[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/kernel/auditsc.c b/ap/os/linux/linux-3.4.x/kernel/auditsc.c
new file mode 100644
index 0000000..5490712
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/auditsc.c
@@ -0,0 +1,2738 @@
+/* auditsc.c -- System-call auditing support
+ * Handles all system-call specific auditing features.
+ *
+ * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
+ * Copyright 2005 Hewlett-Packard Development Company, L.P.
+ * Copyright (C) 2005, 2006 IBM Corporation
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *
+ * Written by Rickard E. (Rik) Faith <faith@redhat.com>
+ *
+ * Many of the ideas implemented here are from Stephen C. Tweedie,
+ * especially the idea of avoiding a copy by using getname.
+ *
+ * The method for actual interception of syscall entry and exit (not in
+ * this file -- see entry.S) is based on a GPL'd patch written by
+ * okir@suse.de and Copyright 2003 SuSE Linux AG.
+ *
+ * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
+ * 2006.
+ *
+ * The support of additional filter rules compares (>, <, >=, <=) was
+ * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
+ *
+ * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
+ * filesystem information.
+ *
+ * Subject and object context labeling support added by <danjones@us.ibm.com>
+ * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
+ */
+
+#include <linux/init.h>
+#include <asm/types.h>
+#include <linux/atomic.h>
+#include <linux/fs.h>
+#include <linux/namei.h>
+#include <linux/mm.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/mount.h>
+#include <linux/socket.h>
+#include <linux/mqueue.h>
+#include <linux/audit.h>
+#include <linux/personality.h>
+#include <linux/time.h>
+#include <linux/netlink.h>
+#include <linux/compiler.h>
+#include <asm/unistd.h>
+#include <linux/security.h>
+#include <linux/list.h>
+#include <linux/tty.h>
+#include <linux/binfmts.h>
+#include <linux/highmem.h>
+#include <linux/syscalls.h>
+#include <linux/capability.h>
+#include <linux/fs_struct.h>
+
+#include "audit.h"
+
+/* flags stating the success for a syscall */
+#define AUDITSC_INVALID 0
+#define AUDITSC_SUCCESS 1
+#define AUDITSC_FAILURE 2
+
+/* AUDIT_NAMES is the number of slots we reserve in the audit_context
+ * for saving names from getname().  If we get more names we will allocate
+ * a name dynamically and also add those to the list anchored by names_list. */
+#define AUDIT_NAMES	5
+
+/* Indicates that audit should log the full pathname. */
+#define AUDIT_NAME_FULL -1
+
+/* no execve audit message should be longer than this (userspace limits) */
+#define MAX_EXECVE_AUDIT_LEN 7500
+
+/* number of audit rules */
+int audit_n_rules;
+
+/* determines whether we collect data for signals sent */
+int audit_signals;
+
+struct audit_cap_data {
+	kernel_cap_t		permitted;
+	kernel_cap_t		inheritable;
+	union {
+		unsigned int	fE;		/* effective bit of a file capability */
+		kernel_cap_t	effective;	/* effective set of a process */
+	};
+};
+
+/* When fs/namei.c:getname() is called, we store the pointer in name and
+ * we don't let putname() free it (instead we free all of the saved
+ * pointers at syscall exit time).
+ *
+ * Further, in fs/namei.c:path_lookup() we store the inode and device. */
+struct audit_names {
+	struct list_head list;		/* audit_context->names_list */
+	const char	*name;
+	unsigned long	ino;
+	dev_t		dev;
+	umode_t		mode;
+	uid_t		uid;
+	gid_t		gid;
+	dev_t		rdev;
+	u32		osid;
+	struct audit_cap_data fcap;
+	unsigned int	fcap_ver;
+	int		name_len;	/* number of name's characters to log */
+	bool		name_put;	/* call __putname() for this name */
+	/*
+	 * This was an allocated audit_names and not from the array of
+	 * names allocated in the task audit context.  Thus this name
+	 * should be freed on syscall exit
+	 */
+	bool		should_free;
+};
+
+struct audit_aux_data {
+	struct audit_aux_data	*next;
+	int			type;
+};
+
+#define AUDIT_AUX_IPCPERM	0
+
+/* Number of target pids per aux struct. */
+#define AUDIT_AUX_PIDS	16
+
+struct audit_aux_data_execve {
+	struct audit_aux_data	d;
+	int argc;
+	int envc;
+	struct mm_struct *mm;
+};
+
+struct audit_aux_data_pids {
+	struct audit_aux_data	d;
+	pid_t			target_pid[AUDIT_AUX_PIDS];
+	uid_t			target_auid[AUDIT_AUX_PIDS];
+	uid_t			target_uid[AUDIT_AUX_PIDS];
+	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
+	u32			target_sid[AUDIT_AUX_PIDS];
+	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
+	int			pid_count;
+};
+
+struct audit_aux_data_bprm_fcaps {
+	struct audit_aux_data	d;
+	struct audit_cap_data	fcap;
+	unsigned int		fcap_ver;
+	struct audit_cap_data	old_pcap;
+	struct audit_cap_data	new_pcap;
+};
+
+struct audit_aux_data_capset {
+	struct audit_aux_data	d;
+	pid_t			pid;
+	struct audit_cap_data	cap;
+};
+
+struct audit_tree_refs {
+	struct audit_tree_refs *next;
+	struct audit_chunk *c[31];
+};
+
+/* The per-task audit context. */
+struct audit_context {
+	int		    dummy;	/* must be the first element */
+	int		    in_syscall;	/* 1 if task is in a syscall */
+	enum audit_state    state, current_state;
+	unsigned int	    serial;     /* serial number for record */
+	int		    major;      /* syscall number */
+	struct timespec	    ctime;      /* time of syscall entry */
+	unsigned long	    argv[4];    /* syscall arguments */
+	long		    return_code;/* syscall return code */
+	u64		    prio;
+	int		    return_valid; /* return code is valid */
+	/*
+	 * The names_list is the list of all audit_names collected during this
+	 * syscall.  The first AUDIT_NAMES entries in the names_list will
+	 * actually be from the preallocated_names array for performance
+	 * reasons.  Except during allocation they should never be referenced
+	 * through the preallocated_names array and should only be found/used
+	 * by running the names_list.
+	 */
+	struct audit_names  preallocated_names[AUDIT_NAMES];
+	int		    name_count; /* total records in names_list */
+	struct list_head    names_list;	/* anchor for struct audit_names->list */
+	char *		    filterkey;	/* key for rule that triggered record */
+	struct path	    pwd;
+	struct audit_context *previous; /* For nested syscalls */
+	struct audit_aux_data *aux;
+	struct audit_aux_data *aux_pids;
+	struct sockaddr_storage *sockaddr;
+	size_t sockaddr_len;
+				/* Save things to print about task_struct */
+	pid_t		    pid, ppid;
+	uid_t		    uid, euid, suid, fsuid;
+	gid_t		    gid, egid, sgid, fsgid;
+	unsigned long	    personality;
+	int		    arch;
+
+	pid_t		    target_pid;
+	uid_t		    target_auid;
+	uid_t		    target_uid;
+	unsigned int	    target_sessionid;
+	u32		    target_sid;
+	char		    target_comm[TASK_COMM_LEN];
+
+	struct audit_tree_refs *trees, *first_trees;
+	struct list_head killed_trees;
+	int tree_count;
+
+	int type;
+	union {
+		struct {
+			int nargs;
+			long args[6];
+		} socketcall;
+		struct {
+			uid_t			uid;
+			gid_t			gid;
+			umode_t			mode;
+			u32			osid;
+			int			has_perm;
+			uid_t			perm_uid;
+			gid_t			perm_gid;
+			umode_t			perm_mode;
+			unsigned long		qbytes;
+		} ipc;
+		struct {
+			mqd_t			mqdes;
+			struct mq_attr 		mqstat;
+		} mq_getsetattr;
+		struct {
+			mqd_t			mqdes;
+			int			sigev_signo;
+		} mq_notify;
+		struct {
+			mqd_t			mqdes;
+			size_t			msg_len;
+			unsigned int		msg_prio;
+			struct timespec		abs_timeout;
+		} mq_sendrecv;
+		struct {
+			int			oflag;
+			umode_t			mode;
+			struct mq_attr		attr;
+		} mq_open;
+		struct {
+			pid_t			pid;
+			struct audit_cap_data	cap;
+		} capset;
+		struct {
+			int			fd;
+			int			flags;
+		} mmap;
+	};
+	int fds[2];
+
+#if AUDIT_DEBUG
+	int		    put_count;
+	int		    ino_count;
+#endif
+};
+
+static inline int open_arg(int flags, int mask)
+{
+	int n = ACC_MODE(flags);
+	if (flags & (O_TRUNC | O_CREAT))
+		n |= AUDIT_PERM_WRITE;
+	return n & mask;
+}
+
+static int audit_match_perm(struct audit_context *ctx, int mask)
+{
+	unsigned n;
+	if (unlikely(!ctx))
+		return 0;
+	n = ctx->major;
+
+	switch (audit_classify_syscall(ctx->arch, n)) {
+	case 0:	/* native */
+		if ((mask & AUDIT_PERM_WRITE) &&
+		     audit_match_class(AUDIT_CLASS_WRITE, n))
+			return 1;
+		if ((mask & AUDIT_PERM_READ) &&
+		     audit_match_class(AUDIT_CLASS_READ, n))
+			return 1;
+		if ((mask & AUDIT_PERM_ATTR) &&
+		     audit_match_class(AUDIT_CLASS_CHATTR, n))
+			return 1;
+		return 0;
+	case 1: /* 32bit on biarch */
+		if ((mask & AUDIT_PERM_WRITE) &&
+		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
+			return 1;
+		if ((mask & AUDIT_PERM_READ) &&
+		     audit_match_class(AUDIT_CLASS_READ_32, n))
+			return 1;
+		if ((mask & AUDIT_PERM_ATTR) &&
+		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
+			return 1;
+		return 0;
+	case 2: /* open */
+		return mask & ACC_MODE(ctx->argv[1]);
+	case 3: /* openat */
+		return mask & ACC_MODE(ctx->argv[2]);
+	case 4: /* socketcall */
+		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
+	case 5: /* execve */
+		return mask & AUDIT_PERM_EXEC;
+	default:
+		return 0;
+	}
+}
+
+static int audit_match_filetype(struct audit_context *ctx, int val)
+{
+	struct audit_names *n;
+	umode_t mode = (umode_t)val;
+
+	if (unlikely(!ctx))
+		return 0;
+
+	list_for_each_entry(n, &ctx->names_list, list) {
+		if ((n->ino != -1) &&
+		    ((n->mode & S_IFMT) == mode))
+			return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
+ * ->first_trees points to its beginning, ->trees - to the current end of data.
