[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/Makefile b/ap/os/linux/linux-3.4.x/kernel/events/Makefile
new file mode 100644
index 0000000..35b96fd
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/Makefile
@@ -0,0 +1,7 @@
+ifdef CONFIG_FUNCTION_TRACER
+CFLAGS_REMOVE_core.o = -pg
+endif
+
+obj-y := core.o ring_buffer.o callchain.o
+obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
+obj-$(CONFIG_HW_BREAKPOINT_MANAGE) += hw_breakpoint_manage.o
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/callchain.c b/ap/os/linux/linux-3.4.x/kernel/events/callchain.c
new file mode 100644
index 0000000..6581a04
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/callchain.c
@@ -0,0 +1,189 @@
+/*
+ * Performance events callchain code, extracted from core.c:
+ *
+ *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
+ *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ *
+ * For licensing details see kernel-base/COPYING
+ */
+
+#include <linux/perf_event.h>
+#include <linux/slab.h>
+#include "internal.h"
+
+struct callchain_cpus_entries {
+	struct rcu_head			rcu_head;
+	struct perf_callchain_entry	*cpu_entries[0];
+};
+
+static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
+static atomic_t nr_callchain_events;
+static DEFINE_MUTEX(callchain_mutex);
+static struct callchain_cpus_entries *callchain_cpus_entries;
+
+
+__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
+				  struct pt_regs *regs)
+{
+}
+
+__weak void perf_callchain_user(struct perf_callchain_entry *entry,
+				struct pt_regs *regs)
+{
+}
+
+static void release_callchain_buffers_rcu(struct rcu_head *head)
+{
+	struct callchain_cpus_entries *entries;
+	int cpu;
+
+	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
+
+	for_each_possible_cpu(cpu)
+		kfree(entries->cpu_entries[cpu]);
+
+	kfree(entries);
+}
+
+static void release_callchain_buffers(void)
+{
+	struct callchain_cpus_entries *entries;
+
+	entries = callchain_cpus_entries;
+	rcu_assign_pointer(callchain_cpus_entries, NULL);
+	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
+}
+
+static int alloc_callchain_buffers(void)
+{
+	int cpu;
+	int size;
+	struct callchain_cpus_entries *entries;
+
+	/*
+	 * We can't use the percpu allocation API for data that can be
+	 * accessed from NMI. Use a temporary manual per cpu allocation
+	 * until that gets sorted out.
+	 */
+	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
+
+	entries = kzalloc(size, GFP_KERNEL);
+	if (!entries)
+		return -ENOMEM;
+
+	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
+
+	for_each_possible_cpu(cpu) {
+		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
+							 cpu_to_node(cpu));
+		if (!entries->cpu_entries[cpu])
+			goto fail;
+	}
+
+	rcu_assign_pointer(callchain_cpus_entries, entries);
+
+	return 0;
+
+fail:
+	for_each_possible_cpu(cpu)
+		kfree(entries->cpu_entries[cpu]);
+	kfree(entries);
+
+	return -ENOMEM;
+}
+
+int get_callchain_buffers(void)
+{
+	int err = 0;
+	int count;
+
+	mutex_lock(&callchain_mutex);
+
+	count = atomic_inc_return(&nr_callchain_events);
+	if (WARN_ON_ONCE(count < 1)) {
+		err = -EINVAL;
+		goto exit;
+	}
+
+	if (count > 1) {
+		/* If the allocation failed, give up */
+		if (!callchain_cpus_entries)
+			err = -ENOMEM;
+		goto exit;
+	}
+
+	err = alloc_callchain_buffers();
+exit:
+	mutex_unlock(&callchain_mutex);
+
+	return err;
+}
+
+void put_callchain_buffers(void)
+{
+	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
+		release_callchain_buffers();
+		mutex_unlock(&callchain_mutex);
+	}
+}
+
+static struct perf_callchain_entry *get_callchain_entry(int *rctx)
+{
+	int cpu;
+	struct callchain_cpus_entries *entries;
+
+	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
+	if (*rctx == -1)
+		return NULL;
+
+	entries = rcu_dereference(callchain_cpus_entries);
+	if (!entries)
+		return NULL;
+
+	cpu = smp_processor_id();
+
+	return &entries->cpu_entries[cpu][*rctx];
+}
+
+static void
+put_callchain_entry(int rctx)
+{
+	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
+}
+
+struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
+{
+	int rctx;
+	struct perf_callchain_entry *entry;
+
+
+	entry = get_callchain_entry(&rctx);
+	if (rctx == -1)
+		return NULL;
+
+	if (!entry)
+		goto exit_put;
+
+	entry->nr = 0;
+
+	if (!user_mode(regs)) {
+		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
+		perf_callchain_kernel(entry, regs);
+		if (current->mm)
+			regs = task_pt_regs(current);
+		else
+			regs = NULL;
+	}
+
+	if (regs) {
+		perf_callchain_store(entry, PERF_CONTEXT_USER);
+		perf_callchain_user(entry, regs);
+	}
+
+exit_put:
+	put_callchain_entry(rctx);
+
+	return entry;
+}
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/core.c b/ap/os/linux/linux-3.4.x/kernel/events/core.c
new file mode 100644
index 0000000..4cb6f0c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/core.c
@@ -0,0 +1,7418 @@
+/*
+ * Performance events core code:
+ *
+ *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
+ *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ *
+ * For licensing details see kernel-base/COPYING
+ */
+
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/cpu.h>
+#include <linux/smp.h>
+#include <linux/idr.h>
+#include <linux/file.h>
+#include <linux/poll.h>
+#include <linux/slab.h>
+#include <linux/hash.h>
+#include <linux/sysfs.h>
+#include <linux/dcache.h>
+#include <linux/percpu.h>
+#include <linux/ptrace.h>
+#include <linux/reboot.h>
+#include <linux/vmstat.h>
+#include <linux/device.h>
+#include <linux/export.h>
+#include <linux/vmalloc.h>
+#include <linux/hardirq.h>
+#include <linux/rculist.h>
+#include <linux/uaccess.h>
+#include <linux/syscalls.h>
+#include <linux/anon_inodes.h>
+#include <linux/kernel_stat.h>
+#include <linux/perf_event.h>
+#include <linux/ftrace_event.h>
+#include <linux/hw_breakpoint.h>
+#include <linux/compat.h>
+
+#include "internal.h"
+
+#include <asm/irq_regs.h>
+
+struct remote_function_call {
+	struct task_struct	*p;
+	int			(*func)(void *info);
+	void			*info;
+	int			ret;
+};
+
+static void remote_function(void *data)
+{
+	struct remote_function_call *tfc = data;
+	struct task_struct *p = tfc->p;
+
+	if (p) {
+		tfc->ret = -EAGAIN;
+		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
+			return;
+	}
+
+	tfc->ret = tfc->func(tfc->info);
+}
+
+/**
+ * task_function_call - call a function on the cpu on which a task runs
+ * @p:		the task to evaluate
+ * @func:	the function to be called
+ * @info:	the function call argument
+ *
+ * Calls the function @func when the task is currently running. This might
+ * be on the current CPU, which just calls the function directly
+ *
+ * returns: @func return value, or
+ *	    -ESRCH  - when the process isn't running
+ *	    -EAGAIN - when the process moved away
+ */
+static int
+task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
+{
+	struct remote_function_call data = {
+		.p	= p,
+		.func	= func,
+		.info	= info,
+		.ret	= -ESRCH, /* No such (running) process */
+	};
+
+	if (task_curr(p))
+		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
+
+	return data.ret;
+}
+
+/**
+ * cpu_function_call - call a function on the cpu
+ * @func:	the function to be called
+ * @info:	the function call argument
+ *
+ * Calls the function @func on the remote cpu.
+ *
+ * returns: @func return value or -ENXIO when the cpu is offline
+ */
+static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
+{
+	struct remote_function_call data = {
+		.p	= NULL,
+		.func	= func,
+		.info	= info,
+		.ret	= -ENXIO, /* No such CPU */
+	};
+
+	smp_call_function_single(cpu, remote_function, &data, 1);
+
+	return data.ret;
+}
+
+#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
+		       PERF_FLAG_FD_OUTPUT  |\
+		       PERF_FLAG_PID_CGROUP)
+
+/*
+ * branch priv levels that need permission checks
+ */
+#define PERF_SAMPLE_BRANCH_PERM_PLM \
+	(PERF_SAMPLE_BRANCH_KERNEL |\
+	 PERF_SAMPLE_BRANCH_HV)
+
+enum event_type_t {
+	EVENT_FLEXIBLE = 0x1,
+	EVENT_PINNED = 0x2,
+	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
+};
+
+/*
+ * perf_sched_events : >0 events exist
+ * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
+ */
+struct static_key_deferred perf_sched_events __read_mostly;
+static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
+static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
+
+static atomic_t nr_mmap_events __read_mostly;
+static atomic_t nr_comm_events __read_mostly;
+static atomic_t nr_task_events __read_mostly;
+
+static LIST_HEAD(pmus);
+static DEFINE_MUTEX(pmus_lock);
+static struct srcu_struct pmus_srcu;
+
+/*
+ * perf event paranoia level:
+ *  -1 - not paranoid at all
+ *   0 - disallow raw tracepoint access for unpriv
+ *   1 - disallow cpu events for unpriv
+ *   2 - disallow kernel profiling for unpriv
+ */
+int sysctl_perf_event_paranoid __read_mostly = 1;
+
+/* Minimum for 512 kiB + 1 user control page */
+int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
+
+/*
+ * max perf event sample rate
+ */
+#define DEFAULT_MAX_SAMPLE_RATE 100000
+int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
+static int max_samples_per_tick __read_mostly =
+	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
+
+int perf_proc_update_handler(struct ctl_table *table, int write,
+		void __user *buffer, size_t *lenp,
+		loff_t *ppos)
+{
+	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
+
+	if (ret || !write)
+		return ret;
+
+	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
+
+	return 0;
+}
+
+static atomic64_t perf_event_id;
+
+static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
+			      enum event_type_t event_type);
+
+static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
+			     enum event_type_t event_type,
+			     struct task_struct *task);
+
+static void update_context_time(struct perf_event_context *ctx);
+static u64 perf_event_time(struct perf_event *event);
+
+void __weak perf_event_print_debug(void)	{ }
+
+extern __weak const char *perf_pmu_name(void)
+{
+	return "pmu";
+}
+
+static inline u64 perf_clock(void)
+{
+	return local_clock();
+}
+
+static inline struct perf_cpu_context *
+__get_cpu_context(struct perf_event_context *ctx)
+{
+	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
+}
+
+static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
+			  struct perf_event_context *ctx)
+{
+	raw_spin_lock(&cpuctx->ctx.lock);
+	if (ctx)
+		raw_spin_lock(&ctx->lock);
+}
+
+static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
+			    struct perf_event_context *ctx)
+{
+	if (ctx)
+		raw_spin_unlock(&ctx->lock);
+	raw_spin_unlock(&cpuctx->ctx.lock);
+}
+
+#ifdef CONFIG_CGROUP_PERF
+
+/*
+ * Must ensure cgroup is pinned (css_get) before calling
+ * this function. In other words, we cannot call this function
+ * if there is no cgroup event for the current CPU context.
+ */
+static inline struct perf_cgroup *
+perf_cgroup_from_task(struct task_struct *task)
+{
+	return container_of(task_subsys_state(task, perf_subsys_id),
+			struct perf_cgroup, css);
+}
+
+static inline bool
+perf_cgroup_match(struct perf_event *event)
+{
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+
+	return !event->cgrp || event->cgrp == cpuctx->cgrp;
+}
+
+static inline bool perf_tryget_cgroup(struct perf_event *event)
+{
+	return css_tryget(&event->cgrp->css);
+}
+
+static inline void perf_put_cgroup(struct perf_event *event)
+{
+	css_put(&event->cgrp->css);
+}
+
+static inline void perf_detach_cgroup(struct perf_event *event)
+{
+	perf_put_cgroup(event);
+	event->cgrp = NULL;
+}
+
+static inline int is_cgroup_event(struct perf_event *event)
+{
+	return event->cgrp != NULL;
+}
+
+static inline u64 perf_cgroup_event_time(struct perf_event *event)
+{
+	struct perf_cgroup_info *t;
+
+	t = per_cpu_ptr(event->cgrp->info, event->cpu);
+	return t->time;
+}
+
+static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
+{
+	struct perf_cgroup_info *info;
+	u64 now;
+
+	now = perf_clock();
+
+	info = this_cpu_ptr(cgrp->info);
+
+	info->time += now - info->timestamp;
+	info->timestamp = now;
+}
+
+static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
+{
+	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
+	if (cgrp_out)
+		__update_cgrp_time(cgrp_out);
+}
+
+static inline void update_cgrp_time_from_event(struct perf_event *event)
+{
+	struct perf_cgroup *cgrp;
+
+	/*
+	 * ensure we access cgroup data only when needed and
+	 * when we know the cgroup is pinned (css_get)
+	 */
+	if (!is_cgroup_event(event))
+		return;
+
+	cgrp = perf_cgroup_from_task(current);
+	/*
+	 * Do not update time when cgroup is not active
+	 */
+	if (cgrp == event->cgrp)
+		__update_cgrp_time(event->cgrp);
+}
+
+static inline void
+perf_cgroup_set_timestamp(struct task_struct *task,
+			  struct perf_event_context *ctx)
+{
+	struct perf_cgroup *cgrp;
+	struct perf_cgroup_info *info;
+
+	/*
+	 * ctx->lock held by caller
+	 * ensure we do not access cgroup data
+	 * unless we have the cgroup pinned (css_get)
+	 */
+	if (!task || !ctx->nr_cgroups)
+		return;
+
+	cgrp = perf_cgroup_from_task(task);
+	info = this_cpu_ptr(cgrp->info);
+	info->timestamp = ctx->timestamp;
+}
+
+#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
+#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
+
+/*
+ * reschedule events based on the cgroup constraint of task.
+ *
+ * mode SWOUT : schedule out everything
+ * mode SWIN : schedule in based on cgroup for next
+ */
+void perf_cgroup_switch(struct task_struct *task, int mode)
+{
+	struct perf_cpu_context *cpuctx;
+	struct pmu *pmu;
+	unsigned long flags;
+
+	/*
+	 * disable interrupts to avoid geting nr_cgroup
+	 * changes via __perf_event_disable(). Also
+	 * avoids preemption.
+	 */
+	local_irq_save(flags);
+
+	/*
+	 * we reschedule only in the presence of cgroup
+	 * constrained events.
+	 */
+	rcu_read_lock();
+
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+		if (cpuctx->unique_pmu != pmu)
+			continue; /* ensure we process each cpuctx once */
+
+		/*
+		 * perf_cgroup_events says at least one
+		 * context on this CPU has cgroup events.
+		 *
+		 * ctx->nr_cgroups reports the number of cgroup
+		 * events for a context.
+		 */
+		if (cpuctx->ctx.nr_cgroups > 0) {
+			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
+			perf_pmu_disable(cpuctx->ctx.pmu);
+
+			if (mode & PERF_CGROUP_SWOUT) {
+				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
+				/*
+				 * must not be done before ctxswout due
+				 * to event_filter_match() in event_sched_out()
+				 */
+				cpuctx->cgrp = NULL;
+			}
+
+			if (mode & PERF_CGROUP_SWIN) {
+				WARN_ON_ONCE(cpuctx->cgrp);
+				/*
+				 * set cgrp before ctxsw in to allow
+				 * event_filter_match() to not have to pass
+				 * task around
+				 */
+				cpuctx->cgrp = perf_cgroup_from_task(task);
+				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
+			}
+			perf_pmu_enable(cpuctx->ctx.pmu);
+			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
+		}
+	}
+
+	rcu_read_unlock();
+
+	local_irq_restore(flags);
+}
+
+static inline void perf_cgroup_sched_out(struct task_struct *task,
+					 struct task_struct *next)
+{
+	struct perf_cgroup *cgrp1;
+	struct perf_cgroup *cgrp2 = NULL;
+
+	/*
+	 * we come here when we know perf_cgroup_events > 0
+	 */
+	cgrp1 = perf_cgroup_from_task(task);
+
+	/*
+	 * next is NULL when called from perf_event_enable_on_exec()
+	 * that will systematically cause a cgroup_switch()
+	 */
+	if (next)
+		cgrp2 = perf_cgroup_from_task(next);
+
+	/*
+	 * only schedule out current cgroup events if we know
+	 * that we are switching to a different cgroup. Otherwise,
+	 * do no touch the cgroup events.
+	 */
+	if (cgrp1 != cgrp2)
+		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
+}
+
+static inline void perf_cgroup_sched_in(struct task_struct *prev,
+					struct task_struct *task)
+{
+	struct perf_cgroup *cgrp1;
+	struct perf_cgroup *cgrp2 = NULL;
+
+	/*
+	 * we come here when we know perf_cgroup_events > 0
+	 */
+	cgrp1 = perf_cgroup_from_task(task);
+
+	/* prev can never be NULL */
+	cgrp2 = perf_cgroup_from_task(prev);
+
+	/*
+	 * only need to schedule in cgroup events if we are changing
+	 * cgroup during ctxsw. Cgroup events were not scheduled
+	 * out of ctxsw out if that was not the case.
+	 */
+	if (cgrp1 != cgrp2)
+		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
+}
+
+static inline int perf_cgroup_connect(int fd, struct perf_event *event,
+				      struct perf_event_attr *attr,
+				      struct perf_event *group_leader)
+{
+	struct perf_cgroup *cgrp;
+	struct cgroup_subsys_state *css;
+	struct file *file;
+	int ret = 0, fput_needed;
+
+	file = fget_light(fd, &fput_needed);
+	if (!file)
+		return -EBADF;
+
+	css = cgroup_css_from_dir(file, perf_subsys_id);
+	if (IS_ERR(css)) {
+		ret = PTR_ERR(css);
+		goto out;
+	}
+
+	cgrp = container_of(css, struct perf_cgroup, css);
+	event->cgrp = cgrp;
+
+	/* must be done before we fput() the file */
+	if (!perf_tryget_cgroup(event)) {
+		event->cgrp = NULL;
+		ret = -ENOENT;
+		goto out;
+	}
+
+	/*
+	 * all events in a group must monitor
+	 * the same cgroup because a task belongs
+	 * to only one perf cgroup at a time
+	 */
+	if (group_leader && group_leader->cgrp != cgrp) {
+		perf_detach_cgroup(event);
+		ret = -EINVAL;
+	}
+out:
+	fput_light(file, fput_needed);
+	return ret;
+}
+
+static inline void
+perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
+{
+	struct perf_cgroup_info *t;
+	t = per_cpu_ptr(event->cgrp->info, event->cpu);
+	event->shadow_ctx_time = now - t->timestamp;
+}
+
+static inline void
+perf_cgroup_defer_enabled(struct perf_event *event)
+{
+	/*
+	 * when the current task's perf cgroup does not match
+	 * the event's, we need to remember to call the
+	 * perf_mark_enable() function the first time a task with
+	 * a matching perf cgroup is scheduled in.
+	 */
+	if (is_cgroup_event(event) && !perf_cgroup_match(event))
+		event->cgrp_defer_enabled = 1;
+}
+
+static inline void
+perf_cgroup_mark_enabled(struct perf_event *event,
+			 struct perf_event_context *ctx)
+{
+	struct perf_event *sub;
+	u64 tstamp = perf_event_time(event);
+
+	if (!event->cgrp_defer_enabled)
+		return;
+
+	event->cgrp_defer_enabled = 0;
+
+	event->tstamp_enabled = tstamp - event->total_time_enabled;
+	list_for_each_entry(sub, &event->sibling_list, group_entry) {
+		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
+			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
+			sub->cgrp_defer_enabled = 0;
+		}
+	}
+}
+#else /* !CONFIG_CGROUP_PERF */
+
+static inline bool
+perf_cgroup_match(struct perf_event *event)
+{
+	return true;
+}
+
+static inline void perf_detach_cgroup(struct perf_event *event)
+{}
+
+static inline int is_cgroup_event(struct perf_event *event)
+{
+	return 0;
+}
+
+static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
+{
+	return 0;
+}
+
+static inline void update_cgrp_time_from_event(struct perf_event *event)
+{
+}
+
+static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
+{
+}
+
+static inline void perf_cgroup_sched_out(struct task_struct *task,
+					 struct task_struct *next)
+{
+}
+
+static inline void perf_cgroup_sched_in(struct task_struct *prev,
+					struct task_struct *task)
+{
+}
+
+static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
+				      struct perf_event_attr *attr,
+				      struct perf_event *group_leader)
+{
+	return -EINVAL;
+}
+
+static inline void
+perf_cgroup_set_timestamp(struct task_struct *task,
+			  struct perf_event_context *ctx)
+{
+}
+
+void
+perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
+{
+}
+
+static inline void
+perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
+{
+}
+
+static inline u64 perf_cgroup_event_time(struct perf_event *event)
+{
+	return 0;
+}
+
+static inline void
+perf_cgroup_defer_enabled(struct perf_event *event)
+{
+}
+
+static inline void
+perf_cgroup_mark_enabled(struct perf_event *event,
+			 struct perf_event_context *ctx)
+{
+}
+#endif
+
+void perf_pmu_disable(struct pmu *pmu)
+{
+	int *count = this_cpu_ptr(pmu->pmu_disable_count);
+	if (!(*count)++)
+		pmu->pmu_disable(pmu);
+}
+
+void perf_pmu_enable(struct pmu *pmu)
+{
+	int *count = this_cpu_ptr(pmu->pmu_disable_count);
+	if (!--(*count))
+		pmu->pmu_enable(pmu);
+}
+
+static DEFINE_PER_CPU(struct list_head, rotation_list);
+
+/*
+ * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
+ * because they're strictly cpu affine and rotate_start is called with IRQs
+ * disabled, while rotate_context is called from IRQ context.
+ */
+static void perf_pmu_rotate_start(struct pmu *pmu)
+{
+	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+	struct list_head *head = &__get_cpu_var(rotation_list);
+
+	WARN_ON(!irqs_disabled());
+
+	if (list_empty(&cpuctx->rotation_list))
+		list_add(&cpuctx->rotation_list, head);
+}
+
+static void get_ctx(struct perf_event_context *ctx)
+{
+	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
+}
+
+static void put_ctx(struct perf_event_context *ctx)
+{
+	if (atomic_dec_and_test(&ctx->refcount)) {
+		if (ctx->parent_ctx)
+			put_ctx(ctx->parent_ctx);
+		if (ctx->task)
+			put_task_struct(ctx->task);
+		kfree_rcu(ctx, rcu_head);
+	}
+}
+
+static void unclone_ctx(struct perf_event_context *ctx)
+{
+	if (ctx->parent_ctx) {
+		put_ctx(ctx->parent_ctx);
+		ctx->parent_ctx = NULL;
+	}
+}
+
+static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
+{
+	/*
+	 * only top level events have the pid namespace they were created in
+	 */
+	if (event->parent)
+		event = event->parent;
+
+	return task_tgid_nr_ns(p, event->ns);
+}
+
+static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
+{
+	/*
+	 * only top level events have the pid namespace they were created in
+	 */
+	if (event->parent)
+		event = event->parent;
+
+	return task_pid_nr_ns(p, event->ns);
+}
+
+/*
+ * If we inherit events we want to return the parent event id
+ * to userspace.
+ */
+static u64 primary_event_id(struct perf_event *event)
+{
+	u64 id = event->id;
+
+	if (event->parent)
+		id = event->parent->id;
+
+	return id;
+}
+
+/*
+ * Get the perf_event_context for a task and lock it.
+ * This has to cope with with the fact that until it is locked,
+ * the context could get moved to another task.
+ */
+static struct perf_event_context *
+perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
+{
+	struct perf_event_context *ctx;
+
+retry:
+	/*
+	 * One of the few rules of preemptible RCU is that one cannot do
+	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
+	 * part of the read side critical section was preemptible -- see
+	 * rcu_read_unlock_special().
+	 *
+	 * Since ctx->lock nests under rq->lock we must ensure the entire read
+	 * side critical section is non-preemptible.
+	 */
+	preempt_disable();
+	rcu_read_lock();
+	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
+	if (ctx) {
+		/*
+		 * If this context is a clone of another, it might
+		 * get swapped for another underneath us by
+		 * perf_event_task_sched_out, though the
+		 * rcu_read_lock() protects us from any context
+		 * getting freed.  Lock the context and check if it
+		 * got swapped before we could get the lock, and retry
+		 * if so.  If we locked the right context, then it
+		 * can't get swapped on us any more.
+		 */
+		raw_spin_lock_irqsave(&ctx->lock, *flags);
+		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
+			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
+			rcu_read_unlock();
+			preempt_enable();
+			goto retry;
+		}
+
+		if (!atomic_inc_not_zero(&ctx->refcount)) {
+			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
+			ctx = NULL;
+		}
+	}
+	rcu_read_unlock();
+	preempt_enable();
+	return ctx;
+}
+
+/*
+ * Get the context for a task and increment its pin_count so it
+ * can't get swapped to another task.  This also increments its
+ * reference count so that the context can't get freed.
+ */
+static struct perf_event_context *
+perf_pin_task_context(struct task_struct *task, int ctxn)
+{
+	struct perf_event_context *ctx;
+	unsigned long flags;
+
+	ctx = perf_lock_task_context(task, ctxn, &flags);
+	if (ctx) {
+		++ctx->pin_count;
+		raw_spin_unlock_irqrestore(&ctx->lock, flags);
+	}
+	return ctx;
+}
+
+static void perf_unpin_context(struct perf_event_context *ctx)
+{
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&ctx->lock, flags);
+	--ctx->pin_count;
+	raw_spin_unlock_irqrestore(&ctx->lock, flags);
+}
+
+/*
+ * Update the record of the current time in a context.
+ */
+static void update_context_time(struct perf_event_context *ctx)
+{
+	u64 now = perf_clock();
+
+	ctx->time += now - ctx->timestamp;
+	ctx->timestamp = now;
+}
+
+static u64 perf_event_time(struct perf_event *event)
+{
+	struct perf_event_context *ctx = event->ctx;
+
+	if (is_cgroup_event(event))
+		return perf_cgroup_event_time(event);
+
+	return ctx ? ctx->time : 0;
+}
+
+/*
+ * Update the total_time_enabled and total_time_running fields for a event.
+ * The caller of this function needs to hold the ctx->lock.
+ */
+static void update_event_times(struct perf_event *event)
+{
+	struct perf_event_context *ctx = event->ctx;
+	u64 run_end;
+
+	if (event->state < PERF_EVENT_STATE_INACTIVE ||
+	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
+		return;
+	/*
+	 * in cgroup mode, time_enabled represents
+	 * the time the event was enabled AND active
+	 * tasks were in the monitored cgroup. This is
+	 * independent of the activity of the context as
+	 * there may be a mix of cgroup and non-cgroup events.
+	 *
+	 * That is why we treat cgroup events differently
+	 * here.
+	 */
+	if (is_cgroup_event(event))
+		run_end = perf_cgroup_event_time(event);
+	else if (ctx->is_active)
+		run_end = ctx->time;
+	else
+		run_end = event->tstamp_stopped;
+
+	event->total_time_enabled = run_end - event->tstamp_enabled;
+
+	if (event->state == PERF_EVENT_STATE_INACTIVE)
+		run_end = event->tstamp_stopped;
+	else
+		run_end = perf_event_time(event);
+
+	event->total_time_running = run_end - event->tstamp_running;
+
+}
+
+/*
+ * Update total_time_enabled and total_time_running for all events in a group.
+ */
+static void update_group_times(struct perf_event *leader)
+{
+	struct perf_event *event;
+
+	update_event_times(leader);
+	list_for_each_entry(event, &leader->sibling_list, group_entry)
+		update_event_times(event);
+}
+
+static struct list_head *
+ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
+{
+	if (event->attr.pinned)
+		return &ctx->pinned_groups;
+	else
+		return &ctx->flexible_groups;
+}
+
+/*
+ * Add a event from the lists for its context.
+ * Must be called with ctx->mutex and ctx->lock held.
+ */
+static void
+list_add_event(struct perf_event *event, struct perf_event_context *ctx)
+{
+	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
+	event->attach_state |= PERF_ATTACH_CONTEXT;
+
+	/*
+	 * If we're a stand alone event or group leader, we go to the context
+	 * list, group events are kept attached to the group so that
+	 * perf_group_detach can, at all times, locate all siblings.
+	 */
+	if (event->group_leader == event) {
+		struct list_head *list;
+
+		if (is_software_event(event))
+			event->group_flags |= PERF_GROUP_SOFTWARE;
+
+		list = ctx_group_list(event, ctx);
+		list_add_tail(&event->group_entry, list);
+	}
+
+	if (is_cgroup_event(event))
+		ctx->nr_cgroups++;
+
+	if (has_branch_stack(event))
+		ctx->nr_branch_stack++;
+
+	list_add_rcu(&event->event_entry, &ctx->event_list);
+	if (!ctx->nr_events)
+		perf_pmu_rotate_start(ctx->pmu);
+	ctx->nr_events++;
+	if (event->attr.inherit_stat)
+		ctx->nr_stat++;
+}
+
+/*
+ * Initialize event state based on the perf_event_attr::disabled.
+ */
+static inline void perf_event__state_init(struct perf_event *event)
+{
+	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
+					      PERF_EVENT_STATE_INACTIVE;
+}
+
+/*
+ * Called at perf_event creation and when events are attached/detached from a
+ * group.
+ */
+static void perf_event__read_size(struct perf_event *event)
+{
+	int entry = sizeof(u64); /* value */
+	int size = 0;
+	int nr = 1;
+
+	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
+		size += sizeof(u64);
+
+	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
+		size += sizeof(u64);
+
+	if (event->attr.read_format & PERF_FORMAT_ID)
+		entry += sizeof(u64);
+
+	if (event->attr.read_format & PERF_FORMAT_GROUP) {
+		nr += event->group_leader->nr_siblings;
+		size += sizeof(u64);
+	}
+
+	size += entry * nr;
+	event->read_size = size;
+}
+
+static void perf_event__header_size(struct perf_event *event)
+{
+	struct perf_sample_data *data;
+	u64 sample_type = event->attr.sample_type;
+	u16 size = 0;
+
+	perf_event__read_size(event);
+
+	if (sample_type & PERF_SAMPLE_IP)
+		size += sizeof(data->ip);
+
+	if (sample_type & PERF_SAMPLE_ADDR)
+		size += sizeof(data->addr);
+
+	if (sample_type & PERF_SAMPLE_PERIOD)
+		size += sizeof(data->period);
+
+	if (sample_type & PERF_SAMPLE_READ)
+		size += event->read_size;
+
+	event->header_size = size;
+}
+
+static void perf_event__id_header_size(struct perf_event *event)
+{
+	struct perf_sample_data *data;
+	u64 sample_type = event->attr.sample_type;
+	u16 size = 0;
+
+	if (sample_type & PERF_SAMPLE_TID)
+		size += sizeof(data->tid_entry);
+
+	if (sample_type & PERF_SAMPLE_TIME)
+		size += sizeof(data->time);
+
+	if (sample_type & PERF_SAMPLE_ID)
+		size += sizeof(data->id);
+
+	if (sample_type & PERF_SAMPLE_STREAM_ID)
+		size += sizeof(data->stream_id);
+
+	if (sample_type & PERF_SAMPLE_CPU)
+		size += sizeof(data->cpu_entry);
+
+	event->id_header_size = size;
+}
+
+static void perf_group_attach(struct perf_event *event)
+{
+	struct perf_event *group_leader = event->group_leader, *pos;
+
+	/*
+	 * We can have double attach due to group movement in perf_event_open.
+	 */
+	if (event->attach_state & PERF_ATTACH_GROUP)
+		return;
+
+	event->attach_state |= PERF_ATTACH_GROUP;
+
+	if (group_leader == event)
+		return;
+
+	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
+			!is_software_event(event))
+		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
+
+	list_add_tail(&event->group_entry, &group_leader->sibling_list);
+	group_leader->nr_siblings++;
+
+	perf_event__header_size(group_leader);
+
+	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
+		perf_event__header_size(pos);
+}
+
+/*
+ * Remove a event from the lists for its context.
+ * Must be called with ctx->mutex and ctx->lock held.
+ */
+static void
+list_del_event(struct perf_event *event, struct perf_event_context *ctx)
+{
+	struct perf_cpu_context *cpuctx;
+	/*
+	 * We can have double detach due to exit/hot-unplug + close.
+	 */
+	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
+		return;
+
+	event->attach_state &= ~PERF_ATTACH_CONTEXT;
+
+	if (is_cgroup_event(event)) {
+		ctx->nr_cgroups--;
+		cpuctx = __get_cpu_context(ctx);
+		/*
+		 * if there are no more cgroup events
+		 * then cler cgrp to avoid stale pointer
+		 * in update_cgrp_time_from_cpuctx()
+		 */
+		if (!ctx->nr_cgroups)
+			cpuctx->cgrp = NULL;
+	}
+
+	if (has_branch_stack(event))
+		ctx->nr_branch_stack--;
+
+	ctx->nr_events--;
+	if (event->attr.inherit_stat)
+		ctx->nr_stat--;
+
+	list_del_rcu(&event->event_entry);
+
+	if (event->group_leader == event)
+		list_del_init(&event->group_entry);
+
+	update_group_times(event);
+
+	/*
+	 * If event was in error state, then keep it
+	 * that way, otherwise bogus counts will be
+	 * returned on read(). The only way to get out
+	 * of error state is by explicit re-enabling
+	 * of the event
+	 */
+	if (event->state > PERF_EVENT_STATE_OFF)
+		event->state = PERF_EVENT_STATE_OFF;
+}
+
+static void perf_group_detach(struct perf_event *event)
+{
+	struct perf_event *sibling, *tmp;
+	struct list_head *list = NULL;
+
+	/*
+	 * We can have double detach due to exit/hot-unplug + close.
+	 */
+	if (!(event->attach_state & PERF_ATTACH_GROUP))
+		return;
+
+	event->attach_state &= ~PERF_ATTACH_GROUP;
+
+	/*
+	 * If this is a sibling, remove it from its group.
+	 */
+	if (event->group_leader != event) {
+		list_del_init(&event->group_entry);
+		event->group_leader->nr_siblings--;
+		goto out;
+	}
+
+	if (!list_empty(&event->group_entry))
+		list = &event->group_entry;
+
+	/*
+	 * If this was a group event with sibling events then
+	 * upgrade the siblings to singleton events by adding them
+	 * to whatever list we are on.
