[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/ext4/inode.c b/ap/os/linux/linux-3.4.x/fs/ext4/inode.c
new file mode 100644
index 0000000..facf1cf
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/ext4/inode.c
@@ -0,0 +1,4740 @@
+/*
+ *  linux/fs/ext4/inode.c
+ *
+ * Copyright (C) 1992, 1993, 1994, 1995
+ * Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ *
+ *  from
+ *
+ *  linux/fs/minix/inode.c
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  64-bit file support on 64-bit platforms by Jakub Jelinek
+ *	(jj@sunsite.ms.mff.cuni.cz)
+ *
+ *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
+ */
+
+#include <linux/fs.h>
+#include <linux/time.h>
+#include <linux/jbd2.h>
+#include <linux/highuid.h>
+#include <linux/pagemap.h>
+#include <linux/quotaops.h>
+#include <linux/string.h>
+#include <linux/buffer_head.h>
+#include <linux/writeback.h>
+#include <linux/pagevec.h>
+#include <linux/mpage.h>
+#include <linux/namei.h>
+#include <linux/uio.h>
+#include <linux/bio.h>
+#include <linux/workqueue.h>
+#include <linux/kernel.h>
+#include <linux/printk.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include <linux/bitops.h>
+
+#include "ext4_jbd2.h"
+#include "xattr.h"
+#include "acl.h"
+#include "truncate.h"
+
+#include <trace/events/ext4.h>
+
+#define MPAGE_DA_EXTENT_TAIL 0x01
+
+static inline int ext4_begin_ordered_truncate(struct inode *inode,
+					      loff_t new_size)
+{
+	trace_ext4_begin_ordered_truncate(inode, new_size);
+	/*
+	 * If jinode is zero, then we never opened the file for
+	 * writing, so there's no need to call
+	 * jbd2_journal_begin_ordered_truncate() since there's no
+	 * outstanding writes we need to flush.
+	 */
+	if (!EXT4_I(inode)->jinode)
+		return 0;
+	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
+						   EXT4_I(inode)->jinode,
+						   new_size);
+}
+
+static void ext4_invalidatepage(struct page *page, unsigned long offset);
+static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
+				   struct buffer_head *bh_result, int create);
+static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
+static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
+static int __ext4_journalled_writepage(struct page *page, unsigned int len);
+static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
+static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
+		struct inode *inode, struct page *page, loff_t from,
+		loff_t length, int flags);
+
+/*
+ * Test whether an inode is a fast symlink.
+ */
+static int ext4_inode_is_fast_symlink(struct inode *inode)
+{
+	int ea_blocks = EXT4_I(inode)->i_file_acl ?
+		(inode->i_sb->s_blocksize >> 9) : 0;
+
+	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
+}
+
+/*
+ * Restart the transaction associated with *handle.  This does a commit,
+ * so before we call here everything must be consistently dirtied against
+ * this transaction.
+ */
+int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
+				 int nblocks)
+{
+	int ret;
+
+	/*
+	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
+	 * moment, get_block can be called only for blocks inside i_size since
+	 * page cache has been already dropped and writes are blocked by
+	 * i_mutex. So we can safely drop the i_data_sem here.
+	 */
+	BUG_ON(EXT4_JOURNAL(inode) == NULL);
+	jbd_debug(2, "restarting handle %p\n", handle);
+	up_write(&EXT4_I(inode)->i_data_sem);
+	ret = ext4_journal_restart(handle, nblocks);
+	down_write(&EXT4_I(inode)->i_data_sem);
+	ext4_discard_preallocations(inode);
+
+	return ret;
+}
+
+/*
+ * Called at the last iput() if i_nlink is zero.
+ */
+void ext4_evict_inode(struct inode *inode)
+{
+	handle_t *handle;
+	int err;
+
+	trace_ext4_evict_inode(inode);
+
+	ext4_ioend_wait(inode);
+
+	if (inode->i_nlink) {
+		/*
+		 * When journalling data dirty buffers are tracked only in the
+		 * journal. So although mm thinks everything is clean and
+		 * ready for reaping the inode might still have some pages to
+		 * write in the running transaction or waiting to be
+		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
+		 * (via truncate_inode_pages()) to discard these buffers can
+		 * cause data loss. Also even if we did not discard these
+		 * buffers, we would have no way to find them after the inode
+		 * is reaped and thus user could see stale data if he tries to
+		 * read them before the transaction is checkpointed. So be
+		 * careful and force everything to disk here... We use
+		 * ei->i_datasync_tid to store the newest transaction
+		 * containing inode's data.
+		 *
+		 * Note that directories do not have this problem because they
+		 * don't use page cache.
+		 */
+		if (ext4_should_journal_data(inode) &&
+		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
+		    inode->i_ino != EXT4_JOURNAL_INO) {
+			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
+			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
+
+			jbd2_complete_transaction(journal, commit_tid);
+			filemap_write_and_wait(&inode->i_data);
+		}
+		truncate_inode_pages(&inode->i_data, 0);
+		goto no_delete;
+	}
+
+	if (is_bad_inode(inode))
+		goto no_delete;
+	dquot_initialize(inode);
+
+	if (ext4_should_order_data(inode))
+		ext4_begin_ordered_truncate(inode, 0);
+	truncate_inode_pages(&inode->i_data, 0);
+
+	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
+	if (IS_ERR(handle)) {
+		ext4_std_error(inode->i_sb, PTR_ERR(handle));
+		/*
+		 * If we're going to skip the normal cleanup, we still need to
+		 * make sure that the in-core orphan linked list is properly
+		 * cleaned up.
+		 */
+		ext4_orphan_del(NULL, inode);
+		goto no_delete;
+	}
+
+	if (IS_SYNC(inode))
+		ext4_handle_sync(handle);
+	inode->i_size = 0;
+	err = ext4_mark_inode_dirty(handle, inode);
+	if (err) {
+		ext4_warning(inode->i_sb,
+			     "couldn't mark inode dirty (err %d)", err);
+		goto stop_handle;
+	}
+	if (inode->i_blocks)
+		ext4_truncate(inode);
+
+	/*
+	 * ext4_ext_truncate() doesn't reserve any slop when it
+	 * restarts journal transactions; therefore there may not be
+	 * enough credits left in the handle to remove the inode from
+	 * the orphan list and set the dtime field.
+	 */
+	if (!ext4_handle_has_enough_credits(handle, 3)) {
+		err = ext4_journal_extend(handle, 3);
+		if (err > 0)
+			err = ext4_journal_restart(handle, 3);
+		if (err != 0) {
+			ext4_warning(inode->i_sb,
+				     "couldn't extend journal (err %d)", err);
+		stop_handle:
+			ext4_journal_stop(handle);
+			ext4_orphan_del(NULL, inode);
+			goto no_delete;
+		}
+	}
+
+	/*
+	 * Kill off the orphan record which ext4_truncate created.
+	 * AKPM: I think this can be inside the above `if'.
+	 * Note that ext4_orphan_del() has to be able to cope with the
+	 * deletion of a non-existent orphan - this is because we don't
+	 * know if ext4_truncate() actually created an orphan record.
+	 * (Well, we could do this if we need to, but heck - it works)
+	 */
+	ext4_orphan_del(handle, inode);
+	EXT4_I(inode)->i_dtime	= get_seconds();
+
+	/*
+	 * One subtle ordering requirement: if anything has gone wrong
+	 * (transaction abort, IO errors, whatever), then we can still
+	 * do these next steps (the fs will already have been marked as
+	 * having errors), but we can't free the inode if the mark_dirty
+	 * fails.
+	 */
+	if (ext4_mark_inode_dirty(handle, inode))
+		/* If that failed, just do the required in-core inode clear. */
+		ext4_clear_inode(inode);
+	else
+		ext4_free_inode(handle, inode);
+	ext4_journal_stop(handle);
+	return;
+no_delete:
+	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
+}
+
+#ifdef CONFIG_QUOTA
+qsize_t *ext4_get_reserved_space(struct inode *inode)
+{
+	return &EXT4_I(inode)->i_reserved_quota;
+}
+#endif
+
+/*
+ * Calculate the number of metadata blocks need to reserve
+ * to allocate a block located at @lblock
+ */
+static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
+{
+	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
+		return ext4_ext_calc_metadata_amount(inode, lblock);
+
+	return ext4_ind_calc_metadata_amount(inode, lblock);
+}
+
+/*
+ * Called with i_data_sem down, which is important since we can call
+ * ext4_discard_preallocations() from here.
+ */
+void ext4_da_update_reserve_space(struct inode *inode,
+					int used, int quota_claim)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	struct ext4_inode_info *ei = EXT4_I(inode);
+
+	spin_lock(&ei->i_block_reservation_lock);
+	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
+	if (unlikely(used > ei->i_reserved_data_blocks)) {
+		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
+			 "with only %d reserved data blocks",
+			 __func__, inode->i_ino, used,
+			 ei->i_reserved_data_blocks);
+		WARN_ON(1);
+		used = ei->i_reserved_data_blocks;
+	}
+
+	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
+		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
+			 "with only %d reserved metadata blocks\n", __func__,
+			 inode->i_ino, ei->i_allocated_meta_blocks,
+			 ei->i_reserved_meta_blocks);
+		WARN_ON(1);
+		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
+	}
+
+	/* Update per-inode reservations */
+	ei->i_reserved_data_blocks -= used;
+	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
+	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
+			   used + ei->i_allocated_meta_blocks);
+	ei->i_allocated_meta_blocks = 0;
+
+	if (ei->i_reserved_data_blocks == 0) {
+		/*
+		 * We can release all of the reserved metadata blocks
+		 * only when we have written all of the delayed
+		 * allocation blocks.
+		 */
+		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
+				   ei->i_reserved_meta_blocks);
+		ei->i_reserved_meta_blocks = 0;
+		ei->i_da_metadata_calc_len = 0;
+	}
+	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
+
+	/* Update quota subsystem for data blocks */
+	if (quota_claim)
+		dquot_claim_block(inode, EXT4_C2B(sbi, used));
+	else {
+		/*
+		 * We did fallocate with an offset that is already delayed
+		 * allocated. So on delayed allocated writeback we should
+		 * not re-claim the quota for fallocated blocks.
+		 */
+		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
+	}
+
+	/*
+	 * If we have done all the pending block allocations and if
+	 * there aren't any writers on the inode, we can discard the
+	 * inode's preallocations.
+	 */
+	if ((ei->i_reserved_data_blocks == 0) &&
+	    (atomic_read(&inode->i_writecount) == 0))
+		ext4_discard_preallocations(inode);
+}
+
+static int __check_block_validity(struct inode *inode, const char *func,
+				unsigned int line,
+				struct ext4_map_blocks *map)
+{
+	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
+				   map->m_len)) {
+		ext4_error_inode(inode, func, line, map->m_pblk,
+				 "lblock %lu mapped to illegal pblock "
+				 "(length %d)", (unsigned long) map->m_lblk,
+				 map->m_len);
+		return -EIO;
+	}
+	return 0;
+}
+
+#define check_block_validity(inode, map)	\
+	__check_block_validity((inode), __func__, __LINE__, (map))
+
+/*
+ * Return the number of contiguous dirty pages in a given inode
+ * starting at page frame idx.
+ */
+static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
+				    unsigned int max_pages)
+{
+	struct address_space *mapping = inode->i_mapping;
+	pgoff_t	index;
+	struct pagevec pvec;
+	pgoff_t num = 0;
+	int i, nr_pages, done = 0;
+
+	if (max_pages == 0)
+		return 0;
+	pagevec_init(&pvec, 0);
+	while (!done) {
+		index = idx;
+		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
+					      PAGECACHE_TAG_DIRTY,
+					      (pgoff_t)PAGEVEC_SIZE);
+		if (nr_pages == 0)
+			break;
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+			struct buffer_head *bh, *head;
+
+			lock_page(page);
+			if (unlikely(page->mapping != mapping) ||
+			    !PageDirty(page) ||
+			    PageWriteback(page) ||
+			    page->index != idx) {
+				done = 1;
+				unlock_page(page);
+				break;
+			}
+			if (page_has_buffers(page)) {
+				bh = head = page_buffers(page);
+				do {
+					if (!buffer_delay(bh) &&
+					    !buffer_unwritten(bh))
+						done = 1;
+					bh = bh->b_this_page;
+				} while (!done && (bh != head));
+			}
+			unlock_page(page);
+			if (done)
+				break;
+			idx++;
+			num++;
+			if (num >= max_pages) {
+				done = 1;
+				break;
+			}
+		}
+		pagevec_release(&pvec);
+	}
+	return num;
+}
+
+/*
+ * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
+ */
+static void set_buffers_da_mapped(struct inode *inode,
+				   struct ext4_map_blocks *map)
+{
+	struct address_space *mapping = inode->i_mapping;
+	struct pagevec pvec;
+	int i, nr_pages;
+	pgoff_t index, end;
+
+	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
+	end = (map->m_lblk + map->m_len - 1) >>
+		(PAGE_CACHE_SHIFT - inode->i_blkbits);
+
+	pagevec_init(&pvec, 0);
+	while (index <= end) {
+		nr_pages = pagevec_lookup(&pvec, mapping, index,
+					  min(end - index + 1,
+					      (pgoff_t)PAGEVEC_SIZE));
+		if (nr_pages == 0)
+			break;
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+			struct buffer_head *bh, *head;
+
+			if (unlikely(page->mapping != mapping) ||
+			    !PageDirty(page))
+				break;
+
+			if (page_has_buffers(page)) {
+				bh = head = page_buffers(page);
+				do {
+					set_buffer_da_mapped(bh);
+					bh = bh->b_this_page;
+				} while (bh != head);
+			}
+			index++;
+		}
+		pagevec_release(&pvec);
+	}
+}
+
+/*
+ * The ext4_map_blocks() function tries to look up the requested blocks,
+ * and returns if the blocks are already mapped.
+ *
+ * Otherwise it takes the write lock of the i_data_sem and allocate blocks
+ * and store the allocated blocks in the result buffer head and mark it
+ * mapped.
+ *
+ * If file type is extents based, it will call ext4_ext_map_blocks(),
+ * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
+ * based files
+ *
+ * On success, it returns the number of blocks being mapped or allocate.
+ * if create==0 and the blocks are pre-allocated and uninitialized block,
+ * the result buffer head is unmapped. If the create ==1, it will make sure
+ * the buffer head is mapped.
+ *
+ * It returns 0 if plain look up failed (blocks have not been allocated), in
+ * that case, buffer head is unmapped
+ *
+ * It returns the error in case of allocation failure.
+ */
+int ext4_map_blocks(handle_t *handle, struct inode *inode,
+		    struct ext4_map_blocks *map, int flags)
+{
+	int retval;
+
+	map->m_flags = 0;
+	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
+		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
+		  (unsigned long) map->m_lblk);
+	/*
+	 * Try to see if we can get the block without requesting a new
+	 * file system block.
+	 */
+	down_read((&EXT4_I(inode)->i_data_sem));
+	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
+		retval = ext4_ext_map_blocks(handle, inode, map, flags &
+					     EXT4_GET_BLOCKS_KEEP_SIZE);
+	} else {
+		retval = ext4_ind_map_blocks(handle, inode, map, flags &
+					     EXT4_GET_BLOCKS_KEEP_SIZE);
+	}
+	up_read((&EXT4_I(inode)->i_data_sem));
+
+	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
+		int ret = check_block_validity(inode, map);
+		if (ret != 0)
+			return ret;
+	}
+
+	/* If it is only a block(s) look up */
+	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
+		return retval;
+
+	/*
+	 * Returns if the blocks have already allocated
+	 *
+	 * Note that if blocks have been preallocated
+	 * ext4_ext_get_block() returns the create = 0
+	 * with buffer head unmapped.
+	 */
+	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
+		return retval;
+
+	/*
+	 * When we call get_blocks without the create flag, the
+	 * BH_Unwritten flag could have gotten set if the blocks
+	 * requested were part of a uninitialized extent.  We need to
+	 * clear this flag now that we are committed to convert all or
+	 * part of the uninitialized extent to be an initialized
+	 * extent.  This is because we need to avoid the combination
+	 * of BH_Unwritten and BH_Mapped flags being simultaneously
+	 * set on the buffer_head.
+	 */
+	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
+
+	/*
+	 * New blocks allocate and/or writing to uninitialized extent
+	 * will possibly result in updating i_data, so we take
+	 * the write lock of i_data_sem, and call get_blocks()
+	 * with create == 1 flag.
+	 */
+	down_write((&EXT4_I(inode)->i_data_sem));
+
+	/*
+	 * if the caller is from delayed allocation writeout path
+	 * we have already reserved fs blocks for allocation
+	 * let the underlying get_block() function know to
+	 * avoid double accounting
+	 */
+	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
+		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
+	/*
+	 * We need to check for EXT4 here because migrate
+	 * could have changed the inode type in between
+	 */
+	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
+		retval = ext4_ext_map_blocks(handle, inode, map, flags);
+	} else {
+		retval = ext4_ind_map_blocks(handle, inode, map, flags);
+
+		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
+			/*
+			 * We allocated new blocks which will result in
+			 * i_data's format changing.  Force the migrate
+			 * to fail by clearing migrate flags
+			 */
+			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
+		}
+
+		/*
+		 * Update reserved blocks/metadata blocks after successful
+		 * block allocation which had been deferred till now. We don't
+		 * support fallocate for non extent files. So we can update
+		 * reserve space here.
+		 */
+		if ((retval > 0) &&
+			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
+			ext4_da_update_reserve_space(inode, retval, 1);
+	}
+	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
+		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
+
+		/* If we have successfully mapped the delayed allocated blocks,
+		 * set the BH_Da_Mapped bit on them. Its important to do this
+		 * under the protection of i_data_sem.
