[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/fs/ocfs2/journal.c b/ap/os/linux/linux-3.4.x/fs/ocfs2/journal.c
new file mode 100644
index 0000000..0a42ae9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/ocfs2/journal.c
@@ -0,0 +1,2209 @@
+/* -*- mode: c; c-basic-offset: 8; -*-
+ * vim: noexpandtab sw=8 ts=8 sts=0:
+ *
+ * journal.c
+ *
+ * Defines functions of journalling api
+ *
+ * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/kthread.h>
+#include <linux/time.h>
+#include <linux/random.h>
+
+#include <cluster/masklog.h>
+
+#include "ocfs2.h"
+
+#include "alloc.h"
+#include "blockcheck.h"
+#include "dir.h"
+#include "dlmglue.h"
+#include "extent_map.h"
+#include "heartbeat.h"
+#include "inode.h"
+#include "journal.h"
+#include "localalloc.h"
+#include "slot_map.h"
+#include "super.h"
+#include "sysfile.h"
+#include "uptodate.h"
+#include "quota.h"
+
+#include "buffer_head_io.h"
+#include "ocfs2_trace.h"
+
+DEFINE_SPINLOCK(trans_inc_lock);
+
+#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
+
+static int ocfs2_force_read_journal(struct inode *inode);
+static int ocfs2_recover_node(struct ocfs2_super *osb,
+			      int node_num, int slot_num);
+static int __ocfs2_recovery_thread(void *arg);
+static int ocfs2_commit_cache(struct ocfs2_super *osb);
+static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
+static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
+				      int dirty, int replayed);
+static int ocfs2_trylock_journal(struct ocfs2_super *osb,
+				 int slot_num);
+static int ocfs2_recover_orphans(struct ocfs2_super *osb,
+				 int slot);
+static int ocfs2_commit_thread(void *arg);
+static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
+					    int slot_num,
+					    struct ocfs2_dinode *la_dinode,
+					    struct ocfs2_dinode *tl_dinode,
+					    struct ocfs2_quota_recovery *qrec);
+
+static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
+{
+	return __ocfs2_wait_on_mount(osb, 0);
+}
+
+static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
+{
+	return __ocfs2_wait_on_mount(osb, 1);
+}
+
+/*
+ * This replay_map is to track online/offline slots, so we could recover
+ * offline slots during recovery and mount
+ */
+
+enum ocfs2_replay_state {
+	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
+	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
+	REPLAY_DONE 		/* Replay was already queued */
+};
+
+struct ocfs2_replay_map {
+	unsigned int rm_slots;
+	enum ocfs2_replay_state rm_state;
+	unsigned char rm_replay_slots[0];
+};
+
+void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
+{
+	if (!osb->replay_map)
+		return;
+
+	/* If we've already queued the replay, we don't have any more to do */
+	if (osb->replay_map->rm_state == REPLAY_DONE)
+		return;
+
+	osb->replay_map->rm_state = state;
+}
+
+int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
+{
+	struct ocfs2_replay_map *replay_map;
+	int i, node_num;
+
+	/* If replay map is already set, we don't do it again */
+	if (osb->replay_map)
+		return 0;
+
+	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
+			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
+
+	if (!replay_map) {
+		mlog_errno(-ENOMEM);
+		return -ENOMEM;
+	}
+
+	spin_lock(&osb->osb_lock);
+
+	replay_map->rm_slots = osb->max_slots;
+	replay_map->rm_state = REPLAY_UNNEEDED;
+
+	/* set rm_replay_slots for offline slot(s) */
+	for (i = 0; i < replay_map->rm_slots; i++) {
+		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
+			replay_map->rm_replay_slots[i] = 1;
+	}
+
+	osb->replay_map = replay_map;
+	spin_unlock(&osb->osb_lock);
+	return 0;
+}
+
+void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
+{
+	struct ocfs2_replay_map *replay_map = osb->replay_map;
+	int i;
+
+	if (!replay_map)
+		return;
+
+	if (replay_map->rm_state != REPLAY_NEEDED)
+		return;
+
+	for (i = 0; i < replay_map->rm_slots; i++)
+		if (replay_map->rm_replay_slots[i])
+			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
+							NULL, NULL);
+	replay_map->rm_state = REPLAY_DONE;
+}
+
+void ocfs2_free_replay_slots(struct ocfs2_super *osb)
+{
+	struct ocfs2_replay_map *replay_map = osb->replay_map;
+
+	if (!osb->replay_map)
+		return;
+
+	kfree(replay_map);
+	osb->replay_map = NULL;
+}
+
+int ocfs2_recovery_init(struct ocfs2_super *osb)
+{
+	struct ocfs2_recovery_map *rm;
+
+	mutex_init(&osb->recovery_lock);
+	osb->disable_recovery = 0;
+	osb->recovery_thread_task = NULL;
+	init_waitqueue_head(&osb->recovery_event);
+
+	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
+		     osb->max_slots * sizeof(unsigned int),
+		     GFP_KERNEL);
+	if (!rm) {
+		mlog_errno(-ENOMEM);
+		return -ENOMEM;
+	}
+
+	rm->rm_entries = (unsigned int *)((char *)rm +
+					  sizeof(struct ocfs2_recovery_map));
+	osb->recovery_map = rm;
+
+	return 0;
+}
+
+/* we can't grab the goofy sem lock from inside wait_event, so we use
+ * memory barriers to make sure that we'll see the null task before
+ * being woken up */
+static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
+{
+	mb();
+	return osb->recovery_thread_task != NULL;
+}
+
+void ocfs2_recovery_exit(struct ocfs2_super *osb)
+{
+	struct ocfs2_recovery_map *rm;
+
+	/* disable any new recovery threads and wait for any currently
+	 * running ones to exit. Do this before setting the vol_state. */
+	mutex_lock(&osb->recovery_lock);
+	osb->disable_recovery = 1;
+	mutex_unlock(&osb->recovery_lock);
+	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
+
+	/* At this point, we know that no more recovery threads can be
+	 * launched, so wait for any recovery completion work to
+	 * complete. */
+	flush_workqueue(ocfs2_wq);
+
+	/*
+	 * Now that recovery is shut down, and the osb is about to be
+	 * freed,  the osb_lock is not taken here.