+	 */
+	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
+		if (list)
+			list_move_tail(&sibling->group_entry, list);
+		sibling->group_leader = sibling;
+
+		/* Inherit group flags from the previous leader */
+		sibling->group_flags = event->group_flags;
+	}
+
+out:
+	perf_event__header_size(event->group_leader);
+
+	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
+		perf_event__header_size(tmp);
+}
+
+static inline int
+event_filter_match(struct perf_event *event)
+{
+	return (event->cpu == -1 || event->cpu == smp_processor_id())
+	    && perf_cgroup_match(event);
+}
+
+static void
+event_sched_out(struct perf_event *event,
+		  struct perf_cpu_context *cpuctx,
+		  struct perf_event_context *ctx)
+{
+	u64 tstamp = perf_event_time(event);
+	u64 delta;
+	/*
+	 * An event which could not be activated because of
+	 * filter mismatch still needs to have its timings
+	 * maintained, otherwise bogus information is return
+	 * via read() for time_enabled, time_running:
+	 */
+	if (event->state == PERF_EVENT_STATE_INACTIVE
+	    && !event_filter_match(event)) {
+		delta = tstamp - event->tstamp_stopped;
+		event->tstamp_running += delta;
+		event->tstamp_stopped = tstamp;
+	}
+
+	if (event->state != PERF_EVENT_STATE_ACTIVE)
+		return;
+
+	event->state = PERF_EVENT_STATE_INACTIVE;
+	if (event->pending_disable) {
+		event->pending_disable = 0;
+		event->state = PERF_EVENT_STATE_OFF;
+	}
+	event->tstamp_stopped = tstamp;
+	event->pmu->del(event, 0);
+	event->oncpu = -1;
+
+	if (!is_software_event(event))
+		cpuctx->active_oncpu--;
+	ctx->nr_active--;
+	if (event->attr.freq && event->attr.sample_freq)
+		ctx->nr_freq--;
+	if (event->attr.exclusive || !cpuctx->active_oncpu)
+		cpuctx->exclusive = 0;
+}
+
+static void
+group_sched_out(struct perf_event *group_event,
+		struct perf_cpu_context *cpuctx,
+		struct perf_event_context *ctx)
+{
+	struct perf_event *event;
+	int state = group_event->state;
+
+	event_sched_out(group_event, cpuctx, ctx);
+
+	/*
+	 * Schedule out siblings (if any):
+	 */
+	list_for_each_entry(event, &group_event->sibling_list, group_entry)
+		event_sched_out(event, cpuctx, ctx);
+
+	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
+		cpuctx->exclusive = 0;
+}
+
+struct remove_event {
+	struct perf_event *event;
+	bool detach_group;
+};
+
+/*
+ * Cross CPU call to remove a performance event
+ *
+ * We disable the event on the hardware level first. After that we
+ * remove it from the context list.
+ */
+static int __perf_remove_from_context(void *info)
+{
+	struct remove_event *re = info;
+	struct perf_event *event = re->event;
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+
+	raw_spin_lock(&ctx->lock);
+	event_sched_out(event, cpuctx, ctx);
+	if (re->detach_group)
+		perf_group_detach(event);
+	list_del_event(event, ctx);
+	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
+		ctx->is_active = 0;
+		cpuctx->task_ctx = NULL;
+	}
+	raw_spin_unlock(&ctx->lock);
+
+	return 0;
+}
+
+
+/*
+ * Remove the event from a task's (or a CPU's) list of events.
+ *
+ * CPU events are removed with a smp call. For task events we only
+ * call when the task is on a CPU.
+ *
+ * If event->ctx is a cloned context, callers must make sure that
+ * every task struct that event->ctx->task could possibly point to
+ * remains valid.  This is OK when called from perf_release since
+ * that only calls us on the top-level context, which can't be a clone.
+ * When called from perf_event_exit_task, it's OK because the
+ * context has been detached from its task.
+ */
+static void perf_remove_from_context(struct perf_event *event, bool detach_group)
+{
+	struct perf_event_context *ctx = event->ctx;
+	struct task_struct *task = ctx->task;
+	struct remove_event re = {
+		.event = event,
+		.detach_group = detach_group,
+	};
+
+	lockdep_assert_held(&ctx->mutex);
+
+	if (!task) {
+		/*
+		 * Per cpu events are removed via an smp call and
+		 * the removal is always successful.
+		 */
+		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
+		return;
+	}
+
+retry:
+	if (!task_function_call(task, __perf_remove_from_context, &re))
+		return;
+
+	raw_spin_lock_irq(&ctx->lock);
+	/*
+	 * If we failed to find a running task, but find the context active now
+	 * that we've acquired the ctx->lock, retry.
+	 */
+	if (ctx->is_active) {
+		raw_spin_unlock_irq(&ctx->lock);
+		goto retry;
+	}
+
+	/*
+	 * Since the task isn't running, its safe to remove the event, us
+	 * holding the ctx->lock ensures the task won't get scheduled in.
+	 */
+	if (detach_group)
+		perf_group_detach(event);
+	list_del_event(event, ctx);
+	raw_spin_unlock_irq(&ctx->lock);
+}
+
+/*
+ * Cross CPU call to disable a performance event
+ */
+static int __perf_event_disable(void *info)
+{
+	struct perf_event *event = info;
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+
+	/*
+	 * If this is a per-task event, need to check whether this
+	 * event's task is the current task on this cpu.
+	 *
+	 * Can trigger due to concurrent perf_event_context_sched_out()
+	 * flipping contexts around.
+	 */
+	if (ctx->task && cpuctx->task_ctx != ctx)
+		return -EINVAL;
+
+	raw_spin_lock(&ctx->lock);
+
+	/*
+	 * If the event is on, turn it off.
+	 * If it is in error state, leave it in error state.
+	 */
+	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
+		update_context_time(ctx);
+		update_cgrp_time_from_event(event);
+		update_group_times(event);
+		if (event == event->group_leader)
+			group_sched_out(event, cpuctx, ctx);
+		else
+			event_sched_out(event, cpuctx, ctx);
+		event->state = PERF_EVENT_STATE_OFF;
+	}
+
+	raw_spin_unlock(&ctx->lock);
+
+	return 0;
+}
+
+/*
+ * Disable a event.
+ *
+ * If event->ctx is a cloned context, callers must make sure that
+ * every task struct that event->ctx->task could possibly point to
+ * remains valid.  This condition is satisifed when called through
+ * perf_event_for_each_child or perf_event_for_each because they
+ * hold the top-level event's child_mutex, so any descendant that
+ * goes to exit will block in sync_child_event.
+ * When called from perf_pending_event it's OK because event->ctx
+ * is the current context on this CPU and preemption is disabled,
+ * hence we can't get into perf_event_task_sched_out for this context.
+ */
+void perf_event_disable(struct perf_event *event)
+{
+	struct perf_event_context *ctx = event->ctx;
+	struct task_struct *task = ctx->task;
+
+	if (!task) {
+		/*
+		 * Disable the event on the cpu that it's on
+		 */
+		cpu_function_call(event->cpu, __perf_event_disable, event);
+		return;
+	}
+
+retry:
+	if (!task_function_call(task, __perf_event_disable, event))
+		return;
+
+	raw_spin_lock_irq(&ctx->lock);
+	/*
+	 * If the event is still active, we need to retry the cross-call.
+	 */
+	if (event->state == PERF_EVENT_STATE_ACTIVE) {
+		raw_spin_unlock_irq(&ctx->lock);
+		/*
+		 * Reload the task pointer, it might have been changed by
+		 * a concurrent perf_event_context_sched_out().
+		 */
+		task = ctx->task;
+		goto retry;
+	}
+
+	/*
+	 * Since we have the lock this context can't be scheduled
+	 * in, so we can change the state safely.
+	 */
+	if (event->state == PERF_EVENT_STATE_INACTIVE) {
+		update_group_times(event);
+		event->state = PERF_EVENT_STATE_OFF;
+	}
+	raw_spin_unlock_irq(&ctx->lock);
+}
+EXPORT_SYMBOL_GPL(perf_event_disable);
+
+static void perf_set_shadow_time(struct perf_event *event,
+				 struct perf_event_context *ctx,
+				 u64 tstamp)
+{
+	/*
+	 * use the correct time source for the time snapshot
+	 *
+	 * We could get by without this by leveraging the
+	 * fact that to get to this function, the caller
+	 * has most likely already called update_context_time()
+	 * and update_cgrp_time_xx() and thus both timestamp
+	 * are identical (or very close). Given that tstamp is,
+	 * already adjusted for cgroup, we could say that:
+	 *    tstamp - ctx->timestamp
+	 * is equivalent to
+	 *    tstamp - cgrp->timestamp.
+	 *
+	 * Then, in perf_output_read(), the calculation would
+	 * work with no changes because:
+	 * - event is guaranteed scheduled in
+	 * - no scheduled out in between
+	 * - thus the timestamp would be the same
+	 *
+	 * But this is a bit hairy.
+	 *
+	 * So instead, we have an explicit cgroup call to remain
+	 * within the time time source all along. We believe it
+	 * is cleaner and simpler to understand.
+	 */
+	if (is_cgroup_event(event))
+		perf_cgroup_set_shadow_time(event, tstamp);
+	else
+		event->shadow_ctx_time = tstamp - ctx->timestamp;
+}
+
+#define MAX_INTERRUPTS (~0ULL)
+
+static void perf_log_throttle(struct perf_event *event, int enable);
+
+static int
+event_sched_in(struct perf_event *event,
+		 struct perf_cpu_context *cpuctx,
+		 struct perf_event_context *ctx)
+{
+	u64 tstamp = perf_event_time(event);
+
+	if (event->state <= PERF_EVENT_STATE_OFF)
+		return 0;
+
+	event->state = PERF_EVENT_STATE_ACTIVE;
+	event->oncpu = smp_processor_id();
+
+	/*
+	 * Unthrottle events, since we scheduled we might have missed several
+	 * ticks already, also for a heavily scheduling task there is little
+	 * guarantee it'll get a tick in a timely manner.
+	 */
+	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
+		perf_log_throttle(event, 1);
+		event->hw.interrupts = 0;
+	}
+
+	/*
+	 * The new state must be visible before we turn it on in the hardware:
+	 */
+	smp_wmb();
+
+	if (event->pmu->add(event, PERF_EF_START)) {
+		event->state = PERF_EVENT_STATE_INACTIVE;
+		event->oncpu = -1;
+		return -EAGAIN;
+	}
+
+	event->tstamp_running += tstamp - event->tstamp_stopped;
+
+	perf_set_shadow_time(event, ctx, tstamp);
+
+	if (!is_software_event(event))
+		cpuctx->active_oncpu++;
+	ctx->nr_active++;
+	if (event->attr.freq && event->attr.sample_freq)
+		ctx->nr_freq++;
+
+	if (event->attr.exclusive)
+		cpuctx->exclusive = 1;
+
+	return 0;
+}
+
+static int
+group_sched_in(struct perf_event *group_event,
+	       struct perf_cpu_context *cpuctx,
+	       struct perf_event_context *ctx)
+{
+	struct perf_event *event, *partial_group = NULL;
+	struct pmu *pmu = group_event->pmu;
+	u64 now = ctx->time;
+	bool simulate = false;
+
+	if (group_event->state == PERF_EVENT_STATE_OFF)
+		return 0;
+
+	pmu->start_txn(pmu);
+
+	if (event_sched_in(group_event, cpuctx, ctx)) {
+		pmu->cancel_txn(pmu);
+		return -EAGAIN;
+	}
+
+	/*
+	 * Schedule in siblings as one group (if any):
+	 */
+	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
+		if (event_sched_in(event, cpuctx, ctx)) {
+			partial_group = event;
+			goto group_error;
+		}
+	}
+
+	if (!pmu->commit_txn(pmu))
+		return 0;
+
+group_error:
+	/*
+	 * Groups can be scheduled in as one unit only, so undo any
+	 * partial group before returning:
+	 * The events up to the failed event are scheduled out normally,
+	 * tstamp_stopped will be updated.
+	 *
+	 * The failed events and the remaining siblings need to have
+	 * their timings updated as if they had gone thru event_sched_in()
+	 * and event_sched_out(). This is required to get consistent timings
+	 * across the group. This also takes care of the case where the group
+	 * could never be scheduled by ensuring tstamp_stopped is set to mark
+	 * the time the event was actually stopped, such that time delta
+	 * calculation in update_event_times() is correct.
+	 */
+	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
+		if (event == partial_group)
+			simulate = true;
+
+		if (simulate) {
+			event->tstamp_running += now - event->tstamp_stopped;
+			event->tstamp_stopped = now;
+		} else {
+			event_sched_out(event, cpuctx, ctx);
+		}
+	}
+	event_sched_out(group_event, cpuctx, ctx);
+
+	pmu->cancel_txn(pmu);
+
+	return -EAGAIN;
+}
+
+/*
+ * Work out whether we can put this event group on the CPU now.
+ */
+static int group_can_go_on(struct perf_event *event,
+			   struct perf_cpu_context *cpuctx,
+			   int can_add_hw)
+{
+	/*
+	 * Groups consisting entirely of software events can always go on.
+	 */
+	if (event->group_flags & PERF_GROUP_SOFTWARE)
+		return 1;
+	/*
+	 * If an exclusive group is already on, no other hardware
+	 * events can go on.
+	 */
+	if (cpuctx->exclusive)
+		return 0;
+	/*
+	 * If this group is exclusive and there are already
+	 * events on the CPU, it can't go on.
+	 */
+	if (event->attr.exclusive && cpuctx->active_oncpu)
+		return 0;
+	/*
+	 * Otherwise, try to add it if all previous groups were able
+	 * to go on.
+	 */
+	return can_add_hw;
+}
+
+static void add_event_to_ctx(struct perf_event *event,
+			       struct perf_event_context *ctx)
+{
+	u64 tstamp = perf_event_time(event);
+
+	list_add_event(event, ctx);
+	perf_group_attach(event);
+	event->tstamp_enabled = tstamp;
+	event->tstamp_running = tstamp;
+	event->tstamp_stopped = tstamp;
+}
+
+static void task_ctx_sched_out(struct perf_event_context *ctx);
+static void
+ctx_sched_in(struct perf_event_context *ctx,
+	     struct perf_cpu_context *cpuctx,
+	     enum event_type_t event_type,
+	     struct task_struct *task);
+
+static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
+				struct perf_event_context *ctx,
+				struct task_struct *task)
+{
+	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
+	if (ctx)
+		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
+	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
+	if (ctx)
+		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
+}
+
+/*
+ * Cross CPU call to install and enable a performance event
+ *
+ * Must be called with ctx->mutex held
+ */
+static int  __perf_install_in_context(void *info)
+{
+	struct perf_event *event = info;
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+	struct perf_event_context *task_ctx = cpuctx->task_ctx;
+	struct task_struct *task = current;
+
+	perf_ctx_lock(cpuctx, task_ctx);
+	perf_pmu_disable(cpuctx->ctx.pmu);
+
+	/*
+	 * If there was an active task_ctx schedule it out.
+	 */
+	if (task_ctx)
+		task_ctx_sched_out(task_ctx);
+
+	/*
+	 * If the context we're installing events in is not the
+	 * active task_ctx, flip them.
+	 */
+	if (ctx->task && task_ctx != ctx) {
+		if (task_ctx)
+			raw_spin_unlock(&task_ctx->lock);
+		raw_spin_lock(&ctx->lock);
+		task_ctx = ctx;
+	}
+
+	if (task_ctx) {
+		cpuctx->task_ctx = task_ctx;
+		task = task_ctx->task;
+	}
+
+	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
+
+	update_context_time(ctx);
+	/*
+	 * update cgrp time only if current cgrp
+	 * matches event->cgrp. Must be done before
+	 * calling add_event_to_ctx()
+	 */
+	update_cgrp_time_from_event(event);
+
+	add_event_to_ctx(event, ctx);
+
+	/*
+	 * Schedule everything back in
+	 */
+	perf_event_sched_in(cpuctx, task_ctx, task);
+
+	perf_pmu_enable(cpuctx->ctx.pmu);
+	perf_ctx_unlock(cpuctx, task_ctx);
+
+	return 0;
+}
+
+/*
+ * Attach a performance event to a context
+ *
+ * First we add the event to the list with the hardware enable bit
+ * in event->hw_config cleared.
+ *
+ * If the event is attached to a task which is on a CPU we use a smp
+ * call to enable it in the task context. The task might have been
+ * scheduled away, but we check this in the smp call again.
+ */
+static void
+perf_install_in_context(struct perf_event_context *ctx,
+			struct perf_event *event,
+			int cpu)
+{
+	struct task_struct *task = ctx->task;
+
+	lockdep_assert_held(&ctx->mutex);
+
+	event->ctx = ctx;
+
+	if (!task) {
+		/*
+		 * Per cpu events are installed via an smp call and
+		 * the install is always successful.
+		 */
+		cpu_function_call(cpu, __perf_install_in_context, event);
+		return;
+	}
+
+retry:
+	if (!task_function_call(task, __perf_install_in_context, event))
+		return;
+
+	raw_spin_lock_irq(&ctx->lock);
+	/*
+	 * If we failed to find a running task, but find the context active now
+	 * that we've acquired the ctx->lock, retry.
+	 */
+	if (ctx->is_active) {
+		raw_spin_unlock_irq(&ctx->lock);
+		/*
+		 * Reload the task pointer, it might have been changed by
+		 * a concurrent perf_event_context_sched_out().
+		 */
+		task = ctx->task;
+		/*
+		 * Reload the task pointer, it might have been changed by
+		 * a concurrent perf_event_context_sched_out().
+		 */
+		task = ctx->task;
+		goto retry;
+	}
+
+	/*
+	 * Since the task isn't running, its safe to add the event, us holding
+	 * the ctx->lock ensures the task won't get scheduled in.
+	 */
+	add_event_to_ctx(event, ctx);
+	raw_spin_unlock_irq(&ctx->lock);
+}
+
+/*
+ * Put a event into inactive state and update time fields.
+ * Enabling the leader of a group effectively enables all
+ * the group members that aren't explicitly disabled, so we
+ * have to update their ->tstamp_enabled also.
+ * Note: this works for group members as well as group leaders
+ * since the non-leader members' sibling_lists will be empty.
+ */
+static void __perf_event_mark_enabled(struct perf_event *event)
+{
+	struct perf_event *sub;
+	u64 tstamp = perf_event_time(event);
+
+	event->state = PERF_EVENT_STATE_INACTIVE;
+	event->tstamp_enabled = tstamp - event->total_time_enabled;
+	list_for_each_entry(sub, &event->sibling_list, group_entry) {
+		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
+			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
+	}
+}
+
+/*
+ * Cross CPU call to enable a performance event
+ */
+static int __perf_event_enable(void *info)
+{
+	struct perf_event *event = info;
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_event *leader = event->group_leader;
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+	int err;
+
+	/*
+	 * There's a time window between 'ctx->is_active' check
+	 * in perf_event_enable function and this place having:
+	 *   - IRQs on
+	 *   - ctx->lock unlocked
+	 *
+	 * where the task could be killed and 'ctx' deactivated
+	 * by perf_event_exit_task.
+	 */
+	if (!ctx->is_active)
+		return -EINVAL;
+
+	raw_spin_lock(&ctx->lock);
+	update_context_time(ctx);
+
+	if (event->state >= PERF_EVENT_STATE_INACTIVE)
+		goto unlock;
+
+	/*
+	 * set current task's cgroup time reference point
+	 */
+	perf_cgroup_set_timestamp(current, ctx);
+
+	__perf_event_mark_enabled(event);
+
+	if (!event_filter_match(event)) {
+		if (is_cgroup_event(event))
+			perf_cgroup_defer_enabled(event);
+		goto unlock;
+	}
+
+	/*
+	 * If the event is in a group and isn't the group leader,
+	 * then don't put it on unless the group is on.
+	 */
+	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
+		goto unlock;
+
+	if (!group_can_go_on(event, cpuctx, 1)) {
+		err = -EEXIST;
+	} else {
+		if (event == leader)
+			err = group_sched_in(event, cpuctx, ctx);
+		else
+			err = event_sched_in(event, cpuctx, ctx);
+	}
+
+	if (err) {
+		/*
+		 * If this event can't go on and it's part of a
+		 * group, then the whole group has to come off.
+		 */
+		if (leader != event)
+			group_sched_out(leader, cpuctx, ctx);
+		if (leader->attr.pinned) {
+			update_group_times(leader);
+			leader->state = PERF_EVENT_STATE_ERROR;
+		}
+	}
+
+unlock:
+	raw_spin_unlock(&ctx->lock);
+
+	return 0;
+}
+
+/*
+ * Enable a event.
+ *
+ * If event->ctx is a cloned context, callers must make sure that
+ * every task struct that event->ctx->task could possibly point to
+ * remains valid.  This condition is satisfied when called through
+ * perf_event_for_each_child or perf_event_for_each as described
+ * for perf_event_disable.
+ */
+void perf_event_enable(struct perf_event *event)
+{
+	struct perf_event_context *ctx = event->ctx;
+	struct task_struct *task = ctx->task;
+
+	if (!task) {
+		/*
+		 * Enable the event on the cpu that it's on
+		 */
+		cpu_function_call(event->cpu, __perf_event_enable, event);
+		return;
+	}
+
+	raw_spin_lock_irq(&ctx->lock);
+	if (event->state >= PERF_EVENT_STATE_INACTIVE)
+		goto out;
+
+	/*
+	 * If the event is in error state, clear that first.
+	 * That way, if we see the event in error state below, we
+	 * know that it has gone back into error state, as distinct
+	 * from the task having been scheduled away before the
+	 * cross-call arrived.
+	 */
+	if (event->state == PERF_EVENT_STATE_ERROR)
+		event->state = PERF_EVENT_STATE_OFF;
+
+retry:
+	if (!ctx->is_active) {
+		__perf_event_mark_enabled(event);
+		goto out;
+	}
+
+	raw_spin_unlock_irq(&ctx->lock);
+
+	if (!task_function_call(task, __perf_event_enable, event))
+		return;
+
+	raw_spin_lock_irq(&ctx->lock);
+
+	/*
+	 * If the context is active and the event is still off,
+	 * we need to retry the cross-call.
+	 */
+	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
+		/*
+		 * task could have been flipped by a concurrent
+		 * perf_event_context_sched_out()
+		 */
+		task = ctx->task;
+		goto retry;
+	}
+
+out:
+	raw_spin_unlock_irq(&ctx->lock);
+}
+EXPORT_SYMBOL_GPL(perf_event_enable);
+
+int perf_event_refresh(struct perf_event *event, int refresh)
+{
+	/*
+	 * not supported on inherited events
+	 */
+	if (event->attr.inherit || !is_sampling_event(event))
+		return -EINVAL;
+
+	atomic_add(refresh, &event->event_limit);
+	perf_event_enable(event);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(perf_event_refresh);
+
+static void ctx_sched_out(struct perf_event_context *ctx,
+			  struct perf_cpu_context *cpuctx,
+			  enum event_type_t event_type)
+{
+	struct perf_event *event;
+	int is_active = ctx->is_active;
+
+	ctx->is_active &= ~event_type;
+	if (likely(!ctx->nr_events))
+		return;
+
+	update_context_time(ctx);
+	update_cgrp_time_from_cpuctx(cpuctx);
+	if (!ctx->nr_active)
+		return;
+
+	perf_pmu_disable(ctx->pmu);
+	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
+		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
+			group_sched_out(event, cpuctx, ctx);
+	}
+
+	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
+		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
+			group_sched_out(event, cpuctx, ctx);
+	}
+	perf_pmu_enable(ctx->pmu);
+}
+
+/*
+ * Test whether two contexts are equivalent, i.e. whether they
+ * have both been cloned from the same version of the same context
+ * and they both have the same number of enabled events.
+ * If the number of enabled events is the same, then the set
+ * of enabled events should be the same, because these are both
+ * inherited contexts, therefore we can't access individual events
+ * in them directly with an fd; we can only enable/disable all
+ * events via prctl, or enable/disable all events in a family
+ * via ioctl, which will have the same effect on both contexts.
+ */
+static int context_equiv(struct perf_event_context *ctx1,
+			 struct perf_event_context *ctx2)
+{
+	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
+		&& ctx1->parent_gen == ctx2->parent_gen
+		&& !ctx1->pin_count && !ctx2->pin_count;
+}
+
+static void __perf_event_sync_stat(struct perf_event *event,
+				     struct perf_event *next_event)
+{
+	u64 value;
+
+	if (!event->attr.inherit_stat)
+		return;
+
+	/*
+	 * Update the event value, we cannot use perf_event_read()
+	 * because we're in the middle of a context switch and have IRQs
+	 * disabled, which upsets smp_call_function_single(), however
+	 * we know the event must be on the current CPU, therefore we
+	 * don't need to use it.
+	 */
+	switch (event->state) {
+	case PERF_EVENT_STATE_ACTIVE:
+		event->pmu->read(event);
+		/* fall-through */
+
+	case PERF_EVENT_STATE_INACTIVE:
+		update_event_times(event);
+		break;
+
+	default:
+		break;
+	}
+
+	/*
+	 * In order to keep per-task stats reliable we need to flip the event
+	 * values when we flip the contexts.
+	 */
+	value = local64_read(&next_event->count);
+	value = local64_xchg(&event->count, value);
+	local64_set(&next_event->count, value);
+
+	swap(event->total_time_enabled, next_event->total_time_enabled);
+	swap(event->total_time_running, next_event->total_time_running);
+
+	/*
+	 * Since we swizzled the values, update the user visible data too.
+	 */
+	perf_event_update_userpage(event);
+	perf_event_update_userpage(next_event);
+}
+
+static void perf_event_sync_stat(struct perf_event_context *ctx,
+				   struct perf_event_context *next_ctx)
+{
+	struct perf_event *event, *next_event;
+
+	if (!ctx->nr_stat)
+		return;
+
+	update_context_time(ctx);
+
+	event = list_first_entry(&ctx->event_list,
+				   struct perf_event, event_entry);
+
+	next_event = list_first_entry(&next_ctx->event_list,
+					struct perf_event, event_entry);
+
+	while (&event->event_entry != &ctx->event_list &&
+	       &next_event->event_entry != &next_ctx->event_list) {
+
+		__perf_event_sync_stat(event, next_event);
+
+		event = list_next_entry(event, event_entry);
+		next_event = list_next_entry(next_event, event_entry);
+	}
+}
+
+static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
+					 struct task_struct *next)
+{
+	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
+	struct perf_event_context *next_ctx;
+	struct perf_event_context *parent;
+	struct perf_cpu_context *cpuctx;
+	int do_switch = 1;
+
+	if (likely(!ctx))
+		return;
+
+	cpuctx = __get_cpu_context(ctx);
+	if (!cpuctx->task_ctx)
+		return;
+
+	rcu_read_lock();
+	parent = rcu_dereference(ctx->parent_ctx);
+	next_ctx = next->perf_event_ctxp[ctxn];
+	if (parent && next_ctx &&
+	    rcu_dereference(next_ctx->parent_ctx) == parent) {
+		/*
+		 * Looks like the two contexts are clones, so we might be
+		 * able to optimize the context switch.  We lock both
+		 * contexts and check that they are clones under the
+		 * lock (including re-checking that neither has been
+		 * uncloned in the meantime).  It doesn't matter which
+		 * order we take the locks because no other cpu could
+		 * be trying to lock both of these tasks.
+		 */
+		raw_spin_lock(&ctx->lock);
+		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
+		if (context_equiv(ctx, next_ctx)) {
+			/*
+			 * XXX do we need a memory barrier of sorts
+			 * wrt to rcu_dereference() of perf_event_ctxp
+			 */
+			task->perf_event_ctxp[ctxn] = next_ctx;
+			next->perf_event_ctxp[ctxn] = ctx;
+			ctx->task = next;
+			next_ctx->task = task;
+			do_switch = 0;
+
+			perf_event_sync_stat(ctx, next_ctx);
+		}
+		raw_spin_unlock(&next_ctx->lock);
+		raw_spin_unlock(&ctx->lock);
+	}
+	rcu_read_unlock();
+
+	if (do_switch) {
+		raw_spin_lock(&ctx->lock);
+		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
+		cpuctx->task_ctx = NULL;
+		raw_spin_unlock(&ctx->lock);
+	}
+}
+
+#define for_each_task_context_nr(ctxn)					\
+	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
+
+/*
+ * Called from scheduler to remove the events of the current task,
+ * with interrupts disabled.
+ *
+ * We stop each event and update the event value in event->count.
+ *
+ * This does not protect us against NMI, but disable()
+ * sets the disabled bit in the control field of event _before_
+ * accessing the event control register. If a NMI hits, then it will
+ * not restart the event.
+ */
+void __perf_event_task_sched_out(struct task_struct *task,
+				 struct task_struct *next)
+{
+	int ctxn;
+
+	for_each_task_context_nr(ctxn)
+		perf_event_context_sched_out(task, ctxn, next);
+
+	/*
+	 * if cgroup events exist on this CPU, then we need
+	 * to check if we have to switch out PMU state.
+	 * cgroup event are system-wide mode only
+	 */
+	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
+		perf_cgroup_sched_out(task, next);
+}
+
+static void task_ctx_sched_out(struct perf_event_context *ctx)
+{
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+
+	if (!cpuctx->task_ctx)
+		return;
+
+	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
+		return;
+
+	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
+	cpuctx->task_ctx = NULL;
+}
+
+/*
+ * Called with IRQs disabled
+ */
+static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
+			      enum event_type_t event_type)
+{
+	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
+}
+
+static void
+ctx_pinned_sched_in(struct perf_event_context *ctx,
+		    struct perf_cpu_context *cpuctx)
+{
+	struct perf_event *event;
+
+	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
+		if (event->state <= PERF_EVENT_STATE_OFF)
+			continue;
+		if (!event_filter_match(event))
+			continue;
+
+		/* may need to reset tstamp_enabled */
+		if (is_cgroup_event(event))
+			perf_cgroup_mark_enabled(event, ctx);
+
+		if (group_can_go_on(event, cpuctx, 1))
+			group_sched_in(event, cpuctx, ctx);
+
+		/*
+		 * If this pinned group hasn't been scheduled,
+		 * put it in error state.
+		 */
+		if (event->state == PERF_EVENT_STATE_INACTIVE) {
+			update_group_times(event);
+			event->state = PERF_EVENT_STATE_ERROR;
+		}
+	}
+}
+
+static void
+ctx_flexible_sched_in(struct perf_event_context *ctx,
+		      struct perf_cpu_context *cpuctx)
+{
+	struct perf_event *event;
+	int can_add_hw = 1;
+
+	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
+		/* Ignore events in OFF or ERROR state */
+		if (event->state <= PERF_EVENT_STATE_OFF)
+			continue;
+		/*
+		 * Listen to the 'cpu' scheduling filter constraint
+		 * of events:
+		 */
+		if (!event_filter_match(event))
+			continue;
+
+		/* may need to reset tstamp_enabled */
+		if (is_cgroup_event(event))
+			perf_cgroup_mark_enabled(event, ctx);
+
+		if (group_can_go_on(event, cpuctx, can_add_hw)) {
+			if (group_sched_in(event, cpuctx, ctx))
+				can_add_hw = 0;
+		}
+	}
+}
+
+static void
+ctx_sched_in(struct perf_event_context *ctx,
+	     struct perf_cpu_context *cpuctx,
+	     enum event_type_t event_type,
+	     struct task_struct *task)
+{
+	u64 now;
+	int is_active = ctx->is_active;
+
+	ctx->is_active |= event_type;
+	if (likely(!ctx->nr_events))
+		return;
+
+	now = perf_clock();
+	ctx->timestamp = now;
+	perf_cgroup_set_timestamp(task, ctx);
+	/*
+	 * First go through the list and put on any pinned groups
+	 * in order to give them the best chance of going on.
+	 */
+	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
+		ctx_pinned_sched_in(ctx, cpuctx);
+
+	/* Then walk through the lower prio flexible groups */
+	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
+		ctx_flexible_sched_in(ctx, cpuctx);
+}
+
+static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
+			     enum event_type_t event_type,
+			     struct task_struct *task)
+{
+	struct perf_event_context *ctx = &cpuctx->ctx;
+
+	ctx_sched_in(ctx, cpuctx, event_type, task);
+}
+
+static void perf_event_context_sched_in(struct perf_event_context *ctx,
+					struct task_struct *task)
+{
+	struct perf_cpu_context *cpuctx;
+
+	cpuctx = __get_cpu_context(ctx);
+	if (cpuctx->task_ctx == ctx)
+		return;
+
+	perf_ctx_lock(cpuctx, ctx);
+	perf_pmu_disable(ctx->pmu);
+	/*
+	 * We want to keep the following priority order:
+	 * cpu pinned (that don't need to move), task pinned,
+	 * cpu flexible, task flexible.
+	 */
+	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
+
+	if (ctx->nr_events)
+		cpuctx->task_ctx = ctx;
+
+	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
+
+	perf_pmu_enable(ctx->pmu);
+	perf_ctx_unlock(cpuctx, ctx);
+
+	/*
+	 * Since these rotations are per-cpu, we need to ensure the
+	 * cpu-context we got scheduled on is actually rotating.
+	 */
+	perf_pmu_rotate_start(ctx->pmu);
+}
+
+/*
+ * When sampling the branck stack in system-wide, it may be necessary
+ * to flush the stack on context switch. This happens when the branch
+ * stack does not tag its entries with the pid of the current task.
+ * Otherwise it becomes impossible to associate a branch entry with a
+ * task. This ambiguity is more likely to appear when the branch stack
+ * supports priv level filtering and the user sets it to monitor only
+ * at the user level (which could be a useful measurement in system-wide
+ * mode). In that case, the risk is high of having a branch stack with
+ * branch from multiple tasks. Flushing may mean dropping the existing
+ * entries or stashing them somewhere in the PMU specific code layer.
+ *
+ * This function provides the context switch callback to the lower code
+ * layer. It is invoked ONLY when there is at least one system-wide context
+ * with at least one active event using taken branch sampling.
+ */
+static void perf_branch_stack_sched_in(struct task_struct *prev,
+				       struct task_struct *task)
+{
+	struct perf_cpu_context *cpuctx;
+	struct pmu *pmu;
+	unsigned long flags;
+
+	/* no need to flush branch stack if not changing task */
+	if (prev == task)
+		return;
+
+	local_irq_save(flags);
+
+	rcu_read_lock();
+
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+
+		/*
+		 * check if the context has at least one
+		 * event using PERF_SAMPLE_BRANCH_STACK
+		 */
+		if (cpuctx->ctx.nr_branch_stack > 0
+		    && pmu->flush_branch_stack) {
+
+			pmu = cpuctx->ctx.pmu;
+
+			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
+
+			perf_pmu_disable(pmu);
+
+			pmu->flush_branch_stack();
+
+			perf_pmu_enable(pmu);
+
+			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
+		}
+	}
+
+	rcu_read_unlock();
+
+	local_irq_restore(flags);
+}
+
+/*
+ * Called from scheduler to add the events of the current task
+ * with interrupts disabled.