+		 */
+		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
+			set_buffers_da_mapped(inode, map);
+	}
+
+	up_write((&EXT4_I(inode)->i_data_sem));
+	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
+		int ret = check_block_validity(inode, map);
+		if (ret != 0)
+			return ret;
+	}
+	return retval;
+}
+
+/* Maximum number of blocks we map for direct IO at once. */
+#define DIO_MAX_BLOCKS 4096
+
+static int _ext4_get_block(struct inode *inode, sector_t iblock,
+			   struct buffer_head *bh, int flags)
+{
+	handle_t *handle = ext4_journal_current_handle();
+	struct ext4_map_blocks map;
+	int ret = 0, started = 0;
+	int dio_credits;
+
+	map.m_lblk = iblock;
+	map.m_len = bh->b_size >> inode->i_blkbits;
+
+	if (flags && !handle) {
+		/* Direct IO write... */
+		if (map.m_len > DIO_MAX_BLOCKS)
+			map.m_len = DIO_MAX_BLOCKS;
+		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
+		handle = ext4_journal_start(inode, dio_credits);
+		if (IS_ERR(handle)) {
+			ret = PTR_ERR(handle);
+			return ret;
+		}
+		started = 1;
+	}
+
+	ret = ext4_map_blocks(handle, inode, &map, flags);
+	if (ret > 0) {
+		map_bh(bh, inode->i_sb, map.m_pblk);
+		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
+		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
+		ret = 0;
+	}
+	if (started)
+		ext4_journal_stop(handle);
+	return ret;
+}
+
+int ext4_get_block(struct inode *inode, sector_t iblock,
+		   struct buffer_head *bh, int create)
+{
+	return _ext4_get_block(inode, iblock, bh,
+			       create ? EXT4_GET_BLOCKS_CREATE : 0);
+}
+
+/*
+ * `handle' can be NULL if create is zero
+ */
+struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
+				ext4_lblk_t block, int create, int *errp)
+{
+	struct ext4_map_blocks map;
+	struct buffer_head *bh;
+	int fatal = 0, err;
+
+	J_ASSERT(handle != NULL || create == 0);
+
+	map.m_lblk = block;
+	map.m_len = 1;
+	err = ext4_map_blocks(handle, inode, &map,
+			      create ? EXT4_GET_BLOCKS_CREATE : 0);
+
+	if (err < 0)
+		*errp = err;
+	if (err <= 0)
+		return NULL;
+	*errp = 0;
+
+	bh = sb_getblk(inode->i_sb, map.m_pblk);
+	if (!bh) {
+		*errp = -ENOMEM;
+		return NULL;
+	}
+	if (map.m_flags & EXT4_MAP_NEW) {
+		J_ASSERT(create != 0);
+		J_ASSERT(handle != NULL);
+
+		/*
+		 * Now that we do not always journal data, we should
+		 * keep in mind whether this should always journal the
+		 * new buffer as metadata.  For now, regular file
+		 * writes use ext4_get_block instead, so it's not a
+		 * problem.
+		 */
+		lock_buffer(bh);
+		BUFFER_TRACE(bh, "call get_create_access");
+		fatal = ext4_journal_get_create_access(handle, bh);
+		if (!fatal && !buffer_uptodate(bh)) {
+			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
+			set_buffer_uptodate(bh);
+		}
+		unlock_buffer(bh);
+		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
+		err = ext4_handle_dirty_metadata(handle, inode, bh);
+		if (!fatal)
+			fatal = err;
+	} else {
+		BUFFER_TRACE(bh, "not a new buffer");
+	}
+	if (fatal) {
+		*errp = fatal;
+		brelse(bh);
+		bh = NULL;
+	}
+	return bh;
+}
+
+struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
+			       ext4_lblk_t block, int create, int *err)
+{
+	struct buffer_head *bh;
+
+	bh = ext4_getblk(handle, inode, block, create, err);
+	if (!bh)
+		return bh;
+	if (buffer_uptodate(bh))
+		return bh;
+	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
+	wait_on_buffer(bh);
+	if (buffer_uptodate(bh))
+		return bh;
+	put_bh(bh);
+	*err = -EIO;
+	return NULL;
+}
+
+static int walk_page_buffers(handle_t *handle,
+			     struct buffer_head *head,
+			     unsigned from,
+			     unsigned to,
+			     int *partial,
+			     int (*fn)(handle_t *handle,
+				       struct buffer_head *bh))
+{
+	struct buffer_head *bh;
+	unsigned block_start, block_end;
+	unsigned blocksize = head->b_size;
+	int err, ret = 0;
+	struct buffer_head *next;
+
+	for (bh = head, block_start = 0;
+	     ret == 0 && (bh != head || !block_start);
+	     block_start = block_end, bh = next) {
+		next = bh->b_this_page;
+		block_end = block_start + blocksize;
+		if (block_end <= from || block_start >= to) {
+			if (partial && !buffer_uptodate(bh))
+				*partial = 1;
+			continue;
+		}
+		err = (*fn)(handle, bh);
+		if (!ret)
+			ret = err;
+	}
+	return ret;
+}
+
+/*
+ * To preserve ordering, it is essential that the hole instantiation and
+ * the data write be encapsulated in a single transaction.  We cannot
+ * close off a transaction and start a new one between the ext4_get_block()
+ * and the commit_write().  So doing the jbd2_journal_start at the start of
+ * prepare_write() is the right place.
+ *
+ * Also, this function can nest inside ext4_writepage() ->
+ * block_write_full_page(). In that case, we *know* that ext4_writepage()
+ * has generated enough buffer credits to do the whole page.  So we won't
+ * block on the journal in that case, which is good, because the caller may
+ * be PF_MEMALLOC.
+ *
+ * By accident, ext4 can be reentered when a transaction is open via
+ * quota file writes.  If we were to commit the transaction while thus
+ * reentered, there can be a deadlock - we would be holding a quota
+ * lock, and the commit would never complete if another thread had a
+ * transaction open and was blocking on the quota lock - a ranking
+ * violation.
+ *
+ * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
+ * will _not_ run commit under these circumstances because handle->h_ref
+ * is elevated.  We'll still have enough credits for the tiny quotafile
+ * write.
+ */
+static int do_journal_get_write_access(handle_t *handle,
+				       struct buffer_head *bh)
+{
+	int dirty = buffer_dirty(bh);
+	int ret;
+
+	if (!buffer_mapped(bh) || buffer_freed(bh))
+		return 0;
+	/*
+	 * __block_write_begin() could have dirtied some buffers. Clean
+	 * the dirty bit as jbd2_journal_get_write_access() could complain
+	 * otherwise about fs integrity issues. Setting of the dirty bit
+	 * by __block_write_begin() isn't a real problem here as we clear
+	 * the bit before releasing a page lock and thus writeback cannot
+	 * ever write the buffer.
+	 */
+	if (dirty)
+		clear_buffer_dirty(bh);
+	ret = ext4_journal_get_write_access(handle, bh);
+	if (!ret && dirty)
+		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
+	return ret;
+}
+
+static int ext4_get_block_write(struct inode *inode, sector_t iblock,
+		   struct buffer_head *bh_result, int create);
+static int ext4_write_begin(struct file *file, struct address_space *mapping,
+			    loff_t pos, unsigned len, unsigned flags,
+			    struct page **pagep, void **fsdata)
+{
+	struct inode *inode = mapping->host;
+	int ret, needed_blocks;
+	handle_t *handle;
+	int retries = 0;
+	struct page *page;
+	pgoff_t index;
+	unsigned from, to;
+
+	trace_ext4_write_begin(inode, pos, len, flags);
+	/*
+	 * Reserve one block more for addition to orphan list in case
+	 * we allocate blocks but write fails for some reason
+	 */
+	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
+	index = pos >> PAGE_CACHE_SHIFT;
+	from = pos & (PAGE_CACHE_SIZE - 1);
+	to = from + len;
+
+retry:
+	handle = ext4_journal_start(inode, needed_blocks);
+	if (IS_ERR(handle)) {
+		ret = PTR_ERR(handle);
+		goto out;
+	}
+
+	/* We cannot recurse into the filesystem as the transaction is already
+	 * started */
+	flags |= AOP_FLAG_NOFS;
+
+	page = grab_cache_page_write_begin(mapping, index, flags);
+	if (!page) {
+		ext4_journal_stop(handle);
+		ret = -ENOMEM;
+		goto out;
+	}
+	*pagep = page;
+
+	if (ext4_should_dioread_nolock(inode))
+		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
+	else
+		ret = __block_write_begin(page, pos, len, ext4_get_block);
+
+	if (!ret && ext4_should_journal_data(inode)) {
+		ret = walk_page_buffers(handle, page_buffers(page),
+				from, to, NULL, do_journal_get_write_access);
+	}
+
+	if (ret) {
+		unlock_page(page);
+		page_cache_release(page);
+		/*
+		 * __block_write_begin may have instantiated a few blocks
+		 * outside i_size.  Trim these off again. Don't need
+		 * i_size_read because we hold i_mutex.
+		 *
+		 * Add inode to orphan list in case we crash before
+		 * truncate finishes
+		 */
+		if (pos + len > inode->i_size && ext4_can_truncate(inode))
+			ext4_orphan_add(handle, inode);
+
+		ext4_journal_stop(handle);
+		if (pos + len > inode->i_size) {
+			ext4_truncate_failed_write(inode);
+			/*
+			 * If truncate failed early the inode might
+			 * still be on the orphan list; we need to
+			 * make sure the inode is removed from the
+			 * orphan list in that case.
+			 */
+			if (inode->i_nlink)
+				ext4_orphan_del(NULL, inode);
+		}
+	}
+
+	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
+		goto retry;
+out:
+	return ret;
+}
+
+/* For write_end() in data=journal mode */
+static int write_end_fn(handle_t *handle, struct buffer_head *bh)
+{
+	if (!buffer_mapped(bh) || buffer_freed(bh))
+		return 0;
+	set_buffer_uptodate(bh);
+	return ext4_handle_dirty_metadata(handle, NULL, bh);
+}
+
+static int ext4_generic_write_end(struct file *file,
+				  struct address_space *mapping,
+				  loff_t pos, unsigned len, unsigned copied,
+				  struct page *page, void *fsdata)
+{
+	int i_size_changed = 0;
+	struct inode *inode = mapping->host;
+	handle_t *handle = ext4_journal_current_handle();
+
+	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
+
+	/*
+	 * No need to use i_size_read() here, the i_size
+	 * cannot change under us because we hold i_mutex.
+	 *
+	 * But it's important to update i_size while still holding page lock:
+	 * page writeout could otherwise come in and zero beyond i_size.
+	 */
+	if (pos + copied > inode->i_size) {
+		i_size_write(inode, pos + copied);
+		i_size_changed = 1;
+	}
+
+	if (pos + copied >  EXT4_I(inode)->i_disksize) {
+		/* We need to mark inode dirty even if
+		 * new_i_size is less that inode->i_size
+		 * bu greater than i_disksize.(hint delalloc)
+		 */
+		ext4_update_i_disksize(inode, (pos + copied));
+		i_size_changed = 1;
+	}
+	unlock_page(page);
+	page_cache_release(page);
+
+	/*
+	 * Don't mark the inode dirty under page lock. First, it unnecessarily
+	 * makes the holding time of page lock longer. Second, it forces lock
+	 * ordering of page lock and transaction start for journaling
+	 * filesystems.
+	 */
+	if (i_size_changed)
+		ext4_mark_inode_dirty(handle, inode);
+
+	return copied;
+}
+
+/*
+ * We need to pick up the new inode size which generic_commit_write gave us
+ * `file' can be NULL - eg, when called from page_symlink().
+ *
+ * ext4 never places buffers on inode->i_mapping->private_list.  metadata
+ * buffers are managed internally.
+ */
+static int ext4_ordered_write_end(struct file *file,
+				  struct address_space *mapping,
+				  loff_t pos, unsigned len, unsigned copied,
+				  struct page *page, void *fsdata)
+{
+	handle_t *handle = ext4_journal_current_handle();
+	struct inode *inode = mapping->host;
+	int ret = 0, ret2;
+
+	trace_ext4_ordered_write_end(inode, pos, len, copied);
+	ret = ext4_jbd2_file_inode(handle, inode);
+
+	if (ret == 0) {
+		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
+							page, fsdata);
+		copied = ret2;
+		if (pos + len > inode->i_size && ext4_can_truncate(inode))
+			/* if we have allocated more blocks and copied
+			 * less. We will have blocks allocated outside
+			 * inode->i_size. So truncate them
+			 */
+			ext4_orphan_add(handle, inode);
+		if (ret2 < 0)
+			ret = ret2;
+	} else {
+		unlock_page(page);
+		page_cache_release(page);
+	}
+
+	ret2 = ext4_journal_stop(handle);
+	if (!ret)
+		ret = ret2;
+
+	if (pos + len > inode->i_size) {
+		ext4_truncate_failed_write(inode);
+		/*
+		 * If truncate failed early the inode might still be
+		 * on the orphan list; we need to make sure the inode
+		 * is removed from the orphan list in that case.
+		 */
+		if (inode->i_nlink)
+			ext4_orphan_del(NULL, inode);
+	}
+
+
+	return ret ? ret : copied;
+}
+
+static int ext4_writeback_write_end(struct file *file,
+				    struct address_space *mapping,
+				    loff_t pos, unsigned len, unsigned copied,
+				    struct page *page, void *fsdata)
+{
+	handle_t *handle = ext4_journal_current_handle();
+	struct inode *inode = mapping->host;
+	int ret = 0, ret2;
+
+	trace_ext4_writeback_write_end(inode, pos, len, copied);
+	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
+							page, fsdata);
+	copied = ret2;
+	if (pos + len > inode->i_size && ext4_can_truncate(inode))
+		/* if we have allocated more blocks and copied
+		 * less. We will have blocks allocated outside
+		 * inode->i_size. So truncate them
+		 */
+		ext4_orphan_add(handle, inode);
+
+	if (ret2 < 0)
+		ret = ret2;
+
+	ret2 = ext4_journal_stop(handle);
+	if (!ret)
+		ret = ret2;
+
+	if (pos + len > inode->i_size) {
+		ext4_truncate_failed_write(inode);
+		/*
+		 * If truncate failed early the inode might still be
+		 * on the orphan list; we need to make sure the inode
+		 * is removed from the orphan list in that case.
+		 */
+		if (inode->i_nlink)
+			ext4_orphan_del(NULL, inode);
+	}
+
+	return ret ? ret : copied;
+}
+
+static int ext4_journalled_write_end(struct file *file,
+				     struct address_space *mapping,
+				     loff_t pos, unsigned len, unsigned copied,
+				     struct page *page, void *fsdata)
+{
+	handle_t *handle = ext4_journal_current_handle();
+	struct inode *inode = mapping->host;
+	int ret = 0, ret2;
+	int partial = 0;
+	unsigned from, to;
+	loff_t new_i_size;
+
+	trace_ext4_journalled_write_end(inode, pos, len, copied);
+	from = pos & (PAGE_CACHE_SIZE - 1);
+	to = from + len;
+
+	BUG_ON(!ext4_handle_valid(handle));
+
+	if (copied < len) {
+		if (!PageUptodate(page))
+			copied = 0;
+		page_zero_new_buffers(page, from+copied, to);
+	}
+
+	ret = walk_page_buffers(handle, page_buffers(page), from,
+				to, &partial, write_end_fn);
+	if (!partial)
+		SetPageUptodate(page);
+	new_i_size = pos + copied;
+	if (new_i_size > inode->i_size)
+		i_size_write(inode, pos+copied);
+	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
+	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
+	if (new_i_size > EXT4_I(inode)->i_disksize) {
+		ext4_update_i_disksize(inode, new_i_size);
+		ret2 = ext4_mark_inode_dirty(handle, inode);
+		if (!ret)
+			ret = ret2;
+	}
+
+	unlock_page(page);
+	page_cache_release(page);
+	if (pos + len > inode->i_size && ext4_can_truncate(inode))
+		/* if we have allocated more blocks and copied
+		 * less. We will have blocks allocated outside
+		 * inode->i_size. So truncate them
+		 */
+		ext4_orphan_add(handle, inode);
+
+	ret2 = ext4_journal_stop(handle);
+	if (!ret)
+		ret = ret2;
+	if (pos + len > inode->i_size) {
+		ext4_truncate_failed_write(inode);
+		/*
+		 * If truncate failed early the inode might still be
+		 * on the orphan list; we need to make sure the inode
+		 * is removed from the orphan list in that case.
+		 */
+		if (inode->i_nlink)
+			ext4_orphan_del(NULL, inode);
+	}
+
+	return ret ? ret : copied;
+}
+
+/*
+ * Reserve a single cluster located at lblock
+ */
+static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
+{
+	int retries = 0;
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	unsigned int md_needed;
+	int ret;
+	ext4_lblk_t save_last_lblock;
+	int save_len;
+
+	/*
+	 * We will charge metadata quota at writeout time; this saves
+	 * us from metadata over-estimation, though we may go over by
+	 * a small amount in the end.  Here we just reserve for data.
+	 */
+	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
+	if (ret)
+		return ret;
+
+	/*
+	 * recalculate the amount of metadata blocks to reserve
+	 * in order to allocate nrblocks
+	 * worse case is one extent per block
+	 */
+repeat:
+	spin_lock(&ei->i_block_reservation_lock);
+	/*
+	 * ext4_calc_metadata_amount() has side effects, which we have
+	 * to be prepared undo if we fail to claim space.
+	 */
+	save_len = ei->i_da_metadata_calc_len;
+	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
+	md_needed = EXT4_NUM_B2C(sbi,
+				 ext4_calc_metadata_amount(inode, lblock));
+	trace_ext4_da_reserve_space(inode, md_needed);
+
+	/*
+	 * We do still charge estimated metadata to the sb though;
+	 * we cannot afford to run out of free blocks.
+	 */
+	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
+		ei->i_da_metadata_calc_len = save_len;
+		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
+		spin_unlock(&ei->i_block_reservation_lock);
+		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
+			yield();
+			goto repeat;
+		}
+		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
+		return -ENOSPC;
+	}
+	ei->i_reserved_data_blocks++;
+	ei->i_reserved_meta_blocks += md_needed;
+	spin_unlock(&ei->i_block_reservation_lock);
+
+	return 0;       /* success */
+}
+
+static void ext4_da_release_space(struct inode *inode, int to_free)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	struct ext4_inode_info *ei = EXT4_I(inode);
+
+	if (!to_free)
+		return;		/* Nothing to release, exit */
+
+	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
+
+	trace_ext4_da_release_space(inode, to_free);
+	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
+		/*
+		 * if there aren't enough reserved blocks, then the
+		 * counter is messed up somewhere.  Since this
+		 * function is called from invalidate page, it's
+		 * harmless to return without any action.