+	 */
+	rm = osb->recovery_map;
+	/* XXX: Should we bug if there are dirty entries? */
+
+	kfree(rm);
+}
+
+static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
+				     unsigned int node_num)
+{
+	int i;
+	struct ocfs2_recovery_map *rm = osb->recovery_map;
+
+	assert_spin_locked(&osb->osb_lock);
+
+	for (i = 0; i < rm->rm_used; i++) {
+		if (rm->rm_entries[i] == node_num)
+			return 1;
+	}
+
+	return 0;
+}
+
+/* Behaves like test-and-set.  Returns the previous value */
+static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
+				  unsigned int node_num)
+{
+	struct ocfs2_recovery_map *rm = osb->recovery_map;
+
+	spin_lock(&osb->osb_lock);
+	if (__ocfs2_recovery_map_test(osb, node_num)) {
+		spin_unlock(&osb->osb_lock);
+		return 1;
+	}
+
+	/* XXX: Can this be exploited? Not from o2dlm... */
+	BUG_ON(rm->rm_used >= osb->max_slots);
+
+	rm->rm_entries[rm->rm_used] = node_num;
+	rm->rm_used++;
+	spin_unlock(&osb->osb_lock);
+
+	return 0;
+}
+
+static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
+				     unsigned int node_num)
+{
+	int i;
+	struct ocfs2_recovery_map *rm = osb->recovery_map;
+
+	spin_lock(&osb->osb_lock);
+
+	for (i = 0; i < rm->rm_used; i++) {
+		if (rm->rm_entries[i] == node_num)
+			break;
+	}
+
+	if (i < rm->rm_used) {
+		/* XXX: be careful with the pointer math */
+		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
+			(rm->rm_used - i - 1) * sizeof(unsigned int));
+		rm->rm_used--;
+	}
+
+	spin_unlock(&osb->osb_lock);
+}
+
+static int ocfs2_commit_cache(struct ocfs2_super *osb)
+{
+	int status = 0;
+	unsigned int flushed;
+	struct ocfs2_journal *journal = NULL;
+
+	journal = osb->journal;
+
+	/* Flush all pending commits and checkpoint the journal. */
+	down_write(&journal->j_trans_barrier);
+
+	flushed = atomic_read(&journal->j_num_trans);
+	trace_ocfs2_commit_cache_begin(flushed);
+	if (flushed == 0) {
+		up_write(&journal->j_trans_barrier);
+		goto finally;
+	}
+
+	jbd2_journal_lock_updates(journal->j_journal);
+	status = jbd2_journal_flush(journal->j_journal);
+	jbd2_journal_unlock_updates(journal->j_journal);
+	if (status < 0) {
+		up_write(&journal->j_trans_barrier);
+		mlog_errno(status);
+		goto finally;
+	}
+
+	ocfs2_inc_trans_id(journal);
+
+	flushed = atomic_read(&journal->j_num_trans);
+	atomic_set(&journal->j_num_trans, 0);
+	up_write(&journal->j_trans_barrier);
+
+	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
+
+	ocfs2_wake_downconvert_thread(osb);
+	wake_up(&journal->j_checkpointed);
+finally:
+	return status;
+}
+
+handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
+{
+	journal_t *journal = osb->journal->j_journal;
+	handle_t *handle;
+
+	BUG_ON(!osb || !osb->journal->j_journal);
+
+	if (ocfs2_is_hard_readonly(osb))
+		return ERR_PTR(-EROFS);
+
+	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
+	BUG_ON(max_buffs <= 0);
+
+	/* Nested transaction? Just return the handle... */
+	if (journal_current_handle())
+		return jbd2_journal_start(journal, max_buffs);
+
+	down_read(&osb->journal->j_trans_barrier);
+
+	handle = jbd2_journal_start(journal, max_buffs);
+	if (IS_ERR(handle)) {
+		up_read(&osb->journal->j_trans_barrier);
+
+		mlog_errno(PTR_ERR(handle));
+
+		if (is_journal_aborted(journal)) {
+			ocfs2_abort(osb->sb, "Detected aborted journal");
+			handle = ERR_PTR(-EROFS);
+		}
+	} else {
+		if (!ocfs2_mount_local(osb))
+			atomic_inc(&(osb->journal->j_num_trans));
+	}
+
+	return handle;
+}
+
+int ocfs2_commit_trans(struct ocfs2_super *osb,
+		       handle_t *handle)
+{
+	int ret, nested;
+	struct ocfs2_journal *journal = osb->journal;
+
+	BUG_ON(!handle);
+
+	nested = handle->h_ref > 1;
+	ret = jbd2_journal_stop(handle);
+	if (ret < 0)
+		mlog_errno(ret);
+
+	if (!nested)
+		up_read(&journal->j_trans_barrier);
+
+	return ret;
+}
+
+/*
+ * 'nblocks' is what you want to add to the current transaction.
+ *
+ * This might call jbd2_journal_restart() which will commit dirty buffers
+ * and then restart the transaction. Before calling
+ * ocfs2_extend_trans(), any changed blocks should have been
+ * dirtied. After calling it, all blocks which need to be changed must
+ * go through another set of journal_access/journal_dirty calls.
+ *
+ * WARNING: This will not release any semaphores or disk locks taken
+ * during the transaction, so make sure they were taken *before*
+ * start_trans or we'll have ordering deadlocks.
+ *
+ * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
+ * good because transaction ids haven't yet been recorded on the
+ * cluster locks associated with this handle.
+ */
+int ocfs2_extend_trans(handle_t *handle, int nblocks)
+{
+	int status, old_nblocks;
+
+	BUG_ON(!handle);
+	BUG_ON(nblocks < 0);
+
+	if (!nblocks)
+		return 0;
+
+	old_nblocks = handle->h_buffer_credits;
+
+	trace_ocfs2_extend_trans(old_nblocks, nblocks);
+
+#ifdef CONFIG_OCFS2_DEBUG_FS
+	status = 1;
+#else
+	status = jbd2_journal_extend(handle, nblocks);
+	if (status < 0) {
+		mlog_errno(status);
+		goto bail;
+	}
+#endif
+
+	if (status > 0) {
+		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
+		status = jbd2_journal_restart(handle,
+					      old_nblocks + nblocks);
+		if (status < 0) {
+			mlog_errno(status);
+			goto bail;
+		}
+	}
+
+	status = 0;
+bail:
+	return status;
+}
+
+struct ocfs2_triggers {
+	struct jbd2_buffer_trigger_type	ot_triggers;
+	int				ot_offset;
+};
+
+static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
+{
+	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
+}
+
+static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
+				 struct buffer_head *bh,
+				 void *data, size_t size)
+{
+	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
+
+	/*
+	 * We aren't guaranteed to have the superblock here, so we
+	 * must unconditionally compute the ecc data.
+	 * __ocfs2_journal_access() will only set the triggers if
+	 * metaecc is enabled.
+	 */
+	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
+}
+
+/*
+ * Quota blocks have their own trigger because the struct ocfs2_block_check
+ * offset depends on the blocksize.
+ */
+static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
+				 struct buffer_head *bh,
+				 void *data, size_t size)
+{
+	struct ocfs2_disk_dqtrailer *dqt =
+		ocfs2_block_dqtrailer(size, data);
+
+	/*
+	 * We aren't guaranteed to have the superblock here, so we
+	 * must unconditionally compute the ecc data.
+	 * __ocfs2_journal_access() will only set the triggers if
+	 * metaecc is enabled.
+	 */
+	ocfs2_block_check_compute(data, size, &dqt->dq_check);
+}
+
+/*
+ * Directory blocks also have their own trigger because the
+ * struct ocfs2_block_check offset depends on the blocksize.
+ */
+static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
+				 struct buffer_head *bh,
+				 void *data, size_t size)
+{
+	struct ocfs2_dir_block_trailer *trailer =
+		ocfs2_dir_trailer_from_size(size, data);
+
+	/*
+	 * We aren't guaranteed to have the superblock here, so we
+	 * must unconditionally compute the ecc data.
+	 * __ocfs2_journal_access() will only set the triggers if
+	 * metaecc is enabled.
