lblk, depth,
+				 path[depth].p_block);
+		err = -EIO;
+		goto out2;
+	}
+
+	ex = path[depth].p_ext;
+	if (ex) {
+		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
+		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
+		unsigned short ee_len;
+
+		/*
+		 * Uninitialized extents are treated as holes, except that
+		 * we split out initialized portions during a write.
+		 */
+		ee_len = ext4_ext_get_actual_len(ex);
+
+		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
+
+		/* if found extent covers block, simply return it */
+		if (in_range(map->m_lblk, ee_block, ee_len)) {
+			newblock = map->m_lblk - ee_block + ee_start;
+			/* number of remaining blocks in the extent */
+			allocated = ee_len - (map->m_lblk - ee_block);
+			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
+				  ee_block, ee_len, newblock);
+
+			/*
+			 * Do not put uninitialized extent
+			 * in the cache
+			 */
+			if (!ext4_ext_is_uninitialized(ex)) {
+				ext4_ext_put_in_cache(inode, ee_block,
+					ee_len, ee_start);
+				goto out;
+			}
+			ret = ext4_ext_handle_uninitialized_extents(
+				handle, inode, map, path, flags,
+				allocated, newblock);
+			return ret;
+		}
+	}
+
+	if ((sbi->s_cluster_ratio > 1) &&
+	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
+		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
+
+	/*
+	 * requested block isn't allocated yet;
+	 * we couldn't try to create block if create flag is zero
+	 */
+	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
+		/*
+		 * put just found gap into cache to speed up
+		 * subsequent requests
+		 */
+		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
+		goto out2;
+	}
+
+	/*
+	 * Okay, we need to do block allocation.
+	 */
+	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
+	newex.ee_block = cpu_to_le32(map->m_lblk);
+	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
+
+	/*
+	 * If we are doing bigalloc, check to see if the extent returned
+	 * by ext4_ext_find_extent() implies a cluster we can use.
+	 */
+	if (cluster_offset && ex &&
+	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
+		ar.len = allocated = map->m_len;
+		newblock = map->m_pblk;
+		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
+		goto got_allocated_blocks;
+	}
+
+	/* find neighbour allocated blocks */
+	ar.lleft = map->m_lblk;
+	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
+	if (err)
+		goto out2;
+	ar.lright = map->m_lblk;
+	ex2 = NULL;
+	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
+	if (err)
+		goto out2;
+
+	/* Check if the extent after searching to the right implies a
+	 * cluster we can use. */
+	if ((sbi->s_cluster_ratio > 1) && ex2 &&
+	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
+		ar.len = allocated = map->m_len;
+		newblock = map->m_pblk;
+		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
+		goto got_allocated_blocks;
+	}
+
+	/*
+	 * See if request is beyond maximum number of blocks we can have in
+	 * a single extent. For an initialized extent this limit is
+	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
+	 * EXT_UNINIT_MAX_LEN.
+	 */
+	if (map->m_len > EXT_INIT_MAX_LEN &&
+	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
+		map->m_len = EXT_INIT_MAX_LEN;
+	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
+		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
+		map->m_len = EXT_UNINIT_MAX_LEN;
+
+	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
+	newex.ee_len = cpu_to_le16(map->m_len);
+	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
+	if (err)
+		allocated = ext4_ext_get_actual_len(&newex);
+	else
+		allocated = map->m_len;
+
+	/* allocate new block */
+	ar.inode = inode;
+	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
+	ar.logical = map->m_lblk;
+	/*
+	 * We calculate the offset from the beginning of the cluster
+	 * for the logical block number, since when we allocate a
+	 * physical cluster, the physical block should start at the
+	 * same offset from the beginning of the cluster.  This is
+	 * needed so that future calls to get_implied_cluster_alloc()
+	 * work correctly.