+		 */
+		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
+			 "ino %lu, to_free %d with only %d reserved "
+			 "data blocks", inode->i_ino, to_free,
+			 ei->i_reserved_data_blocks);
+		WARN_ON(1);
+		to_free = ei->i_reserved_data_blocks;
+	}
+	ei->i_reserved_data_blocks -= to_free;
+
+	if (ei->i_reserved_data_blocks == 0) {
+		/*
+		 * We can release all of the reserved metadata blocks
+		 * only when we have written all of the delayed
+		 * allocation blocks.
+		 * Note that in case of bigalloc, i_reserved_meta_blocks,
+		 * i_reserved_data_blocks, etc. refer to number of clusters.
+		 */
+		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
+				   ei->i_reserved_meta_blocks);
+		ei->i_reserved_meta_blocks = 0;
+		ei->i_da_metadata_calc_len = 0;
+	}
+
+	/* update fs dirty data blocks counter */
+	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
+
+	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
+
+	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
+}
+
+static void ext4_da_page_release_reservation(struct page *page,
+					     unsigned long offset)
+{
+	int to_release = 0;
+	struct buffer_head *head, *bh;
+	unsigned int curr_off = 0;
+	struct inode *inode = page->mapping->host;
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	int num_clusters;
+
+	head = page_buffers(page);
+	bh = head;
+	do {
+		unsigned int next_off = curr_off + bh->b_size;
+
+		if ((offset <= curr_off) && (buffer_delay(bh))) {
+			to_release++;
+			clear_buffer_delay(bh);
+			clear_buffer_da_mapped(bh);
+		}
+		curr_off = next_off;
+	} while ((bh = bh->b_this_page) != head);
+
+	/* If we have released all the blocks belonging to a cluster, then we
+	 * need to release the reserved space for that cluster. */
+	num_clusters = EXT4_NUM_B2C(sbi, to_release);
+	while (num_clusters > 0) {
+		ext4_fsblk_t lblk;
+		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
+			((num_clusters - 1) << sbi->s_cluster_bits);
+		if (sbi->s_cluster_ratio == 1 ||
+		    !ext4_find_delalloc_cluster(inode, lblk, 1))
+			ext4_da_release_space(inode, 1);
+
+		num_clusters--;
+	}
+}
+
+/*
+ * Delayed allocation stuff
+ */
+
+/*
+ * mpage_da_submit_io - walks through extent of pages and try to write
+ * them with writepage() call back
+ *
+ * @mpd->inode: inode
+ * @mpd->first_page: first page of the extent
+ * @mpd->next_page: page after the last page of the extent
+ *
+ * By the time mpage_da_submit_io() is called we expect all blocks
+ * to be allocated. this may be wrong if allocation failed.
+ *
+ * As pages are already locked by write_cache_pages(), we can't use it
+ */
+static int mpage_da_submit_io(struct mpage_da_data *mpd,
+			      struct ext4_map_blocks *map)
+{
+	struct pagevec pvec;
+	unsigned long index, end;
+	int ret = 0, err, nr_pages, i;
+	struct inode *inode = mpd->inode;
+	struct address_space *mapping = inode->i_mapping;
+	loff_t size = i_size_read(inode);
+	unsigned int len, block_start;
+	struct buffer_head *bh, *page_bufs = NULL;
+	int journal_data = ext4_should_journal_data(inode);
+	sector_t pblock = 0, cur_logical = 0;
+	struct ext4_io_submit io_submit;
+
+	BUG_ON(mpd->next_page <= mpd->first_page);
+	memset(&io_submit, 0, sizeof(io_submit));
+	/*
+	 * We need to start from the first_page to the next_page - 1
+	 * to make sure we also write the mapped dirty buffer_heads.
+	 * If we look at mpd->b_blocknr we would only be looking
+	 * at the currently mapped buffer_heads.
+	 */
+	index = mpd->first_page;
+	end = mpd->next_page - 1;
+
+	pagevec_init(&pvec, 0);
+	while (index <= end) {
+		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
+		if (nr_pages == 0)
+			break;
+		for (i = 0; i < nr_pages; i++) {
+			int commit_write = 0, skip_page = 0;
+			struct page *page = pvec.pages[i];
+
+			index = page->index;
+			if (index > end)
+				break;
+
+			if (index == size >> PAGE_CACHE_SHIFT)
+				len = size & ~PAGE_CACHE_MASK;
+			else
+				len = PAGE_CACHE_SIZE;
+			if (map) {
+				cur_logical = index << (PAGE_CACHE_SHIFT -
+							inode->i_blkbits);
+				pblock = map->m_pblk + (cur_logical -
+							map->m_lblk);
+			}
+			index++;
+
+			BUG_ON(!PageLocked(page));
+			BUG_ON(PageWriteback(page));
+
+			/*
+			 * If the page does not have buffers (for
+			 * whatever reason), try to create them using
+			 * __block_write_begin.  If this fails,
+			 * skip the page and move on.
+			 */
+			if (!page_has_buffers(page)) {
+				if (__block_write_begin(page, 0, len,
+						noalloc_get_block_write)) {
+				skip_page:
+					unlock_page(page);
+					continue;
+				}
+				commit_write = 1;
+			}
+
+			bh = page_bufs = page_buffers(page);
+			block_start = 0;
+			do {
+				if (!bh)
+					goto skip_page;
+				if (map && (cur_logical >= map->m_lblk) &&
+				    (cur_logical <= (map->m_lblk +
+						     (map->m_len - 1)))) {
+					if (buffer_delay(bh)) {
+						clear_buffer_delay(bh);
+						bh->b_blocknr = pblock;
+					}
+					if (buffer_da_mapped(bh))
+						clear_buffer_da_mapped(bh);
+					if (buffer_unwritten(bh) ||
+					    buffer_mapped(bh))
+						BUG_ON(bh->b_blocknr != pblock);
+					if (map->m_flags & EXT4_MAP_UNINIT)
+						set_buffer_uninit(bh);
+					clear_buffer_unwritten(bh);
+				}
+
+				/*
+				 * skip page if block allocation undone and
+				 * block is dirty
+				 */
+				if (ext4_bh_delay_or_unwritten(NULL, bh))
+					skip_page = 1;
+				bh = bh->b_this_page;
+				block_start += bh->b_size;
+				cur_logical++;
+				pblock++;
+			} while (bh != page_bufs);
+
+			if (skip_page)
+				goto skip_page;
+
+			if (commit_write)
+				/* mark the buffer_heads as dirty & uptodate */
+				block_commit_write(page, 0, len);
+
+			clear_page_dirty_for_io(page);
+			/*
+			 * Delalloc doesn't support data journalling,
+			 * but eventually maybe we'll lift this
+			 * restriction.
+			 */
+			if (unlikely(journal_data && PageChecked(page)))
+				err = __ext4_journalled_writepage(page, len);
+			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
+				err = ext4_bio_write_page(&io_submit, page,
+							  len, mpd->wbc);
+			else if (buffer_uninit(page_bufs)) {
+				ext4_set_bh_endio(page_bufs, inode);
+				err = block_write_full_page_endio(page,
+					noalloc_get_block_write,
+					mpd->wbc, ext4_end_io_buffer_write);
+			} else
+				err = block_write_full_page(page,
+					noalloc_get_block_write, mpd->wbc);
+
+			if (!err)
+				mpd->pages_written++;
+			/*
+			 * In error case, we have to continue because
+			 * remaining pages are still locked
+			 */
+			if (ret == 0)
+				ret = err;
+		}
+		pagevec_release(&pvec);
+	}
+	ext4_io_submit(&io_submit);
+	return ret;
+}
+
+static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
+{
+	int nr_pages, i;
+	pgoff_t index, end;
+	struct pagevec pvec;
+	struct inode *inode = mpd->inode;
+	struct address_space *mapping = inode->i_mapping;
+
+	index = mpd->first_page;
+	end   = mpd->next_page - 1;
+
+	pagevec_init(&pvec, 0);
+	while (index <= end) {
+		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
+		if (nr_pages == 0)
+			break;
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+			if (page->index > end)
+				break;
+			BUG_ON(!PageLocked(page));
+			BUG_ON(PageWriteback(page));
+			block_invalidatepage(page, 0);
+			ClearPageUptodate(page);
+			unlock_page(page);
+		}
+		index = pvec.pages[nr_pages - 1]->index + 1;
+		pagevec_release(&pvec);
+	}
+	return;
+}
+
+static void ext4_print_free_blocks(struct inode *inode)
+{
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	struct super_block *sb = inode->i_sb;
+
+	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
+	       EXT4_C2B(EXT4_SB(inode->i_sb),
+			ext4_count_free_clusters(inode->i_sb)));
+	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
+	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
+	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
+		percpu_counter_sum(&sbi->s_freeclusters_counter)));
+	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
+	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
+		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
+	ext4_msg(sb, KERN_CRIT, "Block reservation details");
+	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
+		 EXT4_I(inode)->i_reserved_data_blocks);
+	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
+	       EXT4_I(inode)->i_reserved_meta_blocks);
+	return;
+}
+
+/*
+ * mpage_da_map_and_submit - go through given space, map them
+ *       if necessary, and then submit them for I/O
+ *
+ * @mpd - bh describing space
+ *
+ * The function skips space we know is already mapped to disk blocks.
+ *
+ */
+static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
+{
+	int err, blks, get_blocks_flags;
+	struct ext4_map_blocks map, *mapp = NULL;
+	sector_t next = mpd->b_blocknr;
+	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
+	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
+	handle_t *handle = NULL;
+
+	/*
+	 * If the blocks are mapped already, or we couldn't accumulate
+	 * any blocks, then proceed immediately to the submission stage.
+	 */
+	if ((mpd->b_size == 0) ||
+	    ((mpd->b_state  & (1 << BH_Mapped)) &&
+	     !(mpd->b_state & (1 << BH_Delay)) &&
+	     !(mpd->b_state & (1 << BH_Unwritten))))
+		goto submit_io;
+
+	handle = ext4_journal_current_handle();
+	BUG_ON(!handle);
+
+	/*
+	 * Call ext4_map_blocks() to allocate any delayed allocation
+	 * blocks, or to convert an uninitialized extent to be
+	 * initialized (in the case where we have written into
+	 * one or more preallocated blocks).
+	 *
+	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
+	 * indicate that we are on the delayed allocation path.  This
+	 * affects functions in many different parts of the allocation
+	 * call path.  This flag exists primarily because we don't
+	 * want to change *many* call functions, so ext4_map_blocks()
+	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
+	 * inode's allocation semaphore is taken.
+	 *
+	 * If the blocks in questions were delalloc blocks, set
+	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
+	 * variables are updated after the blocks have been allocated.
+	 */
+	map.m_lblk = next;
+	map.m_len = max_blocks;
+	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
+	if (ext4_should_dioread_nolock(mpd->inode))
+		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
+	if (mpd->b_state & (1 << BH_Delay))
+		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
+
+	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
+	if (blks < 0) {
+		struct super_block *sb = mpd->inode->i_sb;
+
+		err = blks;
+		/*
+		 * If get block returns EAGAIN or ENOSPC and there
+		 * appears to be free blocks we will just let
+		 * mpage_da_submit_io() unlock all of the pages.
+		 */
+		if (err == -EAGAIN)
+			goto submit_io;
+
+		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
+			mpd->retval = err;
+			goto submit_io;
+		}
+
+		/*
+		 * get block failure will cause us to loop in
+		 * writepages, because a_ops->writepage won't be able
+		 * to make progress. The page will be redirtied by
+		 * writepage and writepages will again try to write
+		 * the same.
+		 */
+		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
+			ext4_msg(sb, KERN_CRIT,
+				 "delayed block allocation failed for inode %lu "
+				 "at logical offset %llu with max blocks %zd "
+				 "with error %d", mpd->inode->i_ino,
+				 (unsigned long long) next,
+				 mpd->b_size >> mpd->inode->i_blkbits, err);
+			ext4_msg(sb, KERN_CRIT,
+				"This should not happen!! Data will be lost\n");
+			if (err == -ENOSPC)
+				ext4_print_free_blocks(mpd->inode);
+		}
+		/* invalidate all the pages */
+		ext4_da_block_invalidatepages(mpd);
+
+		/* Mark this page range as having been completed */
+		mpd->io_done = 1;
+		return;
+	}
+	BUG_ON(blks == 0);
+
+	mapp = &map;
+	if (map.m_flags & EXT4_MAP_NEW) {
+		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
+		int i;
+
+		for (i = 0; i < map.m_len; i++)
+			unmap_underlying_metadata(bdev, map.m_pblk + i);
+
+		if (ext4_should_order_data(mpd->inode)) {
+			err = ext4_jbd2_file_inode(handle, mpd->inode);
+			if (err) {
+				/* Only if the journal is aborted */
+				mpd->retval = err;
+				goto submit_io;
+			}
+		}
+	}
+
+	/*
+	 * Update on-disk size along with block allocation.
+	 */
+	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
+	if (disksize > i_size_read(mpd->inode))
+		disksize = i_size_read(mpd->inode);
+	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
+		ext4_update_i_disksize(mpd->inode, disksize);
+		err = ext4_mark_inode_dirty(handle, mpd->inode);
+		if (err)
+			ext4_error(mpd->inode->i_sb,
+				   "Failed to mark inode %lu dirty",
+				   mpd->inode->i_ino);
+	}
+
+submit_io:
+	mpage_da_submit_io(mpd, mapp);
+	mpd->io_done = 1;
+}
+
+#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
+		(1 << BH_Delay) | (1 << BH_Unwritten))
+
+/*
+ * mpage_add_bh_to_extent - try to add one more block to extent of blocks
+ *
+ * @mpd->lbh - extent of blocks
+ * @logical - logical number of the block in the file
+ * @bh - bh of the block (used to access block's state)
+ *
+ * the function is used to collect contig. blocks in same state
+ */
+static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
+				   sector_t logical, size_t b_size,
+				   unsigned long b_state)
+{
+	sector_t next;
+	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
+
+	/*
+	 * XXX Don't go larger than mballoc is willing to allocate
+	 * This is a stopgap solution.  We eventually need to fold
+	 * mpage_da_submit_io() into this function and then call
+	 * ext4_map_blocks() multiple times in a loop
+	 */
+	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
+		goto flush_it;
+
+	/* check if thereserved journal credits might overflow */
+	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
+		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
+			/*
+			 * With non-extent format we are limited by the journal
+			 * credit available.  Total credit needed to insert
+			 * nrblocks contiguous blocks is dependent on the
+			 * nrblocks.  So limit nrblocks.
+			 */
+			goto flush_it;
+		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
+				EXT4_MAX_TRANS_DATA) {
+			/*
+			 * Adding the new buffer_head would make it cross the
+			 * allowed limit for which we have journal credit
+			 * reserved. So limit the new bh->b_size
+			 */
+			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
+						mpd->inode->i_blkbits;
+			/* we will do mpage_da_submit_io in the next loop */
+		}
+	}
+	/*
+	 * First block in the extent
+	 */
+	if (mpd->b_size == 0) {
+		mpd->b_blocknr = logical;
+		mpd->b_size = b_size;
+		mpd->b_state = b_state & BH_FLAGS;
+		return;
+	}
+
+	next = mpd->b_blocknr + nrblocks;
+	/*
+	 * Can we merge the block to our big extent?
+	 */
+	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
+		mpd->b_size += b_size;
+		return;
+	}
+
+flush_it:
+	/*
+	 * We couldn't merge the block to our extent, so we
+	 * need to flush current  extent and start new one
+	 */
+	mpage_da_map_and_submit(mpd);
+	return;
+}
+
+static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
+{
+	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
+}
+
+/*
+ * This function is grabs code from the very beginning of
+ * ext4_map_blocks, but assumes that the caller is from delayed write
+ * time. This function looks up the requested blocks and sets the
+ * buffer delay bit under the protection of i_data_sem.
+ */
+static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
+			      struct ext4_map_blocks *map,
+			      struct buffer_head *bh)
+{
+	int retval;
+	sector_t invalid_block = ~((sector_t) 0xffff);
+
+	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
+		invalid_block = ~0;
+
+	map->m_flags = 0;
+	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
+		  "logical block %lu\n", inode->i_ino, map->m_len,
+		  (unsigned long) map->m_lblk);
+	/*
+	 * Try to see if we can get the block without requesting a new
+	 * file system block.
+	 */
+	down_read((&EXT4_I(inode)->i_data_sem));
+	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
+		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
+	else
+		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
+
+	if (retval == 0) {
+		/*
+		 * XXX: __block_prepare_write() unmaps passed block,
+		 * is it OK?
+		 */
+		/* If the block was allocated from previously allocated cluster,
+		 * then we dont need to reserve it again. */
+		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
+			retval = ext4_da_reserve_space(inode, iblock);
+			if (retval)
+				/* not enough space to reserve */
+				goto out_unlock;
+		}
+
+		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
+		 * and it should not appear on the bh->b_state.
+		 */
+		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
+
+		map_bh(bh, inode->i_sb, invalid_block);
+		set_buffer_new(bh);
+		set_buffer_delay(bh);
+	}
+
+out_unlock:
+	up_read((&EXT4_I(inode)->i_data_sem));
+
+	return retval;
+}
+
+/*
+ * This is a special get_blocks_t callback which is used by
+ * ext4_da_write_begin().  It will either return mapped block or
+ * reserve space for a single block.
+ *
+ * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
+ * We also have b_blocknr = -1 and b_bdev initialized properly
+ *
+ * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
+ * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
+ * initialized properly.
+ */
+static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
+				  struct buffer_head *bh, int create)
+{
+	struct ext4_map_blocks map;
+	int ret = 0;
+
+	BUG_ON(create == 0);
+	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
+
+	map.m_lblk = iblock;
+	map.m_len = 1;
+
+	/*
+	 * first, we need to know whether the block is allocated already
+	 * preallocated blocks are unmapped but should treated
+	 * the same as allocated blocks.
+	 */
+	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
+	if (ret <= 0)
+		return ret;
+
+	map_bh(bh, inode->i_sb, map.m_pblk);
+	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
+
+	if (buffer_unwritten(bh)) {
+		/* A delayed write to unwritten bh should be marked
+		 * new and mapped.  Mapped ensures that we don't do
+		 * get_block multiple times when we write to the same
+		 * offset and new ensures that we do proper zero out
+		 * for partial write.