+	 */
+	ocfs2_block_check_compute(data, size, &trailer->db_check);
+}
+
+static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
+				struct buffer_head *bh)
+{
+	mlog(ML_ERROR,
+	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
+	     "bh->b_blocknr = %llu\n",
+	     (unsigned long)bh,
+	     (unsigned long long)bh->b_blocknr);
+
+	/* We aren't guaranteed to have the superblock here - but if we
+	 * don't, it'll just crash. */
+	ocfs2_error(bh->b_assoc_map->host->i_sb,
+		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
+}
+
+static struct ocfs2_triggers di_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
+};
+
+static struct ocfs2_triggers eb_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
+};
+
+static struct ocfs2_triggers rb_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
+};
+
+static struct ocfs2_triggers gd_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
+};
+
+static struct ocfs2_triggers db_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_db_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+};
+
+static struct ocfs2_triggers xb_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
+};
+
+static struct ocfs2_triggers dq_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_dq_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+};
+
+static struct ocfs2_triggers dr_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
+};
+
+static struct ocfs2_triggers dl_triggers = {
+	.ot_triggers = {
+		.t_frozen = ocfs2_frozen_trigger,
+		.t_abort = ocfs2_abort_trigger,
+	},
+	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
+};
+
+static int __ocfs2_journal_access(handle_t *handle,
+				  struct ocfs2_caching_info *ci,
+				  struct buffer_head *bh,
+				  struct ocfs2_triggers *triggers,
+				  int type)
+{
+	int status;
+	struct ocfs2_super *osb =
+		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
+
+	BUG_ON(!ci || !ci->ci_ops);
+	BUG_ON(!handle);
+	BUG_ON(!bh);
+
+	trace_ocfs2_journal_access(
+		(unsigned long long)ocfs2_metadata_cache_owner(ci),
+		(unsigned long long)bh->b_blocknr, type, bh->b_size);
+
+	/* we can safely remove this assertion after testing. */
+	if (!buffer_uptodate(bh)) {
+		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
+		mlog(ML_ERROR, "b_blocknr=%llu\n",
+		     (unsigned long long)bh->b_blocknr);
+		BUG();
+	}
+
+	/* Set the current transaction information on the ci so
+	 * that the locking code knows whether it can drop it's locks
+	 * on this ci or not. We're protected from the commit
+	 * thread updating the current transaction id until
+	 * ocfs2_commit_trans() because ocfs2_start_trans() took
+	 * j_trans_barrier for us. */
+	ocfs2_set_ci_lock_trans(osb->journal, ci);
+
+	ocfs2_metadata_cache_io_lock(ci);
+	switch (type) {
+	case OCFS2_JOURNAL_ACCESS_CREATE:
+	case OCFS2_JOURNAL_ACCESS_WRITE:
+		status = jbd2_journal_get_write_access(handle, bh);
+		break;
+
+	case OCFS2_JOURNAL_ACCESS_UNDO:
+		status = jbd2_journal_get_undo_access(handle, bh);
+		break;
+
+	default:
+		status = -EINVAL;
+		mlog(ML_ERROR, "Unknown access type!\n");
+	}
+	if (!status && ocfs2_meta_ecc(osb) && triggers)
+		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
+	ocfs2_metadata_cache_io_unlock(ci);
+
+	if (status < 0)
+		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
+		     status, type);
+
+	return status;
+}
+
+int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
+}
+
+int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
+}
+
+int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
+				      type);
+}
+
+int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
+}
+
+int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
+}
+
+int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
+}
+
+int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
+}
+
+int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
+}
+
+int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
+			    struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
+}
+
+int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
+			 struct buffer_head *bh, int type)
+{
+	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
+}
+
+void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
+{
+	int status;
+
+	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
+
+	status = jbd2_journal_dirty_metadata(handle, bh);
+	BUG_ON(status);
+}
+
+#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
+
+void ocfs2_set_journal_params(struct ocfs2_super *osb)
+{
+	journal_t *journal = osb->journal->j_journal;
+	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
+
+	if (osb->osb_commit_interval)
+		commit_interval = osb->osb_commit_interval;
+
+	write_lock(&journal->j_state_lock);
+	journal->j_commit_interval = commit_interval;
+	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
+		journal->j_flags |= JBD2_BARRIER;
+	else
+		journal->j_flags &= ~JBD2_BARRIER;
+	write_unlock(&journal->j_state_lock);
+}
+
+int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
+{
+	int status = -1;
+	struct inode *inode = NULL; /* the journal inode */
+	journal_t *j_journal = NULL;
+	struct ocfs2_dinode *di = NULL;
+	struct buffer_head *bh = NULL;
+	struct ocfs2_super *osb;
+	int inode_lock = 0;
+
+	BUG_ON(!journal);
+
+	osb = journal->j_osb;
+
+	/* already have the inode for our journal */
+	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
+					    osb->slot_num);
+	if (inode == NULL) {
+		status = -EACCES;
+		mlog_errno(status);
+		goto done;
+	}
+	if (is_bad_inode(inode)) {
+		mlog(ML_ERROR, "access error (bad inode)\n");
+		iput(inode);
+		inode = NULL;
+		status = -EACCES;
+		goto done;
+	}
+
+	SET_INODE_JOURNAL(inode);
+	OCFS2_I(inode)->ip_open_count++;
+
+	/* Skip recovery waits here - journal inode metadata never
+	 * changes in a live cluster so it can be considered an
+	 * exception to the rule. */
+	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
+	if (status < 0) {
+		if (status != -ERESTARTSYS)
+			mlog(ML_ERROR, "Could not get lock on journal!\n");
+		goto done;
+	}
+
+	inode_lock = 1;
+	di = (struct ocfs2_dinode *)bh->b_data;
+
+	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
+		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
+		     inode->i_size);
+		status = -EINVAL;
+		goto done;
+	}
+
+	trace_ocfs2_journal_init(inode->i_size,
+				 (unsigned long long)inode->i_blocks,
+				 OCFS2_I(inode)->ip_clusters);
+
+	/* call the kernels journal init function now */
+	j_journal = jbd2_journal_init_inode(inode);
+	if (j_journal == NULL) {
+		mlog(ML_ERROR, "Linux journal layer error\n");
+		status = -EINVAL;
+		goto done;
+	}
+
+	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
+
+	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
+		  OCFS2_JOURNAL_DIRTY_FL);
+
+	journal->j_journal = j_journal;
+	journal->j_inode = inode;
+	journal->j_bh = bh;
+
+	ocfs2_set_journal_params(osb);
+
+	journal->j_state = OCFS2_JOURNAL_LOADED;
+
+	status = 0;
+done:
+	if (status < 0) {
+		if (inode_lock)
+			ocfs2_inode_unlock(inode, 1);
+		brelse(bh);
+		if (inode) {
+			OCFS2_I(inode)->ip_open_count--;
+			iput(inode);
+		}
+	}
+
+	return status;
+}
+
+static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
+{
+	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
+}
+
+static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
+{
+	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
+}
+
+static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
+				      int dirty, int replayed)
+{
+	int status;
+	unsigned int flags;
+	struct ocfs2_journal *journal = osb->journal;
+	struct buffer_head *bh = journal->j_bh;
+	struct ocfs2_dinode *fe;
+
+	fe = (struct ocfs2_dinode *)bh->b_data;
+
+	/* The journal bh on the osb always comes from ocfs2_journal_init()
+	 * and was validated there inside ocfs2_inode_lock_full().  It's a
+	 * code bug if we mess it up. */
+	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
+
+	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
+	if (dirty)
+		flags |= OCFS2_JOURNAL_DIRTY_FL;
+	else
+		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
+	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
+
+	if (replayed)
+		ocfs2_bump_recovery_generation(fe);
+
+	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
+	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
+	if (status < 0)
+		mlog_errno(status);
+
+	return status;
+}
+
+/*
+ * If the journal has been kmalloc'd it needs to be freed after this
+ * call.