+	 */
+	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
+	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
+	ar.goal -= offset;
+	ar.logical -= offset;
+	if (S_ISREG(inode->i_mode))
+		ar.flags = EXT4_MB_HINT_DATA;
+	else
+		/* disable in-core preallocation for non-regular files */
+		ar.flags = 0;
+	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
+		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
+	newblock = ext4_mb_new_blocks(handle, &ar, &err);
+	if (!newblock)
+		goto out2;
+	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
+		  ar.goal, newblock, allocated);
+	free_on_err = 1;
+	allocated_clusters = ar.len;
+	ar.len = EXT4_C2B(sbi, ar.len) - offset;
+	if (ar.len > allocated)
+		ar.len = allocated;
+
+got_allocated_blocks:
+	/* try to insert new extent into found leaf and return */
+	ext4_ext_store_pblock(&newex, newblock + offset);
+	newex.ee_len = cpu_to_le16(ar.len);
+	/* Mark uninitialized */
+	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
+		ext4_ext_mark_uninitialized(&newex);
+		/*
+		 * io_end structure was created for every IO write to an
+		 * uninitialized extent. To avoid unnecessary conversion,
+		 * here we flag the IO that really needs the conversion.
+		 * For non asycn direct IO case, flag the inode state
+		 * that we need to perform conversion when IO is done.
+		 */
+		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
+			if (io)
+				ext4_set_io_unwritten_flag(inode, io);
+			else
+				ext4_set_inode_state(inode,
+						     EXT4_STATE_DIO_UNWRITTEN);
+		}
+		if (ext4_should_dioread_nolock(inode))
+			map->m_flags |= EXT4_MAP_UNINIT;
+	}
+
+	err = 0;
+	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
+		err = check_eofblocks_fl(handle, inode, map->m_lblk,
+					 path, ar.len);
+	if (!err)
+		err = ext4_ext_insert_extent(handle, inode, path,
+					     &newex, flags);
+	if (err && free_on_err) {
+		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
+			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
+		/* free data blocks we just allocated */
+		/* not a good idea to call discard here directly,
+		 * but otherwise we'd need to call it every free() */
+		ext4_discard_preallocations(inode);
+		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
+				 ext4_ext_get_actual_len(&newex), fb_flags);
+		goto out2;
+	}
+
+	/* previous routine could use block we allocated */
+	newblock = ext4_ext_pblock(&newex);
+	allocated = ext4_ext_get_actual_len(&newex);
+	if (allocated > map->m_len)
+		allocated = map->m_len;
+	map->m_flags |= EXT4_MAP_NEW;
+
+	/*
+	 * Update reserved blocks/metadata blocks after successful
+	 * block allocation which had been deferred till now.
+	 */
+	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
+		unsigned int reserved_clusters;
+		/*
+		 * Check how many clusters we had reserved this allocated range
+		 */
+		reserved_clusters = get_reserved_cluster_alloc(inode,
+						map->m_lblk, allocated);
+		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
+			if (reserved_clusters) {
+				/*
+				 * We have clusters reserved for this range.
+				 * But since we are not doing actual allocation
+				 * and are simply using blocks from previously
+				 * allocated cluster, we should release the
+				 * reservation and not claim quota.
+				 */
+				ext4_da_update_reserve_space(inode,
+						reserved_clusters, 0);
+			}
+		} else {
+			BUG_ON(allocated_clusters < reserved_clusters);
+			/* We will claim quota for all newly allocated blocks.*/
+			ext4_da_update_reserve_space(inode, allocated_clusters,
+							1);
+			if (reserved_clusters < allocated_clusters) {
+				struct ext4_inode_info *ei = EXT4_I(inode);
+				int reservation = allocated_clusters -
+						  reserved_clusters;
+				/*
+				 * It seems we claimed few clusters outside of
+				 * the range of this allocation. We should give
+				 * it back to the reservation pool. This can
+				 * happen in the following case:
+				 *
+				 * * Suppose s_cluster_ratio is 4 (i.e., each
+				 *   cluster has 4 blocks. Thus, the clusters
+				 *   are [0-3],[4-7],[8-11]...
+				 * * First comes delayed allocation write for
+				 *   logical blocks 10 & 11. Since there were no
+				 *   previous delayed allocated blocks in the
+				 *   range [8-11], we would reserve 1 cluster
+				 *   for this write.
+				 * * Next comes write for logical blocks 3 to 8.