+		 */
+		set_buffer_new(bh);
+		set_buffer_mapped(bh);
+	}
+	return 0;
+}
+
+/*
+ * This function is used as a standard get_block_t calback function
+ * when there is no desire to allocate any blocks.  It is used as a
+ * callback function for block_write_begin() and block_write_full_page().
+ * These functions should only try to map a single block at a time.
+ *
+ * Since this function doesn't do block allocations even if the caller
+ * requests it by passing in create=1, it is critically important that
+ * any caller checks to make sure that any buffer heads are returned
+ * by this function are either all already mapped or marked for
+ * delayed allocation before calling  block_write_full_page().  Otherwise,
+ * b_blocknr could be left unitialized, and the page write functions will
+ * be taken by surprise.
+ */
+static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
+				   struct buffer_head *bh_result, int create)
+{
+	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
+	return _ext4_get_block(inode, iblock, bh_result, 0);
+}
+
+static int bget_one(handle_t *handle, struct buffer_head *bh)
+{
+	get_bh(bh);
+	return 0;
+}
+
+static int bput_one(handle_t *handle, struct buffer_head *bh)
+{
+	put_bh(bh);
+	return 0;
+}
+
+static int __ext4_journalled_writepage(struct page *page,
+				       unsigned int len)
+{
+	struct address_space *mapping = page->mapping;
+	struct inode *inode = mapping->host;
+	struct buffer_head *page_bufs;
+	handle_t *handle = NULL;
+	int ret = 0;
+	int err;
+
+	ClearPageChecked(page);
+	page_bufs = page_buffers(page);
+	BUG_ON(!page_bufs);
+	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
+	/*
+	 * We need to release the page lock before we start the
+	 * journal, so grab a reference so the page won't disappear
+	 * out from under us.
+	 */
+	get_page(page);
+	unlock_page(page);
+
+	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
+	if (IS_ERR(handle)) {
+		ret = PTR_ERR(handle);
+		put_page(page);
+		goto out_no_pagelock;
+	}
+
+	BUG_ON(!ext4_handle_valid(handle));
+
+	lock_page(page);
+	put_page(page);
+	if (page->mapping != mapping) {
+		/* The page got truncated from under us */
+		ext4_journal_stop(handle);
+		ret = 0;
+		goto out;
+	}
+
+	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
+				do_journal_get_write_access);
+
+	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
+				write_end_fn);
+	if (ret == 0)
+		ret = err;
+	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
+	err = ext4_journal_stop(handle);
+	if (!ret)
+		ret = err;
+
+	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
+	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
+out:
+	unlock_page(page);
+out_no_pagelock:
+	return ret;
+}
+
+static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
+static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
+
+/*
+ * Note that we don't need to start a transaction unless we're journaling data
+ * because we should have holes filled from ext4_page_mkwrite(). We even don't
+ * need to file the inode to the transaction's list in ordered mode because if
+ * we are writing back data added by write(), the inode is already there and if
+ * we are writing back data modified via mmap(), no one guarantees in which
+ * transaction the data will hit the disk. In case we are journaling data, we
+ * cannot start transaction directly because transaction start ranks above page
+ * lock so we have to do some magic.
+ *
+ * This function can get called via...
+ *   - ext4_da_writepages after taking page lock (have journal handle)
+ *   - journal_submit_inode_data_buffers (no journal handle)
+ *   - shrink_page_list via pdflush (no journal handle)
+ *   - grab_page_cache when doing write_begin (have journal handle)
+ *
+ * We don't do any block allocation in this function. If we have page with
+ * multiple blocks we need to write those buffer_heads that are mapped. This
+ * is important for mmaped based write. So if we do with blocksize 1K
+ * truncate(f, 1024);
+ * a = mmap(f, 0, 4096);
+ * a[0] = 'a';
+ * truncate(f, 4096);
+ * we have in the page first buffer_head mapped via page_mkwrite call back
+ * but other buffer_heads would be unmapped but dirty (dirty done via the
+ * do_wp_page). So writepage should write the first block. If we modify
+ * the mmap area beyond 1024 we will again get a page_fault and the
+ * page_mkwrite callback will do the block allocation and mark the
+ * buffer_heads mapped.
+ *
+ * We redirty the page if we have any buffer_heads that is either delay or
+ * unwritten in the page.
+ *
+ * We can get recursively called as show below.
+ *
+ *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
+ *		ext4_writepage()
+ *
+ * But since we don't do any block allocation we should not deadlock.
+ * Page also have the dirty flag cleared so we don't get recurive page_lock.
+ */
+static int ext4_writepage(struct page *page,
+			  struct writeback_control *wbc)
+{
+	int ret = 0, commit_write = 0;
+	loff_t size;
+	unsigned int len;
+	struct buffer_head *page_bufs = NULL;
+	struct inode *inode = page->mapping->host;
+
+	trace_ext4_writepage(page);
+	size = i_size_read(inode);
+	if (page->index == size >> PAGE_CACHE_SHIFT)
+		len = size & ~PAGE_CACHE_MASK;
+	else
+		len = PAGE_CACHE_SIZE;
+
+	/*
+	 * If the page does not have buffers (for whatever reason),
+	 * try to create them using __block_write_begin.  If this
+	 * fails, redirty the page and move on.
+	 */
+	if (!page_has_buffers(page)) {
+		if (__block_write_begin(page, 0, len,
+					noalloc_get_block_write)) {
+		redirty_page:
+			redirty_page_for_writepage(wbc, page);
+			unlock_page(page);
+			return 0;
+		}
+		commit_write = 1;
+	}
+	page_bufs = page_buffers(page);
+	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
+			      ext4_bh_delay_or_unwritten)) {
+		/*
+		 * We don't want to do block allocation, so redirty
+		 * the page and return.  We may reach here when we do
+		 * a journal commit via journal_submit_inode_data_buffers.
+		 * We can also reach here via shrink_page_list but it
+		 * should never be for direct reclaim so warn if that
+		 * happens
+		 */
+		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
+								PF_MEMALLOC);
+		goto redirty_page;
+	}
+	if (commit_write)
+		/* now mark the buffer_heads as dirty and uptodate */
+		block_commit_write(page, 0, len);
+
+	if (PageChecked(page) && ext4_should_journal_data(inode))
+		/*
+		 * It's mmapped pagecache.  Add buffers and journal it.  There
+		 * doesn't seem much point in redirtying the page here.
+		 */
+		return __ext4_journalled_writepage(page, len);
+
+	if (buffer_uninit(page_bufs)) {
+		ext4_set_bh_endio(page_bufs, inode);
+		ret = block_write_full_page_endio(page, noalloc_get_block_write,
+					    wbc, ext4_end_io_buffer_write);
+	} else
+		ret = block_write_full_page(page, noalloc_get_block_write,
+					    wbc);
+
+	return ret;
+}
+
+/*
+ * This is called via ext4_da_writepages() to
+ * calculate the total number of credits to reserve to fit
+ * a single extent allocation into a single transaction,
+ * ext4_da_writpeages() will loop calling this before
+ * the block allocation.
+ */
+
+static int ext4_da_writepages_trans_blocks(struct inode *inode)
+{
+	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
+
+	/*
+	 * With non-extent format the journal credit needed to
+	 * insert nrblocks contiguous block is dependent on
+	 * number of contiguous block. So we will limit
+	 * number of contiguous block to a sane value
+	 */
+	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
+	    (max_blocks > EXT4_MAX_TRANS_DATA))
+		max_blocks = EXT4_MAX_TRANS_DATA;
+
+	return ext4_chunk_trans_blocks(inode, max_blocks);
+}
+
+/*
+ * write_cache_pages_da - walk the list of dirty pages of the given
+ * address space and accumulate pages that need writing, and call
+ * mpage_da_map_and_submit to map a single contiguous memory region
+ * and then write them.
+ */
+static int write_cache_pages_da(struct address_space *mapping,
+				struct writeback_control *wbc,
+				struct mpage_da_data *mpd,
+				pgoff_t *done_index)
+{
+	struct buffer_head	*bh, *head;
+	struct inode		*inode = mapping->host;
+	struct pagevec		pvec;
+	unsigned int		nr_pages;
+	sector_t		logical;
+	pgoff_t			index, end;
+	long			nr_to_write = wbc->nr_to_write;
+	int			i, tag, ret = 0;
+
+	memset(mpd, 0, sizeof(struct mpage_da_data));
+	mpd->wbc = wbc;
+	mpd->inode = inode;
+	pagevec_init(&pvec, 0);
+	index = wbc->range_start >> PAGE_CACHE_SHIFT;
+	end = wbc->range_end >> PAGE_CACHE_SHIFT;
+
+	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
+		tag = PAGECACHE_TAG_TOWRITE;
+	else
+		tag = PAGECACHE_TAG_DIRTY;
+
+	*done_index = index;
+	while (index <= end) {
+		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
+			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
+		if (nr_pages == 0)
+			return 0;
+
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+
+			/*
+			 * At this point, the page may be truncated or
+			 * invalidated (changing page->mapping to NULL), or
+			 * even swizzled back from swapper_space to tmpfs file
+			 * mapping. However, page->index will not change
+			 * because we have a reference on the page.
+			 */
+			if (page->index > end)
+				goto out;
+
+			*done_index = page->index + 1;
+
+			/*
+			 * If we can't merge this page, and we have
+			 * accumulated an contiguous region, write it
+			 */
+			if ((mpd->next_page != page->index) &&
+			    (mpd->next_page != mpd->first_page)) {
+				mpage_da_map_and_submit(mpd);
+				goto ret_extent_tail;
+			}
+
+			lock_page(page);
+
+			/*
+			 * If the page is no longer dirty, or its
+			 * mapping no longer corresponds to inode we
+			 * are writing (which means it has been
+			 * truncated or invalidated), or the page is
+			 * already under writeback and we are not
+			 * doing a data integrity writeback, skip the page
+			 */
+			if (!PageDirty(page) ||
+			    (PageWriteback(page) &&
+			     (wbc->sync_mode == WB_SYNC_NONE)) ||
+			    unlikely(page->mapping != mapping)) {
+				unlock_page(page);
+				continue;
+			}
+
+			wait_on_page_writeback(page);
+			BUG_ON(PageWriteback(page));
+
+			if (mpd->next_page != page->index)
+				mpd->first_page = page->index;
+			mpd->next_page = page->index + 1;
+			logical = (sector_t) page->index <<
+				(PAGE_CACHE_SHIFT - inode->i_blkbits);
+
+			if (!page_has_buffers(page)) {
+				mpage_add_bh_to_extent(mpd, logical,
+						       PAGE_CACHE_SIZE,
+						       (1 << BH_Dirty) | (1 << BH_Uptodate));
+				if (mpd->io_done)
+					goto ret_extent_tail;
+			} else {
+				/*
+				 * Page with regular buffer heads,
+				 * just add all dirty ones
+				 */
+				head = page_buffers(page);
+				bh = head;
+				do {
+					BUG_ON(buffer_locked(bh));
+					/*
+					 * We need to try to allocate
+					 * unmapped blocks in the same page.
+					 * Otherwise we won't make progress
+					 * with the page in ext4_writepage
+					 */
+					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
+						mpage_add_bh_to_extent(mpd, logical,
+								       bh->b_size,
+								       bh->b_state);
+						if (mpd->io_done)
+							goto ret_extent_tail;
+					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
+						/*
+						 * mapped dirty buffer. We need
+						 * to update the b_state
+						 * because we look at b_state
+						 * in mpage_da_map_blocks.  We
+						 * don't update b_size because
+						 * if we find an unmapped
+						 * buffer_head later we need to
+						 * use the b_state flag of that
+						 * buffer_head.
+						 */
+						if (mpd->b_size == 0)
+							mpd->b_state = bh->b_state & BH_FLAGS;
+					}
+					logical++;
+				} while ((bh = bh->b_this_page) != head);
+			}
+
+			if (nr_to_write > 0) {
+				nr_to_write--;
+				if (nr_to_write == 0 &&
+				    wbc->sync_mode == WB_SYNC_NONE)
+					/*
+					 * We stop writing back only if we are
+					 * not doing integrity sync. In case of
+					 * integrity sync we have to keep going
+					 * because someone may be concurrently
+					 * dirtying pages, and we might have
+					 * synced a lot of newly appeared dirty
+					 * pages, but have not synced all of the
+					 * old dirty pages.
+					 */
+					goto out;
+			}
+		}
+		pagevec_release(&pvec);
+		cond_resched();
+	}
+	return 0;
+ret_extent_tail:
+	ret = MPAGE_DA_EXTENT_TAIL;
+out:
+	pagevec_release(&pvec);
+	cond_resched();
+	return ret;
+}
+
+
+static int ext4_da_writepages(struct address_space *mapping,
+			      struct writeback_control *wbc)
+{
+	pgoff_t	index;
+	int range_whole = 0;
+	handle_t *handle = NULL;
+	struct mpage_da_data mpd;
+	struct inode *inode = mapping->host;
+	int pages_written = 0;
+	unsigned int max_pages;
+	int range_cyclic, cycled = 1, io_done = 0;
+	int needed_blocks, ret = 0;
+	long desired_nr_to_write, nr_to_writebump = 0;
+	loff_t range_start = wbc->range_start;
+	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
+	pgoff_t done_index = 0;
+	pgoff_t end;
+	struct blk_plug plug;
+
+	trace_ext4_da_writepages(inode, wbc);
+
+	/*
+	 * No pages to write? This is mainly a kludge to avoid starting
+	 * a transaction for special inodes like journal inode on last iput()
+	 * because that could violate lock ordering on umount
+	 */
+	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
+		return 0;
+
+	/*
+	 * If the filesystem has aborted, it is read-only, so return
+	 * right away instead of dumping stack traces later on that
+	 * will obscure the real source of the problem.  We test
+	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
+	 * the latter could be true if the filesystem is mounted
+	 * read-only, and in that case, ext4_da_writepages should
+	 * *never* be called, so if that ever happens, we would want
+	 * the stack trace.
+	 */
+	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
+		return -EROFS;
+
+	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
+		range_whole = 1;
+
+	range_cyclic = wbc->range_cyclic;
+	if (wbc->range_cyclic) {
+		index = mapping->writeback_index;
+		if (index)
+			cycled = 0;
+		wbc->range_start = index << PAGE_CACHE_SHIFT;
+		wbc->range_end  = LLONG_MAX;
+		wbc->range_cyclic = 0;
+		end = -1;
+	} else {
+		index = wbc->range_start >> PAGE_CACHE_SHIFT;
+		end = wbc->range_end >> PAGE_CACHE_SHIFT;
+	}
+
+	/*
+	 * This works around two forms of stupidity.  The first is in
+	 * the writeback code, which caps the maximum number of pages
+	 * written to be 1024 pages.  This is wrong on multiple
+	 * levels; different architectues have a different page size,
+	 * which changes the maximum amount of data which gets
+	 * written.  Secondly, 4 megabytes is way too small.  XFS
+	 * forces this value to be 16 megabytes by multiplying
+	 * nr_to_write parameter by four, and then relies on its
+	 * allocator to allocate larger extents to make them
+	 * contiguous.  Unfortunately this brings us to the second
+	 * stupidity, which is that ext4's mballoc code only allocates
+	 * at most 2048 blocks.  So we force contiguous writes up to
+	 * the number of dirty blocks in the inode, or
+	 * sbi->max_writeback_mb_bump whichever is smaller.
+	 */
+	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
+	if (!range_cyclic && range_whole) {
+		if (wbc->nr_to_write == LONG_MAX)
+			desired_nr_to_write = wbc->nr_to_write;
+		else
+			desired_nr_to_write = wbc->nr_to_write * 8;
+	} else
+		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
+							   max_pages);
+	if (desired_nr_to_write > max_pages)
+		desired_nr_to_write = max_pages;
+
+	if (wbc->nr_to_write < desired_nr_to_write) {
+		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
+		wbc->nr_to_write = desired_nr_to_write;
+	}
+
+retry:
+	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
+		tag_pages_for_writeback(mapping, index, end);
+
+	blk_start_plug(&plug);
+	while (!ret && wbc->nr_to_write > 0) {
+
+		/*
+		 * we  insert one extent at a time. So we need
+		 * credit needed for single extent allocation.
+		 * journalled mode is currently not supported
+		 * by delalloc
+		 */
+		BUG_ON(ext4_should_journal_data(inode));
+		needed_blocks = ext4_da_writepages_trans_blocks(inode);
+
+		/* start a new transaction*/
+		handle = ext4_journal_start(inode, needed_blocks);
+		if (IS_ERR(handle)) {
+			ret = PTR_ERR(handle);
+			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
+			       "%ld pages, ino %lu; err %d", __func__,
+				wbc->nr_to_write, inode->i_ino, ret);
+			blk_finish_plug(&plug);
+			goto out_writepages;
+		}
+
+		/*
+		 * Now call write_cache_pages_da() to find the next
+		 * contiguous region of logical blocks that need
+		 * blocks to be allocated by ext4 and submit them.
+		 */
+		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
+		/*
+		 * If we have a contiguous extent of pages and we
+		 * haven't done the I/O yet, map the blocks and submit
+		 * them for I/O.
+		 */
+		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
+			mpage_da_map_and_submit(&mpd);
+			ret = MPAGE_DA_EXTENT_TAIL;
+		}
+		trace_ext4_da_write_pages(inode, &mpd);
+		wbc->nr_to_write -= mpd.pages_written;
+
+		ext4_journal_stop(handle);
+
+		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
+			/* commit the transaction which would
+			 * free blocks released in the transaction
+			 * and try again
+			 */
+			jbd2_journal_force_commit_nested(sbi->s_journal);
+			ret = 0;
+		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
+			/*
+			 * Got one extent now try with rest of the pages.
+			 * If mpd.retval is set -EIO, journal is aborted.
+			 * So we don't need to write any more.