+ */
+void ocfs2_journal_shutdown(struct ocfs2_super *osb)
+{
+	struct ocfs2_journal *journal = NULL;
+	int status = 0;
+	struct inode *inode = NULL;
+	int num_running_trans = 0;
+
+	BUG_ON(!osb);
+
+	journal = osb->journal;
+	if (!journal)
+		goto done;
+
+	inode = journal->j_inode;
+
+	if (journal->j_state != OCFS2_JOURNAL_LOADED)
+		goto done;
+
+	/* need to inc inode use count - jbd2_journal_destroy will iput. */
+	if (!igrab(inode))
+		BUG();
+
+	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
+	trace_ocfs2_journal_shutdown(num_running_trans);
+
+	/* Do a commit_cache here. It will flush our journal, *and*
+	 * release any locks that are still held.
+	 * set the SHUTDOWN flag and release the trans lock.
+	 * the commit thread will take the trans lock for us below. */
+	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
+
+	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
+	 * drop the trans_lock (which we want to hold until we
+	 * completely destroy the journal. */
+	if (osb->commit_task) {
+		/* Wait for the commit thread */
+		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
+		kthread_stop(osb->commit_task);
+		osb->commit_task = NULL;
+	}
+
+	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
+
+	if (ocfs2_mount_local(osb)) {
+		jbd2_journal_lock_updates(journal->j_journal);
+		status = jbd2_journal_flush(journal->j_journal);
+		jbd2_journal_unlock_updates(journal->j_journal);
+		if (status < 0)
+			mlog_errno(status);
+	}
+
+	if (status == 0) {
+		/*
+		 * Do not toggle if flush was unsuccessful otherwise
+		 * will leave dirty metadata in a "clean" journal
+		 */
+		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
+		if (status < 0)
+			mlog_errno(status);
+	}
+
+	/* Shutdown the kernel journal system */
+	jbd2_journal_destroy(journal->j_journal);
+	journal->j_journal = NULL;
+
+	OCFS2_I(inode)->ip_open_count--;
+
+	/* unlock our journal */
+	ocfs2_inode_unlock(inode, 1);
+
+	brelse(journal->j_bh);
+	journal->j_bh = NULL;
+
+	journal->j_state = OCFS2_JOURNAL_FREE;
+
+//	up_write(&journal->j_trans_barrier);
+done:
+	if (inode)
+		iput(inode);
+}
+
+static void ocfs2_clear_journal_error(struct super_block *sb,
+				      journal_t *journal,
+				      int slot)
+{
+	int olderr;
+
+	olderr = jbd2_journal_errno(journal);
+	if (olderr) {
+		mlog(ML_ERROR, "File system error %d recorded in "
+		     "journal %u.\n", olderr, slot);
+		mlog(ML_ERROR, "File system on device %s needs checking.\n",
+		     sb->s_id);
+
+		jbd2_journal_ack_err(journal);
+		jbd2_journal_clear_err(journal);
+	}
+}
+
+int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
+{
+	int status = 0;
+	struct ocfs2_super *osb;
+
+	BUG_ON(!journal);
+
+	osb = journal->j_osb;
+
+	status = jbd2_journal_load(journal->j_journal);
+	if (status < 0) {
+		mlog(ML_ERROR, "Failed to load journal!\n");
+		goto done;
+	}
+
+	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
+
+	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
+	if (status < 0) {
+		mlog_errno(status);
+		goto done;
+	}
+
+	/* Launch the commit thread */
+	if (!local) {
+		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
+					       "ocfs2cmt");
+		if (IS_ERR(osb->commit_task)) {
+			status = PTR_ERR(osb->commit_task);
+			osb->commit_task = NULL;
+			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
+			     "error=%d", status);
+			goto done;
+		}
+	} else
+		osb->commit_task = NULL;
+
+done:
+	return status;
+}
+
+
+/* 'full' flag tells us whether we clear out all blocks or if we just
+ * mark the journal clean */
+int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
+{
+	int status;
+
+	BUG_ON(!journal);
+
+	status = jbd2_journal_wipe(journal->j_journal, full);
+	if (status < 0) {
+		mlog_errno(status);
+		goto bail;
+	}
+
+	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
+	if (status < 0)
+		mlog_errno(status);
+
+bail:
+	return status;
+}
+
+static int ocfs2_recovery_completed(struct ocfs2_super *osb)
+{
+	int empty;
+	struct ocfs2_recovery_map *rm = osb->recovery_map;
+
+	spin_lock(&osb->osb_lock);
+	empty = (rm->rm_used == 0);
+	spin_unlock(&osb->osb_lock);
+
+	return empty;
+}
+
+void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
+{
+	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
+}
+
+/*
+ * JBD Might read a cached version of another nodes journal file. We
+ * don't want this as this file changes often and we get no
+ * notification on those changes. The only way to be sure that we've
+ * got the most up to date version of those blocks then is to force
+ * read them off disk. Just searching through the buffer cache won't
+ * work as there may be pages backing this file which are still marked
+ * up to date. We know things can't change on this file underneath us
+ * as we have the lock by now :)
+ */
+static int ocfs2_force_read_journal(struct inode *inode)
+{
+	int status = 0;
+	int i;
+	u64 v_blkno, p_blkno, p_blocks, num_blocks;
+#define CONCURRENT_JOURNAL_FILL 32ULL
+	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
+
+	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
+
+	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
+	v_blkno = 0;
+	while (v_blkno < num_blocks) {
+		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
+						     &p_blkno, &p_blocks, NULL);
+		if (status < 0) {
+			mlog_errno(status);
+			goto bail;
+		}
+
+		if (p_blocks > CONCURRENT_JOURNAL_FILL)
+			p_blocks = CONCURRENT_JOURNAL_FILL;
+
+		/* We are reading journal data which should not
+		 * be put in the uptodate cache */
+		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
+						p_blkno, p_blocks, bhs);
+		if (status < 0) {
+			mlog_errno(status);
+			goto bail;
+		}
+
+		for(i = 0; i < p_blocks; i++) {
+			brelse(bhs[i]);
+			bhs[i] = NULL;
+		}
+
+		v_blkno += p_blocks;
+	}
+
+bail:
+	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
+		brelse(bhs[i]);
+	return status;
+}
+
+struct ocfs2_la_recovery_item {
+	struct list_head	lri_list;
+	int			lri_slot;
+	struct ocfs2_dinode	*lri_la_dinode;
+	struct ocfs2_dinode	*lri_tl_dinode;
+	struct ocfs2_quota_recovery *lri_qrec;
+};
+
+/* Does the second half of the recovery process. By this point, the
+ * node is marked clean and can actually be considered recovered,
+ * hence it's no longer in the recovery map, but there's still some
+ * cleanup we can do which shouldn't happen within the recovery thread
+ * as locking in that context becomes very difficult if we are to take
+ * recovering nodes into account.
+ *
+ * NOTE: This function can and will sleep on recovery of other nodes
+ * during cluster locking, just like any other ocfs2 process.