+ *
+ * We restore the event value and then enable it.
+ *
+ * This does not protect us against NMI, but enable()
+ * sets the enabled bit in the control field of event _before_
+ * accessing the event control register. If a NMI hits, then it will
+ * keep the event running.
+ */
+void __perf_event_task_sched_in(struct task_struct *prev,
+				struct task_struct *task)
+{
+	struct perf_event_context *ctx;
+	int ctxn;
+
+	for_each_task_context_nr(ctxn) {
+		ctx = task->perf_event_ctxp[ctxn];
+		if (likely(!ctx))
+			continue;
+
+		perf_event_context_sched_in(ctx, task);
+	}
+	/*
+	 * if cgroup events exist on this CPU, then we need
+	 * to check if we have to switch in PMU state.
+	 * cgroup event are system-wide mode only
+	 */
+	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
+		perf_cgroup_sched_in(prev, task);
+
+	/* check for system-wide branch_stack events */
+	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
+		perf_branch_stack_sched_in(prev, task);
+}
+
+static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
+{
+	u64 frequency = event->attr.sample_freq;
+	u64 sec = NSEC_PER_SEC;
+	u64 divisor, dividend;
+
+	int count_fls, nsec_fls, frequency_fls, sec_fls;
+
+	count_fls = fls64(count);
+	nsec_fls = fls64(nsec);
+	frequency_fls = fls64(frequency);
+	sec_fls = 30;
+
+	/*
+	 * We got @count in @nsec, with a target of sample_freq HZ
+	 * the target period becomes:
+	 *
+	 *             @count * 10^9
+	 * period = -------------------
+	 *          @nsec * sample_freq
+	 *
+	 */
+
+	/*
+	 * Reduce accuracy by one bit such that @a and @b converge
+	 * to a similar magnitude.
+	 */
+#define REDUCE_FLS(a, b)		\
+do {					\
+	if (a##_fls > b##_fls) {	\
+		a >>= 1;		\
+		a##_fls--;		\
+	} else {			\
+		b >>= 1;		\
+		b##_fls--;		\
+	}				\
+} while (0)
+
+	/*
+	 * Reduce accuracy until either term fits in a u64, then proceed with
+	 * the other, so that finally we can do a u64/u64 division.
+	 */
+	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
+		REDUCE_FLS(nsec, frequency);
+		REDUCE_FLS(sec, count);
+	}
+
+	if (count_fls + sec_fls > 64) {
+		divisor = nsec * frequency;
+
+		while (count_fls + sec_fls > 64) {
+			REDUCE_FLS(count, sec);
+			divisor >>= 1;
+		}
+
+		dividend = count * sec;
+	} else {
+		dividend = count * sec;
+
+		while (nsec_fls + frequency_fls > 64) {
+			REDUCE_FLS(nsec, frequency);
+			dividend >>= 1;
+		}
+
+		divisor = nsec * frequency;
+	}
+
+	if (!divisor)
+		return dividend;
+
+	return div64_u64(dividend, divisor);
+}
+
+static DEFINE_PER_CPU(int, perf_throttled_count);
+static DEFINE_PER_CPU(u64, perf_throttled_seq);
+
+static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
+{
+	struct hw_perf_event *hwc = &event->hw;
+	s64 period, sample_period;
+	s64 delta;
+
+	period = perf_calculate_period(event, nsec, count);
+
+	delta = (s64)(period - hwc->sample_period);
+	delta = (delta + 7) / 8; /* low pass filter */
+
+	sample_period = hwc->sample_period + delta;
+
+	if (!sample_period)
+		sample_period = 1;
+
+	hwc->sample_period = sample_period;
+
+	if (local64_read(&hwc->period_left) > 8*sample_period) {
+		if (disable)
+			event->pmu->stop(event, PERF_EF_UPDATE);
+
+		local64_set(&hwc->period_left, 0);
+
+		if (disable)
+			event->pmu->start(event, PERF_EF_RELOAD);
+	}
+}
+
+/*
+ * combine freq adjustment with unthrottling to avoid two passes over the
+ * events. At the same time, make sure, having freq events does not change
+ * the rate of unthrottling as that would introduce bias.
+ */
+static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
+					   int needs_unthr)
+{
+	struct perf_event *event;
+	struct hw_perf_event *hwc;
+	u64 now, period = TICK_NSEC;
+	s64 delta;
+
+	/*
+	 * only need to iterate over all events iff:
+	 * - context have events in frequency mode (needs freq adjust)
+	 * - there are events to unthrottle on this cpu
+	 */
+	if (!(ctx->nr_freq || needs_unthr))
+		return;
+
+	raw_spin_lock(&ctx->lock);
+	perf_pmu_disable(ctx->pmu);
+
+	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
+		if (event->state != PERF_EVENT_STATE_ACTIVE)
+			continue;
+
+		if (!event_filter_match(event))
+			continue;
+
+		hwc = &event->hw;
+
+		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
+			hwc->interrupts = 0;
+			perf_log_throttle(event, 1);
+			event->pmu->start(event, 0);
+		}
+
+		if (!event->attr.freq || !event->attr.sample_freq)
+			continue;
+
+		/*
+		 * stop the event and update event->count
+		 */
+		event->pmu->stop(event, PERF_EF_UPDATE);
+
+		now = local64_read(&event->count);
+		delta = now - hwc->freq_count_stamp;
+		hwc->freq_count_stamp = now;
+
+		/*
+		 * restart the event
+		 * reload only if value has changed
+		 * we have stopped the event so tell that
+		 * to perf_adjust_period() to avoid stopping it
+		 * twice.
+		 */
+		if (delta > 0)
+			perf_adjust_period(event, period, delta, false);
+
+		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
+	}
+
+	perf_pmu_enable(ctx->pmu);
+	raw_spin_unlock(&ctx->lock);
+}
+
+/*
+ * Round-robin a context's events:
+ */
+static void rotate_ctx(struct perf_event_context *ctx)
+{
+	/*
+	 * Rotate the first entry last of non-pinned groups. Rotation might be
+	 * disabled by the inheritance code.
+	 */
+	if (!ctx->rotate_disable)
+		list_rotate_left(&ctx->flexible_groups);
+}
+
+/*
+ * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
+ * because they're strictly cpu affine and rotate_start is called with IRQs
+ * disabled, while rotate_context is called from IRQ context.
+ */
+static void perf_rotate_context(struct perf_cpu_context *cpuctx)
+{
+	struct perf_event_context *ctx = NULL;
+	int rotate = 0, remove = 1;
+
+	if (cpuctx->ctx.nr_events) {
+		remove = 0;
+		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
+			rotate = 1;
+	}
+
+	ctx = cpuctx->task_ctx;
+	if (ctx && ctx->nr_events) {
+		remove = 0;
+		if (ctx->nr_events != ctx->nr_active)
+			rotate = 1;
+	}
+
+	if (!rotate)
+		goto done;
+
+	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
+	perf_pmu_disable(cpuctx->ctx.pmu);
+
+	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
+	if (ctx)
+		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
+
+	rotate_ctx(&cpuctx->ctx);
+	if (ctx)
+		rotate_ctx(ctx);
+
+	perf_event_sched_in(cpuctx, ctx, current);
+
+	perf_pmu_enable(cpuctx->ctx.pmu);
+	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
+done:
+	if (remove)
+		list_del_init(&cpuctx->rotation_list);
+}
+
+void perf_event_task_tick(void)
+{
+	struct list_head *head = &__get_cpu_var(rotation_list);
+	struct perf_cpu_context *cpuctx, *tmp;
+	struct perf_event_context *ctx;
+	int throttled;
+
+	WARN_ON(!irqs_disabled());
+
+	__this_cpu_inc(perf_throttled_seq);
+	throttled = __this_cpu_xchg(perf_throttled_count, 0);
+
+	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
+		ctx = &cpuctx->ctx;
+		perf_adjust_freq_unthr_context(ctx, throttled);
+
+		ctx = cpuctx->task_ctx;
+		if (ctx)
+			perf_adjust_freq_unthr_context(ctx, throttled);
+
+		if (cpuctx->jiffies_interval == 1 ||
+				!(jiffies % cpuctx->jiffies_interval))
+			perf_rotate_context(cpuctx);
+	}
+}
+
+static int event_enable_on_exec(struct perf_event *event,
+				struct perf_event_context *ctx)
+{
+	if (!event->attr.enable_on_exec)
+		return 0;
+
+	event->attr.enable_on_exec = 0;
+	if (event->state >= PERF_EVENT_STATE_INACTIVE)
+		return 0;
+
+	__perf_event_mark_enabled(event);
+
+	return 1;
+}
+
+/*
+ * Enable all of a task's events that have been marked enable-on-exec.
+ * This expects task == current.
+ */
+static void perf_event_enable_on_exec(struct perf_event_context *ctx)
+{
+	struct perf_event *event;
+	unsigned long flags;
+	int enabled = 0;
+	int ret;
+
+	local_irq_save(flags);
+	if (!ctx || !ctx->nr_events)
+		goto out;
+
+	/*
+	 * We must ctxsw out cgroup events to avoid conflict
+	 * when invoking perf_task_event_sched_in() later on
+	 * in this function. Otherwise we end up trying to
+	 * ctxswin cgroup events which are already scheduled
+	 * in.
+	 */
+	perf_cgroup_sched_out(current, NULL);
+
+	raw_spin_lock(&ctx->lock);
+	task_ctx_sched_out(ctx);
+
+	list_for_each_entry(event, &ctx->event_list, event_entry) {
+		ret = event_enable_on_exec(event, ctx);
+		if (ret)
+			enabled = 1;
+	}
+
+	/*
+	 * Unclone this context if we enabled any event.
+	 */
+	if (enabled)
+		unclone_ctx(ctx);
+
+	raw_spin_unlock(&ctx->lock);
+
+	/*
+	 * Also calls ctxswin for cgroup events, if any:
+	 */
+	perf_event_context_sched_in(ctx, ctx->task);
+out:
+	local_irq_restore(flags);
+}
+
+/*
+ * Cross CPU call to read the hardware event
+ */
+static void __perf_event_read(void *info)
+{
+	struct perf_event *event = info;
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
+
+	/*
+	 * If this is a task context, we need to check whether it is
+	 * the current task context of this cpu.  If not it has been
+	 * scheduled out before the smp call arrived.  In that case
+	 * event->count would have been updated to a recent sample
+	 * when the event was scheduled out.
+	 */
+	if (ctx->task && cpuctx->task_ctx != ctx)
+		return;
+
+	raw_spin_lock(&ctx->lock);
+	if (ctx->is_active) {
+		update_context_time(ctx);
+		update_cgrp_time_from_event(event);
+	}
+	update_event_times(event);
+	if (event->state == PERF_EVENT_STATE_ACTIVE)
+		event->pmu->read(event);
+	raw_spin_unlock(&ctx->lock);
+}
+
+static inline u64 perf_event_count(struct perf_event *event)
+{
+	return local64_read(&event->count) + atomic64_read(&event->child_count);
+}
+
+static u64 perf_event_read(struct perf_event *event)
+{
+	/*
+	 * If event is enabled and currently active on a CPU, update the
+	 * value in the event structure:
+	 */
+	if (event->state == PERF_EVENT_STATE_ACTIVE) {
+		smp_call_function_single(event->oncpu,
+					 __perf_event_read, event, 1);
+	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
+		struct perf_event_context *ctx = event->ctx;
+		unsigned long flags;
+
+		raw_spin_lock_irqsave(&ctx->lock, flags);
+		/*
+		 * may read while context is not active
+		 * (e.g., thread is blocked), in that case
+		 * we cannot update context time
+		 */
+		if (ctx->is_active) {
+			update_context_time(ctx);
+			update_cgrp_time_from_event(event);
+		}
+		update_event_times(event);
+		raw_spin_unlock_irqrestore(&ctx->lock, flags);
+	}
+
+	return perf_event_count(event);
+}
+
+/*
+ * Initialize the perf_event context in a task_struct:
+ */
+static void __perf_event_init_context(struct perf_event_context *ctx)
+{
+	raw_spin_lock_init(&ctx->lock);
+	mutex_init(&ctx->mutex);
+	INIT_LIST_HEAD(&ctx->pinned_groups);
+	INIT_LIST_HEAD(&ctx->flexible_groups);
+	INIT_LIST_HEAD(&ctx->event_list);
+	atomic_set(&ctx->refcount, 1);
+}
+
+static struct perf_event_context *
+alloc_perf_context(struct pmu *pmu, struct task_struct *task)
+{
+	struct perf_event_context *ctx;
+
+	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
+	if (!ctx)
+		return NULL;
+
+	__perf_event_init_context(ctx);
+	if (task) {
+		ctx->task = task;
+		get_task_struct(task);
+	}
+	ctx->pmu = pmu;
+
+	return ctx;
+}
+
+static struct task_struct *
+find_lively_task_by_vpid(pid_t vpid)
+{
+	struct task_struct *task;
+	int err;
+
+	rcu_read_lock();
+	if (!vpid)
+		task = current;
+	else
+		task = find_task_by_vpid(vpid);
+	if (task)
+		get_task_struct(task);
+	rcu_read_unlock();
+
+	if (!task)
+		return ERR_PTR(-ESRCH);
+
+	/* Reuse ptrace permission checks for now. */
+	err = -EACCES;
+	if (!ptrace_may_access(task, PTRACE_MODE_READ))
+		goto errout;
+
+	return task;
+errout:
+	put_task_struct(task);
+	return ERR_PTR(err);
+
+}
+
+/*
+ * Returns a matching context with refcount and pincount.
+ */
+static struct perf_event_context *
+find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
+{
+	struct perf_event_context *ctx;
+	struct perf_cpu_context *cpuctx;
+	unsigned long flags;
+	int ctxn, err;
+
+	if (!task) {
+		/* Must be root to operate on a CPU event: */
+		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
+			return ERR_PTR(-EACCES);
+
+		/*
+		 * We could be clever and allow to attach a event to an
+		 * offline CPU and activate it when the CPU comes up, but
+		 * that's for later.
+		 */
+		if (!cpu_online(cpu))
+			return ERR_PTR(-ENODEV);
+
+		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
+		ctx = &cpuctx->ctx;
+		get_ctx(ctx);
+		++ctx->pin_count;
+
+		return ctx;
+	}
+
+	err = -EINVAL;
+	ctxn = pmu->task_ctx_nr;
+	if (ctxn < 0)
+		goto errout;
+
+retry:
+	ctx = perf_lock_task_context(task, ctxn, &flags);
+	if (ctx) {
+		unclone_ctx(ctx);
+		++ctx->pin_count;
+		raw_spin_unlock_irqrestore(&ctx->lock, flags);
+	} else {
+		ctx = alloc_perf_context(pmu, task);
+		err = -ENOMEM;
+		if (!ctx)
+			goto errout;
+
+		err = 0;
+		mutex_lock(&task->perf_event_mutex);
+		/*
+		 * If it has already passed perf_event_exit_task().
+		 * we must see PF_EXITING, it takes this mutex too.
+		 */
+		if (task->flags & PF_EXITING)
+			err = -ESRCH;
+		else if (task->perf_event_ctxp[ctxn])
+			err = -EAGAIN;
+		else {
+			get_ctx(ctx);
+			++ctx->pin_count;
+			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
+		}
+		mutex_unlock(&task->perf_event_mutex);
+
+		if (unlikely(err)) {
+			put_ctx(ctx);
+
+			if (err == -EAGAIN)
+				goto retry;
+			goto errout;
+		}
+	}
+
+	return ctx;
+
+errout:
+	return ERR_PTR(err);
+}
+
+static void perf_event_free_filter(struct perf_event *event);
+
+static void free_event_rcu(struct rcu_head *head)
+{
+	struct perf_event *event;
+
+	event = container_of(head, struct perf_event, rcu_head);
+	if (event->ns)
+		put_pid_ns(event->ns);
+	perf_event_free_filter(event);
+	kfree(event);
+}
+
+static void ring_buffer_put(struct ring_buffer *rb);
+static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
+
+static void free_event(struct perf_event *event)
+{
+	irq_work_sync(&event->pending);
+
+	if (!event->parent) {
+		if (event->attach_state & PERF_ATTACH_TASK)
+			static_key_slow_dec_deferred(&perf_sched_events);
+		if (event->attr.mmap || event->attr.mmap_data)
+			atomic_dec(&nr_mmap_events);
+		if (event->attr.comm)
+			atomic_dec(&nr_comm_events);
+		if (event->attr.task)
+			atomic_dec(&nr_task_events);
+		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
+			put_callchain_buffers();
+		if (is_cgroup_event(event)) {
+			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
+			static_key_slow_dec_deferred(&perf_sched_events);
+		}
+
+		if (has_branch_stack(event)) {
+			static_key_slow_dec_deferred(&perf_sched_events);
+			/* is system-wide event */
+			if (!(event->attach_state & PERF_ATTACH_TASK)) {
+				atomic_dec(&per_cpu(perf_branch_stack_events,
+						    event->cpu));
+			}
+		}
+	}
+
+	if (event->rb) {
+		struct ring_buffer *rb;
+
+		/*
+		 * Can happen when we close an event with re-directed output.
+		 *
+		 * Since we have a 0 refcount, perf_mmap_close() will skip
+		 * over us; possibly making our ring_buffer_put() the last.
+		 */
+		mutex_lock(&event->mmap_mutex);
+		rb = event->rb;
+		if (rb) {
+			rcu_assign_pointer(event->rb, NULL);
+			ring_buffer_detach(event, rb);
+			ring_buffer_put(rb); /* could be last */
+		}
+		mutex_unlock(&event->mmap_mutex);
+	}
+
+	if (is_cgroup_event(event))
+		perf_detach_cgroup(event);
+
+	if (event->destroy)
+		event->destroy(event);
+
+	if (event->ctx)
+		put_ctx(event->ctx);
+
+	call_rcu(&event->rcu_head, free_event_rcu);
+}
+
+int perf_event_release_kernel(struct perf_event *event)
+{
+	struct perf_event_context *ctx = event->ctx;
+
+	WARN_ON_ONCE(ctx->parent_ctx);
+	/*
+	 * There are two ways this annotation is useful:
+	 *
+	 *  1) there is a lock recursion from perf_event_exit_task
+	 *     see the comment there.
+	 *
+	 *  2) there is a lock-inversion with mmap_sem through
+	 *     perf_event_read_group(), which takes faults while
+	 *     holding ctx->mutex, however this is called after
+	 *     the last filedesc died, so there is no possibility
+	 *     to trigger the AB-BA case.
+	 */
+	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
+	perf_remove_from_context(event, true);
+	mutex_unlock(&ctx->mutex);
+
+	free_event(event);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(perf_event_release_kernel);
+
+/*
+ * Called when the last reference to the file is gone.
+ */
+static void put_event(struct perf_event *event)
+{
+	struct task_struct *owner;
+
+	if (!atomic_long_dec_and_test(&event->refcount))
+		return;
+
+	rcu_read_lock();
+	owner = ACCESS_ONCE(event->owner);
+	/*
+	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
+	 * !owner it means the list deletion is complete and we can indeed
+	 * free this event, otherwise we need to serialize on
+	 * owner->perf_event_mutex.
+	 */
+	smp_read_barrier_depends();
+	if (owner) {
+		/*
+		 * Since delayed_put_task_struct() also drops the last
+		 * task reference we can safely take a new reference
+		 * while holding the rcu_read_lock().
+		 */
+		get_task_struct(owner);
+	}
+	rcu_read_unlock();
+
+	if (owner) {
+		mutex_lock(&owner->perf_event_mutex);
+		/*
+		 * We have to re-check the event->owner field, if it is cleared
+		 * we raced with perf_event_exit_task(), acquiring the mutex
+		 * ensured they're done, and we can proceed with freeing the
+		 * event.
+		 */
+		if (event->owner)
+			list_del_init(&event->owner_entry);
+		mutex_unlock(&owner->perf_event_mutex);
+		put_task_struct(owner);
+	}
+
+	perf_event_release_kernel(event);
+}
+
+static int perf_release(struct inode *inode, struct file *file)
+{
+	put_event(file->private_data);
+	return 0;
+}
+
+u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
+{
+	struct perf_event *child;
+	u64 total = 0;
+
+	*enabled = 0;
+	*running = 0;
+
+	mutex_lock(&event->child_mutex);
+	total += perf_event_read(event);
+	*enabled += event->total_time_enabled +
+			atomic64_read(&event->child_total_time_enabled);
+	*running += event->total_time_running +
+			atomic64_read(&event->child_total_time_running);
+
+	list_for_each_entry(child, &event->child_list, child_list) {
+		total += perf_event_read(child);
+		*enabled += child->total_time_enabled;
+		*running += child->total_time_running;
+	}
+	mutex_unlock(&event->child_mutex);
+
+	return total;
+}
+EXPORT_SYMBOL_GPL(perf_event_read_value);
+
+static int perf_event_read_group(struct perf_event *event,
+				   u64 read_format, char __user *buf)
+{
+	struct perf_event *leader = event->group_leader, *sub;
+	int n = 0, size = 0, ret = -EFAULT;
+	struct perf_event_context *ctx = leader->ctx;
+	u64 values[5];
+	u64 count, enabled, running;
+
+	mutex_lock(&ctx->mutex);
+	count = perf_event_read_value(leader, &enabled, &running);
+
+	values[n++] = 1 + leader->nr_siblings;
+	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
+		values[n++] = enabled;
+	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
+		values[n++] = running;
+	values[n++] = count;
+	if (read_format & PERF_FORMAT_ID)
+		values[n++] = primary_event_id(leader);
+
+	size = n * sizeof(u64);
+
+	if (copy_to_user(buf, values, size))
+		goto unlock;
+
+	ret = size;
+
+	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
+		n = 0;
+
+		values[n++] = perf_event_read_value(sub, &enabled, &running);
+		if (read_format & PERF_FORMAT_ID)
+			values[n++] = primary_event_id(sub);
+
+		size = n * sizeof(u64);
+
+		if (copy_to_user(buf + ret, values, size)) {
+			ret = -EFAULT;
+			goto unlock;
+		}
+
+		ret += size;
+	}
+unlock:
+	mutex_unlock(&ctx->mutex);
+
+	return ret;
+}
+
+static int perf_event_read_one(struct perf_event *event,
+				 u64 read_format, char __user *buf)
+{
+	u64 enabled, running;
+	u64 values[4];
+	int n = 0;
+
+	values[n++] = perf_event_read_value(event, &enabled, &running);
+	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
+		values[n++] = enabled;
+	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
+		values[n++] = running;
+	if (read_format & PERF_FORMAT_ID)
+		values[n++] = primary_event_id(event);
+
+	if (copy_to_user(buf, values, n * sizeof(u64)))
+		return -EFAULT;
+
+	return n * sizeof(u64);
+}
+
+/*
+ * Read the performance event - simple non blocking version for now
+ */
+static ssize_t
+perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
+{
+	u64 read_format = event->attr.read_format;
+	int ret;
+
+	/*
+	 * Return end-of-file for a read on a event that is in
+	 * error state (i.e. because it was pinned but it couldn't be
+	 * scheduled on to the CPU at some point).
+	 */
+	if (event->state == PERF_EVENT_STATE_ERROR)
+		return 0;
+
+	if (count < event->read_size)
+		return -ENOSPC;
+
+	WARN_ON_ONCE(event->ctx->parent_ctx);
+	if (read_format & PERF_FORMAT_GROUP)
+		ret = perf_event_read_group(event, read_format, buf);
+	else
+		ret = perf_event_read_one(event, read_format, buf);
+
+	return ret;
+}
+
+static ssize_t
+perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
+{
+	struct perf_event *event = file->private_data;
+
+	return perf_read_hw(event, buf, count);
+}
+
+static unsigned int perf_poll(struct file *file, poll_table *wait)
+{
+	struct perf_event *event = file->private_data;
+	struct ring_buffer *rb;
+	unsigned int events = POLL_HUP;
+
+	/*
+	 * Pin the event->rb by taking event->mmap_mutex; otherwise
+	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
+	 */
+	mutex_lock(&event->mmap_mutex);
+	rb = event->rb;
+	if (rb)
+		events = atomic_xchg(&rb->poll, 0);
+	mutex_unlock(&event->mmap_mutex);
+
+	poll_wait(file, &event->waitq, wait);
+
+	return events;
+}
+
+static void perf_event_reset(struct perf_event *event)
+{
+	(void)perf_event_read(event);
+	local64_set(&event->count, 0);
+	perf_event_update_userpage(event);
+}
+
+/*
+ * Holding the top-level event's child_mutex means that any
+ * descendant process that has inherited this event will block
+ * in sync_child_event if it goes to exit, thus satisfying the
+ * task existence requirements of perf_event_enable/disable.
+ */
+static void perf_event_for_each_child(struct perf_event *event,
+					void (*func)(struct perf_event *))
+{
+	struct perf_event *child;
+
+	WARN_ON_ONCE(event->ctx->parent_ctx);
+	mutex_lock(&event->child_mutex);
+	func(event);
+	list_for_each_entry(child, &event->child_list, child_list)
+		func(child);
+	mutex_unlock(&event->child_mutex);
+}
+
+static void perf_event_for_each(struct perf_event *event,
+				  void (*func)(struct perf_event *))
+{
+	struct perf_event_context *ctx = event->ctx;
+	struct perf_event *sibling;
+
+	WARN_ON_ONCE(ctx->parent_ctx);
+	mutex_lock(&ctx->mutex);
+	event = event->group_leader;
+
+	perf_event_for_each_child(event, func);
+	func(event);
+	list_for_each_entry(sibling, &event->sibling_list, group_entry)
+		perf_event_for_each_child(sibling, func);
+	mutex_unlock(&ctx->mutex);
+}
+
+static int perf_event_period(struct perf_event *event, u64 __user *arg)
+{
+	struct perf_event_context *ctx = event->ctx;
+	int ret = 0;
+	u64 value;
+
+	if (!is_sampling_event(event))
+		return -EINVAL;
+
+	if (copy_from_user(&value, arg, sizeof(value)))
+		return -EFAULT;
+
+	if (!value)
+		return -EINVAL;
+
+	raw_spin_lock_irq(&ctx->lock);
+	if (event->attr.freq) {
+		if (value > sysctl_perf_event_sample_rate) {
+			ret = -EINVAL;
+			goto unlock;
+		}
+
+		event->attr.sample_freq = value;
+	} else {
+		event->attr.sample_period = value;
+		event->hw.sample_period = value;
+	}
+unlock:
+	raw_spin_unlock_irq(&ctx->lock);
+
+	return ret;
+}
+
+static const struct file_operations perf_fops;
+
+static struct file *perf_fget_light(int fd, int *fput_needed)
+{
+	struct file *file;
+
+	file = fget_light(fd, fput_needed);
+	if (!file)
+		return ERR_PTR(-EBADF);
+
+	if (file->f_op != &perf_fops) {
+		fput_light(file, *fput_needed);
+		*fput_needed = 0;
+		return ERR_PTR(-EBADF);
+	}
+
+	return file;
+}
+
+static int perf_event_set_output(struct perf_event *event,
+				 struct perf_event *output_event);
+static int perf_event_set_filter(struct perf_event *event, void __user *arg);
+
+static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
+{
+	struct perf_event *event = file->private_data;
+	void (*func)(struct perf_event *);
+	u32 flags = arg;
+
+	switch (cmd) {
+	case PERF_EVENT_IOC_ENABLE:
+		func = perf_event_enable;
+		break;
+	case PERF_EVENT_IOC_DISABLE:
+		func = perf_event_disable;
+		break;
+	case PERF_EVENT_IOC_RESET:
+		func = perf_event_reset;
+		break;
+
+	case PERF_EVENT_IOC_REFRESH:
+		return perf_event_refresh(event, arg);
+
+	case PERF_EVENT_IOC_PERIOD:
+		return perf_event_period(event, (u64 __user *)arg);
+
+	case PERF_EVENT_IOC_SET_OUTPUT:
+	{
+		struct file *output_file = NULL;
+		struct perf_event *output_event = NULL;
+		int fput_needed = 0;
+		int ret;
+
+		if (arg != -1) {
+			output_file = perf_fget_light(arg, &fput_needed);
+			if (IS_ERR(output_file))
+				return PTR_ERR(output_file);
+			output_event = output_file->private_data;
+		}
+
+		ret = perf_event_set_output(event, output_event);
+		if (output_event)
+			fput_light(output_file, fput_needed);
+
+		return ret;
+	}
+
+	case PERF_EVENT_IOC_SET_FILTER:
+		return perf_event_set_filter(event, (void __user *)arg);
+
+	default:
+		return -ENOTTY;
+	}
+
+	if (flags & PERF_IOC_FLAG_GROUP)
+		perf_event_for_each(event, func);
+	else
+		perf_event_for_each_child(event, func);
+
+	return 0;
+}
+
+#ifdef CONFIG_COMPAT
+static long perf_compat_ioctl(struct file *file, unsigned int cmd,
+				unsigned long arg)
+{
+	switch (_IOC_NR(cmd)) {
+	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
+		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
+		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
+			cmd &= ~IOCSIZE_MASK;
+			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
+		}
+		break;
+	}
+	return perf_ioctl(file, cmd, arg);
+}
+#else
+# define perf_compat_ioctl NULL
+#endif
+
+int perf_event_task_enable(void)
+{
+	struct perf_event *event;
+
+	mutex_lock(&current->perf_event_mutex);
+	list_for_each_entry(event, &current->perf_event_list, owner_entry)
+		perf_event_for_each_child(event, perf_event_enable);
+	mutex_unlock(&current->perf_event_mutex);
+
+	return 0;
+}
+
+int perf_event_task_disable(void)
+{
+	struct perf_event *event;
+
+	mutex_lock(&current->perf_event_mutex);
+	list_for_each_entry(event, &current->perf_event_list, owner_entry)
+		perf_event_for_each_child(event, perf_event_disable);
+	mutex_unlock(&current->perf_event_mutex);
+
+	return 0;
+}
+
+static int perf_event_index(struct perf_event *event)
+{
+	if (event->hw.state & PERF_HES_STOPPED)
+		return 0;
+
+	if (event->state != PERF_EVENT_STATE_ACTIVE)
+		return 0;
+
+	return event->pmu->event_idx(event);
+}
+
+static void calc_timer_values(struct perf_event *event,
+				u64 *now,
+				u64 *enabled,
+				u64 *running)
+{
+	u64 ctx_time;
+
+	*now = perf_clock();
+	ctx_time = event->shadow_ctx_time + *now;
+	*enabled = ctx_time - event->tstamp_enabled;
+	*running = ctx_time - event->tstamp_running;
+}
+
+void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
+{
+}
+
+/*
+ * Callers need to ensure there can be no nesting of this function, otherwise
+ * the seqlock logic goes bad. We can not serialize this because the arch
+ * code calls this from NMI context.
+ */
+void perf_event_update_userpage(struct perf_event *event)
+{
+	struct perf_event_mmap_page *userpg;
+	struct ring_buffer *rb;
+	u64 enabled, running, now;
+
+	rcu_read_lock();
+	/*
+	 * compute total_time_enabled, total_time_running
+	 * based on snapshot values taken when the event
+	 * was last scheduled in.
+	 *
+	 * we cannot simply called update_context_time()
+	 * because of locking issue as we can be called in
+	 * NMI context
+	 */
+	calc_timer_values(event, &now, &enabled, &running);
+	rb = rcu_dereference(event->rb);
+	if (!rb)
+		goto unlock;
+
+	userpg = rb->user_page;
+
+	/*
+	 * Disable preemption so as to not let the corresponding user-space
+	 * spin too long if we get preempted.
+	 */
+	preempt_disable();
+	++userpg->lock;
+	barrier();
+	userpg->index = perf_event_index(event);
+	userpg->offset = perf_event_count(event);
+	if (userpg->index)
+		userpg->offset -= local64_read(&event->hw.prev_count);
+
+	userpg->time_enabled = enabled +
+			atomic64_read(&event->child_total_time_enabled);
+
+	userpg->time_running = running +
+			atomic64_read(&event->child_total_time_running);
+
+	arch_perf_update_userpage(userpg, now);
+
+	barrier();
+	++userpg->lock;
+	preempt_enable();
+unlock:
+	rcu_read_unlock();
+}
+
+static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+	struct perf_event *event = vma->vm_file->private_data;
+	struct ring_buffer *rb;
+	int ret = VM_FAULT_SIGBUS;
+
+	if (vmf->flags & FAULT_FLAG_MKWRITE) {
+		if (vmf->pgoff == 0)
+			ret = 0;
+		return ret;
+	}
+
+	rcu_read_lock();
+	rb = rcu_dereference(event->rb);
+	if (!rb)
+		goto unlock;
+
+	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
+		goto unlock;
+
+	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
+	if (!vmf->page)
+		goto unlock;
+
+	get_page(vmf->page);
+	vmf->page->mapping = vma->vm_file->f_mapping;
+	vmf->page->index   = vmf->pgoff;
+
+	ret = 0;
+unlock:
+	rcu_read_unlock();
+
+	return ret;
+}
+
+static void ring_buffer_attach(struct perf_event *event,
+			       struct ring_buffer *rb)
+{
+	unsigned long flags;
+
+	if (!list_empty(&event->rb_entry))
+		return;
+
+	spin_lock_irqsave(&rb->event_lock, flags);
+	if (list_empty(&event->rb_entry))
+		list_add(&event->rb_entry, &rb->event_list);
+	spin_unlock_irqrestore(&rb->event_lock, flags);
+}
+
+static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
+{
+	unsigned long flags;
+
+	if (list_empty(&event->rb_entry))
+		return;
+
+	spin_lock_irqsave(&rb->event_lock, flags);
+	list_del_init(&event->rb_entry);
+	wake_up_all(&event->waitq);
+	spin_unlock_irqrestore(&rb->event_lock, flags);
+}
+
+static void ring_buffer_wakeup(struct perf_event *event)
+{
+	struct ring_buffer *rb;
+
+	rcu_read_lock();
+	rb = rcu_dereference(event->rb);
+	if (rb) {
+		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
+			wake_up_all(&event->waitq);
+	}
+	rcu_read_unlock();
+}
+
+static void rb_free_rcu(struct rcu_head *rcu_head)
+{
+	struct ring_buffer *rb;
+
+	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
+	rb_free(rb);
+}
+
+static struct ring_buffer *ring_buffer_get(struct perf_event *event)
+{
+	struct ring_buffer *rb;
+
+	rcu_read_lock();
+	rb = rcu_dereference(event->rb);
+	if (rb) {
+		if (!atomic_inc_not_zero(&rb->refcount))
+			rb = NULL;
+	}
+	rcu_read_unlock();
+
+	return rb;
+}
+
+static void ring_buffer_put(struct ring_buffer *rb)
+{
+	if (!atomic_dec_and_test(&rb->refcount))
+		return;
+
+	WARN_ON_ONCE(!list_empty(&rb->event_list));
+
+	call_rcu(&rb->rcu_head, rb_free_rcu);
+}
+
+static void perf_mmap_open(struct vm_area_struct *vma)
+{
+	struct perf_event *event = vma->vm_file->private_data;
+
+	atomic_inc(&event->mmap_count);
+	atomic_inc(&event->rb->mmap_count);
+}
+
+/*
+ * A buffer can be mmap()ed multiple times; either directly through the same
+ * event, or through other events by use of perf_event_set_output().
