[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/init/calibrate.c b/ap/os/linux/linux-3.4.x/init/calibrate.c
new file mode 100644
index 0000000..fda0a7b
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/init/calibrate.c
@@ -0,0 +1,301 @@
+/* calibrate.c: default delay calibration
+ *
+ * Excised from init/main.c
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ */
+
+#include <linux/jiffies.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/timex.h>
+#include <linux/smp.h>
+#include <linux/percpu.h>
+
+unsigned long lpj_fine;
+unsigned long preset_lpj;
+static int __init lpj_setup(char *str)
+{
+	preset_lpj = simple_strtoul(str,NULL,0);
+	return 1;
+}
+
+__setup("lpj=", lpj_setup);
+
+#ifdef ARCH_HAS_READ_CURRENT_TIMER
+
+/* This routine uses the read_current_timer() routine and gets the
+ * loops per jiffy directly, instead of guessing it using delay().
+ * Also, this code tries to handle non-maskable asynchronous events
+ * (like SMIs)
+ */
+#define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100))
+#define MAX_DIRECT_CALIBRATION_RETRIES		5
+
+static unsigned long __cpuinit calibrate_delay_direct(void)
+{
+	unsigned long pre_start, start, post_start;
+	unsigned long pre_end, end, post_end;
+	unsigned long start_jiffies;
+	unsigned long timer_rate_min, timer_rate_max;
+	unsigned long good_timer_sum = 0;
+	unsigned long good_timer_count = 0;
+	unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
+	int max = -1; /* index of measured_times with max/min values or not set */
+	int min = -1;
+	int i;
+
+	if (read_current_timer(&pre_start) < 0 )
+		return 0;
+
+	/*
+	 * A simple loop like
+	 *	while ( jiffies < start_jiffies+1)
+	 *		start = read_current_timer();
+	 * will not do. As we don't really know whether jiffy switch
+	 * happened first or timer_value was read first. And some asynchronous
+	 * event can happen between these two events introducing errors in lpj.
+	 *
+	 * So, we do
+	 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
+	 * 2. check jiffy switch
+	 * 3. start <- timer value before or after jiffy switch
+	 * 4. post_start <- When we are sure that jiffy switch has happened
+	 *
+	 * Note, we don't know anything about order of 2 and 3.
+	 * Now, by looking at post_start and pre_start difference, we can
+	 * check whether any asynchronous event happened or not
+	 */
+
+	for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
+		pre_start = 0;
+		read_current_timer(&start);
+		start_jiffies = jiffies;
+		while (time_before_eq(jiffies, start_jiffies + 1)) {
+			pre_start = start;
+			read_current_timer(&start);
+		}
+		read_current_timer(&post_start);
+
+		pre_end = 0;
+		end = post_start;
+		while (time_before_eq(jiffies, start_jiffies + 1 +
+					       DELAY_CALIBRATION_TICKS)) {
+			pre_end = end;
+			read_current_timer(&end);
+		}
+		read_current_timer(&post_end);
+
+		timer_rate_max = (post_end - pre_start) /
+					DELAY_CALIBRATION_TICKS;
+		timer_rate_min = (pre_end - post_start) /
+					DELAY_CALIBRATION_TICKS;
+
+		/*
+		 * If the upper limit and lower limit of the timer_rate is
+		 * >= 12.5% apart, redo calibration.
+		 */
+		if (start >= post_end)
+			printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
+					"timer_rate as we had a TSC wrap around"
+					" start=%lu >=post_end=%lu\n",
+				start, post_end);
+		if (start < post_end && pre_start != 0 && pre_end != 0 &&
+		    (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
+			good_timer_count++;
+			good_timer_sum += timer_rate_max;
+			measured_times[i] = timer_rate_max;
+			if (max < 0 || timer_rate_max > measured_times[max])
+				max = i;
+			if (min < 0 || timer_rate_max < measured_times[min])
+				min = i;
+		} else
+			measured_times[i] = 0;
+
+	}
+
+	/*
+	 * Find the maximum & minimum - if they differ too much throw out the
+	 * one with the largest difference from the mean and try again...