+			 */
+			pages_written += mpd.pages_written;
+			ret = mpd.retval;
+			io_done = 1;
+		} else if (wbc->nr_to_write)
+			/*
+			 * There is no more writeout needed
+			 * or we requested for a noblocking writeout
+			 * and we found the device congested
+			 */
+			break;
+	}
+	blk_finish_plug(&plug);
+	if (!io_done && !cycled) {
+		cycled = 1;
+		index = 0;
+		wbc->range_start = index << PAGE_CACHE_SHIFT;
+		wbc->range_end  = mapping->writeback_index - 1;
+		goto retry;
+	}
+
+	/* Update index */
+	wbc->range_cyclic = range_cyclic;
+	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
+		/*
+		 * set the writeback_index so that range_cyclic
+		 * mode will write it back later
+		 */
+		mapping->writeback_index = done_index;
+
+out_writepages:
+	wbc->nr_to_write -= nr_to_writebump;
+	wbc->range_start = range_start;
+	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
+	return ret;
+}
+
+#define FALL_BACK_TO_NONDELALLOC 1
+static int ext4_nonda_switch(struct super_block *sb)
+{
+	s64 free_blocks, dirty_blocks;
+	struct ext4_sb_info *sbi = EXT4_SB(sb);
+
+	/*
+	 * switch to non delalloc mode if we are running low
+	 * on free block. The free block accounting via percpu
+	 * counters can get slightly wrong with percpu_counter_batch getting
+	 * accumulated on each CPU without updating global counters
+	 * Delalloc need an accurate free block accounting. So switch
+	 * to non delalloc when we are near to error range.
+	 */
+	free_blocks  = EXT4_C2B(sbi,
+		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
+	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
+	/*
+	 * Start pushing delalloc when 1/2 of free blocks are dirty.
+	 */
+	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
+	    !writeback_in_progress(sb->s_bdi) &&
+	    down_read_trylock(&sb->s_umount)) {
+		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
+		up_read(&sb->s_umount);
+	}
+
+	if (2 * free_blocks < 3 * dirty_blocks ||
+		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
+		/*
+		 * free block count is less than 150% of dirty blocks
+		 * or free blocks is less than watermark
+		 */
+		return 1;
+	}
+	return 0;
+}
+
+/* We always reserve for an inode update; the superblock could be there too */
+static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
+{
+	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
+				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
+		return 1;
+
+	if (pos + len <= 0x7fffffffULL)
+		return 1;
+
+	/* We might need to update the superblock to set LARGE_FILE */
+	return 2;
+}
+
+static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
+			       loff_t pos, unsigned len, unsigned flags,
+			       struct page **pagep, void **fsdata)
+{
+	int ret, retries = 0;
+	struct page *page;
+	pgoff_t index;
+	struct inode *inode = mapping->host;
+	handle_t *handle;
+
+	index = pos >> PAGE_CACHE_SHIFT;
+
+	if (ext4_nonda_switch(inode->i_sb)) {
+		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
+		return ext4_write_begin(file, mapping, pos,
+					len, flags, pagep, fsdata);
+	}
+	*fsdata = (void *)0;
+	trace_ext4_da_write_begin(inode, pos, len, flags);
+retry:
+	/*
+	 * With delayed allocation, we don't log the i_disksize update
+	 * if there is delayed block allocation. But we still need
+	 * to journalling the i_disksize update if writes to the end
+	 * of file which has an already mapped buffer.
+	 */
+	handle = ext4_journal_start(inode,
+				ext4_da_write_credits(inode, pos, len));
+	if (IS_ERR(handle)) {
+		ret = PTR_ERR(handle);
+		goto out;
+	}
+	/* We cannot recurse into the filesystem as the transaction is already
+	 * started */
+	flags |= AOP_FLAG_NOFS;
+
+	page = grab_cache_page_write_begin(mapping, index, flags);
+	if (!page) {
+		ext4_journal_stop(handle);
+		ret = -ENOMEM;
+		goto out;
+	}
+	*pagep = page;
+
+	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
+	if (ret < 0) {
+		unlock_page(page);
+		ext4_journal_stop(handle);
+		page_cache_release(page);
+		/*
+		 * block_write_begin may have instantiated a few blocks
+		 * outside i_size.  Trim these off again. Don't need
+		 * i_size_read because we hold i_mutex.
+		 */
+		if (pos + len > inode->i_size)
+			ext4_truncate_failed_write(inode);
+	}
+
+	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
+		goto retry;
+out:
+	return ret;
+}
+
+/*
+ * Check if we should update i_disksize
+ * when write to the end of file but not require block allocation
+ */
+static int ext4_da_should_update_i_disksize(struct page *page,
+					    unsigned long offset)
+{
+	struct buffer_head *bh;
+	struct inode *inode = page->mapping->host;
+	unsigned int idx;
+	int i;
+
+	bh = page_buffers(page);
+	idx = offset >> inode->i_blkbits;
+
+	for (i = 0; i < idx; i++)
+		bh = bh->b_this_page;
+
+	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
+		return 0;
+	return 1;
+}
+
+static int ext4_da_write_end(struct file *file,
+			     struct address_space *mapping,
+			     loff_t pos, unsigned len, unsigned copied,
+			     struct page *page, void *fsdata)
+{
+	struct inode *inode = mapping->host;
+	int ret = 0, ret2;
+	handle_t *handle = ext4_journal_current_handle();
+	loff_t new_i_size;
+	unsigned long start, end;
+	int write_mode = (int)(unsigned long)fsdata;
+
+	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
+		switch (ext4_inode_journal_mode(inode)) {
+		case EXT4_INODE_ORDERED_DATA_MODE:
+			return ext4_ordered_write_end(file, mapping, pos,
+					len, copied, page, fsdata);
+		case EXT4_INODE_WRITEBACK_DATA_MODE:
+			return ext4_writeback_write_end(file, mapping, pos,
+					len, copied, page, fsdata);
+		default:
+			BUG();
+		}
+	}
+
+	trace_ext4_da_write_end(inode, pos, len, copied);
+	start = pos & (PAGE_CACHE_SIZE - 1);
+	end = start + copied - 1;
+
+	/*
+	 * generic_write_end() will run mark_inode_dirty() if i_size
+	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
+	 * into that.
+	 */
+
+	new_i_size = pos + copied;
+	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
+		if (ext4_da_should_update_i_disksize(page, end)) {
+			down_write(&EXT4_I(inode)->i_data_sem);
+			if (new_i_size > EXT4_I(inode)->i_disksize) {
+				/*
+				 * Updating i_disksize when extending file
+				 * without needing block allocation
+				 */
+				if (ext4_should_order_data(inode))
+					ret = ext4_jbd2_file_inode(handle,
+								   inode);
+
+				EXT4_I(inode)->i_disksize = new_i_size;
+			}
+			up_write(&EXT4_I(inode)->i_data_sem);
+			/* We need to mark inode dirty even if
+			 * new_i_size is less that inode->i_size
+			 * bu greater than i_disksize.(hint delalloc)
+			 */
+			ext4_mark_inode_dirty(handle, inode);
+		}
+	}
+	ret2 = generic_write_end(file, mapping, pos, len, copied,
+							page, fsdata);
+	copied = ret2;
+	if (ret2 < 0)
+		ret = ret2;
+	ret2 = ext4_journal_stop(handle);
+	if (!ret)
+		ret = ret2;
+
+	return ret ? ret : copied;
+}
+
+static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
+{
+	/*
+	 * Drop reserved blocks
+	 */
+	BUG_ON(!PageLocked(page));
+	if (!page_has_buffers(page))
+		goto out;
+
+	ext4_da_page_release_reservation(page, offset);
+
+out:
+	ext4_invalidatepage(page, offset);
+
+	return;
+}
+
+/*
+ * Force all delayed allocation blocks to be allocated for a given inode.
+ */
+int ext4_alloc_da_blocks(struct inode *inode)
+{
+	trace_ext4_alloc_da_blocks(inode);
+
+	if (!EXT4_I(inode)->i_reserved_data_blocks &&
+	    !EXT4_I(inode)->i_reserved_meta_blocks)
+		return 0;
+
+	/*
+	 * We do something simple for now.  The filemap_flush() will
+	 * also start triggering a write of the data blocks, which is
+	 * not strictly speaking necessary (and for users of
+	 * laptop_mode, not even desirable).  However, to do otherwise
+	 * would require replicating code paths in:
+	 *
+	 * ext4_da_writepages() ->
+	 *    write_cache_pages() ---> (via passed in callback function)
+	 *        __mpage_da_writepage() -->
+	 *           mpage_add_bh_to_extent()
+	 *           mpage_da_map_blocks()
+	 *
+	 * The problem is that write_cache_pages(), located in
+	 * mm/page-writeback.c, marks pages clean in preparation for
+	 * doing I/O, which is not desirable if we're not planning on
+	 * doing I/O at all.
+	 *
+	 * We could call write_cache_pages(), and then redirty all of
+	 * the pages by calling redirty_page_for_writepage() but that
+	 * would be ugly in the extreme.  So instead we would need to
+	 * replicate parts of the code in the above functions,
+	 * simplifying them because we wouldn't actually intend to
+	 * write out the pages, but rather only collect contiguous
+	 * logical block extents, call the multi-block allocator, and
+	 * then update the buffer heads with the block allocations.
+	 *
+	 * For now, though, we'll cheat by calling filemap_flush(),
+	 * which will map the blocks, and start the I/O, but not
+	 * actually wait for the I/O to complete.
+	 */
+	return filemap_flush(inode->i_mapping);
+}
+
+/*
+ * bmap() is special.  It gets used by applications such as lilo and by
+ * the swapper to find the on-disk block of a specific piece of data.
+ *
+ * Naturally, this is dangerous if the block concerned is still in the
+ * journal.  If somebody makes a swapfile on an ext4 data-journaling
+ * filesystem and enables swap, then they may get a nasty shock when the
+ * data getting swapped to that swapfile suddenly gets overwritten by
+ * the original zero's written out previously to the journal and
+ * awaiting writeback in the kernel's buffer cache.
+ *
+ * So, if we see any bmap calls here on a modified, data-journaled file,
+ * take extra steps to flush any blocks which might be in the cache.
+ */
+static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
+{
+	struct inode *inode = mapping->host;
+	journal_t *journal;
+	int err;
+
+	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
+			test_opt(inode->i_sb, DELALLOC)) {
+		/*
+		 * With delalloc we want to sync the file
+		 * so that we can make sure we allocate
+		 * blocks for file
+		 */
+		filemap_write_and_wait(mapping);
+	}
+
+	if (EXT4_JOURNAL(inode) &&
+	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
+		/*
+		 * This is a REALLY heavyweight approach, but the use of
+		 * bmap on dirty files is expected to be extremely rare:
+		 * only if we run lilo or swapon on a freshly made file
+		 * do we expect this to happen.
+		 *
+		 * (bmap requires CAP_SYS_RAWIO so this does not
+		 * represent an unprivileged user DOS attack --- we'd be
+		 * in trouble if mortal users could trigger this path at
+		 * will.)
+		 *
+		 * NB. EXT4_STATE_JDATA is not set on files other than
+		 * regular files.  If somebody wants to bmap a directory
+		 * or symlink and gets confused because the buffer
+		 * hasn't yet been flushed to disk, they deserve
+		 * everything they get.
+		 */
+
+		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
+		journal = EXT4_JOURNAL(inode);
+		jbd2_journal_lock_updates(journal);
+		err = jbd2_journal_flush(journal);
+		jbd2_journal_unlock_updates(journal);
+
+		if (err)
+			return 0;
+	}
+
+	return generic_block_bmap(mapping, block, ext4_get_block);
+}
+
+static int ext4_readpage(struct file *file, struct page *page)
+{
+	trace_ext4_readpage(page);
+	return mpage_readpage(page, ext4_get_block);
+}
+
+static int
+ext4_readpages(struct file *file, struct address_space *mapping,
+		struct list_head *pages, unsigned nr_pages)
+{
+	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
+}
+
+static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
+{
+	struct buffer_head *head, *bh;
+	unsigned int curr_off = 0;
+
+	if (!page_has_buffers(page))
+		return;
+	head = bh = page_buffers(page);
+	do {
+		if (offset <= curr_off && test_clear_buffer_uninit(bh)
+					&& bh->b_private) {
+			ext4_free_io_end(bh->b_private);
+			bh->b_private = NULL;
+			bh->b_end_io = NULL;
+		}
+		curr_off = curr_off + bh->b_size;
+		bh = bh->b_this_page;
+	} while (bh != head);
+}
+
+static void ext4_invalidatepage(struct page *page, unsigned long offset)
+{
+	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
+
+	trace_ext4_invalidatepage(page, offset);
+
+	/*
+	 * free any io_end structure allocated for buffers to be discarded
+	 */
+	if (ext4_should_dioread_nolock(page->mapping->host))
+		ext4_invalidatepage_free_endio(page, offset);
+	/*
+	 * If it's a full truncate we just forget about the pending dirtying
+	 */
+	if (offset == 0)
+		ClearPageChecked(page);
+
+	if (journal)
+		jbd2_journal_invalidatepage(journal, page, offset);
+	else
+		block_invalidatepage(page, offset);
+}
+
+static int ext4_releasepage(struct page *page, gfp_t wait)
+{
+	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
+
+	trace_ext4_releasepage(page);
+
+	WARN_ON(PageChecked(page));
+	if (!page_has_buffers(page))
+		return 0;
+	if (journal)
+		return jbd2_journal_try_to_free_buffers(journal, page, wait);
+	else
+		return try_to_free_buffers(page);
+}
+
+/*
+ * ext4_get_block used when preparing for a DIO write or buffer write.
+ * We allocate an uinitialized extent if blocks haven't been allocated.
+ * The extent will be converted to initialized after the IO is complete.
+ */
+static int ext4_get_block_write(struct inode *inode, sector_t iblock,
+		   struct buffer_head *bh_result, int create)
+{
+	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
+		   inode->i_ino, create);
+	return _ext4_get_block(inode, iblock, bh_result,
+			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
+}
+
+static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
+			    ssize_t size, void *private, int ret,
+			    bool is_async)
+{
+	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
+        ext4_io_end_t *io_end = iocb->private;
+	struct workqueue_struct *wq;
+	unsigned long flags;
+	struct ext4_inode_info *ei;
+
+	/* if not async direct IO or dio with 0 bytes write, just return */
+	if (!io_end || !size)
+		goto out;
+
+	ext_debug("ext4_end_io_dio(): io_end 0x%p "
+		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
+ 		  iocb->private, io_end->inode->i_ino, iocb, offset,
+		  size);
+
+	iocb->private = NULL;
+
+	/* if not aio dio with unwritten extents, just free io and return */
+	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
+		ext4_free_io_end(io_end);
+out:
+		inode_dio_done(inode);
+		if (is_async)
+			aio_complete(iocb, ret, 0);
+		return;
+	}
+
+	io_end->offset = offset;
+	io_end->size = size;
+	if (is_async) {
+		io_end->iocb = iocb;
+		io_end->result = ret;
+	}
+	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
+
+	/* Add the io_end to per-inode completed aio dio list*/
+	ei = EXT4_I(io_end->inode);
+	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
+	list_add_tail(&io_end->list, &ei->i_completed_io_list);
+	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
+
+	/* queue the work to convert unwritten extents to written */
+	queue_work(wq, &io_end->work);
+}
+
+static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
+{
+	ext4_io_end_t *io_end = bh->b_private;
+	struct workqueue_struct *wq;
+	struct inode *inode;
+	unsigned long flags;
+
+	if (!test_clear_buffer_uninit(bh) || !io_end)
+		goto out;
+
+	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
+		ext4_msg(io_end->inode->i_sb, KERN_INFO,
+			 "sb umounted, discard end_io request for inode %lu",
+			 io_end->inode->i_ino);
+		ext4_free_io_end(io_end);
+		goto out;
+	}
+
+	/*
+	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
+	 * but being more careful is always safe for the future change.
+	 */
+	inode = io_end->inode;
+	ext4_set_io_unwritten_flag(inode, io_end);
+
+	/* Add the io_end to per-inode completed io list*/
+	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
+	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
+	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
+
+	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
+	/* queue the work to convert unwritten extents to written */
+	queue_work(wq, &io_end->work);
+out:
+	bh->b_private = NULL;
+	bh->b_end_io = NULL;
+	clear_buffer_uninit(bh);
+	end_buffer_async_write(bh, uptodate);
+}
+
+static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
+{
+	ext4_io_end_t *io_end;
+	struct page *page = bh->b_page;
+	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
+	size_t size = bh->b_size;
+
+retry:
+	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
+	if (!io_end) {
+		pr_warn_ratelimited("%s: allocation fail\n", __func__);
+		schedule();
+		goto retry;
+	}
+	io_end->offset = offset;
+	io_end->size = size;
+	/*
+	 * We need to hold a reference to the page to make sure it
+	 * doesn't get evicted before ext4_end_io_work() has a chance
+	 * to convert the extent from written to unwritten.
+	 */
+	io_end->page = page;
+	get_page(io_end->page);
+
+	bh->b_private = io_end;
+	bh->b_end_io = ext4_end_io_buffer_write;
+	return 0;
+}
+
+/*
+ * For ext4 extent files, ext4 will do direct-io write to holes,
+ * preallocated extents, and those write extend the file, no need to
+ * fall back to buffered IO.
+ *
+ * For holes, we fallocate those blocks, mark them as uninitialized
+ * If those blocks were preallocated, we mark sure they are splited, but
+ * still keep the range to write as uninitialized.
+ *
+ * The unwrritten extents will be converted to written when DIO is completed.
+ * For async direct IO, since the IO may still pending when return, we
+ * set up an end_io call back function, which will do the conversion
+ * when async direct IO completed.
+ *
+ * If the O_DIRECT write will extend the file then add this inode to the
+ * orphan list.  So recovery will truncate it back to the original size
+ * if the machine crashes during the write.
+ *
+ */
+static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
+			      const struct iovec *iov, loff_t offset,
+			      unsigned long nr_segs)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	ssize_t ret;
+	size_t count = iov_length(iov, nr_segs);
+
+	loff_t final_size = offset + count;
+	if (rw == WRITE && final_size <= inode->i_size) {
+		/*
+ 		 * We could direct write to holes and fallocate.
+		 *
+ 		 * Allocated blocks to fill the hole are marked as uninitialized
+ 		 * to prevent parallel buffered read to expose the stale data
+ 		 * before DIO complete the data IO.
+		 *
+ 		 * As to previously fallocated extents, ext4 get_block
+ 		 * will just simply mark the buffer mapped but still
+ 		 * keep the extents uninitialized.
+ 		 *
+		 * for non AIO case, we will convert those unwritten extents
+		 * to written after return back from blockdev_direct_IO.