+				 *   In this case, we will reserve 2 clusters
+				 *   (for [0-3] and [4-7]; and not for [8-11] as
+				 *   that range has a delayed allocated blocks.
+				 *   Thus total reserved clusters now becomes 3.
+				 * * Now, during the delayed allocation writeout
+				 *   time, we will first write blocks [3-8] and
+				 *   allocate 3 clusters for writing these
+				 *   blocks. Also, we would claim all these
+				 *   three clusters above.
+				 * * Now when we come here to writeout the
+				 *   blocks [10-11], we would expect to claim
+				 *   the reservation of 1 cluster we had made
+				 *   (and we would claim it since there are no
+				 *   more delayed allocated blocks in the range
+				 *   [8-11]. But our reserved cluster count had
+				 *   already gone to 0.
+				 *
+				 *   Thus, at the step 4 above when we determine
+				 *   that there are still some unwritten delayed
+				 *   allocated blocks outside of our current
+				 *   block range, we should increment the
+				 *   reserved clusters count so that when the
+				 *   remaining blocks finally gets written, we
+				 *   could claim them.
+				 */
+				dquot_reserve_block(inode,
+						EXT4_C2B(sbi, reservation));
+				spin_lock(&ei->i_block_reservation_lock);
+				ei->i_reserved_data_blocks += reservation;
+				spin_unlock(&ei->i_block_reservation_lock);
+			}
+		}
+	}
+
+	/*
+	 * Cache the extent and update transaction to commit on fdatasync only
+	 * when it is _not_ an uninitialized extent.
+	 */
+	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
+		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
+		ext4_update_inode_fsync_trans(handle, inode, 1);
+	} else
+		ext4_update_inode_fsync_trans(handle, inode, 0);
+out:
+	if (allocated > map->m_len)
+		allocated = map->m_len;
+	ext4_ext_show_leaf(inode, path);
+	map->m_flags |= EXT4_MAP_MAPPED;
+	map->m_pblk = newblock;
+	map->m_len = allocated;
+out2:
+	if (path) {
+		ext4_ext_drop_refs(path);
+		kfree(path);
+	}
+
+	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
+		newblock, map->m_len, err ? err : allocated);
+
+	return err ? err : allocated;
+}
+
+void ext4_ext_truncate(struct inode *inode)
+{
+	struct address_space *mapping = inode->i_mapping;
+	struct super_block *sb = inode->i_sb;
+	ext4_lblk_t last_block;
+	handle_t *handle;
+	loff_t page_len;
+	int err = 0;
+
+	/*
+	 * finish any pending end_io work so we won't run the risk of
+	 * converting any truncated blocks to initialized later
+	 */
+	ext4_flush_completed_IO(inode);
+
+	/*
+	 * probably first extent we're gonna free will be last in block
+	 */
+	err = ext4_writepage_trans_blocks(inode);
+	handle = ext4_journal_start(inode, err);
+	if (IS_ERR(handle))
+		return;
+
+	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
+		page_len = PAGE_CACHE_SIZE -
+			(inode->i_size & (PAGE_CACHE_SIZE - 1));
+
+		err = ext4_discard_partial_page_buffers(handle,
+			mapping, inode->i_size, page_len, 0);
+
+		if (err)
+			goto out_stop;
+	}
+
+	if (ext4_orphan_add(handle, inode))
+		goto out_stop;
+
+	down_write(&EXT4_I(inode)->i_data_sem);
+	ext4_ext_invalidate_cache(inode);
+
+	ext4_discard_preallocations(inode);
+
+	/*
+	 * TODO: optimization is possible here.
+	 * Probably we need not scan at all,
+	 * because page truncation is enough.
+	 */
+
+	/* we have to know where to truncate from in crash case */
+	EXT4_I(inode)->i_disksize = inode->i_size;
+	ext4_mark_inode_dirty(handle, inode);
+
+	last_block = (inode->i_size + sb->s_blocksize - 1)
+			>> EXT4_BLOCK_SIZE_BITS(sb);
+	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
+
+	/* In a multi-transaction truncate, we only make the final
+	 * transaction synchronous.