+ *
+ * In order to undo the VM accounting done by perf_mmap() we need to destroy
+ * the buffer here, where we still have a VM context. This means we need
+ * to detach all events redirecting to us.
+ */
+static void perf_mmap_close(struct vm_area_struct *vma)
+{
+	struct perf_event *event = vma->vm_file->private_data;
+
+	struct ring_buffer *rb = event->rb;
+	struct user_struct *mmap_user = rb->mmap_user;
+	int mmap_locked = rb->mmap_locked;
+	unsigned long size = perf_data_size(rb);
+
+	atomic_dec(&rb->mmap_count);
+
+	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
+		return;
+
+	/* Detach current event from the buffer. */
+	rcu_assign_pointer(event->rb, NULL);
+	ring_buffer_detach(event, rb);
+	mutex_unlock(&event->mmap_mutex);
+
+	/* If there's still other mmap()s of this buffer, we're done. */
+	if (atomic_read(&rb->mmap_count)) {
+		ring_buffer_put(rb); /* can't be last */
+		return;
+	}
+
+	/*
+	 * No other mmap()s, detach from all other events that might redirect
+	 * into the now unreachable buffer. Somewhat complicated by the
+	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
+	 */
+again:
+	rcu_read_lock();
+	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
+		if (!atomic_long_inc_not_zero(&event->refcount)) {
+			/*
+			 * This event is en-route to free_event() which will
+			 * detach it and remove it from the list.
+			 */
+			continue;
+		}
+		rcu_read_unlock();
+
+		mutex_lock(&event->mmap_mutex);
+		/*
+		 * Check we didn't race with perf_event_set_output() which can
+		 * swizzle the rb from under us while we were waiting to
+		 * acquire mmap_mutex.
+		 *
+		 * If we find a different rb; ignore this event, a next
+		 * iteration will no longer find it on the list. We have to
+		 * still restart the iteration to make sure we're not now
+		 * iterating the wrong list.
+		 */
+		if (event->rb == rb) {
+			rcu_assign_pointer(event->rb, NULL);
+			ring_buffer_detach(event, rb);
+			ring_buffer_put(rb); /* can't be last, we still have one */
+		}
+		mutex_unlock(&event->mmap_mutex);
+		put_event(event);
+
+		/*
+		 * Restart the iteration; either we're on the wrong list or
+		 * destroyed its integrity by doing a deletion.
+		 */
+		goto again;
+	}
+	rcu_read_unlock();
+
+	/*
+	 * It could be there's still a few 0-ref events on the list; they'll
+	 * get cleaned up by free_event() -- they'll also still have their
+	 * ref on the rb and will free it whenever they are done with it.
+	 *
+	 * Aside from that, this buffer is 'fully' detached and unmapped,
+	 * undo the VM accounting.
+	 */
+
+	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
+	vma->vm_mm->pinned_vm -= mmap_locked;
+	free_uid(mmap_user);
+
+	ring_buffer_put(rb); /* could be last */
+}
+
+static const struct vm_operations_struct perf_mmap_vmops = {
+	.open		= perf_mmap_open,
+	.close		= perf_mmap_close,
+	.fault		= perf_mmap_fault,
+	.page_mkwrite	= perf_mmap_fault,
+};
+
+static int perf_mmap(struct file *file, struct vm_area_struct *vma)
+{
+	struct perf_event *event = file->private_data;
+	unsigned long user_locked, user_lock_limit;
+	struct user_struct *user = current_user();
+	unsigned long locked, lock_limit;
+	struct ring_buffer *rb;
+	unsigned long vma_size;
+	unsigned long nr_pages;
+	long user_extra, extra;
+	int ret = 0, flags = 0;
+
+	/*
+	 * Don't allow mmap() of inherited per-task counters. This would
+	 * create a performance issue due to all children writing to the
+	 * same rb.
+	 */
+	if (event->cpu == -1 && event->attr.inherit)
+		return -EINVAL;
+
+	if (!(vma->vm_flags & VM_SHARED))
+		return -EINVAL;
+
+	vma_size = vma->vm_end - vma->vm_start;
+	nr_pages = (vma_size / PAGE_SIZE) - 1;
+
+	/*
+	 * If we have rb pages ensure they're a power-of-two number, so we
+	 * can do bitmasks instead of modulo.
+	 */
+	if (nr_pages != 0 && !is_power_of_2(nr_pages))
+		return -EINVAL;
+
+	if (vma_size != PAGE_SIZE * (1 + nr_pages))
+		return -EINVAL;
+
+	if (vma->vm_pgoff != 0)
+		return -EINVAL;
+
+	WARN_ON_ONCE(event->ctx->parent_ctx);
+again:
+	mutex_lock(&event->mmap_mutex);
+	if (event->rb) {
+		if (event->rb->nr_pages != nr_pages) {
+			ret = -EINVAL;
+			goto unlock;
+		}
+
+		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
+			/*
+			 * Raced against perf_mmap_close() through
+			 * perf_event_set_output(). Try again, hope for better
+			 * luck.
+			 */
+			mutex_unlock(&event->mmap_mutex);
+			goto again;
+		}
+
+		goto unlock;
+	}
+
+	user_extra = nr_pages + 1;
+	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
+
+	/*
+	 * Increase the limit linearly with more CPUs:
+	 */
+	user_lock_limit *= num_online_cpus();
+
+	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
+
+	extra = 0;
+	if (user_locked > user_lock_limit)
+		extra = user_locked - user_lock_limit;
+
+	lock_limit = rlimit(RLIMIT_MEMLOCK);
+	lock_limit >>= PAGE_SHIFT;
+	locked = vma->vm_mm->pinned_vm + extra;
+
+	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
+		!capable(CAP_IPC_LOCK)) {
+		ret = -EPERM;
+		goto unlock;
+	}
+
+	WARN_ON(event->rb);
+
+	if (vma->vm_flags & VM_WRITE)
+		flags |= RING_BUFFER_WRITABLE;
+
+	rb = rb_alloc(nr_pages, 
+		event->attr.watermark ? event->attr.wakeup_watermark : 0,
+		event->cpu, flags);
+
+	if (!rb) {
+		ret = -ENOMEM;
+		goto unlock;
+	}
+
+	atomic_set(&rb->mmap_count, 1);
+	rb->mmap_locked = extra;
+	rb->mmap_user = get_current_user();
+
+	atomic_long_add(user_extra, &user->locked_vm);
+	vma->vm_mm->pinned_vm += extra;
+
+	ring_buffer_attach(event, rb);
+	rcu_assign_pointer(event->rb, rb);
+
+	perf_event_update_userpage(event);
+
+unlock:
+	if (!ret)
+		atomic_inc(&event->mmap_count);
+	mutex_unlock(&event->mmap_mutex);
+
+	/*
+	 * Since pinned accounting is per vm we cannot allow fork() to copy our
+	 * vma.
+	 */
+	vma->vm_flags |= VM_DONTCOPY | VM_RESERVED;
+	vma->vm_ops = &perf_mmap_vmops;
+
+	return ret;
+}
+
+static int perf_fasync(int fd, struct file *filp, int on)
+{
+	struct inode *inode = filp->f_path.dentry->d_inode;
+	struct perf_event *event = filp->private_data;
+	int retval;
+
+	mutex_lock(&inode->i_mutex);
+	retval = fasync_helper(fd, filp, on, &event->fasync);
+	mutex_unlock(&inode->i_mutex);
+
+	if (retval < 0)
+		return retval;
+
+	return 0;
+}
+
+static const struct file_operations perf_fops = {
+	.llseek			= no_llseek,
+	.release		= perf_release,
+	.read			= perf_read,
+	.poll			= perf_poll,
+	.unlocked_ioctl		= perf_ioctl,
+	.compat_ioctl		= perf_compat_ioctl,
+	.mmap			= perf_mmap,
+	.fasync			= perf_fasync,
+};
+
+/*
+ * Perf event wakeup
+ *
+ * If there's data, ensure we set the poll() state and publish everything
+ * to user-space before waking everybody up.
+ */
+
+void perf_event_wakeup(struct perf_event *event)
+{
+	ring_buffer_wakeup(event);
+
+	if (event->pending_kill) {
+		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
+		event->pending_kill = 0;
+	}
+}
+
+static void perf_pending_event(struct irq_work *entry)
+{
+	struct perf_event *event = container_of(entry,
+			struct perf_event, pending);
+	int rctx;
+
+	rctx = perf_swevent_get_recursion_context();
+	/*
+	 * If we 'fail' here, that's OK, it means recursion is already disabled
+	 * and we won't recurse 'further'.
+	 */
+
+	if (event->pending_disable) {
+		event->pending_disable = 0;
+		__perf_event_disable(event);
+	}
+
+	if (event->pending_wakeup) {
+		event->pending_wakeup = 0;
+		perf_event_wakeup(event);
+	}
+
+	if (rctx >= 0)
+		perf_swevent_put_recursion_context(rctx);
+}
+
+/*
+ * We assume there is only KVM supporting the callbacks.
+ * Later on, we might change it to a list if there is
+ * another virtualization implementation supporting the callbacks.
+ */
+struct perf_guest_info_callbacks *perf_guest_cbs;
+
+int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
+{
+	perf_guest_cbs = cbs;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
+
+int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
+{
+	perf_guest_cbs = NULL;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
+
+static void __perf_event_header__init_id(struct perf_event_header *header,
+					 struct perf_sample_data *data,
+					 struct perf_event *event)
+{
+	u64 sample_type = event->attr.sample_type;
+
+	data->type = sample_type;
+	header->size += event->id_header_size;
+
+	if (sample_type & PERF_SAMPLE_TID) {
+		/* namespace issues */
+		data->tid_entry.pid = perf_event_pid(event, current);
+		data->tid_entry.tid = perf_event_tid(event, current);
+	}
+
+	if (sample_type & PERF_SAMPLE_TIME)
+		data->time = perf_clock();
+
+	if (sample_type & PERF_SAMPLE_ID)
+		data->id = primary_event_id(event);
+
+	if (sample_type & PERF_SAMPLE_STREAM_ID)
+		data->stream_id = event->id;
+
+	if (sample_type & PERF_SAMPLE_CPU) {
+		data->cpu_entry.cpu	 = raw_smp_processor_id();
+		data->cpu_entry.reserved = 0;
+	}
+}
+
+void perf_event_header__init_id(struct perf_event_header *header,
+				struct perf_sample_data *data,
+				struct perf_event *event)
+{
+	if (event->attr.sample_id_all)
+		__perf_event_header__init_id(header, data, event);
+}
+
+static void __perf_event__output_id_sample(struct perf_output_handle *handle,
+					   struct perf_sample_data *data)
+{
+	u64 sample_type = data->type;
+
+	if (sample_type & PERF_SAMPLE_TID)
+		perf_output_put(handle, data->tid_entry);
+
+	if (sample_type & PERF_SAMPLE_TIME)
+		perf_output_put(handle, data->time);
+
+	if (sample_type & PERF_SAMPLE_ID)
+		perf_output_put(handle, data->id);
+
+	if (sample_type & PERF_SAMPLE_STREAM_ID)
+		perf_output_put(handle, data->stream_id);
+
+	if (sample_type & PERF_SAMPLE_CPU)
+		perf_output_put(handle, data->cpu_entry);
+}
+
+void perf_event__output_id_sample(struct perf_event *event,
+				  struct perf_output_handle *handle,
+				  struct perf_sample_data *sample)
+{
+	if (event->attr.sample_id_all)
+		__perf_event__output_id_sample(handle, sample);
+}
+
+static void perf_output_read_one(struct perf_output_handle *handle,
+				 struct perf_event *event,
+				 u64 enabled, u64 running)
+{
+	u64 read_format = event->attr.read_format;
+	u64 values[4];
+	int n = 0;
+
+	values[n++] = perf_event_count(event);
+	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
+		values[n++] = enabled +
+			atomic64_read(&event->child_total_time_enabled);
+	}
+	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
+		values[n++] = running +
+			atomic64_read(&event->child_total_time_running);
+	}
+	if (read_format & PERF_FORMAT_ID)
+		values[n++] = primary_event_id(event);
+
+	__output_copy(handle, values, n * sizeof(u64));
+}
+
+/*
+ * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
+ */
+static void perf_output_read_group(struct perf_output_handle *handle,
+			    struct perf_event *event,
+			    u64 enabled, u64 running)
+{
+	struct perf_event *leader = event->group_leader, *sub;
+	u64 read_format = event->attr.read_format;
+	u64 values[5];
+	int n = 0;
+
+	values[n++] = 1 + leader->nr_siblings;
+
+	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
+		values[n++] = enabled;
+
+	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
+		values[n++] = running;
+
+	if (leader != event)
+		leader->pmu->read(leader);
+
+	values[n++] = perf_event_count(leader);
+	if (read_format & PERF_FORMAT_ID)
+		values[n++] = primary_event_id(leader);
+
+	__output_copy(handle, values, n * sizeof(u64));
+
+	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
+		n = 0;
+
+		if (sub != event)
+			sub->pmu->read(sub);
+
+		values[n++] = perf_event_count(sub);
+		if (read_format & PERF_FORMAT_ID)
+			values[n++] = primary_event_id(sub);
+
+		__output_copy(handle, values, n * sizeof(u64));
+	}
+}
+
+#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
+				 PERF_FORMAT_TOTAL_TIME_RUNNING)
+
+static void perf_output_read(struct perf_output_handle *handle,
+			     struct perf_event *event)
+{
+	u64 enabled = 0, running = 0, now;
+	u64 read_format = event->attr.read_format;
+
+	/*
+	 * compute total_time_enabled, total_time_running
+	 * based on snapshot values taken when the event
+	 * was last scheduled in.
+	 *
+	 * we cannot simply called update_context_time()
+	 * because of locking issue as we are called in
+	 * NMI context
+	 */
+	if (read_format & PERF_FORMAT_TOTAL_TIMES)
+		calc_timer_values(event, &now, &enabled, &running);
+
+	if (event->attr.read_format & PERF_FORMAT_GROUP)
+		perf_output_read_group(handle, event, enabled, running);
+	else
+		perf_output_read_one(handle, event, enabled, running);
+}
+
+void perf_output_sample(struct perf_output_handle *handle,
+			struct perf_event_header *header,
+			struct perf_sample_data *data,
+			struct perf_event *event)
+{
+	u64 sample_type = data->type;
+
+	perf_output_put(handle, *header);
+
+	if (sample_type & PERF_SAMPLE_IP)
+		perf_output_put(handle, data->ip);
+
+	if (sample_type & PERF_SAMPLE_TID)
+		perf_output_put(handle, data->tid_entry);
+
+	if (sample_type & PERF_SAMPLE_TIME)
+		perf_output_put(handle, data->time);
+
+	if (sample_type & PERF_SAMPLE_ADDR)
+		perf_output_put(handle, data->addr);
+
+	if (sample_type & PERF_SAMPLE_ID)
+		perf_output_put(handle, data->id);
+
+	if (sample_type & PERF_SAMPLE_STREAM_ID)
+		perf_output_put(handle, data->stream_id);
+
+	if (sample_type & PERF_SAMPLE_CPU)
+		perf_output_put(handle, data->cpu_entry);
+
+	if (sample_type & PERF_SAMPLE_PERIOD)
+		perf_output_put(handle, data->period);
+
+	if (sample_type & PERF_SAMPLE_READ)
+		perf_output_read(handle, event);
+
+	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
+		if (data->callchain) {
+			int size = 1;
+
+			if (data->callchain)
+				size += data->callchain->nr;
+
+			size *= sizeof(u64);
+
+			__output_copy(handle, data->callchain, size);
+		} else {
+			u64 nr = 0;
+			perf_output_put(handle, nr);
+		}
+	}
+
+	if (sample_type & PERF_SAMPLE_RAW) {
+		if (data->raw) {
+			perf_output_put(handle, data->raw->size);
+			__output_copy(handle, data->raw->data,
+					   data->raw->size);
+		} else {
+			struct {
+				u32	size;
+				u32	data;
+			} raw = {
+				.size = sizeof(u32),
+				.data = 0,
+			};
+			perf_output_put(handle, raw);
+		}
+	}
+
+	if (!event->attr.watermark) {
+		int wakeup_events = event->attr.wakeup_events;
+
+		if (wakeup_events) {
+			struct ring_buffer *rb = handle->rb;
+			int events = local_inc_return(&rb->events);
+
+			if (events >= wakeup_events) {
+				local_sub(wakeup_events, &rb->events);
+				local_inc(&rb->wakeup);
+			}
+		}
+	}
+
+	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
+		if (data->br_stack) {
+			size_t size;
+
+			size = data->br_stack->nr
+			     * sizeof(struct perf_branch_entry);
+
+			perf_output_put(handle, data->br_stack->nr);
+			perf_output_copy(handle, data->br_stack->entries, size);
+		} else {
+			/*
+			 * we always store at least the value of nr
+			 */
+			u64 nr = 0;
+			perf_output_put(handle, nr);
+		}
+	}
+}
+
+void perf_prepare_sample(struct perf_event_header *header,
+			 struct perf_sample_data *data,
+			 struct perf_event *event,
+			 struct pt_regs *regs)
+{
+	u64 sample_type = event->attr.sample_type;
+
+	header->type = PERF_RECORD_SAMPLE;
+	header->size = sizeof(*header) + event->header_size;
+
+	header->misc = 0;
+	header->misc |= perf_misc_flags(regs);
+
+	__perf_event_header__init_id(header, data, event);
+
+	if (sample_type & PERF_SAMPLE_IP)
+		data->ip = perf_instruction_pointer(regs);
+
+	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
+		int size = 1;
+
+		data->callchain = perf_callchain(regs);
+
+		if (data->callchain)
+			size += data->callchain->nr;
+
+		header->size += size * sizeof(u64);
+	}
+
+	if (sample_type & PERF_SAMPLE_RAW) {
+		int size = sizeof(u32);
+
+		if (data->raw)
+			size += data->raw->size;
+		else
+			size += sizeof(u32);
+
+		WARN_ON_ONCE(size & (sizeof(u64)-1));
+		header->size += size;
+	}
+
+	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
+		int size = sizeof(u64); /* nr */
+		if (data->br_stack) {
+			size += data->br_stack->nr
+			      * sizeof(struct perf_branch_entry);
+		}
+		header->size += size;
+	}
+}
+
+static void perf_event_output(struct perf_event *event,
+				struct perf_sample_data *data,
+				struct pt_regs *regs)
+{
+	struct perf_output_handle handle;
+	struct perf_event_header header;
+
+	/* protect the callchain buffers */
+	rcu_read_lock();
+
+	perf_prepare_sample(&header, data, event, regs);
+
+	if (perf_output_begin(&handle, event, header.size))
+		goto exit;
+
+	perf_output_sample(&handle, &header, data, event);
+
+	perf_output_end(&handle);
+
+exit:
+	rcu_read_unlock();
+}
+
+/*
+ * read event_id
+ */
+
+struct perf_read_event {
+	struct perf_event_header	header;
+
+	u32				pid;
+	u32				tid;
+};
+
+static void
+perf_event_read_event(struct perf_event *event,
+			struct task_struct *task)
+{
+	struct perf_output_handle handle;
+	struct perf_sample_data sample;
+	struct perf_read_event read_event = {
+		.header = {
+			.type = PERF_RECORD_READ,
+			.misc = 0,
+			.size = sizeof(read_event) + event->read_size,
+		},
+		.pid = perf_event_pid(event, task),
+		.tid = perf_event_tid(event, task),
+	};
+	int ret;
+
+	perf_event_header__init_id(&read_event.header, &sample, event);
+	ret = perf_output_begin(&handle, event, read_event.header.size);
+	if (ret)
+		return;
+
+	perf_output_put(&handle, read_event);
+	perf_output_read(&handle, event);
+	perf_event__output_id_sample(event, &handle, &sample);
+
+	perf_output_end(&handle);
+}
+
+/*
+ * task tracking -- fork/exit
+ *
+ * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
+ */
+
+struct perf_task_event {
+	struct task_struct		*task;
+	struct perf_event_context	*task_ctx;
+
+	struct {
+		struct perf_event_header	header;
+
+		u32				pid;
+		u32				ppid;
+		u32				tid;
+		u32				ptid;
+		u64				time;
+	} event_id;
+};
+
+static void perf_event_task_output(struct perf_event *event,
+				     struct perf_task_event *task_event)
+{
+	struct perf_output_handle handle;
+	struct perf_sample_data	sample;
+	struct task_struct *task = task_event->task;
+	int ret, size = task_event->event_id.header.size;
+
+	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
+
+	ret = perf_output_begin(&handle, event,
+				task_event->event_id.header.size);
+	if (ret)
+		goto out;
+
+	task_event->event_id.pid = perf_event_pid(event, task);
+	task_event->event_id.ppid = perf_event_pid(event, current);
+
+	task_event->event_id.tid = perf_event_tid(event, task);
+	task_event->event_id.ptid = perf_event_tid(event, current);
+
+	perf_output_put(&handle, task_event->event_id);
+
+	perf_event__output_id_sample(event, &handle, &sample);
+
+	perf_output_end(&handle);
+out:
+	task_event->event_id.header.size = size;
+}
+
+static int perf_event_task_match(struct perf_event *event)
+{
+	if (event->state < PERF_EVENT_STATE_INACTIVE)
+		return 0;
+
+	if (!event_filter_match(event))
+		return 0;
+
+	if (event->attr.comm || event->attr.mmap ||
+	    event->attr.mmap_data || event->attr.task)
+		return 1;
+
+	return 0;
+}
+
+static void perf_event_task_ctx(struct perf_event_context *ctx,
+				  struct perf_task_event *task_event)
+{
+	struct perf_event *event;
+
+	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
+		if (perf_event_task_match(event))
+			perf_event_task_output(event, task_event);
+	}
+}
+
+static void perf_event_task_event(struct perf_task_event *task_event)
+{
+	struct perf_cpu_context *cpuctx;
+	struct perf_event_context *ctx;
+	struct pmu *pmu;
+	int ctxn;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
+		if (cpuctx->unique_pmu != pmu)
+			goto next;
+		perf_event_task_ctx(&cpuctx->ctx, task_event);
+
+		ctx = task_event->task_ctx;
+		if (!ctx) {
+			ctxn = pmu->task_ctx_nr;
+			if (ctxn < 0)
+				goto next;
+			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
+		}
+		if (ctx)
+			perf_event_task_ctx(ctx, task_event);
+next:
+		put_cpu_ptr(pmu->pmu_cpu_context);
+	}
+	rcu_read_unlock();
+}
+
+static void perf_event_task(struct task_struct *task,
+			      struct perf_event_context *task_ctx,
+			      int new)
+{
+	struct perf_task_event task_event;
+
+	if (!atomic_read(&nr_comm_events) &&
+	    !atomic_read(&nr_mmap_events) &&
+	    !atomic_read(&nr_task_events))
+		return;
+
+	task_event = (struct perf_task_event){
+		.task	  = task,
+		.task_ctx = task_ctx,
+		.event_id    = {
+			.header = {
+				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
+				.misc = 0,
+				.size = sizeof(task_event.event_id),
+			},
+			/* .pid  */
+			/* .ppid */
+			/* .tid  */
+			/* .ptid */
+			.time = perf_clock(),
+		},
+	};
+
+	perf_event_task_event(&task_event);
+}
+
+void perf_event_fork(struct task_struct *task)
+{
+	perf_event_task(task, NULL, 1);
+}
+
+/*
+ * comm tracking
+ */
+
+struct perf_comm_event {
+	struct task_struct	*task;
+	char			*comm;
+	int			comm_size;
+
+	struct {
+		struct perf_event_header	header;
+
+		u32				pid;
+		u32				tid;
+	} event_id;
+};
+
+static void perf_event_comm_output(struct perf_event *event,
+				     struct perf_comm_event *comm_event)
+{
+	struct perf_output_handle handle;
+	struct perf_sample_data sample;
+	int size = comm_event->event_id.header.size;
+	int ret;
+
+	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
+	ret = perf_output_begin(&handle, event,
+				comm_event->event_id.header.size);
+
+	if (ret)
+		goto out;
+
+	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
+	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
+
+	perf_output_put(&handle, comm_event->event_id);
+	__output_copy(&handle, comm_event->comm,
+				   comm_event->comm_size);
+
+	perf_event__output_id_sample(event, &handle, &sample);
+
+	perf_output_end(&handle);
+out:
+	comm_event->event_id.header.size = size;
+}
+
+static int perf_event_comm_match(struct perf_event *event)
+{
+	if (event->state < PERF_EVENT_STATE_INACTIVE)
+		return 0;
+
+	if (!event_filter_match(event))
+		return 0;
+
+	if (event->attr.comm)
+		return 1;
+
+	return 0;
+}
+
+static void perf_event_comm_ctx(struct perf_event_context *ctx,
+				  struct perf_comm_event *comm_event)
+{
+	struct perf_event *event;
+
+	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
+		if (perf_event_comm_match(event))
+			perf_event_comm_output(event, comm_event);
+	}
+}
+
+static void perf_event_comm_event(struct perf_comm_event *comm_event)
+{
+	struct perf_cpu_context *cpuctx;
+	struct perf_event_context *ctx;
+	char comm[TASK_COMM_LEN];
+	unsigned int size;
+	struct pmu *pmu;
+	int ctxn;
+
+	memset(comm, 0, sizeof(comm));
+	strlcpy(comm, comm_event->task->comm, sizeof(comm));
+	size = ALIGN(strlen(comm)+1, sizeof(u64));
+
+	comm_event->comm = comm;
+	comm_event->comm_size = size;
+
+	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
+	rcu_read_lock();
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
+		if (cpuctx->unique_pmu != pmu)
+			goto next;
+		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
+
+		ctxn = pmu->task_ctx_nr;
+		if (ctxn < 0)
+			goto next;
+
+		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
+		if (ctx)
+			perf_event_comm_ctx(ctx, comm_event);
+next:
+		put_cpu_ptr(pmu->pmu_cpu_context);
+	}
+	rcu_read_unlock();
+}
+
+void perf_event_comm(struct task_struct *task)
+{
+	struct perf_comm_event comm_event;
+	struct perf_event_context *ctx;
+	int ctxn;
+
+	for_each_task_context_nr(ctxn) {
+		ctx = task->perf_event_ctxp[ctxn];
+		if (!ctx)
+			continue;
+
+		perf_event_enable_on_exec(ctx);
+	}
+
+	if (!atomic_read(&nr_comm_events))
+		return;
+
+	comm_event = (struct perf_comm_event){
+		.task	= task,
+		/* .comm      */
+		/* .comm_size */
+		.event_id  = {
+			.header = {
+				.type = PERF_RECORD_COMM,
+				.misc = 0,
+				/* .size */
+			},
+			/* .pid */
+			/* .tid */
+		},
+	};
+
+	perf_event_comm_event(&comm_event);
+}
+
+/*
+ * mmap tracking
+ */
+
+struct perf_mmap_event {
+	struct vm_area_struct	*vma;
+
+	const char		*file_name;
+	int			file_size;
+
+	struct {
+		struct perf_event_header	header;
+
+		u32				pid;
+		u32				tid;
+		u64				start;
+		u64				len;
+		u64				pgoff;
+	} event_id;
+};
+
+static void perf_event_mmap_output(struct perf_event *event,
+				     struct perf_mmap_event *mmap_event)
+{
+	struct perf_output_handle handle;
+	struct perf_sample_data sample;
+	int size = mmap_event->event_id.header.size;
+	int ret;
+
+	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
+	ret = perf_output_begin(&handle, event,
+				mmap_event->event_id.header.size);
+	if (ret)
+		goto out;
+
+	mmap_event->event_id.pid = perf_event_pid(event, current);
+	mmap_event->event_id.tid = perf_event_tid(event, current);
+
+	perf_output_put(&handle, mmap_event->event_id);
+	__output_copy(&handle, mmap_event->file_name,
+				   mmap_event->file_size);
+
+	perf_event__output_id_sample(event, &handle, &sample);
+
+	perf_output_end(&handle);
+out:
+	mmap_event->event_id.header.size = size;
+}
+
+static int perf_event_mmap_match(struct perf_event *event,
+				   struct perf_mmap_event *mmap_event,
+				   int executable)
+{
+	if (event->state < PERF_EVENT_STATE_INACTIVE)
+		return 0;
+
+	if (!event_filter_match(event))
+		return 0;
+
+	if ((!executable && event->attr.mmap_data) ||
+	    (executable && event->attr.mmap))
+		return 1;
+
+	return 0;
+}
+
+static void perf_event_mmap_ctx(struct perf_event_context *ctx,
+				  struct perf_mmap_event *mmap_event,
+				  int executable)
+{
+	struct perf_event *event;
+
+	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
+		if (perf_event_mmap_match(event, mmap_event, executable))
+			perf_event_mmap_output(event, mmap_event);
+	}
+}
+
+static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
+{
+	struct perf_cpu_context *cpuctx;
+	struct perf_event_context *ctx;
+	struct vm_area_struct *vma = mmap_event->vma;
+	struct file *file = vma->vm_file;
+	unsigned int size;
+	char tmp[16];
+	char *buf = NULL;
+	const char *name;
+	struct pmu *pmu;
+	int ctxn;
+
+	memset(tmp, 0, sizeof(tmp));
+
+	if (file) {
+		/*
+		 * d_path works from the end of the rb backwards, so we
+		 * need to add enough zero bytes after the string to handle
+		 * the 64bit alignment we do later.
+		 */
+		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
+		if (!buf) {
+			name = strncpy(tmp, "//enomem", sizeof(tmp));
+			goto got_name;
+		}
+		name = d_path(&file->f_path, buf, PATH_MAX);
+		if (IS_ERR(name)) {
+			name = strncpy(tmp, "//toolong", sizeof(tmp));
+			goto got_name;
+		}
+	} else {
+		if (arch_vma_name(mmap_event->vma)) {
+			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
+				       sizeof(tmp));
+			goto got_name;
+		}
+
+		if (!vma->vm_mm) {
+			name = strncpy(tmp, "[vdso]", sizeof(tmp));
+			goto got_name;
+		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
+				vma->vm_end >= vma->vm_mm->brk) {
+			name = strncpy(tmp, "[heap]", sizeof(tmp));
+			goto got_name;
+		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
+				vma->vm_end >= vma->vm_mm->start_stack) {
+			name = strncpy(tmp, "[stack]", sizeof(tmp));
+			goto got_name;
+		}
+
+		name = strncpy(tmp, "//anon", sizeof(tmp));
+		goto got_name;
+	}
+
+got_name:
+	size = ALIGN(strlen(name)+1, sizeof(u64));
+
+	mmap_event->file_name = name;
+	mmap_event->file_size = size;
+
+	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
+		if (cpuctx->unique_pmu != pmu)
+			goto next;
+		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
+					vma->vm_flags & VM_EXEC);
+
+		ctxn = pmu->task_ctx_nr;
+		if (ctxn < 0)
+			goto next;
+
+		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
+		if (ctx) {
+			perf_event_mmap_ctx(ctx, mmap_event,
+					vma->vm_flags & VM_EXEC);
+		}
+next:
+		put_cpu_ptr(pmu->pmu_cpu_context);
+	}
+	rcu_read_unlock();
+
+	kfree(buf);
+}
+
+void perf_event_mmap(struct vm_area_struct *vma)
+{
+	struct perf_mmap_event mmap_event;
+
+	if (!atomic_read(&nr_mmap_events))
+		return;
+
+	mmap_event = (struct perf_mmap_event){
+		.vma	= vma,
+		/* .file_name */
+		/* .file_size */
+		.event_id  = {
+			.header = {
+				.type = PERF_RECORD_MMAP,
+				.misc = PERF_RECORD_MISC_USER,
+				/* .size */
+			},
+			/* .pid */
+			/* .tid */
+			.start  = vma->vm_start,
+			.len    = vma->vm_end - vma->vm_start,
+			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
+		},
+	};
+
+	perf_event_mmap_event(&mmap_event);
+}
+
+/*
+ * IRQ throttle logging
+ */
+
+static void perf_log_throttle(struct perf_event *event, int enable)
+{
+	struct perf_output_handle handle;
+	struct perf_sample_data sample;
+	int ret;
+
+	struct {
+		struct perf_event_header	header;
+		u64				time;
+		u64				id;
+		u64				stream_id;
+	} throttle_event = {
+		.header = {
+			.type = PERF_RECORD_THROTTLE,
+			.misc = 0,
+			.size = sizeof(throttle_event),
+		},
+		.time		= perf_clock(),
+		.id		= primary_event_id(event),
+		.stream_id	= event->id,
+	};
+
+	if (enable)
+		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
+
+	perf_event_header__init_id(&throttle_event.header, &sample, event);
+
+	ret = perf_output_begin(&handle, event,
+				throttle_event.header.size);
+	if (ret)
+		return;
+
+	perf_output_put(&handle, throttle_event);
+	perf_event__output_id_sample(event, &handle, &sample);
+	perf_output_end(&handle);
+}
+
+/*
+ * Generic event overflow handling, sampling.
+ */
+
+static int __perf_event_overflow(struct perf_event *event,
+				   int throttle, struct perf_sample_data *data,
+				   struct pt_regs *regs)
+{
+	int events = atomic_read(&event->event_limit);
+	struct hw_perf_event *hwc = &event->hw;
+	u64 seq;
+	int ret = 0;
+
+	/*
+	 * Non-sampling counters might still use the PMI to fold short
+	 * hardware counters, ignore those.