+		 *
+		 * for async DIO, the conversion needs to be defered when
+		 * the IO is completed. The ext4 end_io callback function
+		 * will be called to take care of the conversion work.
+		 * Here for async case, we allocate an io_end structure to
+		 * hook to the iocb.
+ 		 */
+		iocb->private = NULL;
+		EXT4_I(inode)->cur_aio_dio = NULL;
+		if (!is_sync_kiocb(iocb)) {
+			ext4_io_end_t *io_end =
+				ext4_init_io_end(inode, GFP_NOFS);
+			if (!io_end)
+				return -ENOMEM;
+			io_end->flag |= EXT4_IO_END_DIRECT;
+			iocb->private = io_end;
+			/*
+			 * we save the io structure for current async
+			 * direct IO, so that later ext4_map_blocks()
+			 * could flag the io structure whether there
+			 * is a unwritten extents needs to be converted
+			 * when IO is completed.
+			 */
+			EXT4_I(inode)->cur_aio_dio = iocb->private;
+		}
+
+		ret = __blockdev_direct_IO(rw, iocb, inode,
+					 inode->i_sb->s_bdev, iov,
+					 offset, nr_segs,
+					 ext4_get_block_write,
+					 ext4_end_io_dio,
+					 NULL,
+					 DIO_LOCKING);
+		if (iocb->private)
+			EXT4_I(inode)->cur_aio_dio = NULL;
+		/*
+		 * The io_end structure takes a reference to the inode,
+		 * that structure needs to be destroyed and the
+		 * reference to the inode need to be dropped, when IO is
+		 * complete, even with 0 byte write, or failed.
+		 *
+		 * In the successful AIO DIO case, the io_end structure will be
+		 * desctroyed and the reference to the inode will be dropped
+		 * after the end_io call back function is called.
+		 *
+		 * In the case there is 0 byte write, or error case, since
+		 * VFS direct IO won't invoke the end_io call back function,
+		 * we need to free the end_io structure here.
+		 */
+		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
+			ext4_free_io_end(iocb->private);
+			iocb->private = NULL;
+		} else if (ret > 0 && ext4_test_inode_state(inode,
+						EXT4_STATE_DIO_UNWRITTEN)) {
+			int err;
+			/*
+			 * for non AIO case, since the IO is already
+			 * completed, we could do the conversion right here
+			 */
+			err = ext4_convert_unwritten_extents(inode,
+							     offset, ret);
+			if (err < 0)
+				ret = err;
+			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
+		}
+		return ret;
+	}
+
+	/* for write the the end of file case, we fall back to old way */
+	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
+}
+
+static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
+			      const struct iovec *iov, loff_t offset,
+			      unsigned long nr_segs)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	ssize_t ret;
+
+	/*
+	 * If we are doing data journalling we don't support O_DIRECT
+	 */
+	if (ext4_should_journal_data(inode))
+		return 0;
+
+	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
+	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
+		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
+	else
+		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
+	trace_ext4_direct_IO_exit(inode, offset,
+				iov_length(iov, nr_segs), rw, ret);
+	return ret;
+}
+
+/*
+ * Pages can be marked dirty completely asynchronously from ext4's journalling
+ * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
+ * much here because ->set_page_dirty is called under VFS locks.  The page is
+ * not necessarily locked.
+ *
+ * We cannot just dirty the page and leave attached buffers clean, because the
+ * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
+ * or jbddirty because all the journalling code will explode.
+ *
+ * So what we do is to mark the page "pending dirty" and next time writepage
+ * is called, propagate that into the buffers appropriately.
+ */
+static int ext4_journalled_set_page_dirty(struct page *page)
+{
+	SetPageChecked(page);
+	return __set_page_dirty_nobuffers(page);
+}
+
+static const struct address_space_operations ext4_ordered_aops = {
+	.readpage		= ext4_readpage,
+	.readpages		= ext4_readpages,
+	.writepage		= ext4_writepage,
+	.write_begin		= ext4_write_begin,
+	.write_end		= ext4_ordered_write_end,
+	.bmap			= ext4_bmap,
+	.invalidatepage		= ext4_invalidatepage,
+	.releasepage		= ext4_releasepage,
+	.direct_IO		= ext4_direct_IO,
+	.migratepage		= buffer_migrate_page,
+	.is_partially_uptodate  = block_is_partially_uptodate,
+	.error_remove_page	= generic_error_remove_page,
+};
+
+static const struct address_space_operations ext4_writeback_aops = {
+	.readpage		= ext4_readpage,
+	.readpages		= ext4_readpages,
+	.writepage		= ext4_writepage,
+	.write_begin		= ext4_write_begin,
+	.write_end		= ext4_writeback_write_end,
+	.bmap			= ext4_bmap,
+	.invalidatepage		= ext4_invalidatepage,
+	.releasepage		= ext4_releasepage,
+	.direct_IO		= ext4_direct_IO,
+	.migratepage		= buffer_migrate_page,
+	.is_partially_uptodate  = block_is_partially_uptodate,
+	.error_remove_page	= generic_error_remove_page,
+};
+
+static const struct address_space_operations ext4_journalled_aops = {
+	.readpage		= ext4_readpage,
+	.readpages		= ext4_readpages,
+	.writepage		= ext4_writepage,
+	.write_begin		= ext4_write_begin,
+	.write_end		= ext4_journalled_write_end,
+	.set_page_dirty		= ext4_journalled_set_page_dirty,
+	.bmap			= ext4_bmap,
+	.invalidatepage		= ext4_invalidatepage,
+	.releasepage		= ext4_releasepage,
+	.direct_IO		= ext4_direct_IO,
+	.is_partially_uptodate  = block_is_partially_uptodate,
+	.error_remove_page	= generic_error_remove_page,
+};
+
+static const struct address_space_operations ext4_da_aops = {
+	.readpage		= ext4_readpage,
+	.readpages		= ext4_readpages,
+	.writepage		= ext4_writepage,
+	.writepages		= ext4_da_writepages,
+	.write_begin		= ext4_da_write_begin,
+	.write_end		= ext4_da_write_end,
+	.bmap			= ext4_bmap,
+	.invalidatepage		= ext4_da_invalidatepage,
+	.releasepage		= ext4_releasepage,
+	.direct_IO		= ext4_direct_IO,
+	.migratepage		= buffer_migrate_page,
+	.is_partially_uptodate  = block_is_partially_uptodate,
+	.error_remove_page	= generic_error_remove_page,
+};
+
+void ext4_set_aops(struct inode *inode)
+{
+	switch (ext4_inode_journal_mode(inode)) {
+	case EXT4_INODE_ORDERED_DATA_MODE:
+		if (test_opt(inode->i_sb, DELALLOC))
+			inode->i_mapping->a_ops = &ext4_da_aops;
+		else
+			inode->i_mapping->a_ops = &ext4_ordered_aops;
+		break;
+	case EXT4_INODE_WRITEBACK_DATA_MODE:
+		if (test_opt(inode->i_sb, DELALLOC))
+			inode->i_mapping->a_ops = &ext4_da_aops;
+		else
+			inode->i_mapping->a_ops = &ext4_writeback_aops;
+		break;
+	case EXT4_INODE_JOURNAL_DATA_MODE:
+		inode->i_mapping->a_ops = &ext4_journalled_aops;
+		break;
+	default:
+		BUG();
+	}
+}
+
+
+/*
+ * ext4_discard_partial_page_buffers()
+ * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
+ * This function finds and locks the page containing the offset
+ * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
+ * Calling functions that already have the page locked should call
+ * ext4_discard_partial_page_buffers_no_lock directly.
+ */
+int ext4_discard_partial_page_buffers(handle_t *handle,
+		struct address_space *mapping, loff_t from,
+		loff_t length, int flags)
+{
+	struct inode *inode = mapping->host;
+	struct page *page;
+	int err = 0;
+
+	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
+				   mapping_gfp_mask(mapping) & ~__GFP_FS);
+	if (!page)
+		return -ENOMEM;
+
+	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
+		from, length, flags);
+
+	unlock_page(page);
+	page_cache_release(page);
+	return err;
+}
+
+/*
+ * ext4_discard_partial_page_buffers_no_lock()
+ * Zeros a page range of length 'length' starting from offset 'from'.
+ * Buffer heads that correspond to the block aligned regions of the
+ * zeroed range will be unmapped.  Unblock aligned regions
+ * will have the corresponding buffer head mapped if needed so that
+ * that region of the page can be updated with the partial zero out.
+ *
+ * This function assumes that the page has already been  locked.  The
+ * The range to be discarded must be contained with in the given page.
+ * If the specified range exceeds the end of the page it will be shortened
+ * to the end of the page that corresponds to 'from'.  This function is
+ * appropriate for updating a page and it buffer heads to be unmapped and
+ * zeroed for blocks that have been either released, or are going to be
+ * released.
+ *
+ * handle: The journal handle
+ * inode:  The files inode
+ * page:   A locked page that contains the offset "from"
+ * from:   The starting byte offset (from the begining of the file)
+ *         to begin discarding
+ * len:    The length of bytes to discard
+ * flags:  Optional flags that may be used:
+ *
+ *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
+ *         Only zero the regions of the page whose buffer heads
+ *         have already been unmapped.  This flag is appropriate
+ *         for updateing the contents of a page whose blocks may
+ *         have already been released, and we only want to zero
+ *         out the regions that correspond to those released blocks.
+ *
+ * Returns zero on sucess or negative on failure.
+ */
+static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
+		struct inode *inode, struct page *page, loff_t from,
+		loff_t length, int flags)
+{
+	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
+	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
+	unsigned int blocksize, max, pos;
+	ext4_lblk_t iblock;
+	struct buffer_head *bh;
+	int err = 0;
+
+	blocksize = inode->i_sb->s_blocksize;
+	max = PAGE_CACHE_SIZE - offset;
+
+	if (index != page->index)
+		return -EINVAL;
+
+	/*
+	 * correct length if it does not fall between
+	 * 'from' and the end of the page
+	 */
+	if (length > max || length < 0)
+		length = max;
+
+	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
+
+	if (!page_has_buffers(page))
+		create_empty_buffers(page, blocksize, 0);
+
+	/* Find the buffer that contains "offset" */
+	bh = page_buffers(page);
+	pos = blocksize;
+	while (offset >= pos) {
+		bh = bh->b_this_page;
+		iblock++;
+		pos += blocksize;
+	}
+
+	pos = offset;
+	while (pos < offset + length) {
+		unsigned int end_of_block, range_to_discard;
+
+		err = 0;
+
+		/* The length of space left to zero and unmap */
+		range_to_discard = offset + length - pos;
+
+		/* The length of space until the end of the block */
+		end_of_block = blocksize - (pos & (blocksize-1));
+
+		/*
+		 * Do not unmap or zero past end of block
+		 * for this buffer head
+		 */
+		if (range_to_discard > end_of_block)
+			range_to_discard = end_of_block;
+
+
+		/*
+		 * Skip this buffer head if we are only zeroing unampped
+		 * regions of the page
+		 */
+		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
+			buffer_mapped(bh))
+				goto next;
+
+		/* If the range is block aligned, unmap */
+		if (range_to_discard == blocksize) {
+			clear_buffer_dirty(bh);
+			bh->b_bdev = NULL;
+			clear_buffer_mapped(bh);
+			clear_buffer_req(bh);
+			clear_buffer_new(bh);
+			clear_buffer_delay(bh);
+			clear_buffer_unwritten(bh);
+			clear_buffer_uptodate(bh);
+			zero_user(page, pos, range_to_discard);
+			BUFFER_TRACE(bh, "Buffer discarded");
+			goto next;
+		}
+
+		/*
+		 * If this block is not completely contained in the range
+		 * to be discarded, then it is not going to be released. Because
+		 * we need to keep this block, we need to make sure this part
+		 * of the page is uptodate before we modify it by writeing
+		 * partial zeros on it.
+		 */
+		if (!buffer_mapped(bh)) {
+			/*
+			 * Buffer head must be mapped before we can read
+			 * from the block
+			 */
+			BUFFER_TRACE(bh, "unmapped");
+			ext4_get_block(inode, iblock, bh, 0);
+			/* unmapped? It's a hole - nothing to do */
+			if (!buffer_mapped(bh)) {
+				BUFFER_TRACE(bh, "still unmapped");
+				goto next;
+			}
+		}
+
+		/* Ok, it's mapped. Make sure it's up-to-date */
+		if (PageUptodate(page))
+			set_buffer_uptodate(bh);
+
+		if (!buffer_uptodate(bh)) {
+			err = -EIO;
+			ll_rw_block(READ, 1, &bh);
+			wait_on_buffer(bh);
+			/* Uhhuh. Read error. Complain and punt.*/
+			if (!buffer_uptodate(bh))
+				goto next;
+		}
+
+		if (ext4_should_journal_data(inode)) {
+			BUFFER_TRACE(bh, "get write access");
+			err = ext4_journal_get_write_access(handle, bh);
+			if (err)
+				goto next;
+		}
+
+		zero_user(page, pos, range_to_discard);
+
+		err = 0;
+		if (ext4_should_journal_data(inode)) {
+			err = ext4_handle_dirty_metadata(handle, inode, bh);
+		} else
+			mark_buffer_dirty(bh);
+
+		BUFFER_TRACE(bh, "Partial buffer zeroed");
+next:
+		bh = bh->b_this_page;
+		iblock++;
+		pos += range_to_discard;
+	}
+
+	return err;
+}
+
+int ext4_can_truncate(struct inode *inode)
+{
+	if (S_ISREG(inode->i_mode))
+		return 1;
+	if (S_ISDIR(inode->i_mode))
+		return 1;
+	if (S_ISLNK(inode->i_mode))
+		return !ext4_inode_is_fast_symlink(inode);
+	return 0;
+}
+
+/*
+ * ext4_punch_hole: punches a hole in a file by releaseing the blocks
+ * associated with the given offset and length
+ *
+ * @inode:  File inode
+ * @offset: The offset where the hole will begin
+ * @len:    The length of the hole
+ *
+ * Returns: 0 on sucess or negative on failure
+ */
+
+int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
+{
+	struct inode *inode = file->f_path.dentry->d_inode;
+	if (!S_ISREG(inode->i_mode))
+		return -EOPNOTSUPP;
+
+	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
+		/* TODO: Add support for non extent hole punching */
+		return -EOPNOTSUPP;
+	}
+
+	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
+		/* TODO: Add support for bigalloc file systems */
+		return -EOPNOTSUPP;
+	}
+
+	return ext4_ext_punch_hole(file, offset, length);
+}
+
+/*
+ * ext4_truncate()
+ *
+ * We block out ext4_get_block() block instantiations across the entire
+ * transaction, and VFS/VM ensures that ext4_truncate() cannot run
+ * simultaneously on behalf of the same inode.
+ *
+ * As we work through the truncate and commit bits of it to the journal there
+ * is one core, guiding principle: the file's tree must always be consistent on
+ * disk.  We must be able to restart the truncate after a crash.
+ *
+ * The file's tree may be transiently inconsistent in memory (although it
+ * probably isn't), but whenever we close off and commit a journal transaction,
+ * the contents of (the filesystem + the journal) must be consistent and
+ * restartable.  It's pretty simple, really: bottom up, right to left (although
+ * left-to-right works OK too).
+ *
+ * Note that at recovery time, journal replay occurs *before* the restart of
+ * truncate against the orphan inode list.
+ *
+ * The committed inode has the new, desired i_size (which is the same as
+ * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
+ * that this inode's truncate did not complete and it will again call
+ * ext4_truncate() to have another go.  So there will be instantiated blocks
+ * to the right of the truncation point in a crashed ext4 filesystem.  But
+ * that's fine - as long as they are linked from the inode, the post-crash
+ * ext4_truncate() run will find them and release them.
+ */
+void ext4_truncate(struct inode *inode)
+{
+	trace_ext4_truncate_enter(inode);
+
+	if (!ext4_can_truncate(inode))
+		return;
+
+	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
+
+	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
+		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
+
+	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
+		ext4_ext_truncate(inode);
+	else
+		ext4_ind_truncate(inode);
+
+	trace_ext4_truncate_exit(inode);
+}
+
+/*
+ * ext4_get_inode_loc returns with an extra refcount against the inode's
+ * underlying buffer_head on success. If 'in_mem' is true, we have all
+ * data in memory that is needed to recreate the on-disk version of this
+ * inode.
+ */
+static int __ext4_get_inode_loc(struct inode *inode,
+				struct ext4_iloc *iloc, int in_mem)
+{
+	struct ext4_group_desc	*gdp;
+	struct buffer_head	*bh;
+	struct super_block	*sb = inode->i_sb;
+	ext4_fsblk_t		block;
+	int			inodes_per_block, inode_offset;
+
+	iloc->bh = NULL;
+	if (!ext4_valid_inum(sb, inode->i_ino))
+		return -EIO;
+
+	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
+	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
+	if (!gdp)
+		return -EIO;
+
+	/*
+	 * Figure out the offset within the block group inode table
+	 */
+	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
+	inode_offset = ((inode->i_ino - 1) %
+			EXT4_INODES_PER_GROUP(sb));
+	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
+	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
+
+	bh = sb_getblk(sb, block);
+	if (!bh)
+		return -ENOMEM;
+	if (!buffer_uptodate(bh)) {
+		lock_buffer(bh);
+
+		/*
+		 * If the buffer has the write error flag, we have failed
+		 * to write out another inode in the same block.  In this
+		 * case, we don't have to read the block because we may
+		 * read the old inode data successfully.
+		 */
+		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
+			set_buffer_uptodate(bh);
+
+		if (buffer_uptodate(bh)) {
+			/* someone brought it uptodate while we waited */
+			unlock_buffer(bh);
+			goto has_buffer;
+		}
+
+		/*
+		 * If we have all information of the inode in memory and this
+		 * is the only valid inode in the block, we need not read the
+		 * block.
+		 */
+		if (in_mem) {
+			struct buffer_head *bitmap_bh;
+			int i, start;
+
+			start = inode_offset & ~(inodes_per_block - 1);
+
+			/* Is the inode bitmap in cache? */
+			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
+			if (!bitmap_bh)
+				goto make_io;
+
+			/*
+			 * If the inode bitmap isn't in cache then the
+			 * optimisation may end up performing two reads instead
+			 * of one, so skip it.