+	 */
+	if (IS_SYNC(inode))
+		ext4_handle_sync(handle);
+
+	up_write(&EXT4_I(inode)->i_data_sem);
+
+out_stop:
+	/*
+	 * If this was a simple ftruncate() and the file will remain alive,
+	 * then we need to clear up the orphan record which we created above.
+	 * However, if this was a real unlink then we were called by
+	 * ext4_delete_inode(), and we allow that function to clean up the
+	 * orphan info for us.
+	 */
+	if (inode->i_nlink)
+		ext4_orphan_del(handle, inode);
+
+	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
+	ext4_mark_inode_dirty(handle, inode);
+	ext4_journal_stop(handle);
+}
+
+static void ext4_falloc_update_inode(struct inode *inode,
+				int mode, loff_t new_size, int update_ctime)
+{
+	struct timespec now;
+
+	if (update_ctime) {
+		now = current_fs_time(inode->i_sb);
+		if (!timespec_equal(&inode->i_ctime, &now))
+			inode->i_ctime = now;
+	}
+	/*
+	 * Update only when preallocation was requested beyond
+	 * the file size.
+	 */
+	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
+		if (new_size > i_size_read(inode))
+			i_size_write(inode, new_size);
+		if (new_size > EXT4_I(inode)->i_disksize)
+			ext4_update_i_disksize(inode, new_size);
+	} else {
+		/*
+		 * Mark that we allocate beyond EOF so the subsequent truncate
+		 * can proceed even if the new size is the same as i_size.
+		 */
+		if (new_size > i_size_read(inode))
+			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
+	}
+
+}
+
+/*
+ * preallocate space for a file. This implements ext4's fallocate file
+ * operation, which gets called from sys_fallocate system call.
+ * For block-mapped files, posix_fallocate should fall back to the method
+ * of writing zeroes to the required new blocks (the same behavior which is
+ * expected for file systems which do not support fallocate() system call).
+ */
+long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
+{
+	struct inode *inode = file->f_path.dentry->d_inode;
+	handle_t *handle;
+	loff_t new_size;
+	unsigned int max_blocks;
+	int ret = 0;
+	int ret2 = 0;
+	int retries = 0;
+	int flags;
+	struct ext4_map_blocks map;
+	unsigned int credits, blkbits = inode->i_blkbits;
+
+	/* Return error if mode is not supported */
+	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
+		return -EOPNOTSUPP;
+
+	if (mode & FALLOC_FL_PUNCH_HOLE)
+		return ext4_punch_hole(file, offset, len);
+
+	trace_ext4_fallocate_enter(inode, offset, len, mode);
+	map.m_lblk = offset >> blkbits;
+	/*
+	 * We can't just convert len to max_blocks because
+	 * If blocksize = 4096 offset = 3072 and len = 2048
+	 */
+	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
+		- map.m_lblk;
+	/*
+	 * credits to insert 1 extent into extent tree
+	 */
+	credits = ext4_chunk_trans_blocks(inode, max_blocks);
+	mutex_lock(&inode->i_mutex);
+
+	/*
+	 * We only support preallocation for extent-based files only
+	 */
+	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
+		mutex_unlock(&inode->i_mutex);
+		return -EOPNOTSUPP;
+	}
+
+	ret = inode_newsize_ok(inode, (len + offset));
+	if (ret) {
+		mutex_unlock(&inode->i_mutex);
+		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
+		return ret;
+	}
+	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
+	if (mode & FALLOC_FL_KEEP_SIZE)
+		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
+	/*
+	 * Don't normalize the request if it can fit in one extent so
+	 * that it doesn't get unnecessarily split into multiple
+	 * extents.