+	 */
+	while (good_timer_count > 1) {
+		unsigned long estimate;
+		unsigned long maxdiff;
+
+		/* compute the estimate */
+		estimate = (good_timer_sum/good_timer_count);
+		maxdiff = estimate >> 3;
+
+		/* if range is within 12% let's take it */
+		if ((measured_times[max] - measured_times[min]) < maxdiff)
+			return estimate;
+
+		/* ok - drop the worse value and try again... */
+		good_timer_sum = 0;
+		good_timer_count = 0;
+		if ((measured_times[max] - estimate) <
+				(estimate - measured_times[min])) {
+			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
+					"min bogoMips estimate %d = %lu\n",
+				min, measured_times[min]);
+			measured_times[min] = 0;
+			min = max;
+		} else {
+			printk(KERN_NOTICE "calibrate_delay_direct() dropping "
+					"max bogoMips estimate %d = %lu\n",
+				max, measured_times[max]);
+			measured_times[max] = 0;
+			max = min;
+		}
+
+		for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
+			if (measured_times[i] == 0)
+				continue;
+			good_timer_count++;
+			good_timer_sum += measured_times[i];
+			if (measured_times[i] < measured_times[min])
+				min = i;
+			if (measured_times[i] > measured_times[max])
+				max = i;
+		}
+
+	}
+
+	printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
+	       "estimate for loops_per_jiffy.\nProbably due to long platform "
+		"interrupts. Consider using \"lpj=\" boot option.\n");
+	return 0;
+}
+#else
+static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
+#endif
+
+/*
+ * This is the number of bits of precision for the loops_per_jiffy.  Each
+ * time we refine our estimate after the first takes 1.5/HZ seconds, so try
+ * to start with a good estimate.
+ * For the boot cpu we can skip the delay calibration and assign it a value
+ * calculated based on the timer frequency.
+ * For the rest of the CPUs we cannot assume that the timer frequency is same as
+ * the cpu frequency, hence do the calibration for those.
+ */
+#define LPS_PREC 8
+
+static unsigned long __cpuinit calibrate_delay_converge(void)
+{
+	/* First stage - slowly accelerate to find initial bounds */
+	unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
+	int trials = 0, band = 0, trial_in_band = 0;
+
+	lpj = (1<<12);
+
+	/* wait for "start of" clock tick */
+	ticks = jiffies;
+	while (ticks == jiffies)
+		; /* nothing */
+	/* Go .. */
+	ticks = jiffies;
+	do {
+		if (++trial_in_band == (1<<band)) {
+			++band;
+			trial_in_band = 0;
+		}
+		__delay(lpj * band);
+		trials += band;
+	} while (ticks == jiffies);
+	/*
+	 * We overshot, so retreat to a clear underestimate. Then estimate
+	 * the largest likely undershoot. This defines our chop bounds.
+	 */
+	trials -= band;
+	loopadd_base = lpj * band;
+	lpj_base = lpj * trials;
+
+recalibrate:
+	lpj = lpj_base;
+	loopadd = loopadd_base;
+
+	/*
+	 * Do a binary approximation to get lpj set to
+	 * equal one clock (up to LPS_PREC bits)
+	 */
+	chop_limit = lpj >> LPS_PREC;
+	while (loopadd > chop_limit) {
+		lpj += loopadd;
+		ticks = jiffies;
+		while (ticks == jiffies)
+			; /* nothing */
+		ticks = jiffies;
+		__delay(lpj);
+		if (jiffies != ticks)	/* longer than 1 tick */
+			lpj -= loopadd;
+		loopadd >>= 1;
+	}
+	/*
+	 * If we incremented every single time possible, presume we've
+	 * massively underestimated initially, and retry with a higher
+	 * start, and larger range. (Only seen on x86_64, due to SMIs)
+	 */
+	if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
+		lpj_base = lpj;
+		loopadd_base <<= 2;
+		goto recalibrate;
+	}
+
+	return lpj;
+}
+
+static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
+
+/*
+ * Check if cpu calibration delay is already known. For example,
+ * some processors with multi-core sockets may have all cores
+ * with the same calibration delay.
+ *
+ * Architectures should override this function if a faster calibration
+ * method is available.
+ */
+unsigned long __attribute__((weak)) __cpuinit calibrate_delay_is_known(void)
+{
+	return 0;
+}
+
+void __cpuinit calibrate_delay(void)
+{
+	unsigned long lpj;
+	static bool printed;
+	int this_cpu = smp_processor_id();
+
+	if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
+		lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
+		if (!printed)
+			pr_info("Calibrating delay loop (skipped) "
+				"already calibrated this CPU");
+	} else if (preset_lpj) {
+		lpj = preset_lpj;
+		if (!printed)
+			pr_info("Calibrating delay loop (skipped) "
+				"preset value.. ");
+	} else if ((!printed) && lpj_fine) {
+		lpj = lpj_fine;
+		pr_info("Calibrating delay loop (skipped), "
+			"value calculated using timer frequency.. ");
+	} else if ((lpj = calibrate_delay_is_known())) {
+		;
+	} else if ((lpj = calibrate_delay_direct()) != 0) {
+		if (!printed)
+			pr_info("Calibrating delay using timer "
+				"specific routine.. ");
+	} else {
+		if (!printed)
+			pr_info("Calibrating delay loop... ");
+		lpj = calibrate_delay_converge();
+	}
+	per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
+	if (!printed)
+		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
+			lpj/(500000/HZ),
+			(lpj/(5000/HZ)) % 100, lpj);
+
+	loops_per_jiffy = lpj;
+	printed = true;
+}