+ */
+void ocfs2_complete_recovery(struct work_struct *work)
+{
+	int ret = 0;
+	struct ocfs2_journal *journal =
+		container_of(work, struct ocfs2_journal, j_recovery_work);
+	struct ocfs2_super *osb = journal->j_osb;
+	struct ocfs2_dinode *la_dinode, *tl_dinode;
+	struct ocfs2_la_recovery_item *item, *n;
+	struct ocfs2_quota_recovery *qrec;
+	LIST_HEAD(tmp_la_list);
+
+	trace_ocfs2_complete_recovery(
+		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
+
+	spin_lock(&journal->j_lock);
+	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
+	spin_unlock(&journal->j_lock);
+
+	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
+		list_del_init(&item->lri_list);
+
+		ocfs2_wait_on_quotas(osb);
+
+		la_dinode = item->lri_la_dinode;
+		tl_dinode = item->lri_tl_dinode;
+		qrec = item->lri_qrec;
+
+		trace_ocfs2_complete_recovery_slot(item->lri_slot,
+			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
+			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
+			qrec);
+
+		if (la_dinode) {
+			ret = ocfs2_complete_local_alloc_recovery(osb,
+								  la_dinode);
+			if (ret < 0)
+				mlog_errno(ret);
+
+			kfree(la_dinode);
+		}
+
+		if (tl_dinode) {
+			ret = ocfs2_complete_truncate_log_recovery(osb,
+								   tl_dinode);
+			if (ret < 0)
+				mlog_errno(ret);
+
+			kfree(tl_dinode);
+		}
+
+		ret = ocfs2_recover_orphans(osb, item->lri_slot);
+		if (ret < 0)
+			mlog_errno(ret);
+
+		if (qrec) {
+			ret = ocfs2_finish_quota_recovery(osb, qrec,
+							  item->lri_slot);
+			if (ret < 0)
+				mlog_errno(ret);
+			/* Recovery info is already freed now */
+		}
+
+		kfree(item);
+	}
+
+	trace_ocfs2_complete_recovery_end(ret);
+}
+
+/* NOTE: This function always eats your references to la_dinode and
+ * tl_dinode, either manually on error, or by passing them to
+ * ocfs2_complete_recovery */
+static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
+					    int slot_num,
+					    struct ocfs2_dinode *la_dinode,
+					    struct ocfs2_dinode *tl_dinode,
+					    struct ocfs2_quota_recovery *qrec)
+{
+	struct ocfs2_la_recovery_item *item;
+
+	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
+	if (!item) {
+		/* Though we wish to avoid it, we are in fact safe in
+		 * skipping local alloc cleanup as fsck.ocfs2 is more
+		 * than capable of reclaiming unused space. */
+		if (la_dinode)
+			kfree(la_dinode);
+
+		if (tl_dinode)
+			kfree(tl_dinode);
+
+		if (qrec)
+			ocfs2_free_quota_recovery(qrec);
+
+		mlog_errno(-ENOMEM);
+		return;
+	}
+
+	INIT_LIST_HEAD(&item->lri_list);
+	item->lri_la_dinode = la_dinode;
+	item->lri_slot = slot_num;
+	item->lri_tl_dinode = tl_dinode;
+	item->lri_qrec = qrec;
+
+	spin_lock(&journal->j_lock);
+	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
+	queue_work(ocfs2_wq, &journal->j_recovery_work);
+	spin_unlock(&journal->j_lock);
+}
+
+/* Called by the mount code to queue recovery the last part of
+ * recovery for it's own and offline slot(s). */
+void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
+{
+	struct ocfs2_journal *journal = osb->journal;
+
+	if (ocfs2_is_hard_readonly(osb))
+		return;
+
+	/* No need to queue up our truncate_log as regular cleanup will catch
+	 * that */
+	ocfs2_queue_recovery_completion(journal, osb->slot_num,
+					osb->local_alloc_copy, NULL, NULL);
+	ocfs2_schedule_truncate_log_flush(osb, 0);
+
+	osb->local_alloc_copy = NULL;
+	osb->dirty = 0;
+
+	/* queue to recover orphan slots for all offline slots */
+	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
+	ocfs2_queue_replay_slots(osb);
+	ocfs2_free_replay_slots(osb);
+}
+
+void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
+{
+	if (osb->quota_rec) {
+		ocfs2_queue_recovery_completion(osb->journal,
+						osb->slot_num,
+						NULL,
+						NULL,
+						osb->quota_rec);
+		osb->quota_rec = NULL;
+	}
+}
+
+static int __ocfs2_recovery_thread(void *arg)
+{
+	int status, node_num, slot_num;
+	struct ocfs2_super *osb = arg;
+	struct ocfs2_recovery_map *rm = osb->recovery_map;
+	int *rm_quota = NULL;
+	int rm_quota_used = 0, i;
+	struct ocfs2_quota_recovery *qrec;
+
+	status = ocfs2_wait_on_mount(osb);
+	if (status < 0) {
+		goto bail;
+	}
+
+	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
+	if (!rm_quota) {
+		status = -ENOMEM;
+		goto bail;
+	}
+restart:
+	status = ocfs2_super_lock(osb, 1);
+	if (status < 0) {
+		mlog_errno(status);
+		goto bail;
+	}
+
+	status = ocfs2_compute_replay_slots(osb);
+	if (status < 0)
+		mlog_errno(status);
+
+	/* queue recovery for our own slot */
+	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
+					NULL, NULL);
+
+	spin_lock(&osb->osb_lock);
+	while (rm->rm_used) {
+		/* It's always safe to remove entry zero, as we won't
+		 * clear it until ocfs2_recover_node() has succeeded. */
+		node_num = rm->rm_entries[0];
+		spin_unlock(&osb->osb_lock);
+		slot_num = ocfs2_node_num_to_slot(osb, node_num);
+		trace_ocfs2_recovery_thread_node(node_num, slot_num);
+		if (slot_num == -ENOENT) {
+			status = 0;
+			goto skip_recovery;
+		}
+
+		/* It is a bit subtle with quota recovery. We cannot do it
+		 * immediately because we have to obtain cluster locks from
+		 * quota files and we also don't want to just skip it because
+		 * then quota usage would be out of sync until some node takes
+		 * the slot. So we remember which nodes need quota recovery
+		 * and when everything else is done, we recover quotas. */
+		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
+		if (i == rm_quota_used)
+			rm_quota[rm_quota_used++] = slot_num;
+
+		status = ocfs2_recover_node(osb, node_num, slot_num);
+skip_recovery:
+		if (!status) {
+			ocfs2_recovery_map_clear(osb, node_num);
+		} else {
+			mlog(ML_ERROR,
+			     "Error %d recovering node %d on device (%u,%u)!\n",
+			     status, node_num,
+			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
+			mlog(ML_ERROR, "Volume requires unmount.\n");
+		}
+
+		spin_lock(&osb->osb_lock);
+	}
+	spin_unlock(&osb->osb_lock);
+	trace_ocfs2_recovery_thread_end(status);
+
+	/* Refresh all journal recovery generations from disk */
+	status = ocfs2_check_journals_nolocks(osb);
+	status = (status == -EROFS) ? 0 : status;
+	if (status < 0)
+		mlog_errno(status);
+
+	/* Now it is right time to recover quotas... We have to do this under
+	 * superblock lock so that no one can start using the slot (and crash)
+	 * before we recover it */
+	for (i = 0; i < rm_quota_used; i++) {
+		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
+		if (IS_ERR(qrec)) {
+			status = PTR_ERR(qrec);
+			mlog_errno(status);
+			continue;
+		}
+		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
+						NULL, NULL, qrec);
+	}
+
+	ocfs2_super_unlock(osb, 1);
+
+	/* queue recovery for offline slots */
+	ocfs2_queue_replay_slots(osb);
+
+bail:
+	mutex_lock(&osb->recovery_lock);
+	if (!status && !ocfs2_recovery_completed(osb)) {
+		mutex_unlock(&osb->recovery_lock);
+		goto restart;
+	}
+
+	ocfs2_free_replay_slots(osb);
+	osb->recovery_thread_task = NULL;
+	mb(); /* sync with ocfs2_recovery_thread_running */
+	wake_up(&osb->recovery_event);
+
+	mutex_unlock(&osb->recovery_lock);
+
+	if (rm_quota)
+		kfree(rm_quota);
+
+	/* no one is callint kthread_stop() for us so the kthread() api
+	 * requires that we call do_exit().  And it isn't exported, but
+	 * complete_and_exit() seems to be a minimal wrapper around it. */
+	complete_and_exit(NULL, status);
+	return status;
+}
+
+void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
+{
+	mutex_lock(&osb->recovery_lock);
+
+	trace_ocfs2_recovery_thread(node_num, osb->node_num,
+		osb->disable_recovery, osb->recovery_thread_task,
+		osb->disable_recovery ?