+	 */
+	if (unlikely(!is_sampling_event(event)))
+		return 0;
+
+	seq = __this_cpu_read(perf_throttled_seq);
+	if (seq != hwc->interrupts_seq) {
+		hwc->interrupts_seq = seq;
+		hwc->interrupts = 1;
+	} else {
+		hwc->interrupts++;
+		if (unlikely(throttle
+			     && hwc->interrupts >= max_samples_per_tick)) {
+			__this_cpu_inc(perf_throttled_count);
+			hwc->interrupts = MAX_INTERRUPTS;
+			perf_log_throttle(event, 0);
+			ret = 1;
+		}
+	}
+
+	if (event->attr.freq) {
+		u64 now = perf_clock();
+		s64 delta = now - hwc->freq_time_stamp;
+
+		hwc->freq_time_stamp = now;
+
+		if (delta > 0 && delta < 2*TICK_NSEC)
+			perf_adjust_period(event, delta, hwc->last_period, true);
+	}
+
+	/*
+	 * XXX event_limit might not quite work as expected on inherited
+	 * events
+	 */
+
+	event->pending_kill = POLL_IN;
+	if (events && atomic_dec_and_test(&event->event_limit)) {
+		ret = 1;
+		event->pending_kill = POLL_HUP;
+		event->pending_disable = 1;
+		irq_work_queue(&event->pending);
+	}
+
+	if (event->overflow_handler)
+		event->overflow_handler(event, data, regs);
+	else
+		perf_event_output(event, data, regs);
+
+	if (event->fasync && event->pending_kill) {
+		event->pending_wakeup = 1;
+		irq_work_queue(&event->pending);
+	}
+
+	return ret;
+}
+
+int perf_event_overflow(struct perf_event *event,
+			  struct perf_sample_data *data,
+			  struct pt_regs *regs)
+{
+	return __perf_event_overflow(event, 1, data, regs);
+}
+
+/*
+ * Generic software event infrastructure
+ */
+
+struct swevent_htable {
+	struct swevent_hlist		*swevent_hlist;
+	struct mutex			hlist_mutex;
+	int				hlist_refcount;
+
+	/* Recursion avoidance in each contexts */
+	int				recursion[PERF_NR_CONTEXTS];
+
+	/* Keeps track of cpu being initialized/exited */
+	bool				online;
+};
+
+static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
+
+/*
+ * We directly increment event->count and keep a second value in
+ * event->hw.period_left to count intervals. This period event
+ * is kept in the range [-sample_period, 0] so that we can use the
+ * sign as trigger.
+ */
+
+static u64 perf_swevent_set_period(struct perf_event *event)
+{
+	struct hw_perf_event *hwc = &event->hw;
+	u64 period = hwc->last_period;
+	u64 nr, offset;
+	s64 old, val;
+
+	hwc->last_period = hwc->sample_period;
+
+again:
+	old = val = local64_read(&hwc->period_left);
+	if (val < 0)
+		return 0;
+
+	nr = div64_u64(period + val, period);
+	offset = nr * period;
+	val -= offset;
+	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
+		goto again;
+
+	return nr;
+}
+
+static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
+				    struct perf_sample_data *data,
+				    struct pt_regs *regs)
+{
+	struct hw_perf_event *hwc = &event->hw;
+	int throttle = 0;
+
+	if (!overflow)
+		overflow = perf_swevent_set_period(event);
+
+	if (hwc->interrupts == MAX_INTERRUPTS)
+		return;
+
+	for (; overflow; overflow--) {
+		if (__perf_event_overflow(event, throttle,
+					    data, regs)) {
+			/*
+			 * We inhibit the overflow from happening when
+			 * hwc->interrupts == MAX_INTERRUPTS.
+			 */
+			break;
+		}
+		throttle = 1;
+	}
+}
+
+static void perf_swevent_event(struct perf_event *event, u64 nr,
+			       struct perf_sample_data *data,
+			       struct pt_regs *regs)
+{
+	struct hw_perf_event *hwc = &event->hw;
+
+	local64_add(nr, &event->count);
+
+	if (!regs)
+		return;
+
+	if (!is_sampling_event(event))
+		return;
+
+	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
+		data->period = nr;
+		return perf_swevent_overflow(event, 1, data, regs);
+	} else
+		data->period = event->hw.last_period;
+
+	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
+		return perf_swevent_overflow(event, 1, data, regs);
+
+	if (local64_add_negative(nr, &hwc->period_left))
+		return;
+
+	perf_swevent_overflow(event, 0, data, regs);
+}
+
+static int perf_exclude_event(struct perf_event *event,
+			      struct pt_regs *regs)
+{
+	if (event->hw.state & PERF_HES_STOPPED)
+		return 1;
+
+	if (regs) {
+		if (event->attr.exclude_user && user_mode(regs))
+			return 1;
+
+		if (event->attr.exclude_kernel && !user_mode(regs))
+			return 1;
+	}
+
+	return 0;
+}
+
+static int perf_swevent_match(struct perf_event *event,
+				enum perf_type_id type,
+				u32 event_id,
+				struct perf_sample_data *data,
+				struct pt_regs *regs)
+{
+	if (event->attr.type != type)
+		return 0;
+
+	if (event->attr.config != event_id)
+		return 0;
+
+	if (perf_exclude_event(event, regs))
+		return 0;
+
+	return 1;
+}
+
+static inline u64 swevent_hash(u64 type, u32 event_id)
+{
+	u64 val = event_id | (type << 32);
+
+	return hash_64(val, SWEVENT_HLIST_BITS);
+}
+
+static inline struct hlist_head *
+__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
+{
+	u64 hash = swevent_hash(type, event_id);
+
+	return &hlist->heads[hash];
+}
+
+/* For the read side: events when they trigger */
+static inline struct hlist_head *
+find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
+{
+	struct swevent_hlist *hlist;
+
+	hlist = rcu_dereference(swhash->swevent_hlist);
+	if (!hlist)
+		return NULL;
+
+	return __find_swevent_head(hlist, type, event_id);
+}
+
+/* For the event head insertion and removal in the hlist */
+static inline struct hlist_head *
+find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
+{
+	struct swevent_hlist *hlist;
+	u32 event_id = event->attr.config;
+	u64 type = event->attr.type;
+
+	/*
+	 * Event scheduling is always serialized against hlist allocation
+	 * and release. Which makes the protected version suitable here.
+	 * The context lock guarantees that.
+	 */
+	hlist = rcu_dereference_protected(swhash->swevent_hlist,
+					  lockdep_is_held(&event->ctx->lock));
+	if (!hlist)
+		return NULL;
+
+	return __find_swevent_head(hlist, type, event_id);
+}
+
+static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
+				    u64 nr,
+				    struct perf_sample_data *data,
+				    struct pt_regs *regs)
+{
+	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
+	struct perf_event *event;
+	struct hlist_node *node;
+	struct hlist_head *head;
+
+	rcu_read_lock();
+	head = find_swevent_head_rcu(swhash, type, event_id);
+	if (!head)
+		goto end;
+
+	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
+		if (perf_swevent_match(event, type, event_id, data, regs))
+			perf_swevent_event(event, nr, data, regs);
+	}
+end:
+	rcu_read_unlock();
+}
+
+int perf_swevent_get_recursion_context(void)
+{
+	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
+
+	return get_recursion_context(swhash->recursion);
+}
+EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
+
+inline void perf_swevent_put_recursion_context(int rctx)
+{
+	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
+
+	put_recursion_context(swhash->recursion, rctx);
+}
+
+void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
+{
+	struct perf_sample_data data;
+	int rctx;
+
+	preempt_disable_notrace();
+	rctx = perf_swevent_get_recursion_context();
+	if (rctx < 0)
+		return;
+
+	perf_sample_data_init(&data, addr);
+
+	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
+
+	perf_swevent_put_recursion_context(rctx);
+	preempt_enable_notrace();
+}
+
+static void perf_swevent_read(struct perf_event *event)
+{
+}
+
+static int perf_swevent_add(struct perf_event *event, int flags)
+{
+	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
+	struct hw_perf_event *hwc = &event->hw;
+	struct hlist_head *head;
+
+	if (is_sampling_event(event)) {
+		hwc->last_period = hwc->sample_period;
+		perf_swevent_set_period(event);
+	}
+
+	hwc->state = !(flags & PERF_EF_START);
+
+	head = find_swevent_head(swhash, event);
+	if (!head) {
+		/*
+		 * We can race with cpu hotplug code. Do not
+		 * WARN if the cpu just got unplugged.
+		 */
+		WARN_ON_ONCE(swhash->online);
+		return -EINVAL;
+	}
+
+	hlist_add_head_rcu(&event->hlist_entry, head);
+
+	return 0;
+}
+
+static void perf_swevent_del(struct perf_event *event, int flags)
+{
+	hlist_del_rcu(&event->hlist_entry);
+}
+
+static void perf_swevent_start(struct perf_event *event, int flags)
+{
+	event->hw.state = 0;
+}
+
+static void perf_swevent_stop(struct perf_event *event, int flags)
+{
+	event->hw.state = PERF_HES_STOPPED;
+}
+
+/* Deref the hlist from the update side */
+static inline struct swevent_hlist *
+swevent_hlist_deref(struct swevent_htable *swhash)
+{
+	return rcu_dereference_protected(swhash->swevent_hlist,
+					 lockdep_is_held(&swhash->hlist_mutex));
+}
+
+static void swevent_hlist_release(struct swevent_htable *swhash)
+{
+	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
+
+	if (!hlist)
+		return;
+
+	rcu_assign_pointer(swhash->swevent_hlist, NULL);
+	kfree_rcu(hlist, rcu_head);
+}
+
+static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
+{
+	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
+
+	mutex_lock(&swhash->hlist_mutex);
+
+	if (!--swhash->hlist_refcount)
+		swevent_hlist_release(swhash);
+
+	mutex_unlock(&swhash->hlist_mutex);
+}
+
+static void swevent_hlist_put(struct perf_event *event)
+{
+	int cpu;
+
+	if (event->cpu != -1) {
+		swevent_hlist_put_cpu(event, event->cpu);
+		return;
+	}
+
+	for_each_possible_cpu(cpu)
+		swevent_hlist_put_cpu(event, cpu);
+}
+
+static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
+{
+	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
+	int err = 0;
+
+	mutex_lock(&swhash->hlist_mutex);
+
+	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
+		struct swevent_hlist *hlist;
+
+		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
+		if (!hlist) {
+			err = -ENOMEM;
+			goto exit;
+		}
+		rcu_assign_pointer(swhash->swevent_hlist, hlist);
+	}
+	swhash->hlist_refcount++;
+exit:
+	mutex_unlock(&swhash->hlist_mutex);
+
+	return err;
+}
+
+static int swevent_hlist_get(struct perf_event *event)
+{
+	int err;
+	int cpu, failed_cpu;
+
+	if (event->cpu != -1)
+		return swevent_hlist_get_cpu(event, event->cpu);
+
+	get_online_cpus();
+	for_each_possible_cpu(cpu) {
+		err = swevent_hlist_get_cpu(event, cpu);
+		if (err) {
+			failed_cpu = cpu;
+			goto fail;
+		}
+	}
+	put_online_cpus();
+
+	return 0;
+fail:
+	for_each_possible_cpu(cpu) {
+		if (cpu == failed_cpu)
+			break;
+		swevent_hlist_put_cpu(event, cpu);
+	}
+
+	put_online_cpus();
+	return err;
+}
+
+struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
+
+static void sw_perf_event_destroy(struct perf_event *event)
+{
+	u64 event_id = event->attr.config;
+
+	WARN_ON(event->parent);
+
+	static_key_slow_dec(&perf_swevent_enabled[event_id]);
+	swevent_hlist_put(event);
+}
+
+static int perf_swevent_init(struct perf_event *event)
+{
+	u64 event_id = event->attr.config;
+
+	if (event->attr.type != PERF_TYPE_SOFTWARE)
+		return -ENOENT;
+
+	/*
+	 * no branch sampling for software events
+	 */
+	if (has_branch_stack(event))
+		return -EOPNOTSUPP;
+
+	switch (event_id) {
+	case PERF_COUNT_SW_CPU_CLOCK:
+	case PERF_COUNT_SW_TASK_CLOCK:
+		return -ENOENT;
+
+	default:
+		break;
+	}
+
+	if (event_id >= PERF_COUNT_SW_MAX)
+		return -ENOENT;
+
+	if (!event->parent) {
+		int err;
+
+		err = swevent_hlist_get(event);
+		if (err)
+			return err;
+
+		static_key_slow_inc(&perf_swevent_enabled[event_id]);
+		event->destroy = sw_perf_event_destroy;
+	}
+
+	return 0;
+}
+
+static int perf_swevent_event_idx(struct perf_event *event)
+{
+	return 0;
+}
+
+static struct pmu perf_swevent = {
+	.task_ctx_nr	= perf_sw_context,
+
+	.event_init	= perf_swevent_init,
+	.add		= perf_swevent_add,
+	.del		= perf_swevent_del,
+	.start		= perf_swevent_start,
+	.stop		= perf_swevent_stop,
+	.read		= perf_swevent_read,
+
+	.event_idx	= perf_swevent_event_idx,
+};
+
+#ifdef CONFIG_EVENT_TRACING
+
+static int perf_tp_filter_match(struct perf_event *event,
+				struct perf_sample_data *data)
+{
+	void *record = data->raw->data;
+
+	if (likely(!event->filter) || filter_match_preds(event->filter, record))
+		return 1;
+	return 0;
+}
+
+static int perf_tp_event_match(struct perf_event *event,
+				struct perf_sample_data *data,
+				struct pt_regs *regs)
+{
+	if (event->hw.state & PERF_HES_STOPPED)
+		return 0;
+	/*
+	 * All tracepoints are from kernel-space.
+	 */
+	if (event->attr.exclude_kernel)
+		return 0;
+
+	if (!perf_tp_filter_match(event, data))
+		return 0;
+
+	return 1;
+}
+
+void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
+		   struct pt_regs *regs, struct hlist_head *head, int rctx)
+{
+	struct perf_sample_data data;
+	struct perf_event *event;
+	struct hlist_node *node;
+
+	struct perf_raw_record raw = {
+		.size = entry_size,
+		.data = record,
+	};
+
+	perf_sample_data_init(&data, addr);
+	data.raw = &raw;
+
+	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
+		if (perf_tp_event_match(event, &data, regs))
+			perf_swevent_event(event, count, &data, regs);
+	}
+
+	perf_swevent_put_recursion_context(rctx);
+}
+EXPORT_SYMBOL_GPL(perf_tp_event);
+
+static void tp_perf_event_destroy(struct perf_event *event)
+{
+	perf_trace_destroy(event);
+}
+
+static int perf_tp_event_init(struct perf_event *event)
+{
+	int err;
+
+	if (event->attr.type != PERF_TYPE_TRACEPOINT)
+		return -ENOENT;
+
+	/*
+	 * no branch sampling for tracepoint events
+	 */
+	if (has_branch_stack(event))
+		return -EOPNOTSUPP;
+
+	err = perf_trace_init(event);
+	if (err)
+		return err;
+
+	event->destroy = tp_perf_event_destroy;
+
+	return 0;
+}
+
+static struct pmu perf_tracepoint = {
+	.task_ctx_nr	= perf_sw_context,
+
+	.event_init	= perf_tp_event_init,
+	.add		= perf_trace_add,
+	.del		= perf_trace_del,
+	.start		= perf_swevent_start,
+	.stop		= perf_swevent_stop,
+	.read		= perf_swevent_read,
+
+	.event_idx	= perf_swevent_event_idx,
+};
+
+static inline void perf_tp_register(void)
+{
+	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
+}
+
+static int perf_event_set_filter(struct perf_event *event, void __user *arg)
+{
+	char *filter_str;
+	int ret;
+
+	if (event->attr.type != PERF_TYPE_TRACEPOINT)
+		return -EINVAL;
+
+	filter_str = strndup_user(arg, PAGE_SIZE);
+	if (IS_ERR(filter_str))
+		return PTR_ERR(filter_str);
+
+	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
+
+	kfree(filter_str);
+	return ret;
+}
+
+static void perf_event_free_filter(struct perf_event *event)
+{
+	ftrace_profile_free_filter(event);
+}
+
+#else
+
+static inline void perf_tp_register(void)
+{
+}
+
+static int perf_event_set_filter(struct perf_event *event, void __user *arg)
+{
+	return -ENOENT;
+}
+
+static void perf_event_free_filter(struct perf_event *event)
+{
+}
+
+#endif /* CONFIG_EVENT_TRACING */
+
+#ifdef CONFIG_HAVE_HW_BREAKPOINT
+void perf_bp_event(struct perf_event *bp, void *data)
+{
+	struct perf_sample_data sample;
+	struct pt_regs *regs = data;
+
+	perf_sample_data_init(&sample, bp->attr.bp_addr);
+
+	if (!bp->hw.state && !perf_exclude_event(bp, regs))
+		perf_swevent_event(bp, 1, &sample, regs);
+}
+#endif
+
+/*
+ * hrtimer based swevent callback
+ */
+
+static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
+{
+	enum hrtimer_restart ret = HRTIMER_RESTART;
+	struct perf_sample_data data;
+	struct pt_regs *regs;
+	struct perf_event *event;
+	u64 period;
+
+	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
+
+	if (event->state != PERF_EVENT_STATE_ACTIVE)
+		return HRTIMER_NORESTART;
+
+	event->pmu->read(event);
+
+	perf_sample_data_init(&data, 0);
+	data.period = event->hw.last_period;
+	regs = get_irq_regs();
+
+	if (regs && !perf_exclude_event(event, regs)) {
+		if (!(event->attr.exclude_idle && is_idle_task(current)))
+			if (perf_event_overflow(event, &data, regs))
+				ret = HRTIMER_NORESTART;
+	}
+
+	period = max_t(u64, 10000, event->hw.sample_period);
+	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
+
+	return ret;
+}
+
+static void perf_swevent_start_hrtimer(struct perf_event *event)
+{
+	struct hw_perf_event *hwc = &event->hw;
+	s64 period;
+
+	if (!is_sampling_event(event))
+		return;
+
+	period = local64_read(&hwc->period_left);
+	if (period) {
+		if (period < 0)
+			period = 10000;
+
+		local64_set(&hwc->period_left, 0);
+	} else {
+		period = max_t(u64, 10000, hwc->sample_period);
+	}
+	__hrtimer_start_range_ns(&hwc->hrtimer,
+				ns_to_ktime(period), 0,
+				HRTIMER_MODE_REL_PINNED, 0);
+}
+
+static void perf_swevent_cancel_hrtimer(struct perf_event *event)
+{
+	struct hw_perf_event *hwc = &event->hw;
+
+	if (is_sampling_event(event)) {
+		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
+		local64_set(&hwc->period_left, ktime_to_ns(remaining));
+
+		hrtimer_cancel(&hwc->hrtimer);
+	}
+}
+
+static void perf_swevent_init_hrtimer(struct perf_event *event)
+{
+	struct hw_perf_event *hwc = &event->hw;
+
+	if (!is_sampling_event(event))
+		return;
+
+	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+	hwc->hrtimer.function = perf_swevent_hrtimer;
+	hwc->hrtimer.irqsafe = 1;
+
+	/*
+	 * Since hrtimers have a fixed rate, we can do a static freq->period
+	 * mapping and avoid the whole period adjust feedback stuff.
+	 */
+	if (event->attr.freq) {
+		long freq = event->attr.sample_freq;
+
+		event->attr.sample_period = NSEC_PER_SEC / freq;
+		hwc->sample_period = event->attr.sample_period;
+		local64_set(&hwc->period_left, hwc->sample_period);
+		event->attr.freq = 0;
+	}
+}
+
+/*
+ * Software event: cpu wall time clock
+ */
+
+static void cpu_clock_event_update(struct perf_event *event)
+{
+	s64 prev;
+	u64 now;
+
+	now = local_clock();
+	prev = local64_xchg(&event->hw.prev_count, now);
+	local64_add(now - prev, &event->count);
+}
+
+static void cpu_clock_event_start(struct perf_event *event, int flags)
+{
+	local64_set(&event->hw.prev_count, local_clock());
+	perf_swevent_start_hrtimer(event);
+}
+
+static void cpu_clock_event_stop(struct perf_event *event, int flags)
+{
+	perf_swevent_cancel_hrtimer(event);
+	cpu_clock_event_update(event);
+}
+
+static int cpu_clock_event_add(struct perf_event *event, int flags)
+{
+	if (flags & PERF_EF_START)
+		cpu_clock_event_start(event, flags);
+
+	return 0;
+}
+
+static void cpu_clock_event_del(struct perf_event *event, int flags)
+{
+	cpu_clock_event_stop(event, flags);
+}
+
+static void cpu_clock_event_read(struct perf_event *event)
+{
+	cpu_clock_event_update(event);
+}
+
+static int cpu_clock_event_init(struct perf_event *event)
+{
+	if (event->attr.type != PERF_TYPE_SOFTWARE)
+		return -ENOENT;
+
+	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
+		return -ENOENT;
+
+	/*
+	 * no branch sampling for software events
+	 */
+	if (has_branch_stack(event))
+		return -EOPNOTSUPP;
+
+	perf_swevent_init_hrtimer(event);
+
+	return 0;
+}
+
+static struct pmu perf_cpu_clock = {
+	.task_ctx_nr	= perf_sw_context,
+
+	.event_init	= cpu_clock_event_init,
+	.add		= cpu_clock_event_add,
+	.del		= cpu_clock_event_del,
+	.start		= cpu_clock_event_start,
+	.stop		= cpu_clock_event_stop,
+	.read		= cpu_clock_event_read,
+
+	.event_idx	= perf_swevent_event_idx,
+};
+
+/*
+ * Software event: task time clock
+ */
+
+static void task_clock_event_update(struct perf_event *event, u64 now)
+{
+	u64 prev;
+	s64 delta;
+
+	prev = local64_xchg(&event->hw.prev_count, now);
+	delta = now - prev;
+	local64_add(delta, &event->count);
+}
+
+static void task_clock_event_start(struct perf_event *event, int flags)
+{
+	local64_set(&event->hw.prev_count, event->ctx->time);
+	perf_swevent_start_hrtimer(event);
+}
+
+static void task_clock_event_stop(struct perf_event *event, int flags)
+{
+	perf_swevent_cancel_hrtimer(event);
+	task_clock_event_update(event, event->ctx->time);
+}
+
+static int task_clock_event_add(struct perf_event *event, int flags)
+{
+	if (flags & PERF_EF_START)
+		task_clock_event_start(event, flags);
+
+	return 0;
+}
+
+static void task_clock_event_del(struct perf_event *event, int flags)
+{
+	task_clock_event_stop(event, PERF_EF_UPDATE);
+}
+
+static void task_clock_event_read(struct perf_event *event)
+{
+	u64 now = perf_clock();
+	u64 delta = now - event->ctx->timestamp;
+	u64 time = event->ctx->time + delta;
+
+	task_clock_event_update(event, time);
+}
+
+static int task_clock_event_init(struct perf_event *event)
+{
+	if (event->attr.type != PERF_TYPE_SOFTWARE)
+		return -ENOENT;
+
+	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
+		return -ENOENT;
+
+	/*
+	 * no branch sampling for software events
+	 */
+	if (has_branch_stack(event))
+		return -EOPNOTSUPP;
+
+	perf_swevent_init_hrtimer(event);
+
+	return 0;
+}
+
+static struct pmu perf_task_clock = {
+	.task_ctx_nr	= perf_sw_context,
+
+	.event_init	= task_clock_event_init,
+	.add		= task_clock_event_add,
+	.del		= task_clock_event_del,
+	.start		= task_clock_event_start,
+	.stop		= task_clock_event_stop,
+	.read		= task_clock_event_read,
+
+	.event_idx	= perf_swevent_event_idx,
+};
+
+static void perf_pmu_nop_void(struct pmu *pmu)
+{
+}
+
+static int perf_pmu_nop_int(struct pmu *pmu)
+{
+	return 0;
+}
+
+static void perf_pmu_start_txn(struct pmu *pmu)
+{
+	perf_pmu_disable(pmu);
+}
+
+static int perf_pmu_commit_txn(struct pmu *pmu)
+{
+	perf_pmu_enable(pmu);
+	return 0;
+}
+
+static void perf_pmu_cancel_txn(struct pmu *pmu)
+{
+	perf_pmu_enable(pmu);
+}
+
+static int perf_event_idx_default(struct perf_event *event)
+{
+	return event->hw.idx + 1;
+}
+
+/*
+ * Ensures all contexts with the same task_ctx_nr have the same
+ * pmu_cpu_context too.
+ */
+static void *find_pmu_context(int ctxn)
+{
+	struct pmu *pmu;
+
+	if (ctxn < 0)
+		return NULL;
+
+	list_for_each_entry(pmu, &pmus, entry) {
+		if (pmu->task_ctx_nr == ctxn)
+			return pmu->pmu_cpu_context;
+	}
+
+	return NULL;
+}
+
+static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
+{
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		struct perf_cpu_context *cpuctx;
+
+		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
+
+		if (cpuctx->unique_pmu == old_pmu)
+			cpuctx->unique_pmu = pmu;
+	}
+}
+
+static void free_pmu_context(struct pmu *pmu)
+{
+	struct pmu *i;
+
+	mutex_lock(&pmus_lock);
+	/*
+	 * Like a real lame refcount.
+	 */
+	list_for_each_entry(i, &pmus, entry) {
+		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
+			update_pmu_context(i, pmu);
+			goto out;
+		}
+	}
+
+	free_percpu(pmu->pmu_cpu_context);
+out:
+	mutex_unlock(&pmus_lock);
+}
+static struct idr pmu_idr;
+
+static ssize_t
+type_show(struct device *dev, struct device_attribute *attr, char *page)
+{
+	struct pmu *pmu = dev_get_drvdata(dev);
+
+	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
+}
+
+static struct device_attribute pmu_dev_attrs[] = {
+       __ATTR_RO(type),
+       __ATTR_NULL,
+};
+
+static int pmu_bus_running;
+static struct bus_type pmu_bus = {
+	.name		= "event_source",
+	.dev_attrs	= pmu_dev_attrs,
+};
+
+static void pmu_dev_release(struct device *dev)
+{
+	kfree(dev);
+}
+
+static int pmu_dev_alloc(struct pmu *pmu)
+{
+	int ret = -ENOMEM;
+
+	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
+	if (!pmu->dev)
+		goto out;
+
+	pmu->dev->groups = pmu->attr_groups;
+	device_initialize(pmu->dev);
+	ret = dev_set_name(pmu->dev, "%s", pmu->name);
+	if (ret)
+		goto free_dev;
+
+	dev_set_drvdata(pmu->dev, pmu);
+	pmu->dev->bus = &pmu_bus;
+	pmu->dev->release = pmu_dev_release;
+	ret = device_add(pmu->dev);
+	if (ret)
+		goto free_dev;
+
+out:
+	return ret;
+
+free_dev:
+	put_device(pmu->dev);
+	goto out;
+}
+
+static struct lock_class_key cpuctx_mutex;
+static struct lock_class_key cpuctx_lock;
+
+int perf_pmu_register(struct pmu *pmu, char *name, int type)
+{
+	int cpu, ret;
+
+	mutex_lock(&pmus_lock);
+	ret = -ENOMEM;
+	pmu->pmu_disable_count = alloc_percpu(int);
+	if (!pmu->pmu_disable_count)
+		goto unlock;
+
+	pmu->type = -1;
+	if (!name)
+		goto skip_type;
+	pmu->name = name;
+
+	if (type < 0) {
+		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
+		if (!err)
+			goto free_pdc;
+
+		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
+		if (err) {
+			ret = err;
+			goto free_pdc;
+		}
+	}
+	pmu->type = type;
+
+	if (pmu_bus_running) {
+		ret = pmu_dev_alloc(pmu);
+		if (ret)
+			goto free_idr;
+	}
+
+skip_type:
+	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
+	if (pmu->pmu_cpu_context)
+		goto got_cpu_context;
+
+	ret = -ENOMEM;
+	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
+	if (!pmu->pmu_cpu_context)
+		goto free_dev;
+
+	for_each_possible_cpu(cpu) {
+		struct perf_cpu_context *cpuctx;
+
+		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
+		__perf_event_init_context(&cpuctx->ctx);
+		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
+		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
+		cpuctx->ctx.type = cpu_context;
+		cpuctx->ctx.pmu = pmu;
+		cpuctx->jiffies_interval = 1;
+		INIT_LIST_HEAD(&cpuctx->rotation_list);
+		cpuctx->unique_pmu = pmu;
+	}
+
+got_cpu_context:
+	if (!pmu->start_txn) {
+		if (pmu->pmu_enable) {
+			/*
+			 * If we have pmu_enable/pmu_disable calls, install
+			 * transaction stubs that use that to try and batch
+			 * hardware accesses.
+			 */
+			pmu->start_txn  = perf_pmu_start_txn;
+			pmu->commit_txn = perf_pmu_commit_txn;
+			pmu->cancel_txn = perf_pmu_cancel_txn;
+		} else {
+			pmu->start_txn  = perf_pmu_nop_void;
+			pmu->commit_txn = perf_pmu_nop_int;
+			pmu->cancel_txn = perf_pmu_nop_void;
+		}
+	}
+
+	if (!pmu->pmu_enable) {
+		pmu->pmu_enable  = perf_pmu_nop_void;
+		pmu->pmu_disable = perf_pmu_nop_void;
+	}
+
+	if (!pmu->event_idx)
+		pmu->event_idx = perf_event_idx_default;
+
+	list_add_rcu(&pmu->entry, &pmus);
+	ret = 0;
+unlock:
+	mutex_unlock(&pmus_lock);
+
+	return ret;
+
+free_dev:
+	device_del(pmu->dev);
+	put_device(pmu->dev);
+
+free_idr:
+	if (pmu->type >= PERF_TYPE_MAX)
+		idr_remove(&pmu_idr, pmu->type);
+
+free_pdc:
+	free_percpu(pmu->pmu_disable_count);
+	goto unlock;
+}
+
+void perf_pmu_unregister(struct pmu *pmu)
+{
+	mutex_lock(&pmus_lock);
+	list_del_rcu(&pmu->entry);
+	mutex_unlock(&pmus_lock);
+
+	/*
+	 * We dereference the pmu list under both SRCU and regular RCU, so
+	 * synchronize against both of those.
+	 */
+	synchronize_srcu(&pmus_srcu);
+	synchronize_rcu();
+
+	free_percpu(pmu->pmu_disable_count);
+	if (pmu->type >= PERF_TYPE_MAX)
+		idr_remove(&pmu_idr, pmu->type);
+	device_del(pmu->dev);
+	put_device(pmu->dev);
+	free_pmu_context(pmu);
+}
+
+struct pmu *perf_init_event(struct perf_event *event)
+{
+	struct pmu *pmu = NULL;
+	int idx;
+	int ret;
+
+	idx = srcu_read_lock(&pmus_srcu);
+
+	rcu_read_lock();
+	pmu = idr_find(&pmu_idr, event->attr.type);
+	rcu_read_unlock();
+	if (pmu) {
+		event->pmu = pmu;
+		ret = pmu->event_init(event);
+		if (ret)
+			pmu = ERR_PTR(ret);
+		goto unlock;
+	}
+
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		event->pmu = pmu;
+		ret = pmu->event_init(event);
+		if (!ret)
+			goto unlock;
+
+		if (ret != -ENOENT) {
+			pmu = ERR_PTR(ret);
+			goto unlock;
+		}
+	}
+	pmu = ERR_PTR(-ENOENT);
+unlock:
+	srcu_read_unlock(&pmus_srcu, idx);
+
+	return pmu;
+}
+
+/*
+ * Allocate and initialize a event structure
+ */
+static struct perf_event *
+perf_event_alloc(struct perf_event_attr *attr, int cpu,
+		 struct task_struct *task,
+		 struct perf_event *group_leader,
+		 struct perf_event *parent_event,
+		 perf_overflow_handler_t overflow_handler,
+		 void *context)
+{
+	struct pmu *pmu;
+	struct perf_event *event;
+	struct hw_perf_event *hwc;
+	long err;
+
+	if ((unsigned)cpu >= nr_cpu_ids) {
+		if (!task || cpu != -1)
+			return ERR_PTR(-EINVAL);
+	}
+
+	event = kzalloc(sizeof(*event), GFP_KERNEL);
+	if (!event)
+		return ERR_PTR(-ENOMEM);
+
+	/*
+	 * Single events are their own group leaders, with an
+	 * empty sibling list:
+	 */
+	if (!group_leader)
+		group_leader = event;
+
+	mutex_init(&event->child_mutex);
+	INIT_LIST_HEAD(&event->child_list);
+
+	INIT_LIST_HEAD(&event->group_entry);
+	INIT_LIST_HEAD(&event->event_entry);
+	INIT_LIST_HEAD(&event->sibling_list);
+	INIT_LIST_HEAD(&event->rb_entry);
+
+	init_waitqueue_head(&event->waitq);
+	init_irq_work(&event->pending, perf_pending_event);
+
+	mutex_init(&event->mmap_mutex);
+
+	atomic_long_set(&event->refcount, 1);
+	event->cpu		= cpu;
+	event->attr		= *attr;
+	event->group_leader	= group_leader;
+	event->pmu		= NULL;
+	event->oncpu		= -1;
+
+	event->parent		= parent_event;
+
+	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
+	event->id		= atomic64_inc_return(&perf_event_id);
+
+	event->state		= PERF_EVENT_STATE_INACTIVE;
+
+	if (task) {
+		event->attach_state = PERF_ATTACH_TASK;
+#ifdef CONFIG_HAVE_HW_BREAKPOINT
+		/*
+		 * hw_breakpoint is a bit difficult here..
+		 */
+		if (attr->type == PERF_TYPE_BREAKPOINT)
+			event->hw.bp_target = task;
+#endif
+	}
+
+	if (!overflow_handler && parent_event) {
+		overflow_handler = parent_event->overflow_handler;
+		context = parent_event->overflow_handler_context;
+	}
+
+	event->overflow_handler	= overflow_handler;
+	event->overflow_handler_context = context;
+
+	perf_event__state_init(event);
+
+	pmu = NULL;
+
+	hwc = &event->hw;
+	hwc->sample_period = attr->sample_period;
+	if (attr->freq && attr->sample_freq)
+		hwc->sample_period = 1;
+	hwc->last_period = hwc->sample_period;
+
+	local64_set(&hwc->period_left, hwc->sample_period);
+
+	/*
+	 * we currently do not support PERF_FORMAT_GROUP on inherited events
+	 */
+	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
+		goto done;
+
+	pmu = perf_init_event(event);
+
+done:
+	err = 0;
+	if (!pmu)
+		err = -EINVAL;
+	else if (IS_ERR(pmu))
+		err = PTR_ERR(pmu);
+
+	if (err) {
+		if (event->ns)
+			put_pid_ns(event->ns);
+		kfree(event);
+		return ERR_PTR(err);
+	}
+
+	if (!event->parent) {
+		if (event->attach_state & PERF_ATTACH_TASK)
+			static_key_slow_inc(&perf_sched_events.key);
+		if (event->attr.mmap || event->attr.mmap_data)
+			atomic_inc(&nr_mmap_events);
+		if (event->attr.comm)
+			atomic_inc(&nr_comm_events);
+		if (event->attr.task)
+			atomic_inc(&nr_task_events);
+		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
+			err = get_callchain_buffers();
+			if (err) {
+				free_event(event);
+				return ERR_PTR(err);
+			}
+		}
+		if (has_branch_stack(event)) {
+			static_key_slow_inc(&perf_sched_events.key);
+			if (!(event->attach_state & PERF_ATTACH_TASK))
+				atomic_inc(&per_cpu(perf_branch_stack_events,
+						    event->cpu));
+		}
+	}
+
+	return event;
+}
+
+static int perf_copy_attr(struct perf_event_attr __user *uattr,
+			  struct perf_event_attr *attr)
+{
+	u32 size;
+	int ret;
+
+	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
+		return -EFAULT;
+
+	/*
+	 * zero the full structure, so that a short copy will be nice.