+	 */
+	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
+		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
+retry:
+	while (ret >= 0 && ret < max_blocks) {
+		map.m_lblk = map.m_lblk + ret;
+		map.m_len = max_blocks = max_blocks - ret;
+		handle = ext4_journal_start(inode, credits);
+		if (IS_ERR(handle)) {
+			ret = PTR_ERR(handle);
+			break;
+		}
+		ret = ext4_map_blocks(handle, inode, &map, flags);
+		if (ret <= 0) {
+#ifdef EXT4FS_DEBUG
+			WARN_ON(ret <= 0);
+			printk(KERN_ERR "%s: ext4_ext_map_blocks "
+				    "returned error inode#%lu, block=%u, "
+				    "max_blocks=%u", __func__,
+				    inode->i_ino, map.m_lblk, max_blocks);
+#endif
+			ext4_mark_inode_dirty(handle, inode);
+			ret2 = ext4_journal_stop(handle);
+			break;
+		}
+		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
+						blkbits) >> blkbits))
+			new_size = offset + len;
+		else
+			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
+
+		ext4_falloc_update_inode(inode, mode, new_size,
+					 (map.m_flags & EXT4_MAP_NEW));
+		ext4_mark_inode_dirty(handle, inode);
+		ret2 = ext4_journal_stop(handle);
+		if (ret2)
+			break;
+	}
+	if (ret == -ENOSPC &&
+			ext4_should_retry_alloc(inode->i_sb, &retries)) {
+		ret = 0;
+		goto retry;
+	}
+	mutex_unlock(&inode->i_mutex);
+	trace_ext4_fallocate_exit(inode, offset, max_blocks,
+				ret > 0 ? ret2 : ret);
+	return ret > 0 ? ret2 : ret;
+}
+
+/*
+ * This function convert a range of blocks to written extents
+ * The caller of this function will pass the start offset and the size.
+ * all unwritten extents within this range will be converted to
+ * written extents.
+ *
+ * This function is called from the direct IO end io call back
+ * function, to convert the fallocated extents after IO is completed.
+ * Returns 0 on success.
+ */
+int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
+				    ssize_t len)
+{
+	handle_t *handle;
+	unsigned int max_blocks;
+	int ret = 0;
+	int ret2 = 0;
+	struct ext4_map_blocks map;
+	unsigned int credits, blkbits = inode->i_blkbits;
+
+	map.m_lblk = offset >> blkbits;
+	/*
+	 * We can't just convert len to max_blocks because
+	 * If blocksize = 4096 offset = 3072 and len = 2048
+	 */
+	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
+		      map.m_lblk);
+	/*
+	 * credits to insert 1 extent into extent tree
+	 */
+	credits = ext4_chunk_trans_blocks(inode, max_blocks);
+	while (ret >= 0 && ret < max_blocks) {
+		map.m_lblk += ret;
+		map.m_len = (max_blocks -= ret);
+		handle = ext4_journal_start(inode, credits);
+		if (IS_ERR(handle)) {
+			ret = PTR_ERR(handle);
+			break;
+		}
+		ret = ext4_map_blocks(handle, inode, &map,
+				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
+		if (ret <= 0) {
+			WARN_ON(ret <= 0);
+			ext4_msg(inode->i_sb, KERN_ERR,
+				 "%s:%d: inode #%lu: block %u: len %u: "
+				 "ext4_ext_map_blocks returned %d",
+				 __func__, __LINE__, inode->i_ino, map.m_lblk,
+				 map.m_len, ret);
+		}
+		ext4_mark_inode_dirty(handle, inode);
+		ret2 = ext4_journal_stop(handle);
+		if (ret <= 0 || ret2 )
+			break;
+	}
+	return ret > 0 ? ret2 : ret;
+}
+
+/*
+ * Callback function called for each extent to gather FIEMAP information.
+ */
+static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
+		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
+		       void *data)
+{
+	__u64	logical;
+	__u64	physical;
+	__u64	length;
+	__u32	flags = 0;
+	int		ret = 0;
+	struct fiemap_extent_info *fieinfo = data;
+	unsigned char blksize_bits;
+
+	blksize_bits = inode->i_sb->s_blocksize_bits;
+	logical = (__u64)newex->ec_block << blksize_bits;
+
+	if (newex->ec_start == 0) {
+		/*
+		 * No extent in extent-tree contains block @newex->ec_start,
+		 * then the block may stay in 1)a hole or 2)delayed-extent.
+		 *
+		 * Holes or delayed-extents are processed as follows.
+		 * 1. lookup dirty pages with specified range in pagecache.