+			 */
+			if (!buffer_uptodate(bitmap_bh)) {
+				brelse(bitmap_bh);
+				goto make_io;
+			}
+			for (i = start; i < start + inodes_per_block; i++) {
+				if (i == inode_offset)
+					continue;
+				if (ext4_test_bit(i, bitmap_bh->b_data))
+					break;
+			}
+			brelse(bitmap_bh);
+			if (i == start + inodes_per_block) {
+				/* all other inodes are free, so skip I/O */
+				memset(bh->b_data, 0, bh->b_size);
+				set_buffer_uptodate(bh);
+				unlock_buffer(bh);
+				goto has_buffer;
+			}
+		}
+
+make_io:
+		/*
+		 * If we need to do any I/O, try to pre-readahead extra
+		 * blocks from the inode table.
+		 */
+		if (EXT4_SB(sb)->s_inode_readahead_blks) {
+			ext4_fsblk_t b, end, table;
+			unsigned num;
+
+			table = ext4_inode_table(sb, gdp);
+			/* s_inode_readahead_blks is always a power of 2 */
+			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
+			if (table > b)
+				b = table;
+			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
+			num = EXT4_INODES_PER_GROUP(sb);
+			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
+				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
+				num -= ext4_itable_unused_count(sb, gdp);
+			table += num / inodes_per_block;
+			if (end > table)
+				end = table;
+			while (b <= end)
+				sb_breadahead(sb, b++);
+		}
+
+		/*
+		 * There are other valid inodes in the buffer, this inode
+		 * has in-inode xattrs, or we don't have this inode in memory.
+		 * Read the block from disk.
+		 */
+		trace_ext4_load_inode(inode);
+		get_bh(bh);
+		bh->b_end_io = end_buffer_read_sync;
+		submit_bh(READ | REQ_META | REQ_PRIO, bh);
+		wait_on_buffer(bh);
+		if (!buffer_uptodate(bh)) {
+			EXT4_ERROR_INODE_BLOCK(inode, block,
+					       "unable to read itable block");
+			brelse(bh);
+			return -EIO;
+		}
+	}
+has_buffer:
+	iloc->bh = bh;
+	return 0;
+}
+
+int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
+{
+	/* We have all inode data except xattrs in memory here. */
+	return __ext4_get_inode_loc(inode, iloc,
+		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
+}
+
+void ext4_set_inode_flags(struct inode *inode)
+{
+	unsigned int flags = EXT4_I(inode)->i_flags;
+	unsigned int new_fl = 0;
+
+	if (flags & EXT4_SYNC_FL)
+		new_fl |= S_SYNC;
+	if (flags & EXT4_APPEND_FL)
+		new_fl |= S_APPEND;
+	if (flags & EXT4_IMMUTABLE_FL)
+		new_fl |= S_IMMUTABLE;
+	if (flags & EXT4_NOATIME_FL)
+		new_fl |= S_NOATIME;
+	if (flags & EXT4_DIRSYNC_FL)
+		new_fl |= S_DIRSYNC;
+	set_mask_bits(&inode->i_flags,
+		      S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
+}
+
+/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
+void ext4_get_inode_flags(struct ext4_inode_info *ei)
+{
+	unsigned int vfs_fl;
+	unsigned long old_fl, new_fl;
+
+	do {
+		vfs_fl = ei->vfs_inode.i_flags;
+		old_fl = ei->i_flags;
+		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
+				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
+				EXT4_DIRSYNC_FL);
+		if (vfs_fl & S_SYNC)
+			new_fl |= EXT4_SYNC_FL;
+		if (vfs_fl & S_APPEND)
+			new_fl |= EXT4_APPEND_FL;
+		if (vfs_fl & S_IMMUTABLE)
+			new_fl |= EXT4_IMMUTABLE_FL;
+		if (vfs_fl & S_NOATIME)
+			new_fl |= EXT4_NOATIME_FL;
+		if (vfs_fl & S_DIRSYNC)
+			new_fl |= EXT4_DIRSYNC_FL;
+	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
+}
+
+static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
+				  struct ext4_inode_info *ei)
+{
+	blkcnt_t i_blocks ;
+	struct inode *inode = &(ei->vfs_inode);
+	struct super_block *sb = inode->i_sb;
+
+	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
+				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
+		/* we are using combined 48 bit field */
+		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
+					le32_to_cpu(raw_inode->i_blocks_lo);
+		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
+			/* i_blocks represent file system block size */
+			return i_blocks  << (inode->i_blkbits - 9);
+		} else {
+			return i_blocks;
+		}
+	} else {
+		return le32_to_cpu(raw_inode->i_blocks_lo);
+	}
+}
+
+struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
+{
+	struct ext4_iloc iloc;
+	struct ext4_inode *raw_inode;
+	struct ext4_inode_info *ei;
+	struct inode *inode;
+	journal_t *journal = EXT4_SB(sb)->s_journal;
+	long ret;
+	int block;
+
+	inode = iget_locked(sb, ino);
+	if (!inode)
+		return ERR_PTR(-ENOMEM);
+	if (!(inode->i_state & I_NEW))
+		return inode;
+
+	ei = EXT4_I(inode);
+	iloc.bh = NULL;
+
+	ret = __ext4_get_inode_loc(inode, &iloc, 0);
+	if (ret < 0)
+		goto bad_inode;
+	raw_inode = ext4_raw_inode(&iloc);
+	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
+	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
+	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
+	if (!(test_opt(inode->i_sb, NO_UID32))) {
+		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
+		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
+	}
+	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
+
+	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
+	ei->i_dir_start_lookup = 0;
+	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
+	/* We now have enough fields to check if the inode was active or not.
+	 * This is needed because nfsd might try to access dead inodes
+	 * the test is that same one that e2fsck uses
+	 * NeilBrown 1999oct15
+	 */
+	if (inode->i_nlink == 0) {
+		if (inode->i_mode == 0 ||
+		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
+			/* this inode is deleted */
+			ret = -ESTALE;
+			goto bad_inode;
+		}
+		/* The only unlinked inodes we let through here have
+		 * valid i_mode and are being read by the orphan
+		 * recovery code: that's fine, we're about to complete
+		 * the process of deleting those. */
+	}
+	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
+	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
+	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
+	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
+		ei->i_file_acl |=
+			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
+	inode->i_size = ext4_isize(raw_inode);
+	ei->i_disksize = inode->i_size;
+#ifdef CONFIG_QUOTA
+	ei->i_reserved_quota = 0;
+#endif
+	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
+	ei->i_block_group = iloc.block_group;
+	ei->i_last_alloc_group = ~0;
+	/*
+	 * NOTE! The in-memory inode i_data array is in little-endian order
+	 * even on big-endian machines: we do NOT byteswap the block numbers!
+	 */
+	for (block = 0; block < EXT4_N_BLOCKS; block++)
+		ei->i_data[block] = raw_inode->i_block[block];
+	INIT_LIST_HEAD(&ei->i_orphan);
+
+	/*
+	 * Set transaction id's of transactions that have to be committed
+	 * to finish f[data]sync. We set them to currently running transaction
+	 * as we cannot be sure that the inode or some of its metadata isn't
+	 * part of the transaction - the inode could have been reclaimed and
+	 * now it is reread from disk.
+	 */
+	if (journal) {
+		transaction_t *transaction;
+		tid_t tid;
+
+		read_lock(&journal->j_state_lock);
+		if (journal->j_running_transaction)
+			transaction = journal->j_running_transaction;
+		else
+			transaction = journal->j_committing_transaction;
+		if (transaction)
+			tid = transaction->t_tid;
+		else
+			tid = journal->j_commit_sequence;
+		read_unlock(&journal->j_state_lock);
+		ei->i_sync_tid = tid;
+		ei->i_datasync_tid = tid;
+	}
+
+	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
+		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
+		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
+		    EXT4_INODE_SIZE(inode->i_sb)) {
+			ret = -EIO;
+			goto bad_inode;
+		}
+		if (ei->i_extra_isize == 0) {
+			/* The extra space is currently unused. Use it. */
+			ei->i_extra_isize = sizeof(struct ext4_inode) -
+					    EXT4_GOOD_OLD_INODE_SIZE;
+		} else {
+			__le32 *magic = (void *)raw_inode +
+					EXT4_GOOD_OLD_INODE_SIZE +
+					ei->i_extra_isize;
+			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
+				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
+		}
+	} else
+		ei->i_extra_isize = 0;
+
+	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
+	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
+	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
+	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
+
+	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
+	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
+		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
+			inode->i_version |=
+			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
+	}
+
+	ret = 0;
+	if (ei->i_file_acl &&
+	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
+		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
+				 ei->i_file_acl);
+		ret = -EIO;
+		goto bad_inode;
+	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
+		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
+		    (S_ISLNK(inode->i_mode) &&
+		     !ext4_inode_is_fast_symlink(inode)))
+			/* Validate extent which is part of inode */
+			ret = ext4_ext_check_inode(inode);
+	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
+		   (S_ISLNK(inode->i_mode) &&
+		    !ext4_inode_is_fast_symlink(inode))) {
+		/* Validate block references which are part of inode */
+		ret = ext4_ind_check_inode(inode);
+	}
+	if (ret)
+		goto bad_inode;
+
+	if (S_ISREG(inode->i_mode)) {
+		inode->i_op = &ext4_file_inode_operations;
+		inode->i_fop = &ext4_file_operations;
+		ext4_set_aops(inode);
+	} else if (S_ISDIR(inode->i_mode)) {
+		inode->i_op = &ext4_dir_inode_operations;
+		inode->i_fop = &ext4_dir_operations;
+	} else if (S_ISLNK(inode->i_mode)) {
+		if (ext4_inode_is_fast_symlink(inode)) {
+			inode->i_op = &ext4_fast_symlink_inode_operations;
+			nd_terminate_link(ei->i_data, inode->i_size,
+				sizeof(ei->i_data) - 1);
+		} else {
+			inode->i_op = &ext4_symlink_inode_operations;
+			ext4_set_aops(inode);
+		}
+	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
+	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
+		inode->i_op = &ext4_special_inode_operations;
+		if (raw_inode->i_block[0])
+			init_special_inode(inode, inode->i_mode,
+			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
+		else
+			init_special_inode(inode, inode->i_mode,
+			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
+	} else {
+		ret = -EIO;
+		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
+		goto bad_inode;
+	}
+	brelse(iloc.bh);
+	ext4_set_inode_flags(inode);
+	unlock_new_inode(inode);
+	return inode;
+
+bad_inode:
+	brelse(iloc.bh);
+	iget_failed(inode);
+	return ERR_PTR(ret);
+}
+
+struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
+{
+	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
+		return ERR_PTR(-EIO);
+	return ext4_iget(sb, ino);
+}
+
+static int ext4_inode_blocks_set(handle_t *handle,
+				struct ext4_inode *raw_inode,
+				struct ext4_inode_info *ei)
+{
+	struct inode *inode = &(ei->vfs_inode);
+	u64 i_blocks = inode->i_blocks;
+	struct super_block *sb = inode->i_sb;
+
+	if (i_blocks <= ~0U) {
+		/*
+		 * i_blocks can be represnted in a 32 bit variable
+		 * as multiple of 512 bytes
+		 */
+		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
+		raw_inode->i_blocks_high = 0;
+		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
+		return 0;
+	}
+	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
+		return -EFBIG;
+
+	if (i_blocks <= 0xffffffffffffULL) {
+		/*
+		 * i_blocks can be represented in a 48 bit variable
+		 * as multiple of 512 bytes
+		 */
+		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
+		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
+		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
+	} else {
+		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
+		/* i_block is stored in file system block size */
+		i_blocks = i_blocks >> (inode->i_blkbits - 9);
+		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
+		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
+	}
+	return 0;
+}
+
+/*
+ * Post the struct inode info into an on-disk inode location in the
+ * buffer-cache.  This gobbles the caller's reference to the
+ * buffer_head in the inode location struct.
+ *
+ * The caller must have write access to iloc->bh.
+ */
+static int ext4_do_update_inode(handle_t *handle,
+				struct inode *inode,
+				struct ext4_iloc *iloc)
+{
+	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	struct buffer_head *bh = iloc->bh;
+	int err = 0, rc, block;
+	int need_datasync = 0;
+
+	/* For fields not not tracking in the in-memory inode,
+	 * initialise them to zero for new inodes. */
+	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
+		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
+
+	ext4_get_inode_flags(ei);
+	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
+	if (!(test_opt(inode->i_sb, NO_UID32))) {
+		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
+		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
+/*
+ * Fix up interoperability with old kernels. Otherwise, old inodes get
+ * re-used with the upper 16 bits of the uid/gid intact
+ */
+		if (!ei->i_dtime) {
+			raw_inode->i_uid_high =
+				cpu_to_le16(high_16_bits(inode->i_uid));
+			raw_inode->i_gid_high =
+				cpu_to_le16(high_16_bits(inode->i_gid));
+		} else {
+			raw_inode->i_uid_high = 0;
+			raw_inode->i_gid_high = 0;
+		}
+	} else {
+		raw_inode->i_uid_low =
+			cpu_to_le16(fs_high2lowuid(inode->i_uid));
+		raw_inode->i_gid_low =
+			cpu_to_le16(fs_high2lowgid(inode->i_gid));
+		raw_inode->i_uid_high = 0;
+		raw_inode->i_gid_high = 0;
+	}
+	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
+
+	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
+	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
+	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
+	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
+
+	if (ext4_inode_blocks_set(handle, raw_inode, ei))
+		goto out_brelse;
+	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
+	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
+	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
+	    cpu_to_le32(EXT4_OS_HURD))
+		raw_inode->i_file_acl_high =
+			cpu_to_le16(ei->i_file_acl >> 32);
+	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
+	if (ei->i_disksize != ext4_isize(raw_inode)) {
+		ext4_isize_set(raw_inode, ei->i_disksize);
+		need_datasync = 1;
+	}
+	if (ei->i_disksize > 0x7fffffffULL) {
+		struct super_block *sb = inode->i_sb;
+		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
+				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
+				EXT4_SB(sb)->s_es->s_rev_level ==
+				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
+			/* If this is the first large file
+			 * created, add a flag to the superblock.
+			 */
+			err = ext4_journal_get_write_access(handle,
+					EXT4_SB(sb)->s_sbh);
+			if (err)
+				goto out_brelse;
+			ext4_update_dynamic_rev(sb);
+			EXT4_SET_RO_COMPAT_FEATURE(sb,
+					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
+			ext4_handle_sync(handle);
+			err = ext4_handle_dirty_super(handle, sb);
+		}
+	}
+	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
+	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
+		if (old_valid_dev(inode->i_rdev)) {
+			raw_inode->i_block[0] =
+				cpu_to_le32(old_encode_dev(inode->i_rdev));
+			raw_inode->i_block[1] = 0;
+		} else {
+			raw_inode->i_block[0] = 0;
+			raw_inode->i_block[1] =
+				cpu_to_le32(new_encode_dev(inode->i_rdev));
+			raw_inode->i_block[2] = 0;
+		}
+	} else
+		for (block = 0; block < EXT4_N_BLOCKS; block++)
+			raw_inode->i_block[block] = ei->i_data[block];
+
+	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
+	if (ei->i_extra_isize) {
+		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
+			raw_inode->i_version_hi =
+			cpu_to_le32(inode->i_version >> 32);
+		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
+	}
+
+	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
+	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
+	if (!err)
+		err = rc;
+	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
+
+	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
+out_brelse:
+	brelse(bh);
+	ext4_std_error(inode->i_sb, err);
+	return err;
+}
+
+/*
+ * ext4_write_inode()
+ *
+ * We are called from a few places:
+ *
+ * - Within generic_file_write() for O_SYNC files.
+ *   Here, there will be no transaction running. We wait for any running
+ *   trasnaction to commit.
+ *
+ * - Within sys_sync(), kupdate and such.
+ *   We wait on commit, if tol to.
+ *
+ * - Within prune_icache() (PF_MEMALLOC == true)
+ *   Here we simply return.  We can't afford to block kswapd on the
+ *   journal commit.
+ *
+ * In all cases it is actually safe for us to return without doing anything,
+ * because the inode has been copied into a raw inode buffer in
+ * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
+ * knfsd.
+ *
+ * Note that we are absolutely dependent upon all inode dirtiers doing the
+ * right thing: they *must* call mark_inode_dirty() after dirtying info in
+ * which we are interested.
+ *
+ * It would be a bug for them to not do this.  The code:
+ *
+ *	mark_inode_dirty(inode)
+ *	stuff();
+ *	inode->i_size = expr;
+ *
+ * is in error because a kswapd-driven write_inode() could occur while
+ * `stuff()' is running, and the new i_size will be lost.  Plus the inode
+ * will no longer be on the superblock's dirty inode list.
+ */
+int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
+{
+	int err;
+
+	if (current->flags & PF_MEMALLOC)
+		return 0;
+
+	if (EXT4_SB(inode->i_sb)->s_journal) {
+		if (ext4_journal_current_handle()) {
+			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
+			dump_stack();
+			return -EIO;
+		}
+
+		if (wbc->sync_mode != WB_SYNC_ALL)
+			return 0;
+
+		err = ext4_force_commit(inode->i_sb);
+	} else {
+		struct ext4_iloc iloc;
+
+		err = __ext4_get_inode_loc(inode, &iloc, 0);
+		if (err)
+			return err;
+		if (wbc->sync_mode == WB_SYNC_ALL)
+			sync_dirty_buffer(iloc.bh);
+		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
+			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
+					 "IO error syncing inode");
+			err = -EIO;
+		}
+		brelse(iloc.bh);
+	}
+	return err;
+}
+
+/*
+ * ext4_setattr()
+ *
+ * Called from notify_change.
+ *
+ * We want to trap VFS attempts to truncate the file as soon as
+ * possible.  In particular, we want to make sure that when the VFS
+ * shrinks i_size, we put the inode on the orphan list and modify
+ * i_disksize immediately, so that during the subsequent flushing of
+ * dirty pages and freeing of disk blocks, we can guarantee that any
+ * commit will leave the blocks being flushed in an unused state on
+ * disk.  (On recovery, the inode will get truncated and the blocks will
+ * be freed, so we have a strong guarantee that no future commit will
+ * leave these blocks visible to the user.)