+	 */
+	memset(attr, 0, sizeof(*attr));
+
+	ret = get_user(size, &uattr->size);
+	if (ret)
+		return ret;
+
+	if (size > PAGE_SIZE)	/* silly large */
+		goto err_size;
+
+	if (!size)		/* abi compat */
+		size = PERF_ATTR_SIZE_VER0;
+
+	if (size < PERF_ATTR_SIZE_VER0)
+		goto err_size;
+
+	/*
+	 * If we're handed a bigger struct than we know of,
+	 * ensure all the unknown bits are 0 - i.e. new
+	 * user-space does not rely on any kernel feature
+	 * extensions we dont know about yet.
+	 */
+	if (size > sizeof(*attr)) {
+		unsigned char __user *addr;
+		unsigned char __user *end;
+		unsigned char val;
+
+		addr = (void __user *)uattr + sizeof(*attr);
+		end  = (void __user *)uattr + size;
+
+		for (; addr < end; addr++) {
+			ret = get_user(val, addr);
+			if (ret)
+				return ret;
+			if (val)
+				goto err_size;
+		}
+		size = sizeof(*attr);
+	}
+
+	ret = copy_from_user(attr, uattr, size);
+	if (ret)
+		return -EFAULT;
+
+	if (attr->__reserved_1)
+		return -EINVAL;
+
+	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
+		return -EINVAL;
+
+	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
+		return -EINVAL;
+
+	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
+		u64 mask = attr->branch_sample_type;
+
+		/* only using defined bits */
+		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
+			return -EINVAL;
+
+		/* at least one branch bit must be set */
+		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
+			return -EINVAL;
+
+		/* kernel level capture: check permissions */
+		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
+		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
+			return -EACCES;
+
+		/* propagate priv level, when not set for branch */
+		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
+
+			/* exclude_kernel checked on syscall entry */
+			if (!attr->exclude_kernel)
+				mask |= PERF_SAMPLE_BRANCH_KERNEL;
+
+			if (!attr->exclude_user)
+				mask |= PERF_SAMPLE_BRANCH_USER;
+
+			if (!attr->exclude_hv)
+				mask |= PERF_SAMPLE_BRANCH_HV;
+			/*
+			 * adjust user setting (for HW filter setup)
+			 */
+			attr->branch_sample_type = mask;
+		}
+	}
+out:
+	return ret;
+
+err_size:
+	put_user(sizeof(*attr), &uattr->size);
+	ret = -E2BIG;
+	goto out;
+}
+
+static int
+perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
+{
+	struct ring_buffer *rb = NULL, *old_rb = NULL;
+	int ret = -EINVAL;
+
+	if (!output_event)
+		goto set;
+
+	/* don't allow circular references */
+	if (event == output_event)
+		goto out;
+
+	/*
+	 * Don't allow cross-cpu buffers
+	 */
+	if (output_event->cpu != event->cpu)
+		goto out;
+
+	/*
+	 * If its not a per-cpu rb, it must be the same task.
+	 */
+	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
+		goto out;
+
+set:
+	mutex_lock(&event->mmap_mutex);
+	/* Can't redirect output if we've got an active mmap() */
+	if (atomic_read(&event->mmap_count))
+		goto unlock;
+
+	old_rb = event->rb;
+
+	if (output_event) {
+		/* get the rb we want to redirect to */
+		rb = ring_buffer_get(output_event);
+		if (!rb)
+			goto unlock;
+	}
+
+	if (old_rb)
+		ring_buffer_detach(event, old_rb);
+
+	if (rb)
+		ring_buffer_attach(event, rb);
+
+	rcu_assign_pointer(event->rb, rb);
+
+	if (old_rb) {
+		ring_buffer_put(old_rb);
+		/*
+		 * Since we detached before setting the new rb, so that we
+		 * could attach the new rb, we could have missed a wakeup.
+		 * Provide it now.
+		 */
+		wake_up_all(&event->waitq);
+	}
+
+	ret = 0;
+unlock:
+	mutex_unlock(&event->mmap_mutex);
+
+out:
+	return ret;
+}
+
+/**
+ * sys_perf_event_open - open a performance event, associate it to a task/cpu
+ *
+ * @attr_uptr:	event_id type attributes for monitoring/sampling
+ * @pid:		target pid
+ * @cpu:		target cpu
+ * @group_fd:		group leader event fd
+ */
+SYSCALL_DEFINE5(perf_event_open,
+		struct perf_event_attr __user *, attr_uptr,
+		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
+{
+	struct perf_event *group_leader = NULL, *output_event = NULL;
+	struct perf_event *event, *sibling;
+	struct perf_event_attr attr;
+	struct perf_event_context *ctx;
+	struct file *event_file = NULL;
+	struct file *group_file = NULL;
+	struct task_struct *task = NULL;
+	struct pmu *pmu;
+	int event_fd;
+	int move_group = 0;
+	int fput_needed = 0;
+	int err;
+
+	/* for future expandability... */
+	if (flags & ~PERF_FLAG_ALL)
+		return -EINVAL;
+
+	err = perf_copy_attr(attr_uptr, &attr);
+	if (err)
+		return err;
+
+	if (!attr.exclude_kernel) {
+		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
+			return -EACCES;
+	}
+
+	if (attr.freq) {
+		if (attr.sample_freq > sysctl_perf_event_sample_rate)
+			return -EINVAL;
+	} else {
+		if (attr.sample_period & (1ULL << 63))
+			return -EINVAL;
+	}
+
+	/*
+	 * In cgroup mode, the pid argument is used to pass the fd
+	 * opened to the cgroup directory in cgroupfs. The cpu argument
+	 * designates the cpu on which to monitor threads from that
+	 * cgroup.
+	 */
+	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
+		return -EINVAL;
+
+	event_fd = get_unused_fd_flags(O_RDWR);
+	if (event_fd < 0)
+		return event_fd;
+
+	if (group_fd != -1) {
+		group_file = perf_fget_light(group_fd, &fput_needed);
+		if (IS_ERR(group_file)) {
+			err = PTR_ERR(group_file);
+			goto err_fd;
+		}
+		group_leader = group_file->private_data;
+		if (flags & PERF_FLAG_FD_OUTPUT)
+			output_event = group_leader;
+		if (flags & PERF_FLAG_FD_NO_GROUP)
+			group_leader = NULL;
+	}
+
+	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
+		task = find_lively_task_by_vpid(pid);
+		if (IS_ERR(task)) {
+			err = PTR_ERR(task);
+			goto err_group_fd;
+		}
+	}
+
+	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
+				 NULL, NULL);
+	if (IS_ERR(event)) {
+		err = PTR_ERR(event);
+		goto err_task;
+	}
+
+	if (flags & PERF_FLAG_PID_CGROUP) {
+		err = perf_cgroup_connect(pid, event, &attr, group_leader);
+		if (err)
+			goto err_alloc;
+		/*
+		 * one more event:
+		 * - that has cgroup constraint on event->cpu
+		 * - that may need work on context switch
+		 */
+		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
+		static_key_slow_inc(&perf_sched_events.key);
+	}
+
+	/*
+	 * Special case software events and allow them to be part of
+	 * any hardware group.
+	 */
+	pmu = event->pmu;
+
+	if (group_leader &&
+	    (is_software_event(event) != is_software_event(group_leader))) {
+		if (is_software_event(event)) {
+			/*
+			 * If event and group_leader are not both a software
+			 * event, and event is, then group leader is not.
+			 *
+			 * Allow the addition of software events to !software
+			 * groups, this is safe because software events never
+			 * fail to schedule.
+			 */
+			pmu = group_leader->pmu;
+		} else if (is_software_event(group_leader) &&
+			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
+			/*
+			 * In case the group is a pure software group, and we
+			 * try to add a hardware event, move the whole group to
+			 * the hardware context.
+			 */
+			move_group = 1;
+		}
+	}
+
+	/*
+	 * Get the target context (task or percpu):
+	 */
+	ctx = find_get_context(pmu, task, cpu);
+	if (IS_ERR(ctx)) {
+		err = PTR_ERR(ctx);
+		goto err_alloc;
+	}
+
+	if (task) {
+		put_task_struct(task);
+		task = NULL;
+	}
+
+	/*
+	 * Look up the group leader (we will attach this event to it):
+	 */
+	if (group_leader) {
+		err = -EINVAL;
+
+		/*
+		 * Do not allow a recursive hierarchy (this new sibling
+		 * becoming part of another group-sibling):
+		 */
+		if (group_leader->group_leader != group_leader)
+			goto err_context;
+		/*
+		 * Do not allow to attach to a group in a different
+		 * task or CPU context:
+		 */
+		if (move_group) {
+			if (group_leader->ctx->type != ctx->type)
+				goto err_context;
+		} else {
+			if (group_leader->ctx != ctx)
+				goto err_context;
+		}
+
+		/*
+		 * Only a group leader can be exclusive or pinned
+		 */
+		if (attr.exclusive || attr.pinned)
+			goto err_context;
+	}
+
+	if (output_event) {
+		err = perf_event_set_output(event, output_event);
+		if (err)
+			goto err_context;
+	}
+
+	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
+	if (IS_ERR(event_file)) {
+		err = PTR_ERR(event_file);
+		goto err_context;
+	}
+
+	if (move_group) {
+		struct perf_event_context *gctx = group_leader->ctx;
+
+		mutex_lock(&gctx->mutex);
+		perf_remove_from_context(group_leader, false);
+
+		/*
+		 * Removing from the context ends up with disabled
+		 * event. What we want here is event in the initial
+		 * startup state, ready to be add into new context.
+		 */
+		perf_event__state_init(group_leader);
+		list_for_each_entry(sibling, &group_leader->sibling_list,
+				    group_entry) {
+			perf_remove_from_context(sibling, false);
+			perf_event__state_init(sibling);
+			put_ctx(gctx);
+		}
+		mutex_unlock(&gctx->mutex);
+		put_ctx(gctx);
+	}
+
+	WARN_ON_ONCE(ctx->parent_ctx);
+	mutex_lock(&ctx->mutex);
+
+	if (move_group) {
+		perf_install_in_context(ctx, group_leader, cpu);
+		get_ctx(ctx);
+		list_for_each_entry(sibling, &group_leader->sibling_list,
+				    group_entry) {
+			perf_install_in_context(ctx, sibling, cpu);
+			get_ctx(ctx);
+		}
+	}
+
+	perf_install_in_context(ctx, event, cpu);
+	++ctx->generation;
+	perf_unpin_context(ctx);
+	mutex_unlock(&ctx->mutex);
+
+	event->owner = current;
+
+	mutex_lock(&current->perf_event_mutex);
+	list_add_tail(&event->owner_entry, &current->perf_event_list);
+	mutex_unlock(&current->perf_event_mutex);
+
+	/*
+	 * Precalculate sample_data sizes
+	 */
+	perf_event__header_size(event);
+	perf_event__id_header_size(event);
+
+	/*
+	 * Drop the reference on the group_event after placing the
+	 * new event on the sibling_list. This ensures destruction
+	 * of the group leader will find the pointer to itself in
+	 * perf_group_detach().
+	 */
+	fput_light(group_file, fput_needed);
+	fd_install(event_fd, event_file);
+	return event_fd;
+
+err_context:
+	perf_unpin_context(ctx);
+	put_ctx(ctx);
+err_alloc:
+	free_event(event);
+err_task:
+	if (task)
+		put_task_struct(task);
+err_group_fd:
+	fput_light(group_file, fput_needed);
+err_fd:
+	put_unused_fd(event_fd);
+	return err;
+}
+
+/**
+ * perf_event_create_kernel_counter
+ *
+ * @attr: attributes of the counter to create
+ * @cpu: cpu in which the counter is bound
+ * @task: task to profile (NULL for percpu)
+ */
+struct perf_event *
+perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
+				 struct task_struct *task,
+				 perf_overflow_handler_t overflow_handler,
+				 void *context)
+{
+	struct perf_event_context *ctx;
+	struct perf_event *event;
+	int err;
+
+	/*
+	 * Get the target context (task or percpu):
+	 */
+
+	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
+				 overflow_handler, context);
+	if (IS_ERR(event)) {
+		err = PTR_ERR(event);
+		goto err;
+	}
+
+	ctx = find_get_context(event->pmu, task, cpu);
+	if (IS_ERR(ctx)) {
+		err = PTR_ERR(ctx);
+		goto err_free;
+	}
+
+	WARN_ON_ONCE(ctx->parent_ctx);
+	mutex_lock(&ctx->mutex);
+	perf_install_in_context(ctx, event, cpu);
+	++ctx->generation;
+	perf_unpin_context(ctx);
+	mutex_unlock(&ctx->mutex);
+
+	return event;
+
+err_free:
+	free_event(event);
+err:
+	return ERR_PTR(err);
+}
+EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
+
+static void sync_child_event(struct perf_event *child_event,
+			       struct task_struct *child)
+{
+	struct perf_event *parent_event = child_event->parent;
+	u64 child_val;
+
+	if (child_event->attr.inherit_stat)
+		perf_event_read_event(child_event, child);
+
+	child_val = perf_event_count(child_event);
+
+	/*
+	 * Add back the child's count to the parent's count:
+	 */
+	atomic64_add(child_val, &parent_event->child_count);
+	atomic64_add(child_event->total_time_enabled,
+		     &parent_event->child_total_time_enabled);
+	atomic64_add(child_event->total_time_running,
+		     &parent_event->child_total_time_running);
+
+	/*
+	 * Remove this event from the parent's list
+	 */
+	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
+	mutex_lock(&parent_event->child_mutex);
+	list_del_init(&child_event->child_list);
+	mutex_unlock(&parent_event->child_mutex);
+
+	/*
+	 * Release the parent event, if this was the last
+	 * reference to it.
+	 */
+	put_event(parent_event);
+}
+
+static void
+__perf_event_exit_task(struct perf_event *child_event,
+			 struct perf_event_context *child_ctx,
+			 struct task_struct *child)
+{
+	perf_remove_from_context(child_event, !!child_event->parent);
+
+	/*
+	 * It can happen that the parent exits first, and has events
+	 * that are still around due to the child reference. These
+	 * events need to be zapped.
+	 */
+	if (child_event->parent) {
+		sync_child_event(child_event, child);
+		free_event(child_event);
+	}
+}
+
+static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
+{
+	struct perf_event *child_event, *tmp;
+	struct perf_event_context *child_ctx;
+	unsigned long flags;
+
+	if (likely(!child->perf_event_ctxp[ctxn])) {
+		perf_event_task(child, NULL, 0);
+		return;
+	}
+
+	local_irq_save(flags);
+	/*
+	 * We can't reschedule here because interrupts are disabled,
+	 * and either child is current or it is a task that can't be
+	 * scheduled, so we are now safe from rescheduling changing
+	 * our context.
+	 */
+	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
+
+	/*
+	 * Take the context lock here so that if find_get_context is
+	 * reading child->perf_event_ctxp, we wait until it has
+	 * incremented the context's refcount before we do put_ctx below.
+	 */
+	raw_spin_lock(&child_ctx->lock);
+	task_ctx_sched_out(child_ctx);
+	child->perf_event_ctxp[ctxn] = NULL;
+	/*
+	 * If this context is a clone; unclone it so it can't get
+	 * swapped to another process while we're removing all
+	 * the events from it.
+	 */
+	unclone_ctx(child_ctx);
+	update_context_time(child_ctx);
+	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
+
+	/*
+	 * Report the task dead after unscheduling the events so that we
+	 * won't get any samples after PERF_RECORD_EXIT. We can however still
+	 * get a few PERF_RECORD_READ events.
+	 */
+	perf_event_task(child, child_ctx, 0);
+
+	/*
+	 * We can recurse on the same lock type through:
+	 *
+	 *   __perf_event_exit_task()
+	 *     sync_child_event()
+	 *       put_event()
+	 *         mutex_lock(&ctx->mutex)
+	 *
+	 * But since its the parent context it won't be the same instance.
+	 */
+	mutex_lock(&child_ctx->mutex);
+
+again:
+	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
+				 group_entry)
+		__perf_event_exit_task(child_event, child_ctx, child);
+
+	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
+				 group_entry)
+		__perf_event_exit_task(child_event, child_ctx, child);
+
+	/*
+	 * If the last event was a group event, it will have appended all
+	 * its siblings to the list, but we obtained 'tmp' before that which
+	 * will still point to the list head terminating the iteration.
+	 */
+	if (!list_empty(&child_ctx->pinned_groups) ||
+	    !list_empty(&child_ctx->flexible_groups))
+		goto again;
+
+	mutex_unlock(&child_ctx->mutex);
+
+	put_ctx(child_ctx);
+}
+
+/*
+ * When a child task exits, feed back event values to parent events.
+ */
+void perf_event_exit_task(struct task_struct *child)
+{
+	struct perf_event *event, *tmp;
+	int ctxn;
+
+	mutex_lock(&child->perf_event_mutex);
+	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
+				 owner_entry) {
+		list_del_init(&event->owner_entry);
+
+		/*
+		 * Ensure the list deletion is visible before we clear
+		 * the owner, closes a race against perf_release() where
+		 * we need to serialize on the owner->perf_event_mutex.
+		 */
+		smp_wmb();
+		event->owner = NULL;
+	}
+	mutex_unlock(&child->perf_event_mutex);
+
+	for_each_task_context_nr(ctxn)
+		perf_event_exit_task_context(child, ctxn);
+}
+
+static void perf_free_event(struct perf_event *event,
+			    struct perf_event_context *ctx)
+{
+	struct perf_event *parent = event->parent;
+
+	if (WARN_ON_ONCE(!parent))
+		return;
+
+	mutex_lock(&parent->child_mutex);
+	list_del_init(&event->child_list);
+	mutex_unlock(&parent->child_mutex);
+
+	put_event(parent);
+
+	perf_group_detach(event);
+	list_del_event(event, ctx);
+	free_event(event);
+}
+
+/*
+ * free an unexposed, unused context as created by inheritance by
+ * perf_event_init_task below, used by fork() in case of fail.
+ */
+void perf_event_free_task(struct task_struct *task)
+{
+	struct perf_event_context *ctx;
+	struct perf_event *event, *tmp;
+	int ctxn;
+
+	for_each_task_context_nr(ctxn) {
+		ctx = task->perf_event_ctxp[ctxn];
+		if (!ctx)
+			continue;
+
+		mutex_lock(&ctx->mutex);
+again:
+		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
+				group_entry)
+			perf_free_event(event, ctx);
+
+		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
+				group_entry)
+			perf_free_event(event, ctx);
+
+		if (!list_empty(&ctx->pinned_groups) ||
+				!list_empty(&ctx->flexible_groups))
+			goto again;
+
+		mutex_unlock(&ctx->mutex);
+
+		put_ctx(ctx);
+	}
+}
+
+void perf_event_delayed_put(struct task_struct *task)
+{
+	int ctxn;
+
+	for_each_task_context_nr(ctxn)
+		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
+}
+
+/*
+ * inherit a event from parent task to child task:
+ */
+static struct perf_event *
+inherit_event(struct perf_event *parent_event,
+	      struct task_struct *parent,
+	      struct perf_event_context *parent_ctx,
+	      struct task_struct *child,
+	      struct perf_event *group_leader,
+	      struct perf_event_context *child_ctx)
+{
+	struct perf_event *child_event;
+	unsigned long flags;
+
+	/*
+	 * Instead of creating recursive hierarchies of events,
+	 * we link inherited events back to the original parent,
+	 * which has a filp for sure, which we use as the reference
+	 * count:
+	 */
+	if (parent_event->parent)
+		parent_event = parent_event->parent;
+
+	child_event = perf_event_alloc(&parent_event->attr,
+					   parent_event->cpu,
+					   child,
+					   group_leader, parent_event,
+				           NULL, NULL);
+	if (IS_ERR(child_event))
+		return child_event;
+
+	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
+		free_event(child_event);
+		return NULL;
+	}
+
+	get_ctx(child_ctx);
+
+	/*
+	 * Make the child state follow the state of the parent event,
+	 * not its attr.disabled bit.  We hold the parent's mutex,
+	 * so we won't race with perf_event_{en, dis}able_family.
+	 */
+	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
+		child_event->state = PERF_EVENT_STATE_INACTIVE;
+	else
+		child_event->state = PERF_EVENT_STATE_OFF;
+
+	if (parent_event->attr.freq) {
+		u64 sample_period = parent_event->hw.sample_period;
+		struct hw_perf_event *hwc = &child_event->hw;
+
+		hwc->sample_period = sample_period;
+		hwc->last_period   = sample_period;
+
+		local64_set(&hwc->period_left, sample_period);
+	}
+
+	child_event->ctx = child_ctx;
+	child_event->overflow_handler = parent_event->overflow_handler;
+	child_event->overflow_handler_context
+		= parent_event->overflow_handler_context;
+
+	/*
+	 * Precalculate sample_data sizes
+	 */
+	perf_event__header_size(child_event);
+	perf_event__id_header_size(child_event);
+
+	/*
+	 * Link it up in the child's context:
+	 */
+	raw_spin_lock_irqsave(&child_ctx->lock, flags);
+	add_event_to_ctx(child_event, child_ctx);
+	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
+
+	/*
+	 * Link this into the parent event's child list
+	 */
+	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
+	mutex_lock(&parent_event->child_mutex);
+	list_add_tail(&child_event->child_list, &parent_event->child_list);
+	mutex_unlock(&parent_event->child_mutex);
+
+	return child_event;
+}
+
+static int inherit_group(struct perf_event *parent_event,
+	      struct task_struct *parent,
+	      struct perf_event_context *parent_ctx,
+	      struct task_struct *child,
+	      struct perf_event_context *child_ctx)
+{
+	struct perf_event *leader;
+	struct perf_event *sub;
+	struct perf_event *child_ctr;
+
+	leader = inherit_event(parent_event, parent, parent_ctx,
+				 child, NULL, child_ctx);
+	if (IS_ERR(leader))
+		return PTR_ERR(leader);
+	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
+		child_ctr = inherit_event(sub, parent, parent_ctx,
+					    child, leader, child_ctx);
+		if (IS_ERR(child_ctr))
+			return PTR_ERR(child_ctr);
+	}
+	return 0;
+}
+
+static int
+inherit_task_group(struct perf_event *event, struct task_struct *parent,
+		   struct perf_event_context *parent_ctx,
+		   struct task_struct *child, int ctxn,
+		   int *inherited_all)
+{
+	int ret;
+	struct perf_event_context *child_ctx;
+
+	if (!event->attr.inherit) {
+		*inherited_all = 0;
+		return 0;
+	}
+
+	child_ctx = child->perf_event_ctxp[ctxn];
+	if (!child_ctx) {
+		/*
+		 * This is executed from the parent task context, so
+		 * inherit events that have been marked for cloning.
+		 * First allocate and initialize a context for the
+		 * child.
+		 */
+
+		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
+		if (!child_ctx)
+			return -ENOMEM;
+
+		child->perf_event_ctxp[ctxn] = child_ctx;
+	}
+
+	ret = inherit_group(event, parent, parent_ctx,
+			    child, child_ctx);
+
+	if (ret)
+		*inherited_all = 0;
+
+	return ret;
+}
+
+/*
+ * Initialize the perf_event context in task_struct
+ */
+int perf_event_init_context(struct task_struct *child, int ctxn)
+{
+	struct perf_event_context *child_ctx, *parent_ctx;
+	struct perf_event_context *cloned_ctx;
+	struct perf_event *event;
+	struct task_struct *parent = current;
+	int inherited_all = 1;
+	unsigned long flags;
+	int ret = 0;
+
+	if (likely(!parent->perf_event_ctxp[ctxn]))
+		return 0;
+
+	/*
+	 * If the parent's context is a clone, pin it so it won't get
+	 * swapped under us.
+	 */
+	parent_ctx = perf_pin_task_context(parent, ctxn);
+
+	/*
+	 * No need to check if parent_ctx != NULL here; since we saw
+	 * it non-NULL earlier, the only reason for it to become NULL
+	 * is if we exit, and since we're currently in the middle of
+	 * a fork we can't be exiting at the same time.
+	 */
+
+	/*
+	 * Lock the parent list. No need to lock the child - not PID
+	 * hashed yet and not running, so nobody can access it.
+	 */
+	mutex_lock(&parent_ctx->mutex);
+
+	/*
+	 * We dont have to disable NMIs - we are only looking at
+	 * the list, not manipulating it:
+	 */
+	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
+		ret = inherit_task_group(event, parent, parent_ctx,
+					 child, ctxn, &inherited_all);
+		if (ret)
+			break;
+	}
+
+	/*
+	 * We can't hold ctx->lock when iterating the ->flexible_group list due
+	 * to allocations, but we need to prevent rotation because
+	 * rotate_ctx() will change the list from interrupt context.
+	 */
+	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
+	parent_ctx->rotate_disable = 1;
+	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
+
+	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
+		ret = inherit_task_group(event, parent, parent_ctx,
+					 child, ctxn, &inherited_all);
+		if (ret)
+			break;
+	}
+
+	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
+	parent_ctx->rotate_disable = 0;
+
+	child_ctx = child->perf_event_ctxp[ctxn];
+
+	if (child_ctx && inherited_all) {
+		/*
+		 * Mark the child context as a clone of the parent
+		 * context, or of whatever the parent is a clone of.
+		 *
+		 * Note that if the parent is a clone, the holding of
+		 * parent_ctx->lock avoids it from being uncloned.
+		 */
+		cloned_ctx = parent_ctx->parent_ctx;
+		if (cloned_ctx) {
+			child_ctx->parent_ctx = cloned_ctx;
+			child_ctx->parent_gen = parent_ctx->parent_gen;
+		} else {
+			child_ctx->parent_ctx = parent_ctx;
+			child_ctx->parent_gen = parent_ctx->generation;
+		}
+		get_ctx(child_ctx->parent_ctx);
+	}
+
+	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
+	mutex_unlock(&parent_ctx->mutex);
+
+	perf_unpin_context(parent_ctx);
+	put_ctx(parent_ctx);
+
+	return ret;
+}
+
+/*
+ * Initialize the perf_event context in task_struct
+ */
+int perf_event_init_task(struct task_struct *child)
+{
+	int ctxn, ret;
+
+	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
+	mutex_init(&child->perf_event_mutex);
+	INIT_LIST_HEAD(&child->perf_event_list);
+
+	for_each_task_context_nr(ctxn) {
+		ret = perf_event_init_context(child, ctxn);
+		if (ret) {
+			perf_event_free_task(child);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static void __init perf_event_init_all_cpus(void)
+{
+	struct swevent_htable *swhash;
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		swhash = &per_cpu(swevent_htable, cpu);
+		mutex_init(&swhash->hlist_mutex);
+		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
+	}
+}
+
+static void __cpuinit perf_event_init_cpu(int cpu)
+{
+	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
+
+	mutex_lock(&swhash->hlist_mutex);
+	swhash->online = true;
+	if (swhash->hlist_refcount > 0) {
+		struct swevent_hlist *hlist;
+
+		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
+		WARN_ON(!hlist);
+		rcu_assign_pointer(swhash->swevent_hlist, hlist);
+	}
+	mutex_unlock(&swhash->hlist_mutex);
+}
+
+#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
+static void perf_pmu_rotate_stop(struct pmu *pmu)
+{
+	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
+
+	WARN_ON(!irqs_disabled());
+
+	list_del_init(&cpuctx->rotation_list);
+}
+
+static void __perf_event_exit_context(void *__info)
+{
+	struct remove_event re = { .detach_group = false };
+	struct perf_event_context *ctx = __info;
+
+	perf_pmu_rotate_stop(ctx->pmu);
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
+		__perf_remove_from_context(&re);
+	rcu_read_unlock();
+}
+
+static void perf_event_exit_cpu_context(int cpu)
+{
+	struct perf_event_context *ctx;
+	struct pmu *pmu;
+	int idx;
+
+	idx = srcu_read_lock(&pmus_srcu);
+	list_for_each_entry_rcu(pmu, &pmus, entry) {
+		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
+
+		mutex_lock(&ctx->mutex);
+		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
+		mutex_unlock(&ctx->mutex);
+	}
+	srcu_read_unlock(&pmus_srcu, idx);
+}
+
+static void perf_event_exit_cpu(int cpu)
+{
+	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
+
+	perf_event_exit_cpu_context(cpu);
+
+	mutex_lock(&swhash->hlist_mutex);
+	swhash->online = false;
+	swevent_hlist_release(swhash);
+	mutex_unlock(&swhash->hlist_mutex);
+}
+#else
+static inline void perf_event_exit_cpu(int cpu) { }
+#endif
+
+static int
+perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
+{
+	int cpu;
+
+	for_each_online_cpu(cpu)
+		perf_event_exit_cpu(cpu);
+
+	return NOTIFY_OK;
+}
+
+/*
+ * Run the perf reboot notifier at the very last possible moment so that
+ * the generic watchdog code runs as long as possible.
+ */
+static struct notifier_block perf_reboot_notifier = {
+	.notifier_call = perf_reboot,
+	.priority = INT_MIN,
+};
+
+static int __cpuinit
+perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
+{
+	unsigned int cpu = (long)hcpu;
+
+	switch (action & ~CPU_TASKS_FROZEN) {
+
+	case CPU_UP_PREPARE:
+	case CPU_DOWN_FAILED:
+		perf_event_init_cpu(cpu);
+		break;
+
+	case CPU_UP_CANCELED:
+	case CPU_DOWN_PREPARE:
+		perf_event_exit_cpu(cpu);
+		break;
+
+	default:
+		break;
+	}
+
+	return NOTIFY_OK;
+}
+
+void __init perf_event_init(void)
+{
+	int ret;
+
+	idr_init(&pmu_idr);
+
+	perf_event_init_all_cpus();
+	init_srcu_struct(&pmus_srcu);
+	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
+	perf_pmu_register(&perf_cpu_clock, NULL, -1);
+	perf_pmu_register(&perf_task_clock, NULL, -1);
+	perf_tp_register();
+	perf_cpu_notifier(perf_cpu_notify);
+	register_reboot_notifier(&perf_reboot_notifier);
+
+	ret = init_hw_breakpoint();
+	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
+
+	/* do not patch jump label more than once per second */
+	jump_label_rate_limit(&perf_sched_events, HZ);
+
+	/*
+	 * Build time assertion that we keep the data_head at the intended
+	 * location.  IOW, validation we got the __reserved[] size right.
+	 */
+	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
+		     != 1024);
+}
+
+static int __init perf_event_sysfs_init(void)
+{
+	struct pmu *pmu;
+	int ret;
+
+	mutex_lock(&pmus_lock);
+
+	ret = bus_register(&pmu_bus);
+	if (ret)
+		goto unlock;
+
+	list_for_each_entry(pmu, &pmus, entry) {
+		if (!pmu->name || pmu->type < 0)
+			continue;
+
+		ret = pmu_dev_alloc(pmu);
+		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
+	}
+	pmu_bus_running = 1;
+	ret = 0;
+
+unlock:
+	mutex_unlock(&pmus_lock);
+
+	return ret;
+}
+device_initcall(perf_event_sysfs_init);
+
+#ifdef CONFIG_CGROUP_PERF
+static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
+{
+	struct perf_cgroup *jc;
+
+	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
+	if (!jc)
+		return ERR_PTR(-ENOMEM);
+
+	jc->info = alloc_percpu(struct perf_cgroup_info);
+	if (!jc->info) {
+		kfree(jc);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	return &jc->css;
+}
+
+static void perf_cgroup_destroy(struct cgroup *cont)
+{
+	struct perf_cgroup *jc;
+	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
+			  struct perf_cgroup, css);
+	free_percpu(jc->info);
+	kfree(jc);
+}
+
+static int __perf_cgroup_move(void *info)
+{
+	struct task_struct *task = info;
+	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
+	return 0;
+}
+
+static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+{
+	struct task_struct *task;
+
+	cgroup_taskset_for_each(task, cgrp, tset)
+		task_function_call(task, __perf_cgroup_move, task);
+}
+
+static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
+			     struct task_struct *task)
+{
+	/*
+	 * cgroup_exit() is called in the copy_process() failure path.
+	 * Ignore this case since the task hasn't ran yet, this avoids
+	 * trying to poke a half freed task state from generic code.
+	 */
+	if (!(task->flags & PF_EXITING))
+		return;
+
+	task_function_call(task, __perf_cgroup_move, task);
+}
+
+struct cgroup_subsys perf_subsys = {
+	.name		= "perf_event",
+	.subsys_id	= perf_subsys_id,
+	.create		= perf_cgroup_create,
+	.destroy	= perf_cgroup_destroy,
+	.exit		= perf_cgroup_exit,
+	.attach		= perf_cgroup_attach,
+};
+#endif /* CONFIG_CGROUP_PERF */
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/hw_breakpoint.c b/ap/os/linux/linux-3.4.x/kernel/events/hw_breakpoint.c
new file mode 100644
index 0000000..fc8bfcf
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/hw_breakpoint.c
@@ -0,0 +1,676 @@
+/*
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright (C) 2007 Alan Stern
+ * Copyright (C) IBM Corporation, 2009
+ * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
+ *
+ * Thanks to Ingo Molnar for his many suggestions.
+ *
+ * Authors: Alan Stern <stern@rowland.harvard.edu>
+ *          K.Prasad <prasad@linux.vnet.ibm.com>
+ *          Frederic Weisbecker <fweisbec@gmail.com>
+ */
+
+/*
+ * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
+ * using the CPU's debug registers.
+ * This file contains the arch-independent routines.
+ */
+
+#include <linux/irqflags.h>
+#include <linux/kallsyms.h>
+#include <linux/notifier.h>
+#include <linux/kprobes.h>
+#include <linux/kdebug.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/percpu.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/list.h>
+#include <linux/cpu.h>
+#include <linux/smp.h>
+
+#include <linux/hw_breakpoint.h>
+
+
+/*
+ * Constraints data
+ */
+
+/* Number of pinned cpu breakpoints in a cpu */
+static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]);
+
+/* Number of pinned task breakpoints in a cpu */
+static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]);
+
+/* Number of non-pinned cpu/task breakpoints in a cpu */
+static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]);
+
+static int nr_slots[TYPE_MAX];
+
+/* Keep track of the breakpoints attached to tasks */
+static LIST_HEAD(bp_task_head);
+
+static int constraints_initialized;
+
+/* Gather the number of total pinned and un-pinned bp in a cpuset */
+struct bp_busy_slots {
+	unsigned int pinned;
+	unsigned int flexible;
+};
+
+/* Serialize accesses to the above constraints */
+static DEFINE_MUTEX(nr_bp_mutex);
+
+__weak int hw_breakpoint_weight(struct perf_event *bp)
+{
+	return 1;
+}
+
+static inline enum bp_type_idx find_slot_idx(struct perf_event *bp)
+{
+	if (bp->attr.bp_type & HW_BREAKPOINT_RW)
+		return TYPE_DATA;
+
+	return TYPE_INST;
+}
+
+/*
+ * Report the maximum number of pinned breakpoints a task
+ * have in this cpu
+ */
+static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
+{
+	int i;
+	unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
+
+	for (i = nr_slots[type] - 1; i >= 0; i--) {
+		if (tsk_pinned[i] > 0)
+			return i + 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Count the number of breakpoints of the same type and same task.