+ * ->tree_count is the number of free entries in array pointed to by ->trees.
+ * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
+ * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
+ * it's going to remain 1-element for almost any setup) until we free context itself.
+ * References in it _are_ dropped - at the same time we free/drop aux stuff.
+ */
+
+#ifdef CONFIG_AUDIT_TREE
+static void audit_set_auditable(struct audit_context *ctx)
+{
+	if (!ctx->prio) {
+		ctx->prio = 1;
+		ctx->current_state = AUDIT_RECORD_CONTEXT;
+	}
+}
+
+static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
+{
+	struct audit_tree_refs *p = ctx->trees;
+	int left = ctx->tree_count;
+	if (likely(left)) {
+		p->c[--left] = chunk;
+		ctx->tree_count = left;
+		return 1;
+	}
+	if (!p)
+		return 0;
+	p = p->next;
+	if (p) {
+		p->c[30] = chunk;
+		ctx->trees = p;
+		ctx->tree_count = 30;
+		return 1;
+	}
+	return 0;
+}
+
+static int grow_tree_refs(struct audit_context *ctx)
+{
+	struct audit_tree_refs *p = ctx->trees;
+	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
+	if (!ctx->trees) {
+		ctx->trees = p;
+		return 0;
+	}
+	if (p)
+		p->next = ctx->trees;
+	else
+		ctx->first_trees = ctx->trees;
+	ctx->tree_count = 31;
+	return 1;
+}
+#endif
+
+static void unroll_tree_refs(struct audit_context *ctx,
+		      struct audit_tree_refs *p, int count)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_tree_refs *q;
+	int n;
+	if (!p) {
+		/* we started with empty chain */
+		p = ctx->first_trees;
+		count = 31;
+		/* if the very first allocation has failed, nothing to do */
+		if (!p)
+			return;
+	}
+	n = count;
+	for (q = p; q != ctx->trees; q = q->next, n = 31) {
+		while (n--) {
+			audit_put_chunk(q->c[n]);
+			q->c[n] = NULL;
+		}
+	}
+	while (n-- > ctx->tree_count) {
+		audit_put_chunk(q->c[n]);
+		q->c[n] = NULL;
+	}
+	ctx->trees = p;
+	ctx->tree_count = count;
+#endif
+}
+
+static void free_tree_refs(struct audit_context *ctx)
+{
+	struct audit_tree_refs *p, *q;
+	for (p = ctx->first_trees; p; p = q) {
+		q = p->next;
+		kfree(p);
+	}
+}
+
+static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_tree_refs *p;
+	int n;
+	if (!tree)
+		return 0;
+	/* full ones */
+	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
+		for (n = 0; n < 31; n++)
+			if (audit_tree_match(p->c[n], tree))
+				return 1;
+	}
+	/* partial */
+	if (p) {
+		for (n = ctx->tree_count; n < 31; n++)
+			if (audit_tree_match(p->c[n], tree))
+				return 1;
+	}
+#endif
+	return 0;
+}
+
+static int audit_compare_id(uid_t uid1,
+			    struct audit_names *name,
+			    unsigned long name_offset,
+			    struct audit_field *f,
+			    struct audit_context *ctx)
+{
+	struct audit_names *n;
+	unsigned long addr;
+	uid_t uid2;
+	int rc;
+
+	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
+
+	if (name) {
+		addr = (unsigned long)name;
+		addr += name_offset;
+
+		uid2 = *(uid_t *)addr;
+		rc = audit_comparator(uid1, f->op, uid2);
+		if (rc)
+			return rc;
+	}
+
+	if (ctx) {
+		list_for_each_entry(n, &ctx->names_list, list) {
+			addr = (unsigned long)n;
+			addr += name_offset;
+
+			uid2 = *(uid_t *)addr;
+
+			rc = audit_comparator(uid1, f->op, uid2);
+			if (rc)
+				return rc;
+		}
+	}
+	return 0;
+}
+
+static int audit_field_compare(struct task_struct *tsk,
+			       const struct cred *cred,
+			       struct audit_field *f,
+			       struct audit_context *ctx,
+			       struct audit_names *name)
+{
+	switch (f->val) {
+	/* process to file object comparisons */
+	case AUDIT_COMPARE_UID_TO_OBJ_UID:
+		return audit_compare_id(cred->uid,
+					name, offsetof(struct audit_names, uid),
+					f, ctx);
+	case AUDIT_COMPARE_GID_TO_OBJ_GID:
+		return audit_compare_id(cred->gid,
+					name, offsetof(struct audit_names, gid),
+					f, ctx);
+	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
+		return audit_compare_id(cred->euid,
+					name, offsetof(struct audit_names, uid),
+					f, ctx);
+	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
+		return audit_compare_id(cred->egid,
+					name, offsetof(struct audit_names, gid),
+					f, ctx);
+	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
+		return audit_compare_id(tsk->loginuid,
+					name, offsetof(struct audit_names, uid),
+					f, ctx);
+	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
+		return audit_compare_id(cred->suid,
+					name, offsetof(struct audit_names, uid),
+					f, ctx);
+	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
+		return audit_compare_id(cred->sgid,
+					name, offsetof(struct audit_names, gid),
+					f, ctx);
+	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
+		return audit_compare_id(cred->fsuid,
+					name, offsetof(struct audit_names, uid),
+					f, ctx);
+	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
+		return audit_compare_id(cred->fsgid,
+					name, offsetof(struct audit_names, gid),
+					f, ctx);
+	/* uid comparisons */
+	case AUDIT_COMPARE_UID_TO_AUID:
+		return audit_comparator(cred->uid, f->op, tsk->loginuid);
+	case AUDIT_COMPARE_UID_TO_EUID:
+		return audit_comparator(cred->uid, f->op, cred->euid);
+	case AUDIT_COMPARE_UID_TO_SUID:
+		return audit_comparator(cred->uid, f->op, cred->suid);
+	case AUDIT_COMPARE_UID_TO_FSUID:
+		return audit_comparator(cred->uid, f->op, cred->fsuid);
+	/* auid comparisons */
+	case AUDIT_COMPARE_AUID_TO_EUID:
+		return audit_comparator(tsk->loginuid, f->op, cred->euid);
+	case AUDIT_COMPARE_AUID_TO_SUID:
+		return audit_comparator(tsk->loginuid, f->op, cred->suid);
+	case AUDIT_COMPARE_AUID_TO_FSUID:
+		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
+	/* euid comparisons */
+	case AUDIT_COMPARE_EUID_TO_SUID:
+		return audit_comparator(cred->euid, f->op, cred->suid);
+	case AUDIT_COMPARE_EUID_TO_FSUID:
+		return audit_comparator(cred->euid, f->op, cred->fsuid);
+	/* suid comparisons */
+	case AUDIT_COMPARE_SUID_TO_FSUID:
+		return audit_comparator(cred->suid, f->op, cred->fsuid);
+	/* gid comparisons */
+	case AUDIT_COMPARE_GID_TO_EGID:
+		return audit_comparator(cred->gid, f->op, cred->egid);
+	case AUDIT_COMPARE_GID_TO_SGID:
+		return audit_comparator(cred->gid, f->op, cred->sgid);
+	case AUDIT_COMPARE_GID_TO_FSGID:
+		return audit_comparator(cred->gid, f->op, cred->fsgid);
+	/* egid comparisons */
+	case AUDIT_COMPARE_EGID_TO_SGID:
+		return audit_comparator(cred->egid, f->op, cred->sgid);
+	case AUDIT_COMPARE_EGID_TO_FSGID:
+		return audit_comparator(cred->egid, f->op, cred->fsgid);
+	/* sgid comparison */
+	case AUDIT_COMPARE_SGID_TO_FSGID:
+		return audit_comparator(cred->sgid, f->op, cred->fsgid);
+	default:
+		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
+		return 0;
+	}
+	return 0;
+}
+
+/* Determine if any context name data matches a rule's watch data */
+/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
+ * otherwise.
+ *
+ * If task_creation is true, this is an explicit indication that we are
+ * filtering a task rule at task creation time.  This and tsk == current are
+ * the only situations where tsk->cred may be accessed without an rcu read lock.