+		 *    If no page is got, then there is no delayed-extent and
+		 *    return with EXT_CONTINUE.
+		 * 2. find the 1st mapped buffer,
+		 * 3. check if the mapped buffer is both in the request range
+		 *    and a delayed buffer. If not, there is no delayed-extent,
+		 *    then return.
+		 * 4. a delayed-extent is found, the extent will be collected.
+		 */
+		ext4_lblk_t	end = 0;
+		pgoff_t		last_offset;
+		pgoff_t		offset;
+		pgoff_t		index;
+		pgoff_t		start_index = 0;
+		struct page	**pages = NULL;
+		struct buffer_head *bh = NULL;
+		struct buffer_head *head = NULL;
+		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
+
+		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
+		if (pages == NULL)
+			return -ENOMEM;
+
+		offset = logical >> PAGE_SHIFT;
+repeat:
+		last_offset = offset;
+		head = NULL;
+		ret = find_get_pages_tag(inode->i_mapping, &offset,
+					PAGECACHE_TAG_DIRTY, nr_pages, pages);
+
+		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
+			/* First time, try to find a mapped buffer. */
+			if (ret == 0) {
+out:
+				for (index = 0; index < ret; index++)
+					page_cache_release(pages[index]);
+				/* just a hole. */
+				kfree(pages);
+				return EXT_CONTINUE;
+			}
+			index = 0;
+
+next_page:
+			/* Try to find the 1st mapped buffer. */
+			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
+				  blksize_bits;
+			if (!page_has_buffers(pages[index]))
+				goto out;
+			head = page_buffers(pages[index]);
+			if (!head)
+				goto out;
+
+			index++;
+			bh = head;
+			do {
+				if (end >= newex->ec_block +
+					newex->ec_len)
+					/* The buffer is out of
+					 * the request range.
+					 */
+					goto out;
+
+				if (buffer_mapped(bh) &&
+				    end >= newex->ec_block) {
+					start_index = index - 1;
+					/* get the 1st mapped buffer. */
+					goto found_mapped_buffer;
+				}
+
+				bh = bh->b_this_page;
+				end++;
+			} while (bh != head);
+
+			/* No mapped buffer in the range found in this page,
+			 * We need to look up next page.
+			 */
+			if (index >= ret) {
+				/* There is no page left, but we need to limit
+				 * newex->ec_len.
+				 */
+				newex->ec_len = end - newex->ec_block;
+				goto out;
+			}
+			goto next_page;
+		} else {
+			/*Find contiguous delayed buffers. */
+			if (ret > 0 && pages[0]->index == last_offset)
+				head = page_buffers(pages[0]);
+			bh = head;
+			index = 1;
+			start_index = 0;
+		}
+
+found_mapped_buffer:
+		if (bh != NULL && buffer_delay(bh)) {
+			/* 1st or contiguous delayed buffer found. */
+			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
+				/*
+				 * 1st delayed buffer found, record
+				 * the start of extent.