+ * The given event must be not on the list.
+ */
+static int task_bp_pinned(struct perf_event *bp, enum bp_type_idx type)
+{
+	struct task_struct *tsk = bp->hw.bp_target;
+	struct perf_event *iter;
+	int count = 0;
+
+	list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
+		if (iter->hw.bp_target == tsk && find_slot_idx(iter) == type)
+			count += hw_breakpoint_weight(iter);
+	}
+
+	return count;
+}
+
+/*
+ * Report the number of pinned/un-pinned breakpoints we have in
+ * a given cpu (cpu > -1) or in all of them (cpu = -1).
+ */
+static void
+fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
+		    enum bp_type_idx type)
+{
+	int cpu = bp->cpu;
+	struct task_struct *tsk = bp->hw.bp_target;
+
+	if (cpu >= 0) {
+		slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu);
+		if (!tsk)
+			slots->pinned += max_task_bp_pinned(cpu, type);
+		else
+			slots->pinned += task_bp_pinned(bp, type);
+		slots->flexible = per_cpu(nr_bp_flexible[type], cpu);
+
+		return;
+	}
+
+	for_each_possible_cpu(cpu) {
+		unsigned int nr;
+
+		nr = per_cpu(nr_cpu_bp_pinned[type], cpu);
+		if (!tsk)
+			nr += max_task_bp_pinned(cpu, type);
+		else
+			nr += task_bp_pinned(bp, type);
+
+		if (nr > slots->pinned)
+			slots->pinned = nr;
+
+		nr = per_cpu(nr_bp_flexible[type], cpu);
+
+		if (nr > slots->flexible)
+			slots->flexible = nr;
+	}
+}
+
+/*
+ * For now, continue to consider flexible as pinned, until we can
+ * ensure no flexible event can ever be scheduled before a pinned event
+ * in a same cpu.
+ */
+static void
+fetch_this_slot(struct bp_busy_slots *slots, int weight)
+{
+	slots->pinned += weight;
+}
+
+/*
+ * Add a pinned breakpoint for the given task in our constraint table
+ */
+static void toggle_bp_task_slot(struct perf_event *bp, int cpu, bool enable,
+				enum bp_type_idx type, int weight)
+{
+	unsigned int *tsk_pinned;
+	int old_count = 0;
+	int old_idx = 0;
+	int idx = 0;
+
+	old_count = task_bp_pinned(bp, type);
+	old_idx = old_count - 1;
+	idx = old_idx + weight;
+
+	/* tsk_pinned[n] is the number of tasks having n breakpoints */
+	tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
+	if (enable) {
+		tsk_pinned[idx]++;
+		if (old_count > 0)
+			tsk_pinned[old_idx]--;
+	} else {
+		tsk_pinned[idx]--;
+		if (old_count > 0)
+			tsk_pinned[old_idx]++;
+	}
+}
+
+/*
+ * Add/remove the given breakpoint in our constraint table
+ */
+static void
+toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
+	       int weight)
+{
+	int cpu = bp->cpu;
+	struct task_struct *tsk = bp->hw.bp_target;
+
+	/* Pinned counter cpu profiling */
+	if (!tsk) {
+
+		if (enable)
+			per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight;
+		else
+			per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight;
+		return;
+	}
+
+	/* Pinned counter task profiling */
+
+	if (!enable)
+		list_del(&bp->hw.bp_list);
+
+	if (cpu >= 0) {
+		toggle_bp_task_slot(bp, cpu, enable, type, weight);
+	} else {
+		for_each_possible_cpu(cpu)
+			toggle_bp_task_slot(bp, cpu, enable, type, weight);
+	}
+
+	if (enable)
+		list_add_tail(&bp->hw.bp_list, &bp_task_head);
+}
+
+/*
+ * Function to perform processor-specific cleanup during unregistration
+ */
+__weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
+{
+	/*
+	 * A weak stub function here for those archs that don't define
+	 * it inside arch/.../kernel/hw_breakpoint.c
+	 */
+}
+
+/*
+ * Contraints to check before allowing this new breakpoint counter:
+ *
+ *  == Non-pinned counter == (Considered as pinned for now)
+ *
+ *   - If attached to a single cpu, check:
+ *
+ *       (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ *           + max(per_cpu(nr_task_bp_pinned, cpu)))) < HBP_NUM
+ *
+ *       -> If there are already non-pinned counters in this cpu, it means
+ *          there is already a free slot for them.
+ *          Otherwise, we check that the maximum number of per task
+ *          breakpoints (for this cpu) plus the number of per cpu breakpoint
+ *          (for this cpu) doesn't cover every registers.
+ *
+ *   - If attached to every cpus, check:
+ *
+ *       (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ *           + max(per_cpu(nr_task_bp_pinned, *)))) < HBP_NUM
+ *
+ *       -> This is roughly the same, except we check the number of per cpu
+ *          bp for every cpu and we keep the max one. Same for the per tasks
+ *          breakpoints.
+ *
+ *
+ * == Pinned counter ==
+ *
+ *   - If attached to a single cpu, check:
+ *
+ *       ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu)
+ *            + max(per_cpu(nr_task_bp_pinned, cpu))) < HBP_NUM
+ *
+ *       -> Same checks as before. But now the nr_bp_flexible, if any, must keep
+ *          one register at least (or they will never be fed).
+ *
+ *   - If attached to every cpus, check:
+ *
+ *       ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *))
+ *            + max(per_cpu(nr_task_bp_pinned, *))) < HBP_NUM
+ */
+static int __reserve_bp_slot(struct perf_event *bp)
+{
+	struct bp_busy_slots slots = {0};
+	enum bp_type_idx type;
+	int weight;
+
+	/* We couldn't initialize breakpoint constraints on boot */
+	if (!constraints_initialized)
+		return -ENOMEM;
+
+	/* Basic checks */
+	if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY ||
+	    bp->attr.bp_type == HW_BREAKPOINT_INVALID)
+		return -EINVAL;
+
+	type = find_slot_idx(bp);
+	weight = hw_breakpoint_weight(bp);
+
+	fetch_bp_busy_slots(&slots, bp, type);
+	/*
+	 * Simulate the addition of this breakpoint to the constraints
+	 * and see the result.
+	 */
+	fetch_this_slot(&slots, weight);
+
+	/* Flexible counters need to keep at least one slot */
+	if (slots.pinned + (!!slots.flexible) > nr_slots[type])
+		return -ENOSPC;
+
+	toggle_bp_slot(bp, true, type, weight);
+
+	return 0;
+}
+
+int reserve_bp_slot(struct perf_event *bp)
+{
+	int ret;
+
+	mutex_lock(&nr_bp_mutex);
+
+	ret = __reserve_bp_slot(bp);
+
+	mutex_unlock(&nr_bp_mutex);
+
+	return ret;
+}
+
+static void __release_bp_slot(struct perf_event *bp)
+{
+	enum bp_type_idx type;
+	int weight;
+
+	type = find_slot_idx(bp);
+	weight = hw_breakpoint_weight(bp);
+	toggle_bp_slot(bp, false, type, weight);
+}
+
+void release_bp_slot(struct perf_event *bp)
+{
+	mutex_lock(&nr_bp_mutex);
+
+	arch_unregister_hw_breakpoint(bp);
+	__release_bp_slot(bp);
+
+	mutex_unlock(&nr_bp_mutex);
+}
+
+/*
+ * Allow the kernel debugger to reserve breakpoint slots without
+ * taking a lock using the dbg_* variant of for the reserve and
+ * release breakpoint slots.
+ */
+int dbg_reserve_bp_slot(struct perf_event *bp)
+{
+	if (mutex_is_locked(&nr_bp_mutex))
+		return -1;
+
+	return __reserve_bp_slot(bp);
+}
+
+int dbg_release_bp_slot(struct perf_event *bp)
+{
+	if (mutex_is_locked(&nr_bp_mutex))
+		return -1;
+
+	__release_bp_slot(bp);
+
+	return 0;
+}
+
+static int validate_hw_breakpoint(struct perf_event *bp)
+{
+	int ret;
+
+	ret = arch_validate_hwbkpt_settings(bp);
+	if (ret)
+		return ret;
+
+	if (arch_check_bp_in_kernelspace(bp)) {
+		if (bp->attr.exclude_kernel)
+			return -EINVAL;
+		/*
+		 * Don't let unprivileged users set a breakpoint in the trap
+		 * path to avoid trap recursion attacks.
+		 */
+		if (!capable(CAP_SYS_ADMIN))
+			return -EPERM;
+	}
+
+	return 0;
+}
+
+int register_perf_hw_breakpoint(struct perf_event *bp)
+{
+	int ret;
+
+	ret = reserve_bp_slot(bp);
+	if (ret)
+		return ret;
+
+	ret = validate_hw_breakpoint(bp);
+
+	/* if arch_validate_hwbkpt_settings() fails then release bp slot */
+	if (ret)
+		release_bp_slot(bp);
+
+	return ret;
+}
+
+/**
+ * register_user_hw_breakpoint - register a hardware breakpoint for user space
+ * @attr: breakpoint attributes
+ * @triggered: callback to trigger when we hit the breakpoint
+ * @tsk: pointer to 'task_struct' of the process to which the address belongs
+ */
+struct perf_event *
+register_user_hw_breakpoint(struct perf_event_attr *attr,
+			    perf_overflow_handler_t triggered,
+			    void *context,
+			    struct task_struct *tsk)
+{
+	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
+						context);
+}
+EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
+
+/**
+ * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
+ * @bp: the breakpoint structure to modify
+ * @attr: new breakpoint attributes
+ * @triggered: callback to trigger when we hit the breakpoint
+ * @tsk: pointer to 'task_struct' of the process to which the address belongs
+ */
+int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
+{
+	u64 old_addr = bp->attr.bp_addr;
+	u64 old_len = bp->attr.bp_len;
+	int old_type = bp->attr.bp_type;
+	int err = 0;
+
+	perf_event_disable(bp);
+
+	bp->attr.bp_addr = attr->bp_addr;
+	bp->attr.bp_type = attr->bp_type;
+	bp->attr.bp_len = attr->bp_len;
+
+	if (attr->disabled)
+		goto end;
+
+	err = validate_hw_breakpoint(bp);
+	if (!err)
+		perf_event_enable(bp);
+
+	if (err) {
+		bp->attr.bp_addr = old_addr;
+		bp->attr.bp_type = old_type;
+		bp->attr.bp_len = old_len;
+		if (!bp->attr.disabled)
+			perf_event_enable(bp);
+
+		return err;
+	}
+
+end:
+	bp->attr.disabled = attr->disabled;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
+
+/**
+ * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
+ * @bp: the breakpoint structure to unregister
+ */
+void unregister_hw_breakpoint(struct perf_event *bp)
+{
+	if (!bp)
+		return;
+	perf_event_release_kernel(bp);
+}
+EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
+
+/**
+ * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
+ * @attr: breakpoint attributes
+ * @triggered: callback to trigger when we hit the breakpoint
+ *
+ * @return a set of per_cpu pointers to perf events
+ */
+struct perf_event * __percpu *
+register_wide_hw_breakpoint(struct perf_event_attr *attr,
+			    perf_overflow_handler_t triggered,
+			    void *context)
+{
+	struct perf_event * __percpu *cpu_events, **pevent, *bp;
+	long err;
+	int cpu;
+
+	cpu_events = alloc_percpu(typeof(*cpu_events));
+	if (!cpu_events)
+		return (void __percpu __force *)ERR_PTR(-ENOMEM);
+
+	get_online_cpus();
+	for_each_online_cpu(cpu) {
+		pevent = per_cpu_ptr(cpu_events, cpu);
+		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
+						      triggered, context);
+
+		*pevent = bp;
+
+		if (IS_ERR(bp)) {
+			err = PTR_ERR(bp);
+			goto fail;
+		}
+	}
+	put_online_cpus();
+
+	return cpu_events;
+
+fail:
+	for_each_online_cpu(cpu) {
+		pevent = per_cpu_ptr(cpu_events, cpu);
+		if (IS_ERR(*pevent))
+			break;
+		unregister_hw_breakpoint(*pevent);
+	}
+	put_online_cpus();
+
+	free_percpu(cpu_events);
+	return (void __percpu __force *)ERR_PTR(err);
+}
+EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
+
+/**
+ * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
+ * @cpu_events: the per cpu set of events to unregister
+ */
+void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
+{
+	int cpu;
+	struct perf_event **pevent;
+
+	for_each_possible_cpu(cpu) {
+		pevent = per_cpu_ptr(cpu_events, cpu);
+		unregister_hw_breakpoint(*pevent);
+	}
+	free_percpu(cpu_events);
+}
+EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
+
+static struct notifier_block hw_breakpoint_exceptions_nb = {
+	.notifier_call = hw_breakpoint_exceptions_notify,
+	/* we need to be notified first */
+	.priority = 0x7fffffff
+};
+
+static void bp_perf_event_destroy(struct perf_event *event)
+{
+	release_bp_slot(event);
+}
+
+static int hw_breakpoint_event_init(struct perf_event *bp)
+{
+	int err;
+
+	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
+		return -ENOENT;
+
+	/*
+	 * no branch sampling for breakpoint events
+	 */
+	if (has_branch_stack(bp))
+		return -EOPNOTSUPP;
+
+	err = register_perf_hw_breakpoint(bp);
+	if (err)
+		return err;
+
+	bp->destroy = bp_perf_event_destroy;
+
+	return 0;
+}
+
+static int hw_breakpoint_add(struct perf_event *bp, int flags)
+{
+	if (!(flags & PERF_EF_START))
+		bp->hw.state = PERF_HES_STOPPED;
+
+	return arch_install_hw_breakpoint(bp);
+}
+
+static void hw_breakpoint_del(struct perf_event *bp, int flags)
+{
+	arch_uninstall_hw_breakpoint(bp);
+}
+
+static void hw_breakpoint_start(struct perf_event *bp, int flags)
+{
+	bp->hw.state = 0;
+}
+
+static void hw_breakpoint_stop(struct perf_event *bp, int flags)
+{
+	bp->hw.state = PERF_HES_STOPPED;
+}
+
+static int hw_breakpoint_event_idx(struct perf_event *bp)
+{
+	return 0;
+}
+
+static struct pmu perf_breakpoint = {
+	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
+
+	.event_init	= hw_breakpoint_event_init,
+	.add		= hw_breakpoint_add,
+	.del		= hw_breakpoint_del,
+	.start		= hw_breakpoint_start,
+	.stop		= hw_breakpoint_stop,
+	.read		= hw_breakpoint_pmu_read,
+
+	.event_idx	= hw_breakpoint_event_idx,
+};
+
+int __init init_hw_breakpoint(void)
+{
+	unsigned int **task_bp_pinned;
+	int cpu, err_cpu;
+	int i;
+
+	for (i = 0; i < TYPE_MAX; i++)
+		nr_slots[i] = hw_breakpoint_slots(i);
+
+	for_each_possible_cpu(cpu) {
+		for (i = 0; i < TYPE_MAX; i++) {
+			task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu);
+			*task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i],
+						  GFP_KERNEL);
+			if (!*task_bp_pinned)
+				goto err_alloc;
+		}
+	}
+
+	constraints_initialized = 1;
+
+	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
+
+	return register_die_notifier(&hw_breakpoint_exceptions_nb);
+
+ err_alloc:
+	for_each_possible_cpu(err_cpu) {
+		for (i = 0; i < TYPE_MAX; i++)
+			kfree(per_cpu(nr_task_bp_pinned[i], cpu));
+		if (err_cpu == cpu)
+			break;
+	}
+
+	return -ENOMEM;
+}
+
+
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/hw_breakpoint_manage.c b/ap/os/linux/linux-3.4.x/kernel/events/hw_breakpoint_manage.c
new file mode 100755
index 0000000..de45044
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/hw_breakpoint_manage.c
@@ -0,0 +1,1002 @@
+/*
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright (C) 2009, 2010 ARM Limited
+ *
+ * Author: Will Deacon <will.deacon@arm.com>
+ */
+
+/*
+ * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
+ * using the CPU's debug registers.
+ */
+#ifdef CONFIG_HW_BREAKPOINT_MANAGE
+#include <linux/string.h>
+#include <linux/proc_fs.h>
+#include <linux/ctype.h>
+#include <linux/seq_file.h>
+#include <asm/uaccess.h>
+#include <linux/hw_breakpoint.h>
+#include <linux/hw_breakpoint_manage.h>
+
+hw_brk_pool_t 		*hw_brks_pool;
+u32					breakpoint_step_flag	= 0;
+u32					breakpoint_far_val		= 0;
+static hw_context_t wp_bp_context_table[HW_MAX_BREAKPOINT_COUNT] 	= {{0}};
+static char 		shell_cmd_result[HW_BREAKPOINT_RESULT_MAX_LEN] 	= {0};
+
+/* Number of BRP/WRP registers on this CPU. */
+static int	arm_brps_num;
+static int	arm_wrps_num;
+
+static void	hw_print_regs(void);
+static void	hw_printk_list(void);
+static u32 	bcr_read(u32 num);
+static void bcr_write(u32 num, u32 value);
+static u32 	bvr_read(u32 num);
+static void bvr_write(u32 num, u32 value);
+static u32 	wcr_read(u32 num);
+static void wcr_write(u32 num, u32 value);
+static u32 	wvr_read(u32 num);
+static void wvr_write(u32 num, u32 value);
+
+void hw_breakpoint_enable_program(u32 num)
+{
+    u32 bcr;
+    bcr = bcr_read(num);
+    bcr |= 0x1;
+	bcr_write(num, bcr);
+}
+
+void hw_breakpoint_disable_program(u32 num)
+{
+    u32 bcr;
+    
+    bcr = bcr_read(num);
+    if (bcr & 0x1){
+        bcr &= ~(0x1);
+        bcr_write(num, bcr);
+    }
+}
+
+void hw_breakpoint_enable_data(u32 num)
+{
+    u32 wcr;
+		
+    wcr = wcr_read(num);
+    wcr |= 0x1;
+	wcr_write(num, wcr);
+}
+
+void hw_breakpoint_disable_data(u32 num)
+{
+    u32 wcr;
+    wcr = wcr_read(num);
+    if (wcr & 0x1){
+        wcr &= ~(0x1);
+		wcr_write(num, wcr);
+    }
+}
+
+void hw_breakpoint_do_action(u8 enableflag)
+{
+	int 				i 		   = 0;
+	struct perf_event 	**slots_bp = NULL;
+	struct perf_event 	**slots_wp = NULL;
+
+    if (!hw_brks_pool->enable)
+        return;
+
+	slots_wp = get_wrps_regs();
+	slots_bp = get_brps_regs();
+
+	/*Index 0 is reserved for step breakpoint. */
+	for (i = 1; i < arm_brps_num; i++) {
+		if (slots_bp[i] != NULL){
+			if(enableflag == HW_BREAKPOINT_ENABLE_REGS)
+				hw_breakpoint_enable_program(i);
+			else
+				hw_breakpoint_disable_program(i);
+		}
+	}
+	for (i = 0; i < arm_wrps_num; i++) {
+	   if (slots_wp[i] != NULL){
+			if(enableflag == HW_BREAKPOINT_ENABLE_REGS)
+				hw_breakpoint_enable_data(i);
+			else
+				hw_breakpoint_disable_data(i);
+		}
+	}
+}
+
+
+bool hw_breakpoint_match_databreak(u32 address)
+{
+	int 				i 				= 0;
+	int 				cond_start_data	= 0;
+	int 				cond_end_data	= 0;
+	struct 	perf_event 	*wp		  		= NULL;
+    struct 	perf_event 	**slots_wp 		= NULL;
+	bool 				ret 			= HW_BREAKPOINT_FAIL;
+	unsigned long		wp_addr  		= 0;
+	__u64				watch_addr  	= 0;
+
+	slots_wp = get_wrps_regs();
+	for (i = 0; i < arm_brps_num; i++) {
+		rcu_read_lock();
+      	wp = slots_wp[i];
+		if (!wp)
+			continue;
+
+	    if (address >= wp->attr.bp_addr && address < (wp->attr.bp_addr + 0x4)){
+	   		watch_addr 		= wp->attr.bp_addr;
+			cond_start_data = wp->attr.cond_start_data;
+			cond_end_data   = wp->attr.cond_end_data;
+			wp_addr		= (unsigned long)watch_addr;
+			switch (wp->attr.bp_cond){
+			case HW_BREAKPOINT_COND_IN_RANGE:
+				
+				if ((wp_addr & 0x3) == 0){
+				    if ((HW_BREAKPOINT_REG32(wp_addr) >= (unsigned long)cond_start_data)
+						&&(HW_BREAKPOINT_REG32(wp_addr) <= (unsigned long)cond_end_data)){					
+							rcu_read_unlock();
+					        return HW_BREAKPOINT_SUCCESS; /*break*/
+				   	}
+				    else
+				        continue;
+				}
+				else if ((wp_addr & 0x1) == 0){
+				    if ((HW_BREAKPOINT_REG16(wp_addr) >= (cond_start_data & 0xFFFF))
+						&& (HW_BREAKPOINT_REG16(wp_addr) <= (cond_end_data & 0xFFFF))){
+						rcu_read_unlock();
+						return HW_BREAKPOINT_SUCCESS; /*break*/
+					}
+				    else
+				        continue;
+				}
+				else{
+				     if ((HW_BREAKPOINT_REG8(wp_addr) >= (cond_start_data & 0xFF))
+						&&(HW_BREAKPOINT_REG8(wp_addr) <= (cond_end_data & 0xFF))){
+						rcu_read_unlock();
+						return HW_BREAKPOINT_SUCCESS; /*break*/
+					}
+				    else
+				        continue;
+				}
+				break;
+			case HW_BREAKPOINT_COND_OUT_RANGE:
+				if ((wp_addr & 0x3) == 0){
+				     if ((HW_BREAKPOINT_REG32(wp_addr) < (long)cond_start_data)
+						||(HW_BREAKPOINT_REG32(wp_addr) > (long)cond_end_data)){
+						rcu_read_unlock();
+						return HW_BREAKPOINT_SUCCESS; /*break*/
+					}
+				    else
+				        continue;
+				}
+				else if ((wp_addr & 0x1) == 0){
+				    if ((HW_BREAKPOINT_REG16(wp_addr) < (cond_start_data & 0xFFFF))
+						||(HW_BREAKPOINT_REG16(wp_addr) > (cond_end_data & 0xFFFF))){
+						rcu_read_unlock();
+						return HW_BREAKPOINT_SUCCESS; /*break*/
+					}
+				    else
+				        continue;
+				}
+				else{
+				     if ((HW_BREAKPOINT_REG8(wp_addr) < (cond_start_data & 0xFF))
+						||(HW_BREAKPOINT_REG8(wp_addr) > (cond_end_data & 0xFF))){
+						rcu_read_unlock();
+						return HW_BREAKPOINT_SUCCESS; /*break*/
+					}
+				    else
+				        continue;
+				}
+				break;
+			default:
+				break;
+		    }			
+		}
+	}
+	rcu_read_unlock();
+	return ret;
+}
+
+static u32 bcr_read(u32 num)
+{
+	return arm_bpwp_regs_read(ARM_BASE_BCR + num);
+}
+
+static void bcr_write(u32 num, u32 value)
+{
+	arm_bpwp_regs_write(ARM_BASE_BCR + num, value);
+}
+
+static u32 bvr_read(u32 num)
+{
+	return arm_bpwp_regs_read(ARM_BASE_BVR + num);
+}
+
+static void bvr_write(u32 num, u32 value)
+{
+	arm_bpwp_regs_write(ARM_BASE_BVR + num, value);
+}
+
+static u32 wcr_read(u32 num)
+{
+	return arm_bpwp_regs_read(ARM_BASE_WCR + num);
+}
+
+static void wcr_write(u32 num, u32 value)
+{
+	arm_bpwp_regs_write(ARM_BASE_WCR + num, value);
+}
+
+static u32 wvr_read(u32 num)
+{
+	return arm_bpwp_regs_read(ARM_BASE_WVR + num);
+}
+
+static void wvr_write(u32 num, u32 value)
+{
+	arm_bpwp_regs_write(ARM_BASE_WVR + num, value);
+}
+
+u32 dscr_read(void)
+{
+	unsigned int value = 0;
+#if defined (__GNUC__)
+	asm volatile("mrc p14,0,%0,c0,c2,2" : "=r" (value));
+#elif defined(__ARMCC_VERSION)
+	__asm { mrc p14,0,value,c0,c1,0; }
+#endif
+	return value;
+}
+
+void dscr_write(u32  value)
+{
+#if defined (__GNUC__)
+	// asm volatile("mcr p14,0,%0,c0,c1,0" :: "r" (value));DBGDSCRINT;
+	asm volatile("mcr p14,0,%0,c0,c2,2" :: "r" (value));
+#elif defined(__ARMCC_VERSION)
+	__asm { mcr p14,0,value,c0,c1,0; }
+#endif
+}
+
+static u32 oslar_read(void)  
+{
+    u32 value = 0;
+    asm volatile("mrc p14,0,%0,c1,c0,4" : "=r" (value));
+    return value;
+}
+
+u32 didr_read(void)
+{
+    u32 value = 0;
+
+#if defined (__GNUC__)
+	asm volatile("mrc p14,0,%0,c0,c0,0" : "=r" (value));
+#elif defined(__ARMCC_VERSION)
+	__asm { mrc p14,0,value,c0,c0,0; }
+#endif
+    return value;
+}
+
+void oslar_write(u32 value)
+{
+    asm volatile("mcr p14,0,%0,c1,c0,4" :: "r" (value));
+}
+
+u32 far_read(void)
+{
+    u32 value = 0;
+#if defined (__GNUC__)
+        asm volatile("mrc p15,0,%0,c6,c0,0" : "=r" (value));
+#elif defined(__ARMCC_VERSION)
+        __asm { mrc p15, 0, value, c6, c0, 0; }
+#endif
+    return value;
+}
+
+
+static int hw_breakpoint_del_data(u32 num)
+{
+	struct perf_event 		**wrps 		= NULL; 
+	struct perf_event       **brps		= NULL;	
+	struct perf_event 		**slots_wp 	= NULL; 
+	struct perf_event 		**slots_bp 	= NULL; 
+    u8                      step_index 	= 0;
+
+	if (num >= arm_wrps_num){
+		printk("[Hw breakpoint]Error param: num is out of range 0-%d\n", arm_wrps_num);
+		return HW_BREAKPOINT_ERR_NUM_OUTOFRANGE;
+	}
+	
+	slots_wp = get_wrps_regs();
+	slots_bp = get_brps_regs();
+
+	wrps = &slots_wp[num];
+	
+	/*step¶ÏµãʹÓõÚ0ºÅ*/
+	step_index 	= HW_BREAKPOINT_STEP_REGS_INDEX;
+	brps 		= &slots_bp[step_index];
+	
+	if (*wrps == NULL){
+		printk("[hw breakpoint]del data fail, index %d watchpoint is NULL\n",num);
+		return -EPERM;
+	}
+	
+	if (*brps != NULL){
+		if (slots_wp[num]->attr.step_addr ==    \
+			slots_bp[step_index]->attr.step_addr){			
+			bcr_write(step_index, 0);	
+			bvr_write(step_index, 0);
+			*brps = NULL;
+		}
+	}	
+	unregister_hw_breakpoint(*wrps);
+	wcr_write(num, 0);
+	wvr_write(num, 0);
+	*wrps = NULL;	
+	return HW_BREAKPOINT_SUCCESS;
+}
+
+static int hw_breakpoint_del_program(u32 num)
+{
+	struct perf_event	**slots_bp = NULL; 
+	struct perf_event 	**brps     = NULL;	
+
+	if (num == 0 || num >= arm_brps_num){
+		printk("Error param:num 0 is reserve for step breakpoint,num %d is out of range 1-%d,\n",num, arm_brps_num);
+		return HW_BREAKPOINT_ERR_NUM_OUTOFRANGE;
+	}
+		
+	slots_bp = get_brps_regs();
+	
+	brps = &slots_bp[num];
+	if (*brps == NULL){
+		printk("[hw breakpoint]del data fail, index %d breakpoint is NULL\n",num);
+		return -EPERM;
+	}
+	
+	unregister_hw_breakpoint(*brps);
+	bcr_write(num, 0);
+	bvr_write(num, 0);
+
+	*brps = NULL;
+	return HW_BREAKPOINT_SUCCESS;
+}
+
+
+/**
+ * hw_register_set_watchponit - register a watchponit in the kernel
+ * @wp_param: breakpoint attributes
+ * @callback_fun: callback to trigger when we hit the watchponit
+ *
+ * @return a set of per_cpu pointers to perf events
+ */
+
+static int hw_register_set_watchponit(hw_brk_setdata_param_t *wp_param, perf_overflow_handler_t callback_fun)
+{
+	struct perf_event 				*wp				= NULL;		
+	struct perf_event 				**slots_wp		= NULL; 
+	struct perf_event_attr 			attr 			= {0};
+	struct perf_event * __percpu 	*hw_handler_wp 	= NULL;
+	int 							i 				= 0;
+
+	if (wp_param->num >= arm_wrps_num){
+		snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN, "[HW-BRPS]Error param: num is out of range 0-%d\n", (arm_wrps_num - 1));
+		return HW_BREAKPOINT_ERR_NUM_OUTOFRANGE;
+	}
+
+	hw_breakpoint_enable();
+	slots_wp = get_wrps_regs();
+
+	for (i = 0; i < arm_wrps_num; i++) {
+      	wp = slots_wp[i];
+		if (wp == NULL)
+			continue;
+			
+		if ((wp->attr.bp_addr  == wp_param->addr)
+			&&(wp->attr.bp_len == wp_param->addr_len)
+			&&(wp->attr.bp_type == wp_param->type)
+			&&(wp->attr.bp_cond == wp_param->cond)
+			&&(wp->attr.cond_start_data == wp_param->start_value)
+			&&(wp->attr.cond_end_data == wp_param->end_value)){
+			
+			printk("[HW-BRPS]registered watchpoint already in hw watchpoint pool\n");
+			snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN, "[HW-BRPS]registered watchpoint already in hw watchpoint pool\n");
+			return -EPERM;
+		}
+
+		if(wp->attr.bp_index == wp_param->num){
+			hw_breakpoint_del_data(wp_param->num);
+		}	
+	}
+
+	hw_breakpoint_init(&attr);
+	
+	attr.bp_addr		 = wp_param->addr;	
+	attr.bp_len			 = wp_param->addr_len;
+	attr.bp_type		 = wp_param->type;
+	attr.bp_index 		 = wp_param->num;
+	attr.bp_cond 		 = wp_param->cond;
+	attr.cond_start_data = wp_param->start_value; 	
+	attr.cond_end_data	 = wp_param->end_value; 
+	
+	hw_handler_wp = register_wide_hw_breakpoint(&attr, callback_fun, NULL);
+	if (IS_ERR((void __force *)hw_handler_wp)) {
+		snprintf(shell_cmd_result,HW_BREAKPOINT_RESULT_MAX_LEN,"Breakpoint registration failed\n");
+		return PTR_ERR((void __force *)hw_handler_wp);
+	}	
+	return 0;
+}
+
+/**
+ * hw_register_set_breakponit - register a breakpoint in the kernel
+ * @bp_param: breakpoint attributes
+ * @callback_fun: callback to trigger when we hit the breakpoint
+ *
+ * @return a set of per_cpu pointers to perf events
+ */
+static int hw_register_set_breakponit(hw_brk_setprogram_param_t *bp_param, perf_overflow_handler_t callback_fun)
+{
+	struct perf_event 				*bp        = NULL;	
+	struct perf_event 				**slots_bp = NULL; 
+	struct perf_event_attr			attr;	
+	struct perf_event * __percpu 	*hw_handler_bp = NULL;
+    unsigned char           i  = 0;
+
+	if (bp_param->num == 0 || bp_param->num >= arm_brps_num){
+		printk("[Hw breakpoint]Error param:num 0 is reserve for step breakpoint,num %d is out of range 1-%d,\n", bp_param->num, (arm_brps_num-1));
+		snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN,"[Hw breakpoint]Error param:num 0 is reserve for step breakpoint,num %d is out of range 1-%d,\n", bp_param->num, (arm_brps_num-1));
+		return HW_BREAKPOINT_ERR_NUM_OUTOFRANGE;
+	}
+	
+	hw_breakpoint_enable();
+	
+	slots_bp = get_brps_regs();
+	for (i = 0; i < arm_brps_num; i++) {
+      	bp = slots_bp[i];
+		if (bp == NULL)
+			continue;
+		if(bp->attr.bp_addr == bp_param->addr){
+			printk("[Hw breakpoint]register fail! breakpoint item already in hw breakpoint pool\n");
+			snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN,"[Hw breakpoint]register fail! breakpoint item already in hw breakpoint pool\n");
+			return -EPERM;
+		}
+		
+		if(bp->attr.bp_index == bp_param->num){
+			hw_breakpoint_del_program(bp_param->num);
+		}	
+	}
+	
+	hw_breakpoint_init(&attr);
+	
+	attr.bp_index = bp_param->num;
+	attr.bp_addr  = bp_param->addr;
+	attr.bp_len   = bp_param->len;;
+	attr.bp_type  = HW_BREAKPOINT_X;
+
+	hw_handler_bp = register_wide_hw_breakpoint(&attr, callback_fun, NULL);
+	if (IS_ERR((void __force *)hw_handler_bp)){
+		printk(KERN_INFO "Breakpoint registration failed!\n");		
+		snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN,"Breakpoint registration failed!\n");
+		return PTR_ERR((void __force *)hw_handler_bp);
+	}
+	return 0;
+}
+
+
+static void hw_breakpoint_print_commandformat(void)
+{    
+	printk("/*---------------------------------------------------------*/\n");
+	printk("Breakpoint command format:\n");
+	printk("/*brk setprogram [num] [address] [len]*/\n");
+	printk("/*brk setdata [num] [address] [len] [type] [cond] [value]--[value]*/\n");  
+	printk("/*brk deldata [num]*/\n");
+	printk("/*brk delprogram [num]*/\n");
+	printk("/*brk list*/\n");	
+	printk("/*brk regs*/\n");
+	printk("Example:\n");
+	printk("/*brk setprogram 0 0xC26AE940 4*/\n");
+	printk("/*brk setdata 0 0xC26AE940 4 w  i 0x00000000--0xFFFFFFFF*/\n");
+	printk("/*brk setdata 1 0xC26AE940 4 r  o 0x00000020--0x00000020*/\n");
+	printk("Program Breakpoint Count: %d\n", arm_brps_num);
+	printk("Data Breakpoint Count: %d\n", arm_wrps_num);
+	printk("/*---------------------------------------------------------*/\n");
+}
+
+/**
+ * hw_brk_handler - breakpoint call back function
+ * @bp: breakpoint event
+ * @data: perf data
+ * @regs: regs ptr
+ */
+static void hw_brk_handler(struct perf_event *bp,
+			       struct perf_sample_data *data,
+			       struct pt_regs *regs)
+{
+	dump_stack();
+	panic("[Hw breakpoint panic]\n");
+}
+
+static int hw_get_watchpoint_params(hw_brk_setdata_param_t	*wp_attr, const char *hw_info_buf)
+{
+	u32 					count		= 0;		
+	int 					ret 		= 0;	
+	u32 					addr_len	= 0;
+	char					type[HW_BREAKPOINT_MODE_MAX_LEN] = {0};
+	char					cond[HW_BREAKPOINT_COND_MAX_LEN] = {0}; 
+
+    if(wp_attr == NULL || hw_info_buf == NULL)
+		return -EINVAL;
+	
+	count = sscanf (hw_info_buf, 
+					"%d %llx %d %s %s %8x--%8x", 
+					(int *)&(wp_attr->num), &(wp_attr->addr), 
+					&addr_len, type, cond, 
+					&(wp_attr->start_value), &(wp_attr->end_value));
+
+	if (count != HW_BREAKPOINT_SETDATA_PARAM_NUM)
+		return HW_BREAKPOINT_ERR_PARMAM_NUM;
+
+	if ((addr_len !=  HW_BREAKPOINT_LEN_1) && (addr_len !=	HW_BREAKPOINT_LEN_2)
+		&&(addr_len !=	HW_BREAKPOINT_LEN_4) && (addr_len !=  HW_BREAKPOINT_LEN_8))
+		return HW_BREAKPOINT_ERR_ADDR_LEN;
+
+	wp_attr->addr_len = addr_len;
+
+	if (!strcmp((const char *)type, "r"))	 
+		wp_attr->type = HW_BREAKPOINT_R;
+	else if (!strcmp((const char *)type, "w"))
+		wp_attr->type = HW_BREAKPOINT_W;
+	else if (!strcmp((const char *)type, "rw"))
+		wp_attr->type = HW_BREAKPOINT_RW;
+	else
+		return HW_BREAKPOINT_ERR_TYPE;
+
+	if (!strcmp((const char *)cond, "i"))	
+		wp_attr->cond = HW_BREAKPOINT_COND_IN_RANGE;
+	else if (!strcmp((const char *)cond, "o")
+			|| (!strcmp((const char *)cond, "O")))
+		wp_attr->cond = HW_BREAKPOINT_COND_OUT_RANGE;
+	else 
+		return HW_BREAKPOINT_ERR_COND;
+
+	return ret;
+}
+/**
+ * hw_breakpoint_register_entry - register to wp_on_reg and bp_on_reg
+ * @hw_cmd_type: cmd type buf
+ * @hw_info_buf: breakpoint info buf
+ * Returns -errno, or 0 for success.