+ */
+static int audit_filter_rules(struct task_struct *tsk,
+			      struct audit_krule *rule,
+			      struct audit_context *ctx,
+			      struct audit_names *name,
+			      enum audit_state *state,
+			      bool task_creation)
+{
+	const struct cred *cred;
+	int i, need_sid = 1;
+	u32 sid;
+
+	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
+
+	for (i = 0; i < rule->field_count; i++) {
+		struct audit_field *f = &rule->fields[i];
+		struct audit_names *n;
+		int result = 0;
+
+		switch (f->type) {
+		case AUDIT_PID:
+			result = audit_comparator(tsk->pid, f->op, f->val);
+			break;
+		case AUDIT_PPID:
+			if (ctx) {
+				if (!ctx->ppid)
+					ctx->ppid = sys_getppid();
+				result = audit_comparator(ctx->ppid, f->op, f->val);
+			}
+			break;
+		case AUDIT_UID:
+			result = audit_comparator(cred->uid, f->op, f->val);
+			break;
+		case AUDIT_EUID:
+			result = audit_comparator(cred->euid, f->op, f->val);
+			break;
+		case AUDIT_SUID:
+			result = audit_comparator(cred->suid, f->op, f->val);
+			break;
+		case AUDIT_FSUID:
+			result = audit_comparator(cred->fsuid, f->op, f->val);
+			break;
+		case AUDIT_GID:
+			result = audit_comparator(cred->gid, f->op, f->val);
+			break;
+		case AUDIT_EGID:
+			result = audit_comparator(cred->egid, f->op, f->val);
+			break;
+		case AUDIT_SGID:
+			result = audit_comparator(cred->sgid, f->op, f->val);
+			break;
+		case AUDIT_FSGID:
+			result = audit_comparator(cred->fsgid, f->op, f->val);
+			break;
+		case AUDIT_PERS:
+			result = audit_comparator(tsk->personality, f->op, f->val);
+			break;
+		case AUDIT_ARCH:
+			if (ctx)
+				result = audit_comparator(ctx->arch, f->op, f->val);
+			break;
+
+		case AUDIT_EXIT:
+			if (ctx && ctx->return_valid)
+				result = audit_comparator(ctx->return_code, f->op, f->val);
+			break;
+		case AUDIT_SUCCESS:
+			if (ctx && ctx->return_valid) {
+				if (f->val)
+					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
+				else
+					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
+			}
+			break;
+		case AUDIT_DEVMAJOR:
+			if (name) {
+				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
+				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
+					++result;
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
+					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_DEVMINOR:
+			if (name) {
+				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
+				    audit_comparator(MINOR(name->rdev), f->op, f->val))
+					++result;
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
+					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_INODE:
+			if (name)
+				result = (name->ino == f->val);
+			else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(n->ino, f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_OBJ_UID:
+			if (name) {
+				result = audit_comparator(name->uid, f->op, f->val);
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(n->uid, f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_OBJ_GID:
+			if (name) {
+				result = audit_comparator(name->gid, f->op, f->val);
+			} else if (ctx) {
+				list_for_each_entry(n, &ctx->names_list, list) {
+					if (audit_comparator(n->gid, f->op, f->val)) {
+						++result;
+						break;
+					}
+				}
+			}
+			break;
+		case AUDIT_WATCH:
+			if (name)
+				result = audit_watch_compare(rule->watch, name->ino, name->dev);
+			break;
+		case AUDIT_DIR:
+			if (ctx)
+				result = match_tree_refs(ctx, rule->tree);
+			break;
+		case AUDIT_LOGINUID:
+			result = 0;
+			if (ctx)
+				result = audit_comparator(tsk->loginuid, f->op, f->val);
+			break;
+		case AUDIT_SUBJ_USER:
+		case AUDIT_SUBJ_ROLE:
+		case AUDIT_SUBJ_TYPE:
+		case AUDIT_SUBJ_SEN:
+		case AUDIT_SUBJ_CLR:
+			/* NOTE: this may return negative values indicating
+			   a temporary error.  We simply treat this as a
+			   match for now to avoid losing information that
+			   may be wanted.   An error message will also be
+			   logged upon error */
+			if (f->lsm_rule) {
+				if (need_sid) {
+					security_task_getsecid(tsk, &sid);
+					need_sid = 0;
+				}
+				result = security_audit_rule_match(sid, f->type,
+				                                  f->op,
+				                                  f->lsm_rule,
+				                                  ctx);
+			}
+			break;
+		case AUDIT_OBJ_USER:
+		case AUDIT_OBJ_ROLE:
+		case AUDIT_OBJ_TYPE:
+		case AUDIT_OBJ_LEV_LOW:
+		case AUDIT_OBJ_LEV_HIGH:
+			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
+			   also applies here */
+			if (f->lsm_rule) {
+				/* Find files that match */
+				if (name) {
+					result = security_audit_rule_match(
+					           name->osid, f->type, f->op,
+					           f->lsm_rule, ctx);
+				} else if (ctx) {
+					list_for_each_entry(n, &ctx->names_list, list) {
+						if (security_audit_rule_match(n->osid, f->type,
+									      f->op, f->lsm_rule,
+									      ctx)) {
+							++result;
+							break;
+						}
+					}
+				}
+				/* Find ipc objects that match */
+				if (!ctx || ctx->type != AUDIT_IPC)
+					break;
+				if (security_audit_rule_match(ctx->ipc.osid,
+							      f->type, f->op,
+							      f->lsm_rule, ctx))
+					++result;
+			}
+			break;
+		case AUDIT_ARG0:
+		case AUDIT_ARG1:
+		case AUDIT_ARG2:
+		case AUDIT_ARG3:
+			if (ctx)
+				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
+			break;
+		case AUDIT_FILTERKEY:
+			/* ignore this field for filtering */
+			result = 1;
+			break;
+		case AUDIT_PERM:
+			result = audit_match_perm(ctx, f->val);
+			break;
+		case AUDIT_FILETYPE:
+			result = audit_match_filetype(ctx, f->val);
+			break;
+		case AUDIT_FIELD_COMPARE:
+			result = audit_field_compare(tsk, cred, f, ctx, name);
+			break;
+		}
+		if (!result)
+			return 0;
+	}
+
+	if (ctx) {
+		if (rule->prio <= ctx->prio)
+			return 0;
+		if (rule->filterkey) {
+			kfree(ctx->filterkey);
+			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
+		}
+		ctx->prio = rule->prio;
+	}
+	switch (rule->action) {
+	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
+	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
+	}
+	return 1;
+}
+
+/* At process creation time, we can determine if system-call auditing is
+ * completely disabled for this task.  Since we only have the task
+ * structure at this point, we can only check uid and gid.
+ */
+static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
+{
+	struct audit_entry *e;
+	enum audit_state   state;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
+		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
+				       &state, true)) {
+			if (state == AUDIT_RECORD_CONTEXT)
+				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
+			rcu_read_unlock();
+			return state;
+		}
+	}
+	rcu_read_unlock();
+	return AUDIT_BUILD_CONTEXT;
+}
+
+static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
+{
+	int word, bit;
+
+	if (val > 0xffffffff)
+		return false;
+
+	word = AUDIT_WORD(val);
+	if (word >= AUDIT_BITMASK_SIZE)
+		return false;
+
+	bit = AUDIT_BIT(val);
+
+	return rule->mask[word] & bit;
+}
+
+/* At syscall entry and exit time, this filter is called if the
+ * audit_state is not low enough that auditing cannot take place, but is
+ * also not high enough that we already know we have to write an audit
+ * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
+ */
+static enum audit_state audit_filter_syscall(struct task_struct *tsk,
+					     struct audit_context *ctx,
+					     struct list_head *list)
+{
+	struct audit_entry *e;
+	enum audit_state state;
+
+	if (audit_pid && tsk->tgid == audit_pid)
+		return AUDIT_DISABLED;
+
+	rcu_read_lock();
+	if (!list_empty(list)) {
+		list_for_each_entry_rcu(e, list, list) {
+			if (audit_in_mask(&e->rule, ctx->major) &&
+			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
+					       &state, false)) {
+				rcu_read_unlock();
+				ctx->current_state = state;
+				return state;
+			}
+		}
+	}
+	rcu_read_unlock();
+	return AUDIT_BUILD_CONTEXT;
+}
+
+/*
+ * Given an audit_name check the inode hash table to see if they match.
+ * Called holding the rcu read lock to protect the use of audit_inode_hash
+ */
+static int audit_filter_inode_name(struct task_struct *tsk,
+				   struct audit_names *n,
+				   struct audit_context *ctx) {
+	int h = audit_hash_ino((u32)n->ino);
+	struct list_head *list = &audit_inode_hash[h];
+	struct audit_entry *e;
+	enum audit_state state;
+
+	if (list_empty(list))
+		return 0;
+
+	list_for_each_entry_rcu(e, list, list) {
+		if (audit_in_mask(&e->rule, ctx->major) &&
+		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
+			ctx->current_state = state;
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/* At syscall exit time, this filter is called if any audit_names have been
+ * collected during syscall processing.  We only check rules in sublists at hash
+ * buckets applicable to the inode numbers in audit_names.
+ * Regarding audit_state, same rules apply as for audit_filter_syscall().
+ */
+void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
+{
+	struct audit_names *n;
+
+	if (audit_pid && tsk->tgid == audit_pid)
+		return;
+
+	rcu_read_lock();
+
+	list_for_each_entry(n, &ctx->names_list, list) {
+		if (audit_filter_inode_name(tsk, n, ctx))
+			break;
+	}
+	rcu_read_unlock();
+}
+
+static inline struct audit_context *audit_get_context(struct task_struct *tsk,
+						      int return_valid,
+						      long return_code)
+{
+	struct audit_context *context = tsk->audit_context;
+
+	if (!context)
+		return NULL;
+	context->return_valid = return_valid;
+
+	/*
+	 * we need to fix up the return code in the audit logs if the actual
+	 * return codes are later going to be fixed up by the arch specific
+	 * signal handlers
+	 *
+	 * This is actually a test for:
+	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
+	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
+	 *
+	 * but is faster than a bunch of ||
+	 */
+	if (unlikely(return_code <= -ERESTARTSYS) &&
+	    (return_code >= -ERESTART_RESTARTBLOCK) &&
+	    (return_code != -ENOIOCTLCMD))
+		context->return_code = -EINTR;
+	else
+		context->return_code  = return_code;
+
+	if (context->in_syscall && !context->dummy) {
+		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
+		audit_filter_inodes(tsk, context);
+	}
+
+	tsk->audit_context = NULL;
+	return context;
+}
+
+static inline void audit_free_names(struct audit_context *context)
+{
+	struct audit_names *n, *next;
+
+#if AUDIT_DEBUG == 2
+	if (context->put_count + context->ino_count != context->name_count) {
+		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
+		       " name_count=%d put_count=%d"
+		       " ino_count=%d [NOT freeing]\n",
+		       __FILE__, __LINE__,
+		       context->serial, context->major, context->in_syscall,
+		       context->name_count, context->put_count,
+		       context->ino_count);
+		list_for_each_entry(n, &context->names_list, list) {
+			printk(KERN_ERR "names[%d] = %p = %s\n", i,
+			       n->name, n->name ?: "(null)");
+		}
+		dump_stack();
+		return;
+	}
+#endif
+#if AUDIT_DEBUG
+	context->put_count  = 0;
+	context->ino_count  = 0;
+#endif
+
+	list_for_each_entry_safe(n, next, &context->names_list, list) {
+		list_del(&n->list);
+		if (n->name && n->name_put)
+			__putname(n->name);
+		if (n->should_free)
+			kfree(n);
+	}
+	context->name_count = 0;
+	path_put(&context->pwd);
+	context->pwd.dentry = NULL;
+	context->pwd.mnt = NULL;
+}
+
+static inline void audit_free_aux(struct audit_context *context)
+{
+	struct audit_aux_data *aux;
+
+	while ((aux = context->aux)) {
+		context->aux = aux->next;
+		kfree(aux);
+	}
+	while ((aux = context->aux_pids)) {
+		context->aux_pids = aux->next;
+		kfree(aux);
+	}
+}
+
+static inline void audit_zero_context(struct audit_context *context,
+				      enum audit_state state)
+{
+	memset(context, 0, sizeof(*context));
+	context->state      = state;
+	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
+}
+
+static inline struct audit_context *audit_alloc_context(enum audit_state state)
+{
+	struct audit_context *context;
+
+	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
+		return NULL;
+	audit_zero_context(context, state);
+	INIT_LIST_HEAD(&context->killed_trees);
+	INIT_LIST_HEAD(&context->names_list);
+	return context;
+}
+
+/**
+ * audit_alloc - allocate an audit context block for a task
+ * @tsk: task
+ *
+ * Filter on the task information and allocate a per-task audit context
+ * if necessary.  Doing so turns on system call auditing for the
+ * specified task.  This is called from copy_process, so no lock is
+ * needed.