+				 */
+				flags |= FIEMAP_EXTENT_DELALLOC;
+				newex->ec_block = end;
+				logical = (__u64)end << blksize_bits;
+			}
+			/* Find contiguous delayed buffers. */
+			do {
+				if (!buffer_delay(bh))
+					goto found_delayed_extent;
+				bh = bh->b_this_page;
+				end++;
+			} while (bh != head);
+
+			for (; index < ret; index++) {
+				if (!page_has_buffers(pages[index])) {
+					bh = NULL;
+					break;
+				}
+				head = page_buffers(pages[index]);
+				if (!head) {
+					bh = NULL;
+					break;
+				}
+
+				if (pages[index]->index !=
+				    pages[start_index]->index + index
+				    - start_index) {
+					/* Blocks are not contiguous. */
+					bh = NULL;
+					break;
+				}
+				bh = head;
+				do {
+					if (!buffer_delay(bh))
+						/* Delayed-extent ends. */
+						goto found_delayed_extent;
+					bh = bh->b_this_page;
+					end++;
+				} while (bh != head);
+			}
+		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
+			/* a hole found. */
+			goto out;
+
+found_delayed_extent:
+		newex->ec_len = min(end - newex->ec_block,
+						(ext4_lblk_t)EXT_INIT_MAX_LEN);
+		if (ret == nr_pages && bh != NULL &&
+			newex->ec_len < EXT_INIT_MAX_LEN &&
+			buffer_delay(bh)) {
+			/* Have not collected an extent and continue. */
+			for (index = 0; index < ret; index++)
+				page_cache_release(pages[index]);
+			goto repeat;
+		}
+
+		for (index = 0; index < ret; index++)
+			page_cache_release(pages[index]);
+		kfree(pages);
+	}
+
+	physical = (__u64)newex->ec_start << blksize_bits;
+	length =   (__u64)newex->ec_len << blksize_bits;
+
+	if (ex && ext4_ext_is_uninitialized(ex))
+		flags |= FIEMAP_EXTENT_UNWRITTEN;
+
+	if (next == EXT_MAX_BLOCKS)
+		flags |= FIEMAP_EXTENT_LAST;
+
+	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
+					length, flags);
+	if (ret < 0)
+		return ret;
+	if (ret == 1)
+		return EXT_BREAK;
+	return EXT_CONTINUE;
+}
+/* fiemap flags we can handle specified here */
+#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
+
+static int ext4_xattr_fiemap(struct inode *inode,
+				struct fiemap_extent_info *fieinfo)
+{
+	__u64 physical = 0;
+	__u64 length;
+	__u32 flags = FIEMAP_EXTENT_LAST;
+	int blockbits = inode->i_sb->s_blocksize_bits;
+	int error = 0;
+
+	/* in-inode? */
+	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
+		struct ext4_iloc iloc;
+		int offset;	/* offset of xattr in inode */
+
+		error = ext4_get_inode_loc(inode, &iloc);
+		if (error)
+			return error;
+		physical = (__u64)iloc.bh->b_blocknr << blockbits;
+		offset = EXT4_GOOD_OLD_INODE_SIZE +
+				EXT4_I(inode)->i_extra_isize;
+		physical += offset;
+		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
+		flags |= FIEMAP_EXTENT_DATA_INLINE;
+		brelse(iloc.bh);
+	} else { /* external block */
+		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
+		length = inode->i_sb->s_blocksize;
+	}
+
+	if (physical)
+		error = fiemap_fill_next_extent(fieinfo, 0, physical,
+						length, flags);
+	return (error < 0 ? error : 0);
+}
+
+/*
+ * ext4_ext_punch_hole
+ *
+ * Punches a hole of "length" bytes in a file starting
+ * at byte "offset"
+ *
+ * @inode:  The inode of the file to punch a hole in
+ * @offset: The starting byte offset of the hole
+ * @length: The length of the hole
+ *
+ * Returns the number of blocks removed or negative on err
+ */
+int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
+{
+	struct inode *inode = file->f_path.dentry->d_inode;
+	struct super_block *sb = inode->i_sb;
+	ext4_lblk_t first_block, stop_block;
+	struct address_space *mapping = inode->i_mapping;
+	handle_t *handle;
+	loff_t first_page, last_page, page_len;
+	loff_t first_page_offset, last_page_offset;
+	int credits, err = 0;
+
+	/* No need to punch hole beyond i_size */
+	if (offset >= inode->i_size)
+		return 0;
+
+	/*
+	 * If the hole extends beyond i_size, set the hole
+	 * to end after the page that contains i_size
+	 */
+	if (offset + length > inode->i_size) {
+		length = inode->i_size +
+		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
+		   offset;
+	}
+
+	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
+
+	first_page_offset = first_page << PAGE_CACHE_SHIFT;
+	last_page_offset = last_page << PAGE_CACHE_SHIFT;
+
+	/*
+	 * Write out all dirty pages to avoid race conditions
+	 * Then release them.