+		-1 : ocfs2_recovery_map_set(osb, node_num));
+
+	if (osb->disable_recovery)
+		goto out;
+
+	if (osb->recovery_thread_task)
+		goto out;
+
+	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
+						 "ocfs2rec");
+	if (IS_ERR(osb->recovery_thread_task)) {
+		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
+		osb->recovery_thread_task = NULL;
+	}
+
+out:
+	mutex_unlock(&osb->recovery_lock);
+	wake_up(&osb->recovery_event);
+}
+
+static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
+				    int slot_num,
+				    struct buffer_head **bh,
+				    struct inode **ret_inode)
+{
+	int status = -EACCES;
+	struct inode *inode = NULL;
+
+	BUG_ON(slot_num >= osb->max_slots);
+
+	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
+					    slot_num);
+	if (!inode || is_bad_inode(inode)) {
+		mlog_errno(status);
+		goto bail;
+	}
+	SET_INODE_JOURNAL(inode);
+
+	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
+	if (status < 0) {
+		mlog_errno(status);
+		goto bail;
+	}
+
+	status = 0;
+
+bail:
+	if (inode) {
+		if (status || !ret_inode)
+			iput(inode);
+		else
+			*ret_inode = inode;
+	}
+	return status;
+}
+
+/* Does the actual journal replay and marks the journal inode as
+ * clean. Will only replay if the journal inode is marked dirty. */
+static int ocfs2_replay_journal(struct ocfs2_super *osb,
+				int node_num,
+				int slot_num)
+{
+	int status;
+	int got_lock = 0;
+	unsigned int flags;
+	struct inode *inode = NULL;
+	struct ocfs2_dinode *fe;
+	journal_t *journal = NULL;
+	struct buffer_head *bh = NULL;
+	u32 slot_reco_gen;
+
+	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
+	if (status) {
+		mlog_errno(status);
+		goto done;
+	}
+
+	fe = (struct ocfs2_dinode *)bh->b_data;
+	slot_reco_gen = ocfs2_get_recovery_generation(fe);
+	brelse(bh);
+	bh = NULL;
+
+	/*
+	 * As the fs recovery is asynchronous, there is a small chance that
+	 * another node mounted (and recovered) the slot before the recovery
+	 * thread could get the lock. To handle that, we dirty read the journal
+	 * inode for that slot to get the recovery generation. If it is
+	 * different than what we expected, the slot has been recovered.
+	 * If not, it needs recovery.
+	 */
+	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
+		trace_ocfs2_replay_journal_recovered(slot_num,
+		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
+		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
+		status = -EBUSY;
+		goto done;
+	}
+
+	/* Continue with recovery as the journal has not yet been recovered */
+
+	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
+	if (status < 0) {
+		trace_ocfs2_replay_journal_lock_err(status);
+		if (status != -ERESTARTSYS)
+			mlog(ML_ERROR, "Could not lock journal!\n");
+		goto done;
+	}
+	got_lock = 1;
+
+	fe = (struct ocfs2_dinode *) bh->b_data;
+
+	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
+	slot_reco_gen = ocfs2_get_recovery_generation(fe);
+
+	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
+		trace_ocfs2_replay_journal_skip(node_num);
+		/* Refresh recovery generation for the slot */
+		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
+		goto done;
+	}
+
+	/* we need to run complete recovery for offline orphan slots */
+	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
+
+	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
+	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
+	       MINOR(osb->sb->s_dev));
+
+	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
+
+	status = ocfs2_force_read_journal(inode);
+	if (status < 0) {
+		mlog_errno(status);
+		goto done;
+	}
+
+	journal = jbd2_journal_init_inode(inode);
+	if (journal == NULL) {
+		mlog(ML_ERROR, "Linux journal layer error\n");
+		status = -EIO;
+		goto done;
+	}
+
+	status = jbd2_journal_load(journal);
+	if (status < 0) {
+		mlog_errno(status);
+		if (!igrab(inode))
+			BUG();
+		jbd2_journal_destroy(journal);
+		goto done;
+	}
+
+	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
+
+	/* wipe the journal */
+	jbd2_journal_lock_updates(journal);
+	status = jbd2_journal_flush(journal);
+	jbd2_journal_unlock_updates(journal);
+	if (status < 0)
+		mlog_errno(status);
+
+	/* This will mark the node clean */
+	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
+	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
+	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
+
+	/* Increment recovery generation to indicate successful recovery */
+	ocfs2_bump_recovery_generation(fe);
+	osb->slot_recovery_generations[slot_num] =
+					ocfs2_get_recovery_generation(fe);
+
+	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
+	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
+	if (status < 0)
+		mlog_errno(status);
+
+	if (!igrab(inode))
+		BUG();
+
+	jbd2_journal_destroy(journal);
+
+	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
+	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
+	       MINOR(osb->sb->s_dev));
+done:
+	/* drop the lock on this nodes journal */
+	if (got_lock)
+		ocfs2_inode_unlock(inode, 1);
+
+	if (inode)
+		iput(inode);
+
+	brelse(bh);
+
+	return status;
+}
+
+/*
+ * Do the most important parts of node recovery:
+ *  - Replay it's journal
+ *  - Stamp a clean local allocator file
+ *  - Stamp a clean truncate log
+ *  - Mark the node clean
+ *
+ * If this function completes without error, a node in OCFS2 can be
+ * said to have been safely recovered. As a result, failure during the
+ * second part of a nodes recovery process (local alloc recovery) is
+ * far less concerning.