+ */
+int audit_alloc(struct task_struct *tsk)
+{
+	struct audit_context *context;
+	enum audit_state     state;
+	char *key = NULL;
+
+	if (likely(!audit_ever_enabled))
+		return 0; /* Return if not auditing. */
+
+	state = audit_filter_task(tsk, &key);
+	if (state == AUDIT_DISABLED)
+		return 0;
+
+	if (!(context = audit_alloc_context(state))) {
+		kfree(key);
+		audit_log_lost("out of memory in audit_alloc");
+		return -ENOMEM;
+	}
+	context->filterkey = key;
+
+	tsk->audit_context  = context;
+	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
+	return 0;
+}
+
+static inline void audit_free_context(struct audit_context *context)
+{
+	struct audit_context *previous;
+	int		     count = 0;
+
+	do {
+		previous = context->previous;
+		if (previous || (count &&  count < 10)) {
+			++count;
+			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
+			       " freeing multiple contexts (%d)\n",
+			       context->serial, context->major,
+			       context->name_count, count);
+		}
+		audit_free_names(context);
+		unroll_tree_refs(context, NULL, 0);
+		free_tree_refs(context);
+		audit_free_aux(context);
+		kfree(context->filterkey);
+		kfree(context->sockaddr);
+		kfree(context);
+		context  = previous;
+	} while (context);
+	if (count >= 10)
+		printk(KERN_ERR "audit: freed %d contexts\n", count);
+}
+
+void audit_log_task_context(struct audit_buffer *ab)
+{
+	char *ctx = NULL;
+	unsigned len;
+	int error;
+	u32 sid;
+
+	security_task_getsecid(current, &sid);
+	if (!sid)
+		return;
+
+	error = security_secid_to_secctx(sid, &ctx, &len);
+	if (error) {
+		if (error != -EINVAL)
+			goto error_path;
+		return;
+	}
+
+	audit_log_format(ab, " subj=%s", ctx);
+	security_release_secctx(ctx, len);
+	return;
+
+error_path:
+	audit_panic("error in audit_log_task_context");
+	return;
+}
+
+EXPORT_SYMBOL(audit_log_task_context);
+
+static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
+{
+	char name[sizeof(tsk->comm)];
+	struct mm_struct *mm = tsk->mm;
+	struct vm_area_struct *vma;
+
+	/* tsk == current */
+
+	get_task_comm(name, tsk);
+	audit_log_format(ab, " comm=");
+	audit_log_untrustedstring(ab, name);
+
+	if (mm) {
+		down_read(&mm->mmap_sem);
+		vma = mm->mmap;
+		while (vma) {
+			if ((vma->vm_flags & VM_EXECUTABLE) &&
+			    vma->vm_file) {
+				audit_log_d_path(ab, " exe=",
+						 &vma->vm_file->f_path);
+				break;
+			}
+			vma = vma->vm_next;
+		}
+		up_read(&mm->mmap_sem);
+	}
+	audit_log_task_context(ab);
+}
+
+static int audit_log_pid_context(struct audit_context *context, pid_t pid,
+				 uid_t auid, uid_t uid, unsigned int sessionid,
+				 u32 sid, char *comm)
+{
+	struct audit_buffer *ab;
+	char *ctx = NULL;
+	u32 len;
+	int rc = 0;
+
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
+	if (!ab)
+		return rc;
+
+	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
+			 uid, sessionid);
+	if (security_secid_to_secctx(sid, &ctx, &len)) {
+		audit_log_format(ab, " obj=(none)");
+		rc = 1;
+	} else {
+		audit_log_format(ab, " obj=%s", ctx);
+		security_release_secctx(ctx, len);
+	}
+	audit_log_format(ab, " ocomm=");
+	audit_log_untrustedstring(ab, comm);
+	audit_log_end(ab);
+
+	return rc;
+}
+
+/*
+ * to_send and len_sent accounting are very loose estimates.  We aren't
+ * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
+ * within about 500 bytes (next page boundary)
+ *
+ * why snprintf?  an int is up to 12 digits long.  if we just assumed when
+ * logging that a[%d]= was going to be 16 characters long we would be wasting
+ * space in every audit message.  In one 7500 byte message we can log up to
+ * about 1000 min size arguments.  That comes down to about 50% waste of space
+ * if we didn't do the snprintf to find out how long arg_num_len was.
+ */
+static int audit_log_single_execve_arg(struct audit_context *context,
+					struct audit_buffer **ab,
+					int arg_num,
+					size_t *len_sent,
+					const char __user *p,
+					char *buf)
+{
+	char arg_num_len_buf[12];
+	const char __user *tmp_p = p;
+	/* how many digits are in arg_num? 5 is the length of ' a=""' */
+	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
+	size_t len, len_left, to_send;
+	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
+	unsigned int i, has_cntl = 0, too_long = 0;
+	int ret;
+
+	/* strnlen_user includes the null we don't want to send */
+	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
+
+	/*
+	 * We just created this mm, if we can't find the strings
+	 * we just copied into it something is _very_ wrong. Similar
+	 * for strings that are too long, we should not have created
+	 * any.
+	 */
+	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
+		WARN_ON(1);
+		send_sig(SIGKILL, current, 0);
+		return -1;
+	}
+
+	/* walk the whole argument looking for non-ascii chars */
+	do {
+		if (len_left > MAX_EXECVE_AUDIT_LEN)
+			to_send = MAX_EXECVE_AUDIT_LEN;
+		else
+			to_send = len_left;
+		ret = copy_from_user(buf, tmp_p, to_send);
+		/*
+		 * There is no reason for this copy to be short. We just
+		 * copied them here, and the mm hasn't been exposed to user-
+		 * space yet.
+		 */
+		if (ret) {
+			WARN_ON(1);
+			send_sig(SIGKILL, current, 0);
+			return -1;
+		}
+		buf[to_send] = '\0';
+		has_cntl = audit_string_contains_control(buf, to_send);
+		if (has_cntl) {
+			/*
+			 * hex messages get logged as 2 bytes, so we can only
+			 * send half as much in each message
+			 */
+			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
+			break;
+		}
+		len_left -= to_send;
+		tmp_p += to_send;
+	} while (len_left > 0);
+
+	len_left = len;
+
+	if (len > max_execve_audit_len)
+		too_long = 1;
+
+	/* rewalk the argument actually logging the message */
+	for (i = 0; len_left > 0; i++) {
+		int room_left;
+
+		if (len_left > max_execve_audit_len)
+			to_send = max_execve_audit_len;
+		else
+			to_send = len_left;
+
+		/* do we have space left to send this argument in this ab? */
+		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
+		if (has_cntl)
+			room_left -= (to_send * 2);
+		else
+			room_left -= to_send;
+		if (room_left < 0) {
+			*len_sent = 0;
+			audit_log_end(*ab);
+			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
+			if (!*ab)
+				return 0;
+		}
+
+		/*
+		 * first record needs to say how long the original string was
+		 * so we can be sure nothing was lost.
+		 */
+		if ((i == 0) && (too_long))
+			audit_log_format(*ab, " a%d_len=%zu", arg_num,
+					 has_cntl ? 2*len : len);
+
+		/*
+		 * normally arguments are small enough to fit and we already
+		 * filled buf above when we checked for control characters
+		 * so don't bother with another copy_from_user
+		 */
+		if (len >= max_execve_audit_len)
+			ret = copy_from_user(buf, p, to_send);
+		else
+			ret = 0;
+		if (ret) {
+			WARN_ON(1);
+			send_sig(SIGKILL, current, 0);
+			return -1;
+		}
+		buf[to_send] = '\0';
+
+		/* actually log it */
+		audit_log_format(*ab, " a%d", arg_num);
+		if (too_long)
+			audit_log_format(*ab, "[%d]", i);
+		audit_log_format(*ab, "=");
+		if (has_cntl)
+			audit_log_n_hex(*ab, buf, to_send);
+		else
+			audit_log_string(*ab, buf);
+
+		p += to_send;
+		len_left -= to_send;
+		*len_sent += arg_num_len;
+		if (has_cntl)
+			*len_sent += to_send * 2;
+		else
+			*len_sent += to_send;
+	}
+	/* include the null we didn't log */
+	return len + 1;
+}
+
+static void audit_log_execve_info(struct audit_context *context,
+				  struct audit_buffer **ab,
+				  struct audit_aux_data_execve *axi)
+{
+	int i, len;
+	size_t len_sent = 0;
+	const char __user *p;
+	char *buf;
+
+	if (axi->mm != current->mm)
+		return; /* execve failed, no additional info */
+
+	p = (const char __user *)axi->mm->arg_start;
+
+	audit_log_format(*ab, "argc=%d", axi->argc);
+
+	/*
+	 * we need some kernel buffer to hold the userspace args.  Just
+	 * allocate one big one rather than allocating one of the right size
+	 * for every single argument inside audit_log_single_execve_arg()
+	 * should be <8k allocation so should be pretty safe.