+	 */
+	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
+		err = filemap_write_and_wait_range(mapping,
+			offset, offset + length - 1);
+
+		if (err)
+			return err;
+	}
+
+	/* Now release the pages */
+	if (last_page_offset > first_page_offset) {
+		truncate_inode_pages_range(mapping, first_page_offset,
+					   last_page_offset-1);
+	}
+
+	/* finish any pending end_io work */
+	ext4_flush_completed_IO(inode);
+
+	credits = ext4_writepage_trans_blocks(inode);
+	handle = ext4_journal_start(inode, credits);
+	if (IS_ERR(handle))
+		return PTR_ERR(handle);
+
+	err = ext4_orphan_add(handle, inode);
+	if (err)
+		goto out;
+
+	/*
+	 * Now we need to zero out the non-page-aligned data in the
+	 * pages at the start and tail of the hole, and unmap the buffer
+	 * heads for the block aligned regions of the page that were
+	 * completely zeroed.
+	 */
+	if (first_page > last_page) {
+		/*
+		 * If the file space being truncated is contained within a page
+		 * just zero out and unmap the middle of that page
+		 */
+		err = ext4_discard_partial_page_buffers(handle,
+			mapping, offset, length, 0);
+
+		if (err)
+			goto out;
+	} else {
+		/*
+		 * zero out and unmap the partial page that contains
+		 * the start of the hole
+		 */
+		page_len  = first_page_offset - offset;
+		if (page_len > 0) {
+			err = ext4_discard_partial_page_buffers(handle, mapping,
+						   offset, page_len, 0);
+			if (err)
+				goto out;
+		}
+
+		/*
+		 * zero out and unmap the partial page that contains
+		 * the end of the hole
+		 */
+		page_len = offset + length - last_page_offset;
+		if (page_len > 0) {
+			err = ext4_discard_partial_page_buffers(handle, mapping,
+					last_page_offset, page_len, 0);
+			if (err)
+				goto out;
+		}
+	}
+
+	/*
+	 * If i_size is contained in the last page, we need to
+	 * unmap and zero the partial page after i_size
+	 */
+	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
+	   inode->i_size % PAGE_CACHE_SIZE != 0) {
+
+		page_len = PAGE_CACHE_SIZE -
+			(inode->i_size & (PAGE_CACHE_SIZE - 1));
+
+		if (page_len > 0) {
+			err = ext4_discard_partial_page_buffers(handle,
+			  mapping, inode->i_size, page_len, 0);
+
+			if (err)
+				goto out;
+		}
+	}
+
+	first_block = (offset + sb->s_blocksize - 1) >>
+		EXT4_BLOCK_SIZE_BITS(sb);
+	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
+
+	/* If there are no blocks to remove, return now */
+	if (first_block >= stop_block)
+		goto out;
+
+	down_write(&EXT4_I(inode)->i_data_sem);
+	ext4_ext_invalidate_cache(inode);
+	ext4_discard_preallocations(inode);
+
+	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
+
+	ext4_ext_invalidate_cache(inode);
+	ext4_discard_preallocations(inode);
+
+	if (IS_SYNC(inode))
+		ext4_handle_sync(handle);
+
+	up_write(&EXT4_I(inode)->i_data_sem);
+
+out:
+	ext4_orphan_del(handle, inode);
+	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
+	ext4_mark_inode_dirty(handle, inode);
+	ext4_journal_stop(handle);
+	return err;
+}
+int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
+		__u64 start, __u64 len)
+{
+	ext4_lblk_t start_blk;
+	int error = 0;
+
+	/* fallback to generic here if not in extents fmt */
+	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
+		return generic_block_fiemap(inode, fieinfo, start, len,
+			ext4_get_block);
+
+	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
+		return -EBADR;
+
+	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
+		error = ext4_xattr_fiemap(inode, fieinfo);
+	} else {
+		ext4_lblk_t len_blks;
+		__u64 last_blk;
+
+		start_blk = start >> inode->i_sb->s_blocksize_bits;
+		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
+		if (last_blk >= EXT_MAX_BLOCKS)
+			last_blk = EXT_MAX_BLOCKS-1;
+		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
+
+		/*
+		 * Walk the extent tree gathering extent information.
+		 * ext4_ext_fiemap_cb will push extents back to user.
+		 */
+		error = ext4_ext_walk_space(inode, start_blk, len_blks,
+					  ext4_ext_fiemap_cb, fieinfo);
+	}
+
+	return error;
+}