+ */
+static int ocfs2_recover_node(struct ocfs2_super *osb,
+			      int node_num, int slot_num)
+{
+	int status = 0;
+	struct ocfs2_dinode *la_copy = NULL;
+	struct ocfs2_dinode *tl_copy = NULL;
+
+	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
+
+	/* Should not ever be called to recover ourselves -- in that
+	 * case we should've called ocfs2_journal_load instead. */
+	BUG_ON(osb->node_num == node_num);
+
+	status = ocfs2_replay_journal(osb, node_num, slot_num);
+	if (status < 0) {
+		if (status == -EBUSY) {
+			trace_ocfs2_recover_node_skip(slot_num, node_num);
+			status = 0;
+			goto done;
+		}
+		mlog_errno(status);
+		goto done;
+	}
+
+	/* Stamp a clean local alloc file AFTER recovering the journal... */
+	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
+	if (status < 0) {
+		mlog_errno(status);
+		goto done;
+	}
+
+	/* An error from begin_truncate_log_recovery is not
+	 * serious enough to warrant halting the rest of
+	 * recovery. */
+	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
+	if (status < 0)
+		mlog_errno(status);
+
+	/* Likewise, this would be a strange but ultimately not so
+	 * harmful place to get an error... */
+	status = ocfs2_clear_slot(osb, slot_num);
+	if (status < 0)
+		mlog_errno(status);
+
+	/* This will kfree the memory pointed to by la_copy and tl_copy */
+	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
+					tl_copy, NULL);
+
+	status = 0;
+done:
+
+	return status;
+}
+
+/* Test node liveness by trylocking his journal. If we get the lock,
+ * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
+ * still alive (we couldn't get the lock) and < 0 on error. */
+static int ocfs2_trylock_journal(struct ocfs2_super *osb,
+				 int slot_num)
+{
+	int status, flags;
+	struct inode *inode = NULL;
+
+	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
+					    slot_num);
+	if (inode == NULL) {
+		mlog(ML_ERROR, "access error\n");
+		status = -EACCES;
+		goto bail;
+	}
+	if (is_bad_inode(inode)) {
+		mlog(ML_ERROR, "access error (bad inode)\n");
+		iput(inode);
+		inode = NULL;
+		status = -EACCES;
+		goto bail;
+	}
+	SET_INODE_JOURNAL(inode);
+
+	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
+	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
+	if (status < 0) {
+		if (status != -EAGAIN)
+			mlog_errno(status);
+		goto bail;
+	}
+
+	ocfs2_inode_unlock(inode, 1);
+bail:
+	if (inode)
+		iput(inode);
+
+	return status;
+}
+
+/* Call this underneath ocfs2_super_lock. It also assumes that the
+ * slot info struct has been updated from disk. */
+int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
+{
+	unsigned int node_num;
+	int status, i;
+	u32 gen;
+	struct buffer_head *bh = NULL;
+	struct ocfs2_dinode *di;
+
+	/* This is called with the super block cluster lock, so we
+	 * know that the slot map can't change underneath us. */
+
+	for (i = 0; i < osb->max_slots; i++) {
+		/* Read journal inode to get the recovery generation */
+		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
+		if (status) {
+			mlog_errno(status);
+			goto bail;
+		}
+		di = (struct ocfs2_dinode *)bh->b_data;
+		gen = ocfs2_get_recovery_generation(di);
+		brelse(bh);
+		bh = NULL;
+
+		spin_lock(&osb->osb_lock);
+		osb->slot_recovery_generations[i] = gen;
+
+		trace_ocfs2_mark_dead_nodes(i,
+					    osb->slot_recovery_generations[i]);
+
+		if (i == osb->slot_num) {
+			spin_unlock(&osb->osb_lock);
+			continue;
+		}
+
+		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
+		if (status == -ENOENT) {
+			spin_unlock(&osb->osb_lock);
+			continue;
+		}
+
+		if (__ocfs2_recovery_map_test(osb, node_num)) {
+			spin_unlock(&osb->osb_lock);
+			continue;
+		}
+		spin_unlock(&osb->osb_lock);
+
+		/* Ok, we have a slot occupied by another node which
+		 * is not in the recovery map. We trylock his journal
+		 * file here to test if he's alive. */
+		status = ocfs2_trylock_journal(osb, i);
+		if (!status) {
+			/* Since we're called from mount, we know that
+			 * the recovery thread can't race us on
+			 * setting / checking the recovery bits. */
+			ocfs2_recovery_thread(osb, node_num);
+		} else if ((status < 0) && (status != -EAGAIN)) {
+			mlog_errno(status);
+			goto bail;
+		}
+	}
+
+	status = 0;
+bail:
+	return status;
+}
+
+/*
+ * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
+ * randomness to the timeout to minimize multple nodes firing the timer at the
+ * same time.
+ */
+static inline unsigned long ocfs2_orphan_scan_timeout(void)
+{
+	unsigned long time;
+
+	get_random_bytes(&time, sizeof(time));
+	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
+	return msecs_to_jiffies(time);
+}
+
+/*
+ * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
+ * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
+ * is done to catch any orphans that are left over in orphan directories.
+ *
+ * It scans all slots, even ones that are in use. It does so to handle the
+ * case described below:
+ *
+ *   Node 1 has an inode it was using. The dentry went away due to memory
+ *   pressure.  Node 1 closes the inode, but it's on the free list. The node
+ *   has the open lock.
+ *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
+ *   but node 1 has no dentry and doesn't get the message. It trylocks the
+ *   open lock, sees that another node has a PR, and does nothing.
+ *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
+ *   open lock, sees the PR still, and does nothing.
+ *   Basically, we have to trigger an orphan iput on node 1. The only way
+ *   for this to happen is if node 1 runs node 2's orphan dir.
+ *
+ * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ * seconds.  It gets an EX lock on os_lockres and checks sequence number
+ * stored in LVB. If the sequence number has changed, it means some other
+ * node has done the scan.  This node skips the scan and tracks the
+ * sequence number.  If the sequence number didn't change, it means a scan
+ * hasn't happened.  The node queues a scan and increments the
+ * sequence number in the LVB.
+ */
+void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
+{
+	struct ocfs2_orphan_scan *os;
+	int status, i;
+	u32 seqno = 0;
+
+	os = &osb->osb_orphan_scan;
+
+	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
+		goto out;
+
+	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
+					    atomic_read(&os->os_state));
+
+	status = ocfs2_orphan_scan_lock(osb, &seqno);
+	if (status < 0) {
+		if (status != -EAGAIN)
+			mlog_errno(status);
+		goto out;
+	}
+
+	/* Do no queue the tasks if the volume is being umounted */
+	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
+		goto unlock;
+
+	if (os->os_seqno != seqno) {
+		os->os_seqno = seqno;
+		goto unlock;
+	}
+
+	for (i = 0; i < osb->max_slots; i++)
+		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
+						NULL);
+	/*
+	 * We queued a recovery on orphan slots, increment the sequence
+	 * number and update LVB so other node will skip the scan for a while
+	 */
+	seqno++;
+	os->os_count++;
+	os->os_scantime = CURRENT_TIME;
+unlock:
+	ocfs2_orphan_scan_unlock(osb, seqno);
+out:
+	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
+					  atomic_read(&os->os_state));
+	return;
+}
+
+/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
+void ocfs2_orphan_scan_work(struct work_struct *work)
+{
+	struct ocfs2_orphan_scan *os;
+	struct ocfs2_super *osb;
+
+	os = container_of(work, struct ocfs2_orphan_scan,
+			  os_orphan_scan_work.work);
+	osb = os->os_osb;
+
+	mutex_lock(&os->os_lock);
+	ocfs2_queue_orphan_scan(osb);
+	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
+		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
+				      ocfs2_orphan_scan_timeout());
+	mutex_unlock(&os->os_lock);
+}
+
+void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
+{
+	struct ocfs2_orphan_scan *os;
+
+	os = &osb->osb_orphan_scan;
+	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
+		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
+		mutex_lock(&os->os_lock);
+		cancel_delayed_work(&os->os_orphan_scan_work);
+		mutex_unlock(&os->os_lock);
+	}
+}
+
+void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
+{
+	struct ocfs2_orphan_scan *os;