+	 */
+	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
+	if (!buf) {
+		audit_panic("out of memory for argv string\n");
+		return;
+	}
+
+	for (i = 0; i < axi->argc; i++) {
+		len = audit_log_single_execve_arg(context, ab, i,
+						  &len_sent, p, buf);
+		if (len <= 0)
+			break;
+		p += len;
+	}
+	kfree(buf);
+}
+
+static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
+{
+	int i;
+
+	audit_log_format(ab, " %s=", prefix);
+	CAP_FOR_EACH_U32(i) {
+		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
+	}
+}
+
+static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
+{
+	kernel_cap_t *perm = &name->fcap.permitted;
+	kernel_cap_t *inh = &name->fcap.inheritable;
+	int log = 0;
+
+	if (!cap_isclear(*perm)) {
+		audit_log_cap(ab, "cap_fp", perm);
+		log = 1;
+	}
+	if (!cap_isclear(*inh)) {
+		audit_log_cap(ab, "cap_fi", inh);
+		log = 1;
+	}
+
+	if (log)
+		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
+}
+
+static void show_special(struct audit_context *context, int *call_panic)
+{
+	struct audit_buffer *ab;
+	int i;
+
+	ab = audit_log_start(context, GFP_KERNEL, context->type);
+	if (!ab)
+		return;
+
+	switch (context->type) {
+	case AUDIT_SOCKETCALL: {
+		int nargs = context->socketcall.nargs;
+		audit_log_format(ab, "nargs=%d", nargs);
+		for (i = 0; i < nargs; i++)
+			audit_log_format(ab, " a%d=%lx", i,
+				context->socketcall.args[i]);
+		break; }
+	case AUDIT_IPC: {
+		u32 osid = context->ipc.osid;
+
+		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
+			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
+		if (osid) {
+			char *ctx = NULL;
+			u32 len;
+			if (security_secid_to_secctx(osid, &ctx, &len)) {
+				audit_log_format(ab, " osid=%u", osid);
+				*call_panic = 1;
+			} else {
+				audit_log_format(ab, " obj=%s", ctx);
+				security_release_secctx(ctx, len);
+			}
+		}
+		if (context->ipc.has_perm) {
+			audit_log_end(ab);
+			ab = audit_log_start(context, GFP_KERNEL,
+					     AUDIT_IPC_SET_PERM);
+			audit_log_format(ab,
+				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
+				context->ipc.qbytes,
+				context->ipc.perm_uid,
+				context->ipc.perm_gid,
+				context->ipc.perm_mode);
+			if (!ab)
+				return;
+		}
+		break; }
+	case AUDIT_MQ_OPEN: {
+		audit_log_format(ab,
+			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
+			"mq_msgsize=%ld mq_curmsgs=%ld",
+			context->mq_open.oflag, context->mq_open.mode,
+			context->mq_open.attr.mq_flags,
+			context->mq_open.attr.mq_maxmsg,
+			context->mq_open.attr.mq_msgsize,
+			context->mq_open.attr.mq_curmsgs);
+		break; }
+	case AUDIT_MQ_SENDRECV: {
+		audit_log_format(ab,
+			"mqdes=%d msg_len=%zd msg_prio=%u "
+			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
+			context->mq_sendrecv.mqdes,
+			context->mq_sendrecv.msg_len,
+			context->mq_sendrecv.msg_prio,
+			context->mq_sendrecv.abs_timeout.tv_sec,
+			context->mq_sendrecv.abs_timeout.tv_nsec);
+		break; }
+	case AUDIT_MQ_NOTIFY: {
+		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
+				context->mq_notify.mqdes,
+				context->mq_notify.sigev_signo);
+		break; }
+	case AUDIT_MQ_GETSETATTR: {
+		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
+		audit_log_format(ab,
+			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
+			"mq_curmsgs=%ld ",
+			context->mq_getsetattr.mqdes,
+			attr->mq_flags, attr->mq_maxmsg,
+			attr->mq_msgsize, attr->mq_curmsgs);
+		break; }
+	case AUDIT_CAPSET: {
+		audit_log_format(ab, "pid=%d", context->capset.pid);
+		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
+		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
+		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
+		break; }
+	case AUDIT_MMAP: {
+		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
+				 context->mmap.flags);
+		break; }
+	}
+	audit_log_end(ab);
+}
+
+static void audit_log_name(struct audit_context *context, struct audit_names *n,
+			   int record_num, int *call_panic)
+{
+	struct audit_buffer *ab;
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
+	if (!ab)
+		return; /* audit_panic has been called */
+
+	audit_log_format(ab, "item=%d", record_num);
+
+	if (n->name) {
+		switch (n->name_len) {
+		case AUDIT_NAME_FULL:
+			/* log the full path */
+			audit_log_format(ab, " name=");
+			audit_log_untrustedstring(ab, n->name);
+			break;
+		case 0:
+			/* name was specified as a relative path and the
+			 * directory component is the cwd */
+			audit_log_d_path(ab, " name=", &context->pwd);
+			break;
+		default:
+			/* log the name's directory component */
+			audit_log_format(ab, " name=");
+			audit_log_n_untrustedstring(ab, n->name,
+						    n->name_len);
+		}
+	} else
+		audit_log_format(ab, " name=(null)");
+
+	if (n->ino != (unsigned long)-1) {
+		audit_log_format(ab, " inode=%lu"
+				 " dev=%02x:%02x mode=%#ho"
+				 " ouid=%u ogid=%u rdev=%02x:%02x",
+				 n->ino,
+				 MAJOR(n->dev),
+				 MINOR(n->dev),
+				 n->mode,
+				 n->uid,
+				 n->gid,
+				 MAJOR(n->rdev),
+				 MINOR(n->rdev));
+	}
+	if (n->osid != 0) {
+		char *ctx = NULL;
+		u32 len;
+		if (security_secid_to_secctx(
+			n->osid, &ctx, &len)) {
+			audit_log_format(ab, " osid=%u", n->osid);
+			*call_panic = 2;
+		} else {
+			audit_log_format(ab, " obj=%s", ctx);
+			security_release_secctx(ctx, len);
+		}
+	}
+
+	audit_log_fcaps(ab, n);
+
+	audit_log_end(ab);
+}
+
+static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
+{
+	const struct cred *cred;
+	int i, call_panic = 0;
+	struct audit_buffer *ab;
+	struct audit_aux_data *aux;
+	const char *tty;
+	struct audit_names *n;
+
+	/* tsk == current */
+	context->pid = tsk->pid;
+	if (!context->ppid)
+		context->ppid = sys_getppid();
+	cred = current_cred();
+	context->uid   = cred->uid;
+	context->gid   = cred->gid;
+	context->euid  = cred->euid;
+	context->suid  = cred->suid;
+	context->fsuid = cred->fsuid;
+	context->egid  = cred->egid;
+	context->sgid  = cred->sgid;
+	context->fsgid = cred->fsgid;
+	context->personality = tsk->personality;
+
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
+	if (!ab)
+		return;		/* audit_panic has been called */
+	audit_log_format(ab, "arch=%x syscall=%d",
+			 context->arch, context->major);
+	if (context->personality != PER_LINUX)
+		audit_log_format(ab, " per=%lx", context->personality);
+	if (context->return_valid)
+		audit_log_format(ab, " success=%s exit=%ld",
+				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
+				 context->return_code);
+
+	spin_lock_irq(&tsk->sighand->siglock);
+	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
+		tty = tsk->signal->tty->name;
+	else
+		tty = "(none)";
+	spin_unlock_irq(&tsk->sighand->siglock);
+
+	audit_log_format(ab,
+		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
+		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
+		  " euid=%u suid=%u fsuid=%u"
+		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
+		  context->argv[0],
+		  context->argv[1],
+		  context->argv[2],
+		  context->argv[3],
+		  context->name_count,
+		  context->ppid,
+		  context->pid,
+		  tsk->loginuid,
+		  context->uid,
+		  context->gid,
+		  context->euid, context->suid, context->fsuid,
+		  context->egid, context->sgid, context->fsgid, tty,
+		  tsk->sessionid);
+
+
+	audit_log_task_info(ab, tsk);
+	audit_log_key(ab, context->filterkey);
+	audit_log_end(ab);
+
+	for (aux = context->aux; aux; aux = aux->next) {
+
+		ab = audit_log_start(context, GFP_KERNEL, aux->type);
+		if (!ab)
+			continue; /* audit_panic has been called */
+
+		switch (aux->type) {
+
+		case AUDIT_EXECVE: {
+			struct audit_aux_data_execve *axi = (void *)aux;
+			audit_log_execve_info(context, &ab, axi);
+			break; }
+
+		case AUDIT_BPRM_FCAPS: {
+			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
+			audit_log_format(ab, "fver=%x", axs->fcap_ver);
+			audit_log_cap(ab, "fp", &axs->fcap.permitted);
+			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
+			audit_log_format(ab, " fe=%d", axs->fcap.fE);
+			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
+			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
+			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
+			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
+			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
+			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
+			break; }
+
+		}
+		audit_log_end(ab);
+	}
+
+	if (context->type)
+		show_special(context, &call_panic);
+
+	if (context->fds[0] >= 0) {
+		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
+		if (ab) {
+			audit_log_format(ab, "fd0=%d fd1=%d",
+					context->fds[0], context->fds[1]);
+			audit_log_end(ab);
+		}
+	}
+
+	if (context->sockaddr_len) {
+		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
+		if (ab) {
+			audit_log_format(ab, "saddr=");
+			audit_log_n_hex(ab, (void *)context->sockaddr,
+					context->sockaddr_len);
+			audit_log_end(ab);
+		}
+	}
+
+	for (aux = context->aux_pids; aux; aux = aux->next) {
+		struct audit_aux_data_pids *axs = (void *)aux;
+
+		for (i = 0; i < axs->pid_count; i++)
+			if (audit_log_pid_context(context, axs->target_pid[i],
+						  axs->target_auid[i],
+						  axs->target_uid[i],
+						  axs->target_sessionid[i],
+						  axs->target_sid[i],
+						  axs->target_comm[i]))
+				call_panic = 1;
+	}
+
+	if (context->target_pid &&
+	    audit_log_pid_context(context, context->target_pid,
+				  context->target_auid, context->target_uid,
+				  context->target_sessionid,
+				  context->target_sid, context->target_comm))
+			call_panic = 1;
+
+	if (context->pwd.dentry && context->pwd.mnt) {
+		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
+		if (ab) {
+			audit_log_d_path(ab, " cwd=", &context->pwd);
+			audit_log_end(ab);
+		}
+	}
+
+	i = 0;
+	list_for_each_entry(n, &context->names_list, list)
+		audit_log_name(context, n, i++, &call_panic);
+
+	/* Send end of event record to help user space know we are finished */
+	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
+	if (ab)
+		audit_log_end(ab);
+	if (call_panic)
+		audit_panic("error converting sid to string");
+}
+
+/**
+ * audit_free - free a per-task audit context
+ * @tsk: task whose audit context block to free
+ *
+ * Called from copy_process and do_exit
+ */
+void __audit_free(struct task_struct *tsk)
+{
+	struct audit_context *context;
+
+	context = audit_get_context(tsk, 0, 0);
+	if (!context)
+		return;
+
+	/* Check for system calls that do not go through the exit
+	 * function (e.g., exit_group), then free context block.