+ *
+ * Another thing we have to assure is that if we are in ordered mode
+ * and inode is still attached to the committing transaction, we must
+ * we start writeout of all the dirty pages which are being truncated.
+ * This way we are sure that all the data written in the previous
+ * transaction are already on disk (truncate waits for pages under
+ * writeback).
+ *
+ * Called with inode->i_mutex down.
+ */
+int ext4_setattr(struct dentry *dentry, struct iattr *attr)
+{
+	struct inode *inode = dentry->d_inode;
+	int error, rc = 0;
+	int orphan = 0;
+	const unsigned int ia_valid = attr->ia_valid;
+
+	error = inode_change_ok(inode, attr);
+	if (error)
+		return error;
+
+	if (is_quota_modification(inode, attr))
+		dquot_initialize(inode);
+	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
+		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
+		handle_t *handle;
+
+		/* (user+group)*(old+new) structure, inode write (sb,
+		 * inode block, ? - but truncate inode update has it) */
+		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
+					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
+		if (IS_ERR(handle)) {
+			error = PTR_ERR(handle);
+			goto err_out;
+		}
+		error = dquot_transfer(inode, attr);
+		if (error) {
+			ext4_journal_stop(handle);
+			return error;
+		}
+		/* Update corresponding info in inode so that everything is in
+		 * one transaction */
+		if (attr->ia_valid & ATTR_UID)
+			inode->i_uid = attr->ia_uid;
+		if (attr->ia_valid & ATTR_GID)
+			inode->i_gid = attr->ia_gid;
+		error = ext4_mark_inode_dirty(handle, inode);
+		ext4_journal_stop(handle);
+	}
+
+	if (attr->ia_valid & ATTR_SIZE) {
+		inode_dio_wait(inode);
+
+		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
+			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+
+			if (attr->ia_size > sbi->s_bitmap_maxbytes)
+				return -EFBIG;
+		}
+	}
+
+	if (S_ISREG(inode->i_mode) &&
+	    attr->ia_valid & ATTR_SIZE &&
+	    (attr->ia_size < inode->i_size)) {
+		handle_t *handle;
+
+		handle = ext4_journal_start(inode, 3);
+		if (IS_ERR(handle)) {
+			error = PTR_ERR(handle);
+			goto err_out;
+		}
+		if (ext4_handle_valid(handle)) {
+			error = ext4_orphan_add(handle, inode);
+			orphan = 1;
+		}
+		EXT4_I(inode)->i_disksize = attr->ia_size;
+		rc = ext4_mark_inode_dirty(handle, inode);
+		if (!error)
+			error = rc;
+		ext4_journal_stop(handle);
+
+		if (ext4_should_order_data(inode)) {
+			error = ext4_begin_ordered_truncate(inode,
+							    attr->ia_size);
+			if (error) {
+				/* Do as much error cleanup as possible */
+				handle = ext4_journal_start(inode, 3);
+				if (IS_ERR(handle)) {
+					ext4_orphan_del(NULL, inode);
+					goto err_out;
+				}
+				ext4_orphan_del(handle, inode);
+				orphan = 0;
+				ext4_journal_stop(handle);
+				goto err_out;
+			}
+		}
+	}
+
+	if (attr->ia_valid & ATTR_SIZE) {
+		if (attr->ia_size != i_size_read(inode))
+			truncate_setsize(inode, attr->ia_size);
+		ext4_truncate(inode);
+	}
+
+	if (!rc) {
+		setattr_copy(inode, attr);
+		mark_inode_dirty(inode);
+	}
+
+	/*
+	 * If the call to ext4_truncate failed to get a transaction handle at
+	 * all, we need to clean up the in-core orphan list manually.
+	 */
+	if (orphan && inode->i_nlink)
+		ext4_orphan_del(NULL, inode);
+
+	if (!rc && (ia_valid & ATTR_MODE))
+		rc = ext4_acl_chmod(inode);
+
+err_out:
+	ext4_std_error(inode->i_sb, error);
+	if (!error)
+		error = rc;
+	return error;
+}
+
+int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
+		 struct kstat *stat)
+{
+	struct inode *inode;
+	unsigned long long delalloc_blocks;
+
+	inode = dentry->d_inode;
+	generic_fillattr(inode, stat);
+
+	/*
+	 * We can't update i_blocks if the block allocation is delayed
+	 * otherwise in the case of system crash before the real block
+	 * allocation is done, we will have i_blocks inconsistent with
+	 * on-disk file blocks.
+	 * We always keep i_blocks updated together with real
+	 * allocation. But to not confuse with user, stat
+	 * will return the blocks that include the delayed allocation
+	 * blocks for this file.
+	 */
+	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
+
+	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
+	return 0;
+}
+
+static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
+{
+	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
+		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
+	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
+}
+
+/*
+ * Account for index blocks, block groups bitmaps and block group
+ * descriptor blocks if modify datablocks and index blocks
+ * worse case, the indexs blocks spread over different block groups
+ *
+ * If datablocks are discontiguous, they are possible to spread over
+ * different block groups too. If they are contiuguous, with flexbg,
+ * they could still across block group boundary.
+ *
+ * Also account for superblock, inode, quota and xattr blocks
+ */
+static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
+{
+	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
+	int gdpblocks;
+	int idxblocks;
+	int ret = 0;
+
+	/*
+	 * How many index blocks need to touch to modify nrblocks?
+	 * The "Chunk" flag indicating whether the nrblocks is
+	 * physically contiguous on disk
+	 *
+	 * For Direct IO and fallocate, they calls get_block to allocate
+	 * one single extent at a time, so they could set the "Chunk" flag
+	 */
+	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
+
+	ret = idxblocks;
+
+	/*
+	 * Now let's see how many group bitmaps and group descriptors need
+	 * to account
+	 */
+	groups = idxblocks;
+	if (chunk)
+		groups += 1;
+	else
+		groups += nrblocks;
+
+	gdpblocks = groups;
+	if (groups > ngroups)
+		groups = ngroups;
+	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
+		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
+
+	/* bitmaps and block group descriptor blocks */
+	ret += groups + gdpblocks;
+
+	/* Blocks for super block, inode, quota and xattr blocks */
+	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
+
+	return ret;
+}
+
+/*
+ * Calculate the total number of credits to reserve to fit
+ * the modification of a single pages into a single transaction,
+ * which may include multiple chunks of block allocations.
+ *
+ * This could be called via ext4_write_begin()
+ *
+ * We need to consider the worse case, when
+ * one new block per extent.
+ */
+int ext4_writepage_trans_blocks(struct inode *inode)
+{
+	int bpp = ext4_journal_blocks_per_page(inode);
+	int ret;
+
+	ret = ext4_meta_trans_blocks(inode, bpp, 0);
+
+	/* Account for data blocks for journalled mode */
+	if (ext4_should_journal_data(inode))
+		ret += bpp;
+	return ret;
+}
+
+/*
+ * Calculate the journal credits for a chunk of data modification.
+ *
+ * This is called from DIO, fallocate or whoever calling
+ * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
+ *
+ * journal buffers for data blocks are not included here, as DIO
+ * and fallocate do no need to journal data buffers.
+ */
+int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
+{
+	return ext4_meta_trans_blocks(inode, nrblocks, 1);
+}
+
+/*
+ * The caller must have previously called ext4_reserve_inode_write().
+ * Give this, we know that the caller already has write access to iloc->bh.
+ */
+int ext4_mark_iloc_dirty(handle_t *handle,
+			 struct inode *inode, struct ext4_iloc *iloc)
+{
+	int err = 0;
+
+	if (IS_I_VERSION(inode))
+		inode_inc_iversion(inode);
+
+	/* the do_update_inode consumes one bh->b_count */
+	get_bh(iloc->bh);
+
+	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
+	err = ext4_do_update_inode(handle, inode, iloc);
+	put_bh(iloc->bh);
+	return err;
+}
+
+/*
+ * On success, We end up with an outstanding reference count against
+ * iloc->bh.  This _must_ be cleaned up later.
+ */
+
+int
+ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
+			 struct ext4_iloc *iloc)
+{
+	int err;
+
+	err = ext4_get_inode_loc(inode, iloc);
+	if (!err) {
+		BUFFER_TRACE(iloc->bh, "get_write_access");
+		err = ext4_journal_get_write_access(handle, iloc->bh);
+		if (err) {
+			brelse(iloc->bh);
+			iloc->bh = NULL;
+		}
+	}
+	ext4_std_error(inode->i_sb, err);
+	return err;
+}
+
+/*
+ * Expand an inode by new_extra_isize bytes.
+ * Returns 0 on success or negative error number on failure.
+ */
+static int ext4_expand_extra_isize(struct inode *inode,
+				   unsigned int new_extra_isize,
+				   struct ext4_iloc iloc,
+				   handle_t *handle)
+{
+	struct ext4_inode *raw_inode;
+	struct ext4_xattr_ibody_header *header;
+
+	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
+		return 0;
+
+	raw_inode = ext4_raw_inode(&iloc);
+
+	header = IHDR(inode, raw_inode);
+
+	/* No extended attributes present */
+	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
+	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
+		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
+			new_extra_isize);
+		EXT4_I(inode)->i_extra_isize = new_extra_isize;
+		return 0;
+	}
+
+	/* try to expand with EAs present */
+	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
+					  raw_inode, handle);
+}
+
+/*
+ * What we do here is to mark the in-core inode as clean with respect to inode
+ * dirtiness (it may still be data-dirty).
+ * This means that the in-core inode may be reaped by prune_icache
+ * without having to perform any I/O.  This is a very good thing,
+ * because *any* task may call prune_icache - even ones which
+ * have a transaction open against a different journal.
+ *
+ * Is this cheating?  Not really.  Sure, we haven't written the
+ * inode out, but prune_icache isn't a user-visible syncing function.
+ * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
+ * we start and wait on commits.
+ *
+ * Is this efficient/effective?  Well, we're being nice to the system
+ * by cleaning up our inodes proactively so they can be reaped
+ * without I/O.  But we are potentially leaving up to five seconds'
+ * worth of inodes floating about which prune_icache wants us to
+ * write out.  One way to fix that would be to get prune_icache()
+ * to do a write_super() to free up some memory.  It has the desired
+ * effect.
+ */
+int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
+{
+	struct ext4_iloc iloc;
+	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
+	static unsigned int mnt_count;
+	int err, ret;
+
+	might_sleep();
+	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
+	err = ext4_reserve_inode_write(handle, inode, &iloc);
+	if (ext4_handle_valid(handle) &&
+	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
+	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
+		/*
+		 * We need extra buffer credits since we may write into EA block
+		 * with this same handle. If journal_extend fails, then it will
+		 * only result in a minor loss of functionality for that inode.
+		 * If this is felt to be critical, then e2fsck should be run to
+		 * force a large enough s_min_extra_isize.
+		 */
+		if ((jbd2_journal_extend(handle,
+			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
+			ret = ext4_expand_extra_isize(inode,
+						      sbi->s_want_extra_isize,
+						      iloc, handle);
+			if (ret) {
+				ext4_set_inode_state(inode,
+						     EXT4_STATE_NO_EXPAND);
+				if (mnt_count !=
+					le16_to_cpu(sbi->s_es->s_mnt_count)) {
+					ext4_warning(inode->i_sb,
+					"Unable to expand inode %lu. Delete"
+					" some EAs or run e2fsck.",
+					inode->i_ino);
+					mnt_count =
+					  le16_to_cpu(sbi->s_es->s_mnt_count);
+				}
+			}
+		}
+	}
+	if (!err)
+		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
+	return err;
+}
+
+/*
+ * ext4_dirty_inode() is called from __mark_inode_dirty()
+ *
+ * We're really interested in the case where a file is being extended.
+ * i_size has been changed by generic_commit_write() and we thus need
+ * to include the updated inode in the current transaction.
+ *
+ * Also, dquot_alloc_block() will always dirty the inode when blocks
+ * are allocated to the file.
+ *
+ * If the inode is marked synchronous, we don't honour that here - doing
+ * so would cause a commit on atime updates, which we don't bother doing.
+ * We handle synchronous inodes at the highest possible level.
+ */
+void ext4_dirty_inode(struct inode *inode, int flags)
+{
+	handle_t *handle;
+
+	handle = ext4_journal_start(inode, 2);
+	if (IS_ERR(handle))
+		goto out;
+
+	ext4_mark_inode_dirty(handle, inode);
+
+	ext4_journal_stop(handle);
+out:
+	return;
+}
+
+#if 0
+/*
+ * Bind an inode's backing buffer_head into this transaction, to prevent
+ * it from being flushed to disk early.  Unlike
+ * ext4_reserve_inode_write, this leaves behind no bh reference and
+ * returns no iloc structure, so the caller needs to repeat the iloc
+ * lookup to mark the inode dirty later.
+ */
+static int ext4_pin_inode(handle_t *handle, struct inode *inode)
+{
+	struct ext4_iloc iloc;
+
+	int err = 0;
+	if (handle) {
+		err = ext4_get_inode_loc(inode, &iloc);
+		if (!err) {
+			BUFFER_TRACE(iloc.bh, "get_write_access");
+			err = jbd2_journal_get_write_access(handle, iloc.bh);
+			if (!err)
+				err = ext4_handle_dirty_metadata(handle,
+								 NULL,
+								 iloc.bh);
+			brelse(iloc.bh);
+		}
+	}
+	ext4_std_error(inode->i_sb, err);
+	return err;
+}
+#endif
+
+int ext4_change_inode_journal_flag(struct inode *inode, int val)
+{
+	journal_t *journal;
+	handle_t *handle;
+	int err;
+
+	/*
+	 * We have to be very careful here: changing a data block's
+	 * journaling status dynamically is dangerous.  If we write a
+	 * data block to the journal, change the status and then delete
+	 * that block, we risk forgetting to revoke the old log record
+	 * from the journal and so a subsequent replay can corrupt data.
+	 * So, first we make sure that the journal is empty and that
+	 * nobody is changing anything.
+	 */
+
+	journal = EXT4_JOURNAL(inode);
+	if (!journal)
+		return 0;
+	if (is_journal_aborted(journal))
+		return -EROFS;
+	/* We have to allocate physical blocks for delalloc blocks
+	 * before flushing journal. otherwise delalloc blocks can not
+	 * be allocated any more. even more truncate on delalloc blocks
+	 * could trigger BUG by flushing delalloc blocks in journal.
+	 * There is no delalloc block in non-journal data mode.
+	 */
+	if (val && test_opt(inode->i_sb, DELALLOC)) {
+		err = ext4_alloc_da_blocks(inode);
+		if (err < 0)
+			return err;
+	}
+
+	jbd2_journal_lock_updates(journal);
+
+	/*
+	 * OK, there are no updates running now, and all cached data is
+	 * synced to disk.  We are now in a completely consistent state
+	 * which doesn't have anything in the journal, and we know that
+	 * no filesystem updates are running, so it is safe to modify
+	 * the inode's in-core data-journaling state flag now.
+	 */
+
+	if (val)
+		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
+	else {
+		jbd2_journal_flush(journal);
+		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
+	}
+	ext4_set_aops(inode);
+
+	jbd2_journal_unlock_updates(journal);
+
+	/* Finally we can mark the inode as dirty. */
+
+	handle = ext4_journal_start(inode, 1);
+	if (IS_ERR(handle))
+		return PTR_ERR(handle);
+
+	err = ext4_mark_inode_dirty(handle, inode);
+	ext4_handle_sync(handle);
+	ext4_journal_stop(handle);
+	ext4_std_error(inode->i_sb, err);
+
+	return err;
+}
+
+static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
+{
+	return !buffer_mapped(bh);
+}
+
+int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+	struct page *page = vmf->page;
+	loff_t size;
+	unsigned long len;
+	int ret;
+	struct file *file = vma->vm_file;
+	struct inode *inode = file->f_path.dentry->d_inode;
+	struct address_space *mapping = inode->i_mapping;
+	handle_t *handle;
+	get_block_t *get_block;
+	int retries = 0;
+
+	/*
+	 * This check is racy but catches the common case. We rely on
+	 * __block_page_mkwrite() to do a reliable check.
+	 */
+	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
+	/* Delalloc case is easy... */
+	if (test_opt(inode->i_sb, DELALLOC) &&
+	    !ext4_should_journal_data(inode) &&
+	    !ext4_nonda_switch(inode->i_sb)) {
+		do {
+			ret = __block_page_mkwrite(vma, vmf,
+						   ext4_da_get_block_prep);
+		} while (ret == -ENOSPC &&
+		       ext4_should_retry_alloc(inode->i_sb, &retries));
+		goto out_ret;
+	}
+
+	lock_page(page);
+	size = i_size_read(inode);
+	/* Page got truncated from under us? */
+	if (page->mapping != mapping || page_offset(page) > size) {
+		unlock_page(page);
+		ret = VM_FAULT_NOPAGE;
+		goto out;
+	}
+
+	if (page->index == size >> PAGE_CACHE_SHIFT)
+		len = size & ~PAGE_CACHE_MASK;
+	else
+		len = PAGE_CACHE_SIZE;
+	/*
+	 * Return if we have all the buffers mapped. This avoids the need to do
+	 * journal_start/journal_stop which can block and take a long time
+	 */
+	if (page_has_buffers(page)) {
+		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
+					ext4_bh_unmapped)) {
+			/* Wait so that we don't change page under IO */
+			wait_on_page_writeback(page);
+			ret = VM_FAULT_LOCKED;
+			goto out;
+		}
+	}
+	unlock_page(page);
+	/* OK, we need to fill the hole... */
+	if (ext4_should_dioread_nolock(inode))
+		get_block = ext4_get_block_write;
+	else
+		get_block = ext4_get_block;
+retry_alloc:
+	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
+	if (IS_ERR(handle)) {
+		ret = VM_FAULT_SIGBUS;
+		goto out;
+	}
+	ret = __block_page_mkwrite(vma, vmf, get_block);
+	if (!ret && ext4_should_journal_data(inode)) {
+		if (walk_page_buffers(handle, page_buffers(page), 0,
+			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
+			unlock_page(page);
+			ret = VM_FAULT_SIGBUS;
+			ext4_journal_stop(handle);
+			goto out;
+		}
+		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
+	}
+	ext4_journal_stop(handle);
+	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
+		goto retry_alloc;
+out_ret:
+	ret = block_page_mkwrite_return(ret);
+out:
+	return ret;
+}