+
+	os = &osb->osb_orphan_scan;
+	os->os_osb = osb;
+	os->os_count = 0;
+	os->os_seqno = 0;
+	mutex_init(&os->os_lock);
+	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
+}
+
+void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
+{
+	struct ocfs2_orphan_scan *os;
+
+	os = &osb->osb_orphan_scan;
+	os->os_scantime = CURRENT_TIME;
+	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
+		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
+	else {
+		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
+		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
+				   ocfs2_orphan_scan_timeout());
+	}
+}
+
+struct ocfs2_orphan_filldir_priv {
+	struct inode		*head;
+	struct ocfs2_super	*osb;
+};
+
+static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
+				loff_t pos, u64 ino, unsigned type)
+{
+	struct ocfs2_orphan_filldir_priv *p = priv;
+	struct inode *iter;
+
+	if (name_len == 1 && !strncmp(".", name, 1))
+		return 0;
+	if (name_len == 2 && !strncmp("..", name, 2))
+		return 0;
+
+	/* Skip bad inodes so that recovery can continue */
+	iter = ocfs2_iget(p->osb, ino,
+			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
+	if (IS_ERR(iter))
+		return 0;
+
+	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
+	/* No locking is required for the next_orphan queue as there
+	 * is only ever a single process doing orphan recovery. */
+	OCFS2_I(iter)->ip_next_orphan = p->head;
+	p->head = iter;
+
+	return 0;
+}
+
+static int ocfs2_queue_orphans(struct ocfs2_super *osb,
+			       int slot,
+			       struct inode **head)
+{
+	int status;
+	struct inode *orphan_dir_inode = NULL;
+	struct ocfs2_orphan_filldir_priv priv;
+	loff_t pos = 0;
+
+	priv.osb = osb;
+	priv.head = *head;
+
+	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
+						       ORPHAN_DIR_SYSTEM_INODE,
+						       slot);
+	if  (!orphan_dir_inode) {
+		status = -ENOENT;
+		mlog_errno(status);
+		return status;
+	}
+
+	mutex_lock(&orphan_dir_inode->i_mutex);
+	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
+	if (status < 0) {
+		mlog_errno(status);
+		goto out;
+	}
+
+	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
+				   ocfs2_orphan_filldir);
+	if (status) {
+		mlog_errno(status);
+		goto out_cluster;
+	}
+
+	*head = priv.head;
+
+out_cluster:
+	ocfs2_inode_unlock(orphan_dir_inode, 0);
+out:
+	mutex_unlock(&orphan_dir_inode->i_mutex);
+	iput(orphan_dir_inode);
+	return status;
+}
+
+static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
+					      int slot)
+{
+	int ret;
+
+	spin_lock(&osb->osb_lock);
+	ret = !osb->osb_orphan_wipes[slot];
+	spin_unlock(&osb->osb_lock);
+	return ret;
+}
+
+static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
+					     int slot)
+{
+	spin_lock(&osb->osb_lock);
+	/* Mark ourselves such that new processes in delete_inode()
+	 * know to quit early. */
+	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
+	while (osb->osb_orphan_wipes[slot]) {
+		/* If any processes are already in the middle of an
+		 * orphan wipe on this dir, then we need to wait for
+		 * them. */
+		spin_unlock(&osb->osb_lock);
+		wait_event_interruptible(osb->osb_wipe_event,
+					 ocfs2_orphan_recovery_can_continue(osb, slot));
+		spin_lock(&osb->osb_lock);
+	}
+	spin_unlock(&osb->osb_lock);
+}
+
+static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
+					      int slot)
+{
+	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
+}
+
+/*
+ * Orphan recovery. Each mounted node has it's own orphan dir which we
+ * must run during recovery. Our strategy here is to build a list of
+ * the inodes in the orphan dir and iget/iput them. The VFS does
+ * (most) of the rest of the work.
+ *
+ * Orphan recovery can happen at any time, not just mount so we have a
+ * couple of extra considerations.
+ *
+ * - We grab as many inodes as we can under the orphan dir lock -
+ *   doing iget() outside the orphan dir risks getting a reference on
+ *   an invalid inode.
+ * - We must be sure not to deadlock with other processes on the
+ *   system wanting to run delete_inode(). This can happen when they go
+ *   to lock the orphan dir and the orphan recovery process attempts to
+ *   iget() inside the orphan dir lock. This can be avoided by
+ *   advertising our state to ocfs2_delete_inode().
+ */
+static int ocfs2_recover_orphans(struct ocfs2_super *osb,
+				 int slot)
+{
+	int ret = 0;
+	struct inode *inode = NULL;
+	struct inode *iter;
+	struct ocfs2_inode_info *oi;
+
+	trace_ocfs2_recover_orphans(slot);
+
+	ocfs2_mark_recovering_orphan_dir(osb, slot);
+	ret = ocfs2_queue_orphans(osb, slot, &inode);
+	ocfs2_clear_recovering_orphan_dir(osb, slot);
+
+	/* Error here should be noted, but we want to continue with as
+	 * many queued inodes as we've got. */
+	if (ret)
+		mlog_errno(ret);
+
+	while (inode) {
+		oi = OCFS2_I(inode);
+		trace_ocfs2_recover_orphans_iput(
+					(unsigned long long)oi->ip_blkno);
+
+		iter = oi->ip_next_orphan;
+
+		spin_lock(&oi->ip_lock);
+		/* The remote delete code may have set these on the
+		 * assumption that the other node would wipe them
+		 * successfully.  If they are still in the node's
+		 * orphan dir, we need to reset that state. */
+		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
+
+		/* Set the proper information to get us going into
+		 * ocfs2_delete_inode. */
+		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
+		spin_unlock(&oi->ip_lock);
+
+		iput(inode);
+
+		inode = iter;
+	}
+
+	return ret;
+}
+
+static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
+{
+	/* This check is good because ocfs2 will wait on our recovery
+	 * thread before changing it to something other than MOUNTED
+	 * or DISABLED. */
+	wait_event(osb->osb_mount_event,
+		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
+		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
+		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
+
+	/* If there's an error on mount, then we may never get to the
+	 * MOUNTED flag, but this is set right before
+	 * dismount_volume() so we can trust it. */
+	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
+		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
+		mlog(0, "mount error, exiting!\n");
+		return -EBUSY;
+	}
+
+	return 0;
+}
+
+static int ocfs2_commit_thread(void *arg)
+{
+	int status;
+	struct ocfs2_super *osb = arg;
+	struct ocfs2_journal *journal = osb->journal;
+
+	/* we can trust j_num_trans here because _should_stop() is only set in
+	 * shutdown and nobody other than ourselves should be able to start
+	 * transactions.  committing on shutdown might take a few iterations
+	 * as final transactions put deleted inodes on the list */
+	while (!(kthread_should_stop() &&
+		 atomic_read(&journal->j_num_trans) == 0)) {
+
+		wait_event_interruptible(osb->checkpoint_event,
+					 atomic_read(&journal->j_num_trans)
+					 || kthread_should_stop());
+
+		status = ocfs2_commit_cache(osb);
+		if (status < 0)
+			mlog_errno(status);
+
+		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
+			mlog(ML_KTHREAD,
+			     "commit_thread: %u transactions pending on "
+			     "shutdown\n",
+			     atomic_read(&journal->j_num_trans));
+		}
+	}
+
+	return 0;
+}
+
+/* Reads all the journal inodes without taking any cluster locks. Used
+ * for hard readonly access to determine whether any journal requires
+ * recovery. Also used to refresh the recovery generation numbers after
+ * a journal has been recovered by another node.
+ */
+int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
+{
+	int ret = 0;
+	unsigned int slot;
+	struct buffer_head *di_bh = NULL;
+	struct ocfs2_dinode *di;
+	int journal_dirty = 0;
+
+	for(slot = 0; slot < osb->max_slots; slot++) {
+		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
+		if (ret) {
+			mlog_errno(ret);
+			goto out;
+		}
+
+		di = (struct ocfs2_dinode *) di_bh->b_data;
+
+		osb->slot_recovery_generations[slot] =
+					ocfs2_get_recovery_generation(di);
+
+		if (le32_to_cpu(di->id1.journal1.ij_flags) &
+		    OCFS2_JOURNAL_DIRTY_FL)
+			journal_dirty = 1;
+
+		brelse(di_bh);
+		di_bh = NULL;
+	}
+
+out:
+	if (journal_dirty)
+		ret = -EROFS;
+	return ret;
+}