+	 * We use GFP_ATOMIC here because we might be doing this
+	 * in the context of the idle thread */
+	/* that can happen only if we are called from do_exit() */
+	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
+		audit_log_exit(context, tsk);
+	if (!list_empty(&context->killed_trees))
+		audit_kill_trees(&context->killed_trees);
+
+	audit_free_context(context);
+}
+
+/**
+ * audit_syscall_entry - fill in an audit record at syscall entry
+ * @arch: architecture type
+ * @major: major syscall type (function)
+ * @a1: additional syscall register 1
+ * @a2: additional syscall register 2
+ * @a3: additional syscall register 3
+ * @a4: additional syscall register 4
+ *
+ * Fill in audit context at syscall entry.  This only happens if the
+ * audit context was created when the task was created and the state or
+ * filters demand the audit context be built.  If the state from the
+ * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
+ * then the record will be written at syscall exit time (otherwise, it
+ * will only be written if another part of the kernel requests that it
+ * be written).
+ */
+void __audit_syscall_entry(int arch, int major,
+			 unsigned long a1, unsigned long a2,
+			 unsigned long a3, unsigned long a4)
+{
+	struct task_struct *tsk = current;
+	struct audit_context *context = tsk->audit_context;
+	enum audit_state     state;
+
+	if (!context)
+		return;
+
+	/*
+	 * This happens only on certain architectures that make system
+	 * calls in kernel_thread via the entry.S interface, instead of
+	 * with direct calls.  (If you are porting to a new
+	 * architecture, hitting this condition can indicate that you
+	 * got the _exit/_leave calls backward in entry.S.)
+	 *
+	 * i386     no
+	 * x86_64   no
+	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
+	 *
+	 * This also happens with vm86 emulation in a non-nested manner
+	 * (entries without exits), so this case must be caught.
+	 */
+	if (context->in_syscall) {
+		struct audit_context *newctx;
+
+#if AUDIT_DEBUG
+		printk(KERN_ERR
+		       "audit(:%d) pid=%d in syscall=%d;"
+		       " entering syscall=%d\n",
+		       context->serial, tsk->pid, context->major, major);
+#endif
+		newctx = audit_alloc_context(context->state);
+		if (newctx) {
+			newctx->previous   = context;
+			context		   = newctx;
+			tsk->audit_context = newctx;
+		} else	{
+			/* If we can't alloc a new context, the best we
+			 * can do is to leak memory (any pending putname
+			 * will be lost).  The only other alternative is
+			 * to abandon auditing. */
+			audit_zero_context(context, context->state);
+		}
+	}
+	BUG_ON(context->in_syscall || context->name_count);
+
+	if (!audit_enabled)
+		return;
+
+	context->arch	    = arch;
+	context->major      = major;
+	context->argv[0]    = a1;
+	context->argv[1]    = a2;
+	context->argv[2]    = a3;
+	context->argv[3]    = a4;
+
+	state = context->state;
+	context->dummy = !audit_n_rules;
+	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
+		context->prio = 0;
+		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
+	}
+	if (state == AUDIT_DISABLED)
+		return;
+
+	context->serial     = 0;
+	context->ctime      = CURRENT_TIME;
+	context->in_syscall = 1;
+	context->current_state  = state;
+	context->ppid       = 0;
+}
+
+/**
+ * audit_syscall_exit - deallocate audit context after a system call
+ * @success: success value of the syscall
+ * @return_code: return value of the syscall
+ *
+ * Tear down after system call.  If the audit context has been marked as
+ * auditable (either because of the AUDIT_RECORD_CONTEXT state from
+ * filtering, or because some other part of the kernel wrote an audit
+ * message), then write out the syscall information.  In call cases,
+ * free the names stored from getname().
+ */
+void __audit_syscall_exit(int success, long return_code)
+{
+	struct task_struct *tsk = current;
+	struct audit_context *context;
+
+	if (success)
+		success = AUDITSC_SUCCESS;
+	else
+		success = AUDITSC_FAILURE;
+
+	context = audit_get_context(tsk, success, return_code);
+	if (!context)
+		return;
+
+	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
+		audit_log_exit(context, tsk);
+
+	context->in_syscall = 0;
+	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
+
+	if (!list_empty(&context->killed_trees))
+		audit_kill_trees(&context->killed_trees);
+
+	if (context->previous) {
+		struct audit_context *new_context = context->previous;
+		context->previous  = NULL;
+		audit_free_context(context);
+		tsk->audit_context = new_context;
+	} else {
+		audit_free_names(context);
+		unroll_tree_refs(context, NULL, 0);
+		audit_free_aux(context);
+		context->aux = NULL;
+		context->aux_pids = NULL;
+		context->target_pid = 0;
+		context->target_sid = 0;
+		context->sockaddr_len = 0;
+		context->type = 0;
+		context->fds[0] = -1;
+		if (context->state != AUDIT_RECORD_CONTEXT) {
+			kfree(context->filterkey);
+			context->filterkey = NULL;
+		}
+		tsk->audit_context = context;
+	}
+}
+
+static inline void handle_one(const struct inode *inode)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_context *context;
+	struct audit_tree_refs *p;
+	struct audit_chunk *chunk;
+	int count;
+	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
+		return;
+	context = current->audit_context;
+	p = context->trees;
+	count = context->tree_count;
+	rcu_read_lock();
+	chunk = audit_tree_lookup(inode);
+	rcu_read_unlock();
+	if (!chunk)
+		return;
+	if (likely(put_tree_ref(context, chunk)))
+		return;
+	if (unlikely(!grow_tree_refs(context))) {
+		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
+		audit_set_auditable(context);
+		audit_put_chunk(chunk);
+		unroll_tree_refs(context, p, count);
+		return;
+	}
+	put_tree_ref(context, chunk);
+#endif
+}
+
+static void handle_path(const struct dentry *dentry)
+{
+#ifdef CONFIG_AUDIT_TREE
+	struct audit_context *context;
+	struct audit_tree_refs *p;
+	const struct dentry *d, *parent;
+	struct audit_chunk *drop;
+	unsigned long seq;
+	int count;
+
+	context = current->audit_context;
+	p = context->trees;
+	count = context->tree_count;
+retry:
+	drop = NULL;
+	d = dentry;
+	rcu_read_lock();
+	seq = read_seqbegin(&rename_lock);
+	for(;;) {
+		struct inode *inode = d->d_inode;
+		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
+			struct audit_chunk *chunk;
+			chunk = audit_tree_lookup(inode);
+			if (chunk) {
+				if (unlikely(!put_tree_ref(context, chunk))) {
+					drop = chunk;
+					break;
+				}
+			}
+		}
+		parent = d->d_parent;
+		if (parent == d)
+			break;
+		d = parent;
+	}
+	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
+		rcu_read_unlock();
+		if (!drop) {
+			/* just a race with rename */
+			unroll_tree_refs(context, p, count);
+			goto retry;
+		}
+		audit_put_chunk(drop);
+		if (grow_tree_refs(context)) {
+			/* OK, got more space */
+			unroll_tree_refs(context, p, count);
+			goto retry;
+		}
+		/* too bad */
+		printk(KERN_WARNING
+			"out of memory, audit has lost a tree reference\n");
+		unroll_tree_refs(context, p, count);
+		audit_set_auditable(context);
+		return;
+	}
+	rcu_read_unlock();
+#endif
+}
+
+static struct audit_names *audit_alloc_name(struct audit_context *context)
+{
+	struct audit_names *aname;
+
+	if (context->name_count < AUDIT_NAMES) {
+		aname = &context->preallocated_names[context->name_count];
+		memset(aname, 0, sizeof(*aname));
+	} else {
+		aname = kzalloc(sizeof(*aname), GFP_NOFS);
+		if (!aname)
+			return NULL;
+		aname->should_free = true;
+	}
+
+	aname->ino = (unsigned long)-1;
+	list_add_tail(&aname->list, &context->names_list);
+
+	context->name_count++;
+#if AUDIT_DEBUG
+	context->ino_count++;
+#endif
+	return aname;
+}
+
+/**
+ * audit_getname - add a name to the list
+ * @name: name to add
+ *
+ * Add a name to the list of audit names for this context.
+ * Called from fs/namei.c:getname().
+ */
+void __audit_getname(const char *name)
+{
+	struct audit_context *context = current->audit_context;
+	struct audit_names *n;
+
+	if (!context->in_syscall) {
+#if AUDIT_DEBUG == 2
+		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
+		       __FILE__, __LINE__, context->serial, name);
+		dump_stack();
+#endif
+		return;
+	}
+
+	n = audit_alloc_name(context);
+	if (!n)
+		return;
+
+	n->name = name;
+	n->name_len = AUDIT_NAME_FULL;
+	n->name_put = true;
+
+	if (!context->pwd.dentry)
+		get_fs_pwd(current->fs, &context->pwd);
+}
+
+/* audit_putname - intercept a putname request
+ * @name: name to intercept and delay for putname
+ *
+ * If we have stored the name from getname in the audit context,
+ * then we delay the putname until syscall exit.
+ * Called from include/linux/fs.h:putname().
+ */
+void audit_putname(const char *name)
+{
+	struct audit_context *context = current->audit_context;
+
+	BUG_ON(!context);
+	if (!context->in_syscall) {
+#if AUDIT_DEBUG == 2
+		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
+		       __FILE__, __LINE__, context->serial, name);
+		if (context->name_count) {
+			struct audit_names *n;
+			int i;
+
+			list_for_each_entry(n, &context->names_list, list)
+				printk(KERN_ERR "name[%d] = %p = %s\n", i,
+				       n->name, n->name ?: "(null)");
+			}
+#endif
+		__putname(name);
+	}
+#if AUDIT_DEBUG
+	else {
+		++context->put_count;
+		if (context->put_count > context->name_count) {
+			printk(KERN_ERR "%s:%d(:%d): major=%d"
+			       " in_syscall=%d putname(%p) name_count=%d"
+			       " put_count=%d\n",
+			       __FILE__, __LINE__,
+			       context->serial, context->major,
+			       context->in_syscall, name, context->name_count,
+			       context->put_count);
+			dump_stack();
+		}
+	}
+#endif
+}
+
+static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
+{
+	struct cpu_vfs_cap_data caps;
+	int rc;
+
+	if (!dentry)
+		return 0;
+
+	rc = get_vfs_caps_from_disk(dentry, &caps);
+	if (rc)
+		return rc;
+
+	name->fcap.permitted = caps.permitted;
+	name->fcap.inheritable = caps.inheritable;
+	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
+	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
+
+	return 0;
+}
+
+
+/* Copy inode data into an audit_names. */
+static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
+			     const struct inode *inode)
+{
+	name->ino   = inode->i_ino;
+	name->dev   = inode->i_sb->s_dev;
+	name->mode  = inode->i_mode;
+	name->uid   = inode->i_uid;
+	name->gid   = inode->i_gid;
+	name->rdev  = inode->i_rdev;
+	security_inode_getsecid(inode, &name->osid);
+	audit_copy_fcaps(name, dentry);
+}
+
+/**
+ * audit_inode - store the inode and device from a lookup
+ * @name: name being audited
+ * @dentry: dentry being audited
+ *
+ * Called from fs/namei.c:path_lookup().
+ */
+void __audit_inode(const char *name, const struct dentry *dentry)
+{
+	struct audit_context *context = current->audit_context;
+	const struct inode *inode = dentry->d_inode;
+	struct audit_names *n;
+
+	if (!context->in_syscall)
+		return;
+
+	list_for_each_entry_reverse(n, &context->names_list, list) {
+		if (n->name && (n->name == name))
+			goto out;
+	}
+
+	/* unable to find the name from a previous getname() */
+	n = audit_alloc_name(context);
+	if (!n)
+		return;
+out:
+	handle_path(dentry);
+	audit_copy_inode(n, dentry, inode);
+}
+
+/**
+ * audit_inode_child - collect inode info for created/removed objects
+ * @dentry: dentry being audited
+ * @parent: inode of dentry parent
+ *
+ * For syscalls that create or remove filesystem objects, audit_inode
+ * can only collect information for the filesystem object's parent.
+ * This call updates the audit context with the child's information.
+ * Syscalls that create a new filesystem object must be hooked after
+ * the object is created.  Syscalls that remove a filesystem object
+ * must be hooked prior, in order to capture the target inode during
+ * unsuccessful attempts.
+ */
+void __audit_inode_child(const struct dentry *dentry,
+			 const struct inode *parent)
+{
+	struct audit_context *context = current->audit_context;
+	const char *found_parent = NULL, *found_child = NULL;
+	const struct inode *inode = dentry->d_inode;
+	const char *dname = dentry->d_name.name;
+	struct audit_names *n;
+	int dirlen = 0;
+
+	if (!context->in_syscall)
+		return;
+
+	if (inode)
+		handle_one(inode);
+
+	/* parent is more likely, look for it first */
+	list_for_each_entry(n, &context->names_list, list) {
+		if (!n->name)
+			continue;
+
+		if (n->ino == parent->i_ino &&
+		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
+			n->name_len = dirlen; /* update parent data in place */
+			found_parent = n->name;
+			goto add_names;
+		}
+	}
+
+	/* no matching parent, look for matching child */
+	list_for_each_entry(n, &context->names_list, list) {
+		if (!n->name)
+			continue;
+
+		/* strcmp() is the more likely scenario */
+		if (!strcmp(dname, n->name) ||
+		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
+			if (inode)
+				audit_copy_inode(n, NULL, inode);
+			else
+				n->ino = (unsigned long)-1;
+			found_child = n->name;
+			goto add_names;
+		}
+	}
+
+add_names:
+	if (!found_parent) {
+		n = audit_alloc_name(context);
+		if (!n)
+			return;
+		audit_copy_inode(n, NULL, parent);
+	}
+
+	if (!found_child) {
+		n = audit_alloc_name(context);
+		if (!n)
+			return;
+
+		/* Re-use the name belonging to the slot for a matching parent
+		 * directory. All names for this context are relinquished in
+		 * audit_free_names() */
+		if (found_parent) {
+			n->name = found_parent;
+			n->name_len = AUDIT_NAME_FULL;
+			/* don't call __putname() */
+			n->name_put = false;
+		}
+
+		if (inode)
+			audit_copy_inode(n, NULL, inode);
+	}
+}
+EXPORT_SYMBOL_GPL(__audit_inode_child);
+
+/**
+ * auditsc_get_stamp - get local copies of audit_context values
+ * @ctx: audit_context for the task
+ * @t: timespec to store time recorded in the audit_context
+ * @serial: serial value that is recorded in the audit_context
+ *
+ * Also sets the context as auditable.
+ */
+int auditsc_get_stamp(struct audit_context *ctx,
+		       struct timespec *t, unsigned int *serial)
+{
+	if (!ctx->in_syscall)
+		return 0;
+	if (!ctx->serial)
+		ctx->serial = audit_serial();
+	t->tv_sec  = ctx->ctime.tv_sec;
+	t->tv_nsec = ctx->ctime.tv_nsec;
+	*serial    = ctx->serial;
+	if (!ctx->prio) {
+		ctx->prio = 1;
+		ctx->current_state = AUDIT_RECORD_CONTEXT;
+	}
+	return 1;
+}
+
+/* global counter which is incremented every time something logs in */
+static atomic_t session_id = ATOMIC_INIT(0);
+
+/**
+ * audit_set_loginuid - set current task's audit_context loginuid
+ * @loginuid: loginuid value
+ *
+ * Returns 0.
+ *
+ * Called (set) from fs/proc/base.c::proc_loginuid_write().
+ */
+int audit_set_loginuid(uid_t loginuid)
+{
+	struct task_struct *task = current;
+	struct audit_context *context = task->audit_context;
+	unsigned int sessionid;
+
+#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
+	if (task->loginuid != -1)
+		return -EPERM;
+#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
+	if (!capable(CAP_AUDIT_CONTROL))
+		return -EPERM;
+#endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
+
+	sessionid = atomic_inc_return(&session_id);
+	if (context && context->in_syscall) {
+		struct audit_buffer *ab;
+
+		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
+		if (ab) {
+			audit_log_format(ab, "login pid=%d uid=%u "
+				"old auid=%u new auid=%u"
+				" old ses=%u new ses=%u",
+				task->pid, task_uid(task),
+				task->loginuid, loginuid,
+				task->sessionid, sessionid);
+			audit_log_end(ab);
+		}
+	}
+	task->sessionid = sessionid;
+	task->loginuid = loginuid;
+	return 0;
+}
+
+/**
+ * __audit_mq_open - record audit data for a POSIX MQ open
+ * @oflag: open flag
+ * @mode: mode bits
+ * @attr: queue attributes
+ *
+ */
+void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
+{
+	struct audit_context *context = current->audit_context;
+
+	if (attr)
+		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
+	else
+		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
+
+	context->mq_open.oflag = oflag;
+	context->mq_open.mode = mode;
+
+	context->type = AUDIT_MQ_OPEN;
+}
+
+/**
+ * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
+ * @mqdes: MQ descriptor
+ * @msg_len: Message length
+ * @msg_prio: Message priority
+ * @abs_timeout: Message timeout in absolute time
+ *
+ */
+void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
+			const struct timespec *abs_timeout)
+{
+	struct audit_context *context = current->audit_context;
+	struct timespec *p = &context->mq_sendrecv.abs_timeout;
+
+	if (abs_timeout)
+		memcpy(p, abs_timeout, sizeof(struct timespec));
+	else
+		memset(p, 0, sizeof(struct timespec));
+
+	context->mq_sendrecv.mqdes = mqdes;
+	context->mq_sendrecv.msg_len = msg_len;
+	context->mq_sendrecv.msg_prio = msg_prio;
+
+	context->type = AUDIT_MQ_SENDRECV;
+}
+
+/**
+ * __audit_mq_notify - record audit data for a POSIX MQ notify
+ * @mqdes: MQ descriptor
+ * @notification: Notification event
+ *
+ */
+
+void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
+{
+	struct audit_context *context = current->audit_context;
+
+	if (notification)
+		context->mq_notify.sigev_signo = notification->sigev_signo;
+	else
+		context->mq_notify.sigev_signo = 0;
+
+	context->mq_notify.mqdes = mqdes;
+	context->type = AUDIT_MQ_NOTIFY;
+}
+
+/**
+ * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
+ * @mqdes: MQ descriptor
+ * @mqstat: MQ flags
+ *
+ */
+void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
+{
+	struct audit_context *context = current->audit_context;
+	context->mq_getsetattr.mqdes = mqdes;
+	context->mq_getsetattr.mqstat = *mqstat;
+	context->type = AUDIT_MQ_GETSETATTR;
+}
+
+/**
+ * audit_ipc_obj - record audit data for ipc object
+ * @ipcp: ipc permissions
+ *
+ */
+void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
+{
+	struct audit_context *context = current->audit_context;
+	context->ipc.uid = ipcp->uid;
+	context->ipc.gid = ipcp->gid;
+	context->ipc.mode = ipcp->mode;
+	context->ipc.has_perm = 0;
+	security_ipc_getsecid(ipcp, &context->ipc.osid);
+	context->type = AUDIT_IPC;
+}
+
+/**
+ * audit_ipc_set_perm - record audit data for new ipc permissions
+ * @qbytes: msgq bytes
+ * @uid: msgq user id
+ * @gid: msgq group id
+ * @mode: msgq mode (permissions)
+ *
+ * Called only after audit_ipc_obj().
+ */
+void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
+{
+	struct audit_context *context = current->audit_context;
+
+	context->ipc.qbytes = qbytes;
+	context->ipc.perm_uid = uid;
+	context->ipc.perm_gid = gid;
+	context->ipc.perm_mode = mode;
+	context->ipc.has_perm = 1;
+}
+
+int __audit_bprm(struct linux_binprm *bprm)
+{
+	struct audit_aux_data_execve *ax;
+	struct audit_context *context = current->audit_context;
+
+	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
+	if (!ax)
+		return -ENOMEM;
+
+	ax->argc = bprm->argc;
+	ax->envc = bprm->envc;
+	ax->mm = bprm->mm;
+	ax->d.type = AUDIT_EXECVE;
+	ax->d.next = context->aux;
+	context->aux = (void *)ax;
+	return 0;
+}
+
+
+/**
+ * audit_socketcall - record audit data for sys_socketcall
+ * @nargs: number of args
+ * @args: args array
+ *
+ */
+void __audit_socketcall(int nargs, unsigned long *args)
+{
+	struct audit_context *context = current->audit_context;
+
+	context->type = AUDIT_SOCKETCALL;
+	context->socketcall.nargs = nargs;
+	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
+}
+
+/**
+ * __audit_fd_pair - record audit data for pipe and socketpair
+ * @fd1: the first file descriptor
+ * @fd2: the second file descriptor
+ *
+ */
+void __audit_fd_pair(int fd1, int fd2)
+{
+	struct audit_context *context = current->audit_context;
+	context->fds[0] = fd1;
+	context->fds[1] = fd2;
+}
+
+/**
+ * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
+ * @len: data length in user space
+ * @a: data address in kernel space
+ *
+ * Returns 0 for success or NULL context or < 0 on error.
+ */
+int __audit_sockaddr(int len, void *a)
+{
+	struct audit_context *context = current->audit_context;
+
+	if (!context->sockaddr) {
+		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
+		if (!p)
+			return -ENOMEM;
+		context->sockaddr = p;
+	}
+
+	context->sockaddr_len = len;
+	memcpy(context->sockaddr, a, len);
+	return 0;
+}
+
+void __audit_ptrace(struct task_struct *t)
+{
+	struct audit_context *context = current->audit_context;
+
+	context->target_pid = t->pid;
+	context->target_auid = audit_get_loginuid(t);
+	context->target_uid = task_uid(t);
+	context->target_sessionid = audit_get_sessionid(t);
+	security_task_getsecid(t, &context->target_sid);
+	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
+}
+
+/**
+ * audit_signal_info - record signal info for shutting down audit subsystem
+ * @sig: signal value
+ * @t: task being signaled
+ *
+ * If the audit subsystem is being terminated, record the task (pid)
+ * and uid that is doing that.
+ */
+int __audit_signal_info(int sig, struct task_struct *t)
+{
+	struct audit_aux_data_pids *axp;
+	struct task_struct *tsk = current;
+	struct audit_context *ctx = tsk->audit_context;
+	uid_t uid = current_uid(), t_uid = task_uid(t);
+
+	if (audit_pid && t->tgid == audit_pid) {
+		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
+			audit_sig_pid = tsk->pid;
+			if (tsk->loginuid != -1)
+				audit_sig_uid = tsk->loginuid;
+			else
+				audit_sig_uid = uid;
+			security_task_getsecid(tsk, &audit_sig_sid);
+		}
+		if (!audit_signals || audit_dummy_context())
+			return 0;
+	}
+
+	/* optimize the common case by putting first signal recipient directly
+	 * in audit_context */
+	if (!ctx->target_pid) {
+		ctx->target_pid = t->tgid;
+		ctx->target_auid = audit_get_loginuid(t);
+		ctx->target_uid = t_uid;
+		ctx->target_sessionid = audit_get_sessionid(t);
+		security_task_getsecid(t, &ctx->target_sid);
+		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
+		return 0;
+	}
+
+	axp = (void *)ctx->aux_pids;
+	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
+		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
+		if (!axp)
+			return -ENOMEM;
+
+		axp->d.type = AUDIT_OBJ_PID;
+		axp->d.next = ctx->aux_pids;
+		ctx->aux_pids = (void *)axp;
+	}
+	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
+
+	axp->target_pid[axp->pid_count] = t->tgid;
+	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
+	axp->target_uid[axp->pid_count] = t_uid;
+	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
+	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
+	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
+	axp->pid_count++;
+
+	return 0;
+}
+
+/**
+ * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
+ * @bprm: pointer to the bprm being processed
+ * @new: the proposed new credentials
+ * @old: the old credentials
+ *
+ * Simply check if the proc already has the caps given by the file and if not
+ * store the priv escalation info for later auditing at the end of the syscall
+ *
+ * -Eric
+ */
+int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
+			   const struct cred *new, const struct cred *old)
+{
+	struct audit_aux_data_bprm_fcaps *ax;
+	struct audit_context *context = current->audit_context;
+	struct cpu_vfs_cap_data vcaps;
+	struct dentry *dentry;
+
+	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
+	if (!ax)
+		return -ENOMEM;
+
+	ax->d.type = AUDIT_BPRM_FCAPS;
+	ax->d.next = context->aux;
+	context->aux = (void *)ax;
+
+	dentry = dget(bprm->file->f_dentry);
+	get_vfs_caps_from_disk(dentry, &vcaps);
+	dput(dentry);
+
+	ax->fcap.permitted = vcaps.permitted;
+	ax->fcap.inheritable = vcaps.inheritable;
+	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
+	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
+
+	ax->old_pcap.permitted   = old->cap_permitted;
+	ax->old_pcap.inheritable = old->cap_inheritable;
+	ax->old_pcap.effective   = old->cap_effective;
+
+	ax->new_pcap.permitted   = new->cap_permitted;
+	ax->new_pcap.inheritable = new->cap_inheritable;
+	ax->new_pcap.effective   = new->cap_effective;
+	return 0;
+}
+
+/**
+ * __audit_log_capset - store information about the arguments to the capset syscall
+ * @pid: target pid of the capset call
+ * @new: the new credentials
+ * @old: the old (current) credentials
+ *
+ * Record the aguments userspace sent to sys_capset for later printing by the
+ * audit system if applicable
+ */
+void __audit_log_capset(pid_t pid,
+		       const struct cred *new, const struct cred *old)
+{
+	struct audit_context *context = current->audit_context;
+	context->capset.pid = pid;
+	context->capset.cap.effective   = new->cap_effective;
+	context->capset.cap.inheritable = new->cap_effective;
+	context->capset.cap.permitted   = new->cap_permitted;
+	context->type = AUDIT_CAPSET;
+}
+
+void __audit_mmap_fd(int fd, int flags)
+{
+	struct audit_context *context = current->audit_context;
+	context->mmap.fd = fd;
+	context->mmap.flags = flags;
+	context->type = AUDIT_MMAP;
+}
+
+static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
+{
+	uid_t auid, uid;
+	gid_t gid;
+	unsigned int sessionid;
+
+	auid = audit_get_loginuid(current);
+	sessionid = audit_get_sessionid(current);
+	current_uid_gid(&uid, &gid);
+
+	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
+			 auid, uid, gid, sessionid);
+	audit_log_task_context(ab);
+	audit_log_format(ab, " pid=%d comm=", current->pid);
+	audit_log_untrustedstring(ab, current->comm);
+	audit_log_format(ab, " reason=");
+	audit_log_string(ab, reason);
+	audit_log_format(ab, " sig=%ld", signr);
+}
+/**
+ * audit_core_dumps - record information about processes that end abnormally
+ * @signr: signal value
+ *
+ * If a process ends with a core dump, something fishy is going on and we
+ * should record the event for investigation.
+ */
+void audit_core_dumps(long signr)
+{
+	struct audit_buffer *ab;
+
+	if (!audit_enabled)
+		return;
+
+	if (signr == SIGQUIT)	/* don't care for those */
+		return;
+
+	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
+	audit_log_abend(ab, "memory violation", signr);
+	audit_log_end(ab);
+}
+
+void __audit_seccomp(unsigned long syscall)
+{
+	struct audit_buffer *ab;
+
+	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
+	audit_log_abend(ab, "seccomp", SIGKILL);
+	audit_log_format(ab, " syscall=%ld", syscall);
+	audit_log_end(ab);
+}
+
+struct list_head *audit_killed_trees(void)
+{
+	struct audit_context *ctx = current->audit_context;
+	if (likely(!ctx || !ctx->in_syscall))
+		return NULL;
+	return &ctx->killed_trees;
+}