+ *	brk setdata num address r/w/rw i/o start--end	
+ *	num£ºbreakpoint index
+ *	address:breakpoint watchpoint addr
+ *	r/w/rw£ºbrakpoint type: read(r)¡¢write(w)¡¢read/write(rw)
+ *	i/o£ºcond:(i:in range)(o: out of range)
+ *	start--end£ºvalue range	
+ *	example: 
+ *	brk setdata 0 0xc1234560 4 w i 0x00000000--0xFFFFFFFF  //set watchpoint 0£¬len is 4, monitor 0xc1234560 addr£¬when writed to any value£¬panic¡£
+ *	brk setdata 1 0xc1234560 4 w i 0x00000020--0x00000020  //set watchpoint 0£¬len is 4, monitor 0xc1234560 addr£¬when writed to 0x20, panic¡£
+*/
+
+static int hw_breakpoint_register_entry(const char *hw_cmd_type, const char *hw_info_buf)
+{
+	u32  					count		= 0;		
+	int 					ret 		= 0;	
+	u32 					index 		= 0;
+    hw_brk_setdata_param_t 	wp_param 	= {0};
+	
+	if (hw_cmd_type == NULL || hw_info_buf == NULL){
+		hw_breakpoint_print_commandformat();
+		return -EINVAL;
+	}
+	
+	memset(shell_cmd_result, 0, sizeof(shell_cmd_result));
+	
+	if (!strcmp((const char *)hw_cmd_type, "setdata")){
+	    ret = hw_get_watchpoint_params(&wp_param, hw_info_buf);
+		if (ret)
+			goto err_param;
+		
+		ret = hw_register_set_watchponit(&wp_param, hw_brk_handler);
+		if (ret)
+			goto err_out;
+		else
+			hw_brks_pool->active_num_wrps++;
+	}
+	
+	else if (!strcmp((const char *)hw_cmd_type, "setprogram")){		
+		
+		hw_brk_setprogram_param_t bp_param = {0};
+		
+		count = sscanf(hw_info_buf, "%d %llx %d", (int *)&bp_param.num, &bp_param.addr, &bp_param.len);
+		if (count != HW_BREAKPOINT_SETPROGRAM_PARAM_NUM){
+			ret = HW_BREAKPOINT_ERR_PARMAM_NUM;
+			goto err_param; 
+		}
+		if ((bp_param.len != HW_BREAKPOINT_LEN_2)&&(bp_param.len !=	HW_BREAKPOINT_LEN_4)){
+			ret = HW_BREAKPOINT_ERR_ADDR_LEN;
+			goto err_param; 
+		}
+		ret = hw_register_set_breakponit(&bp_param, hw_brk_handler);
+		if (ret)
+			goto err_out;
+		else
+			hw_brks_pool->active_num_brps++;
+	}
+	else if (!strcmp((const char *)hw_cmd_type, "deldata")){
+		count = sscanf(hw_info_buf, "%d", &index);
+		if (count != HW_BREAKPOINT_DEL_PARAM_NUM){
+			ret = HW_BREAKPOINT_ERR_PARMAM_NUM;
+			goto err_param; 
+		}
+		ret = hw_breakpoint_del_data(index);
+		if (ret)
+			goto err_out;
+		else
+			hw_brks_pool->active_num_wrps--;
+	}
+	else if (!strcmp((const char *)hw_cmd_type, "delprogram")){
+		count = sscanf(hw_info_buf, "%d", &index);
+		if (count != HW_BREAKPOINT_DEL_PARAM_NUM){
+			ret = HW_BREAKPOINT_ERR_PARMAM_NUM;
+			goto err_param; 
+		}
+		ret = hw_breakpoint_del_program(index);
+		if (ret)
+			goto err_out;
+		else
+			hw_brks_pool->active_num_brps--;
+	}
+	else if (!strcmp((const char *)hw_cmd_type, "list"))
+		hw_printk_list();
+	else if (!strcmp((const char *)hw_cmd_type, "regs"))
+		hw_print_regs();
+	else{
+		ret = HW_BREAKPOINT_ERR_CMD;
+		goto err_param; 
+	}
+	printk("Shell cmd %s SUCCESS\n", hw_cmd_type);
+	snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN,"Shell cmd %s SUCCESS\n", hw_cmd_type);
+	return ret;
+
+err_param:    
+  	printk("breakpoint: params error reason: 0x%02x\n", ret);
+  	snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN,"breakpoint: params error reason: 0x%02x\n", ret);
+    return -EINVAL;
+err_out:   
+  	printk("breakpoint set fail, register ret =0x%02x:\n", ret);   
+  	snprintf(shell_cmd_result, HW_BREAKPOINT_RESULT_MAX_LEN,"breakpoint set fail, register ret =0x%02x:\n", ret); 
+    return -EINVAL;
+}
+
+/**
+ * hw_breakpoint_write - extract hw breakpoint data from a user string
+ * @file: the file to extract from
+ * @user_buf: the buffer to extract from
+ * @size: the length of the buffer
+ * @off: .
+ *
+ * Returns -errno, or 0 for success.
+ */
+static int hw_breakpoint_write(struct file *file, const char __user * user_buf, size_t size, loff_t * off)
+{
+	char 	*hwbrk_buf 		= NULL;
+	char    *comms_ptr		= NULL;
+	char    *hw_info_buf	= NULL;	
+	char    *param_ptr      = NULL;	
+	int     len 			= 0;
+	int     pre_len 		= 0;
+	u32 	hw_info_len 	= 0;			
+	u32 	comms_size 	    = 0;
+	int		retval 			= -EFAULT;
+	char    hw_cmd_type[HW_BREAKPOINT_CMD_TYPE_LEN]	= {0};
+
+	hwbrk_buf = kmalloc(size + 1, GFP_KERNEL);	
+	if (hwbrk_buf == NULL)
+		return -ENOMEM;
+    
+	if (copy_from_user(hwbrk_buf, user_buf, size)){
+		kfree(hwbrk_buf);
+		return -EINVAL;
+	}
+	hwbrk_buf[size] = '\0';
+
+	hw_info_buf = kmalloc(HW_BREAKPOINT_BUF_MAX_LEN, GFP_KERNEL);
+	if (hw_info_buf == NULL){		
+		kfree(hwbrk_buf);
+		return -ENOMEM;
+	}
+
+	param_ptr = strstr(hwbrk_buf, HW_BREAKPOINT_SHELLCMD_PREFIX);
+	if (param_ptr != NULL){
+		pre_len = param_ptr - hwbrk_buf + strlen(HW_BREAKPOINT_SHELLCMD_PREFIX);
+		comms_ptr = param_ptr + pre_len;
+		comms_size = size - pre_len;
+	}
+	else { 					
+		kfree(hwbrk_buf);	
+		kfree(hw_info_buf);
+		printk("Err: Shellcmd prefix should be:%s \n", HW_BREAKPOINT_SHELLCMD_PREFIX);
+		return -EINVAL;
+	}
+	while (*hwbrk_buf != '\0' ||  comms_size > 0){		
+		len = 0;
+		for (; *comms_ptr != '\0' ; comms_ptr++, comms_size--){
+			if (!HW_SPECIAL_CHARACTER(*comms_ptr) && isprint(*comms_ptr))
+				len++;
+
+			else if ((HW_SPECIAL_CHARACTER(*comms_ptr)|| !isprint(*comms_ptr))&& len > 0){
+				break;
+			}
+		}
+
+		if (len > 0){
+			strncpy(hw_cmd_type, comms_ptr - len, len);
+			hw_cmd_type[len] = '\0';
+			hw_info_len = strlen(hwbrk_buf) - pre_len - len;
+			strncpy(hw_info_buf, comms_ptr, hw_info_len);
+			hw_info_buf[hw_info_len] = '\0';
+			retval = hw_breakpoint_register_entry(hw_cmd_type, hw_info_buf);
+			break;
+		}
+		else {
+		 	printk("breakpoint: params error set fail\n");  
+			hw_breakpoint_print_commandformat();
+			kfree(hwbrk_buf);	
+			kfree(hw_info_buf);
+    		return -EINVAL;	
+		}
+	}
+	
+	*off += size;
+	kfree(hwbrk_buf);	
+	kfree(hw_info_buf);
+	retval = size;
+    return retval;
+}
+
+static void hw_print_wpbp_regs(void)
+{
+	int 				i 		   = 0;
+	struct perf_event 	**slots_bp = NULL;
+	struct perf_event 	**slots_wp = NULL;
+	struct perf_event 	**slot_t   = NULL;
+
+	slots_wp = get_wrps_regs();
+	slots_bp = get_brps_regs();
+		
+	printk("[HW breakpoint]watchpoint count = %d\n", arm_wrps_num);	
+
+	for (i = 0; i < arm_wrps_num; i++) {
+	   slot_t = &slots_wp[i];
+	   printk("[HW breakpoint]wp_on_regs[%d] = 0x%08x\n", i, (u32)*slot_t);
+	   if (slots_wp[i] != NULL)
+	   		printk("[HW breakpoint]wp_on_regs[%d] addr = 0x%llx, cond =%d, cond_start = 0x%08x, cond_end = 0x%08x\n",
+	   		i, slots_wp[i]->attr.bp_addr, slots_wp[i]->attr.bp_cond, slots_wp[i]->attr.cond_start_data, slots_wp[i]->attr.cond_end_data); 
+	}
+
+	printk("[HW breakpoint]breakpoint count = %d\n", arm_brps_num);	
+	/* Print the breakpoint. */
+	for (i = 0; i < arm_brps_num; i++) {
+	   	slot_t = &slots_bp[i];
+		printk("[HW breakpoint]bp_on_regs[%d] = 0x%08x\n", i, (u32)*slot_t); 
+		if (slots_bp[i] != NULL)
+			printk("[HW breakpoint]bp_on_regs[%d] addr = 0x%llx\n",i, slots_bp[i]->attr.bp_addr);
+	}
+}
+
+void hw_print_regs(void)
+{
+	u32 dscr	= dscr_read();
+	int i		= 0;
+
+    if (!hw_brks_pool->enable)
+		return;
+
+	printk("[HW breakpoint]watchpoint count = %d, breakpoint count = %d\n", arm_wrps_num, arm_brps_num);	
+	printk("[HW breakpoint]dscr= 0x%x\n", dscr);
+	
+	for (i = 0; i< arm_wrps_num; i++)
+		printk("[HW breakpoint]WCR%d = %d WVR%d = %x\n", i, wcr_read(i), i, wvr_read(i));
+	for (i = 0; i< arm_wrps_num; i++)		
+		printk("[HW breakpoint]BCR%d = %d BVR%d = %x\n", i, bcr_read(i), i, bvr_read(i));
+}
+
+static void hw_printk_list(void)
+{
+	if (!hw_brks_pool->enable){        
+		printk("Breakpoint not enable!\n");
+		return;
+	}
+	
+	printk("/*---------------------------------------------------------*/\n");
+	printk("Program Breakpoints:\n");
+	if (!hw_brks_pool->active_num_brps && !hw_brks_pool->active_num_wrps){
+		printk("No breakpoints exist now!\n");
+		return;
+	}
+	//hw_print_regs();
+	hw_print_wpbp_regs();
+}
+
+
+void hw_breakpoint_context_save(void)
+{
+    int index = 0;
+
+    if(hw_brks_pool->active_num_brps == 0 
+		&& hw_brks_pool->active_num_wrps == 0 )
+		return;
+	
+    wp_bp_context_table[index].dscr = dscr_read();	   
+
+	for (index = 0; index < arm_brps_num; index++) {
+		wp_bp_context_table[index].bcr = bcr_read(index);
+		wp_bp_context_table[index].bvr = bvr_read(index);
+	}
+
+	for (index = 0; index < arm_wrps_num; index++) {		
+		wp_bp_context_table[index].wcr = wcr_read(index);
+		wp_bp_context_table[index].wvr = wvr_read(index);	
+	}
+}
+
+void hw_breakpoint_restore_context(void)
+{
+	u32 index	= 0;
+
+	if(hw_brks_pool->active_num_brps == 0 
+		&& hw_brks_pool->active_num_wrps == 0)
+		return;
+	
+	hw_breakpoint_enable();
+
+	for (index = 0; index < arm_brps_num; index++){
+		/* Setup the control register. */
+		bcr_write(index, wp_bp_context_table[index].bcr);
+		
+		/* Setup the address register. */		
+		bvr_write(index, wp_bp_context_table[index].bvr);
+	}
+
+	for (index = 0; index < arm_wrps_num; index++){
+		
+		/* Setup the control register. */
+		wcr_write(index, wp_bp_context_table[index].wcr);
+		
+		/* Setup the address register. */		
+		wvr_write(index, wp_bp_context_table[index].wvr);		
+	}
+}
+
+
+void hw_breakpoint_enable(void)
+{
+    u32 dscr;
+    u32 val;
+    
+    dscr = dscr_read();
+    if (!(dscr & ARM_DSCR_MDBGEN)){
+        dscr |= ARM_DSCR_MDBGEN;
+        dscr_write(dscr);
+    }
+	val = HW_ARM_OSLAR_UNLOCKED;
+	//val = oslar_read();
+	//if((val & HW_ARM_OSLAR_LOCKED)){		
+	//	val = HW_ARM_OSLAR_UNLOCKED;
+		oslar_write(val);
+	//}
+	
+	hw_brks_pool->enable = 1;
+}
+/**
+ * hw_breakpoint_pool_init - init the global hw breakpoint pool 
+ *
+ * Returns -errno.
+ */
+int hw_breakpoint_pool_init(void)
+{
+	hw_brks_pool = (hw_brk_pool_t *)kmalloc(sizeof(hw_brk_pool_t), GFP_KERNEL);
+	if (hw_brks_pool == NULL)
+		return -ENOMEM;   
+	
+	hw_brks_pool->active_num_wrps = 0;	
+	hw_brks_pool->active_num_brps = 0;	
+	hw_brks_pool->wrps_on_reg = get_wrps_regs();
+	hw_brks_pool->brps_on_reg = get_brps_regs();
+	get_wrps_brps_nums(&arm_wrps_num, &arm_brps_num);
+
+	return HW_BREAKPOINT_SUCCESS;
+}
+
+
+/**
+ * hw_breakpoint_info_show - show the registered breakpoints
+ * @m: proc file structure
+ * @v: 
+ *
+ * Returns -errno, or 0 for success.
+ */
+static int hw_breakpoint_info_show(struct seq_file *m, void *v)
+{
+	int 				i 		   = 0;
+	struct perf_event 	**slots_bp = NULL;
+	struct perf_event 	**slots_wp = NULL;
+
+	slots_wp = get_wrps_regs();
+	slots_bp = get_brps_regs();
+
+	seq_printf(m, "[HW breakpoint]watchpoint count = %d\n", arm_wrps_num);	
+
+	for (i = 0; i < arm_wrps_num; i++) {
+	   seq_printf(m, "[HW breakpoint]wp_on_regs[%d] = 0x%08x\n", i, (u32)slots_wp[i]);
+	   if (slots_wp[i] != NULL)
+	   		seq_printf(m, "[HW breakpoint]wp_on_regs[%d] addr = 0x%llx, cond =%d, cond_start = 0x%08x, cond_end = 0x%08x\n",
+	   		i, slots_wp[i]->attr.bp_addr, slots_wp[i]->attr.bp_cond, slots_wp[i]->attr.cond_start_data, slots_wp[i]->attr.cond_end_data); 
+	}
+	
+	seq_printf(m, "[HW breakpoint]breakpoint count = %d\n", arm_brps_num);	
+	
+	/* Print the breakpoint. */
+	for (i = 0; i < arm_brps_num; i++) {
+		seq_printf(m, "[HW breakpoint]bp_on_regs[%d] = 0x%08x\n", i, (u32)slots_wp[i]); 
+		if (slots_bp[i] != NULL)
+			seq_printf(m, "[HW breakpoint]bp_on_regs[%d] addr = 0x%llx\n",i, slots_bp[i]->attr.bp_addr);
+	}
+	
+	seq_printf(m,"%s\n", "Result is");
+	seq_printf(m,"%s\n", shell_cmd_result);
+	return 0;
+}
+
+/**
+ * hw_breakpoint_open - open function
+ * @inode: file inode
+ * @file: file descriptor
+ *
+ * Returns -errno, or 0 for success.
+ */
+static int hw_breakpoint_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, hw_breakpoint_info_show, NULL);
+}
+
+/**
+ * hwbreakpoint_proc_fops - proc file ops
+ * @open: open the registed proc file.
+ * @read: read the registed proc file.
+ * @write: write to the registed proc file.
+ *
+ * Returns -errno, or 0 for success.
+ */
+static const struct file_operations hwbreakpoint_proc_fops = {
+	.open		= hw_breakpoint_open,
+	.read		= seq_read,
+	.write		= hw_breakpoint_write
+};
+
+static int __init hw_breakpoint_proc_init(void)
+{
+   	proc_create("hw_breakpoint_info", 0, NULL, &hwbreakpoint_proc_fops);
+	return 0;
+}
+
+module_init(hw_breakpoint_proc_init);
+
+#endif /*CONFIG_HW_BREAKPOINT_MANAGE*/
+
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/internal.h b/ap/os/linux/linux-3.4.x/kernel/events/internal.h
new file mode 100644
index 0000000..b400e64
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/internal.h
@@ -0,0 +1,140 @@
+#ifndef _KERNEL_EVENTS_INTERNAL_H
+#define _KERNEL_EVENTS_INTERNAL_H
+
+#include <linux/hardirq.h>
+
+/* Buffer handling */
+
+#define RING_BUFFER_WRITABLE		0x01
+
+struct ring_buffer {
+	atomic_t			refcount;
+	struct rcu_head			rcu_head;
+#ifdef CONFIG_PERF_USE_VMALLOC
+	struct work_struct		work;
+	int				page_order;	/* allocation order  */
+#endif
+	int				nr_pages;	/* nr of data pages  */
+	int				writable;	/* are we writable   */
+
+	atomic_t			poll;		/* POLL_ for wakeups */
+
+	local_t				head;		/* write position    */
+	local_t				nest;		/* nested writers    */
+	local_t				events;		/* event limit       */
+	local_t				wakeup;		/* wakeup stamp      */
+	local_t				lost;		/* nr records lost   */
+
+	long				watermark;	/* wakeup watermark  */
+	/* poll crap */
+	spinlock_t			event_lock;
+	struct list_head		event_list;
+
+	atomic_t			mmap_count;
+	unsigned long			mmap_locked;
+	struct user_struct		*mmap_user;
+
+	struct perf_event_mmap_page	*user_page;
+	void				*data_pages[0];
+};
+
+extern void rb_free(struct ring_buffer *rb);
+extern struct ring_buffer *
+rb_alloc(int nr_pages, long watermark, int cpu, int flags);
+extern void perf_event_wakeup(struct perf_event *event);
+
+extern void
+perf_event_header__init_id(struct perf_event_header *header,
+			   struct perf_sample_data *data,
+			   struct perf_event *event);
+extern void
+perf_event__output_id_sample(struct perf_event *event,
+			     struct perf_output_handle *handle,
+			     struct perf_sample_data *sample);
+
+extern struct page *
+perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff);
+
+#ifdef CONFIG_PERF_USE_VMALLOC
+/*
+ * Back perf_mmap() with vmalloc memory.
+ *
+ * Required for architectures that have d-cache aliasing issues.
+ */
+
+static inline int page_order(struct ring_buffer *rb)
+{
+	return rb->page_order;
+}
+
+#else
+
+static inline int page_order(struct ring_buffer *rb)
+{
+	return 0;
+}
+#endif
+
+static inline unsigned long perf_data_size(struct ring_buffer *rb)
+{
+	return rb->nr_pages << (PAGE_SHIFT + page_order(rb));
+}
+
+static inline void
+__output_copy(struct perf_output_handle *handle,
+		   const void *buf, unsigned int len)
+{
+	do {
+		unsigned long size = min_t(unsigned long, handle->size, len);
+
+		memcpy(handle->addr, buf, size);
+
+		len -= size;
+		handle->addr += size;
+		buf += size;
+		handle->size -= size;
+		if (!handle->size) {
+			struct ring_buffer *rb = handle->rb;
+
+			handle->page++;
+			handle->page &= rb->nr_pages - 1;
+			handle->addr = rb->data_pages[handle->page];
+			handle->size = PAGE_SIZE << page_order(rb);
+		}
+	} while (len);
+}
+
+/* Callchain handling */
+extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
+extern int get_callchain_buffers(void);
+extern void put_callchain_buffers(void);
+
+static inline int get_recursion_context(int *recursion)
+{
+	int rctx;
+
+	if (in_nmi())
+		rctx = 3;
+	else if (in_irq())
+		rctx = 2;
+	else if (in_softirq())
+		rctx = 1;
+	else
+		rctx = 0;
+
+	if (recursion[rctx])
+		return -1;
+
+	recursion[rctx]++;
+	barrier();
+
+	return rctx;
+}
+
+static inline void put_recursion_context(int *recursion, int rctx)
+{
+	barrier();
+	recursion[rctx]--;
+}
+
+#endif /* _KERNEL_EVENTS_INTERNAL_H */
diff --git a/ap/os/linux/linux-3.4.x/kernel/events/ring_buffer.c b/ap/os/linux/linux-3.4.x/kernel/events/ring_buffer.c
new file mode 100644
index 0000000..4636ecc
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/events/ring_buffer.c
@@ -0,0 +1,406 @@
+/*
+ * Performance events ring-buffer code:
+ *
+ *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
+ *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ *
+ * For licensing details see kernel-base/COPYING
+ */
+
+#include <linux/perf_event.h>
+#include <linux/vmalloc.h>
+#include <linux/slab.h>
+
+#include "internal.h"
+
+static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
+			      unsigned long offset, unsigned long head)
+{
+	unsigned long mask;
+
+	if (!rb->writable)
+		return true;
+
+	mask = perf_data_size(rb) - 1;
+
+	offset = (offset - tail) & mask;
+	head   = (head   - tail) & mask;
+
+	if ((int)(head - offset) < 0)
+		return false;
+
+	return true;
+}
+
+static void perf_output_wakeup(struct perf_output_handle *handle)
+{
+	atomic_set(&handle->rb->poll, POLL_IN);
+
+	handle->event->pending_wakeup = 1;
+	irq_work_queue(&handle->event->pending);
+}
+
+/*
+ * We need to ensure a later event_id doesn't publish a head when a former
+ * event isn't done writing. However since we need to deal with NMIs we
+ * cannot fully serialize things.
+ *
+ * We only publish the head (and generate a wakeup) when the outer-most
+ * event completes.
+ */
+static void perf_output_get_handle(struct perf_output_handle *handle)
+{
+	struct ring_buffer *rb = handle->rb;
+
+	preempt_disable();
+	local_inc(&rb->nest);
+	handle->wakeup = local_read(&rb->wakeup);
+}
+
+static void perf_output_put_handle(struct perf_output_handle *handle)
+{
+	struct ring_buffer *rb = handle->rb;
+	unsigned long head;
+
+again:
+	head = local_read(&rb->head);
+
+	/*
+	 * IRQ/NMI can happen here, which means we can miss a head update.
+	 */
+
+	if (!local_dec_and_test(&rb->nest))
+		goto out;
+
+	/*
+	 * Since the mmap() consumer (userspace) can run on a different CPU:
+	 *
+	 *   kernel				user
+	 *
+	 *   READ ->data_tail			READ ->data_head
+	 *   smp_mb()	(A)			smp_rmb()	(C)
+	 *   WRITE $data			READ $data
+	 *   smp_wmb()	(B)			smp_mb()	(D)
+	 *   STORE ->data_head			WRITE ->data_tail
+	 *
+	 * Where A pairs with D, and B pairs with C.
+	 *
+	 * I don't think A needs to be a full barrier because we won't in fact
+	 * write data until we see the store from userspace. So we simply don't
+	 * issue the data WRITE until we observe it. Be conservative for now.
+	 *
+	 * OTOH, D needs to be a full barrier since it separates the data READ
+	 * from the tail WRITE.
+	 *
+	 * For B a WMB is sufficient since it separates two WRITEs, and for C
+	 * an RMB is sufficient since it separates two READs.
+	 *
+	 * See perf_output_begin().
+	 */
+	smp_wmb();
+	rb->user_page->data_head = head;
+
+	/*
+	 * Now check if we missed an update, rely on the (compiler)
+	 * barrier in atomic_dec_and_test() to re-read rb->head.
+	 */
+	if (unlikely(head != local_read(&rb->head))) {
+		local_inc(&rb->nest);
+		goto again;
+	}
+
+	if (handle->wakeup != local_read(&rb->wakeup))
+		perf_output_wakeup(handle);
+
+out:
+	preempt_enable();
+}
+
+int perf_output_begin(struct perf_output_handle *handle,
+		      struct perf_event *event, unsigned int size)
+{
+	struct ring_buffer *rb;
+	unsigned long tail, offset, head;
+	int have_lost;
+	struct perf_sample_data sample_data;
+	struct {
+		struct perf_event_header header;
+		u64			 id;
+		u64			 lost;
+	} lost_event;
+
+	rcu_read_lock();
+	/*
+	 * For inherited events we send all the output towards the parent.
+	 */
+	if (event->parent)
+		event = event->parent;
+
+	rb = rcu_dereference(event->rb);
+	if (!rb)
+		goto out;
+
+	handle->rb	= rb;
+	handle->event	= event;
+
+	if (!rb->nr_pages)
+		goto out;
+
+	have_lost = local_read(&rb->lost);
+	if (have_lost) {
+		lost_event.header.size = sizeof(lost_event);
+		perf_event_header__init_id(&lost_event.header, &sample_data,
+					   event);
+		size += lost_event.header.size;
+	}
+
+	perf_output_get_handle(handle);
+
+	do {
+		/*
+		 * Userspace could choose to issue a mb() before updating the
+		 * tail pointer. So that all reads will be completed before the
+		 * write is issued.
+		 *
+		 * See perf_output_put_handle().
+		 */
+		tail = ACCESS_ONCE(rb->user_page->data_tail);
+		smp_mb();
+		offset = head = local_read(&rb->head);
+		head += size;
+		if (unlikely(!perf_output_space(rb, tail, offset, head)))
+			goto fail;
+	} while (local_cmpxchg(&rb->head, offset, head) != offset);
+
+	if (head - local_read(&rb->wakeup) > rb->watermark)
+		local_add(rb->watermark, &rb->wakeup);
+
+	handle->page = offset >> (PAGE_SHIFT + page_order(rb));
+	handle->page &= rb->nr_pages - 1;
+	handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
+	handle->addr = rb->data_pages[handle->page];
+	handle->addr += handle->size;
+	handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
+
+	if (have_lost) {
+		lost_event.header.type = PERF_RECORD_LOST;
+		lost_event.header.misc = 0;
+		lost_event.id          = event->id;
+		lost_event.lost        = local_xchg(&rb->lost, 0);
+
+		perf_output_put(handle, lost_event);
+		perf_event__output_id_sample(event, handle, &sample_data);
+	}
+
+	return 0;
+
+fail:
+	local_inc(&rb->lost);
+	perf_output_put_handle(handle);
+out:
+	rcu_read_unlock();
+
+	return -ENOSPC;
+}
+
+void perf_output_copy(struct perf_output_handle *handle,
+		      const void *buf, unsigned int len)
+{
+	__output_copy(handle, buf, len);
+}
+
+void perf_output_end(struct perf_output_handle *handle)
+{
+	perf_output_put_handle(handle);
+	rcu_read_unlock();
+}
+
+static void
+ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
+{
+	long max_size = perf_data_size(rb);
+
+	if (watermark)
+		rb->watermark = min(max_size, watermark);
+
+	if (!rb->watermark)
+		rb->watermark = max_size / 2;
+
+	if (flags & RING_BUFFER_WRITABLE)
+		rb->writable = 1;
+
+	atomic_set(&rb->refcount, 1);
+
+	INIT_LIST_HEAD(&rb->event_list);
+	spin_lock_init(&rb->event_lock);
+}
+
+#ifndef CONFIG_PERF_USE_VMALLOC
+
+/*
+ * Back perf_mmap() with regular GFP_KERNEL-0 pages.
+ */
+
+struct page *
+perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
+{
+	if (pgoff > rb->nr_pages)
+		return NULL;
+
+	if (pgoff == 0)
+		return virt_to_page(rb->user_page);
+
+	return virt_to_page(rb->data_pages[pgoff - 1]);
+}
+
+static void *perf_mmap_alloc_page(int cpu)
+{
+	struct page *page;
+	int node;
+
+	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
+	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
+	if (!page)
+		return NULL;
+
+	return page_address(page);
+}
+
+struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
+{
+	struct ring_buffer *rb;
+	unsigned long size;
+	int i;
+
+	size = sizeof(struct ring_buffer);
+	size += nr_pages * sizeof(void *);
+
+	rb = kzalloc(size, GFP_KERNEL);
+	if (!rb)
+		goto fail;
+
+	rb->user_page = perf_mmap_alloc_page(cpu);
+	if (!rb->user_page)
+		goto fail_user_page;
+
+	for (i = 0; i < nr_pages; i++) {
+		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
+		if (!rb->data_pages[i])
+			goto fail_data_pages;
+	}
+
+	rb->nr_pages = nr_pages;
+
+	ring_buffer_init(rb, watermark, flags);
+
+	return rb;
+
+fail_data_pages:
+	for (i--; i >= 0; i--)
+		free_page((unsigned long)rb->data_pages[i]);
+
+	free_page((unsigned long)rb->user_page);
+
+fail_user_page:
+	kfree(rb);
+
+fail:
+	return NULL;
+}
+
+static void perf_mmap_free_page(unsigned long addr)
+{
+	struct page *page = virt_to_page((void *)addr);
+
+	page->mapping = NULL;
+	__free_page(page);
+}
+
+void rb_free(struct ring_buffer *rb)
+{
+	int i;
+
+	perf_mmap_free_page((unsigned long)rb->user_page);
+	for (i = 0; i < rb->nr_pages; i++)
+		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
+	kfree(rb);
+}
+
+#else
+
+struct page *
+perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
+{
+	if (pgoff > (1UL << page_order(rb)))
+		return NULL;
+
+	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
+}
+
+static void perf_mmap_unmark_page(void *addr)
+{
+	struct page *page = vmalloc_to_page(addr);
+
+	page->mapping = NULL;
+}
+
+static void rb_free_work(struct work_struct *work)
+{
+	struct ring_buffer *rb;
+	void *base;
+	int i, nr;
+
+	rb = container_of(work, struct ring_buffer, work);
+	nr = 1 << page_order(rb);
+
+	base = rb->user_page;
+	for (i = 0; i < nr + 1; i++)
+		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
+
+	vfree(base);
+	kfree(rb);
+}
+
+void rb_free(struct ring_buffer *rb)
+{
+	schedule_work(&rb->work);
+}
+
+struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
+{
+	struct ring_buffer *rb;
+	unsigned long size;
+	void *all_buf;
+
+	size = sizeof(struct ring_buffer);
+	size += sizeof(void *);
+
+	rb = kzalloc(size, GFP_KERNEL);
+	if (!rb)
+		goto fail;
+
+	INIT_WORK(&rb->work, rb_free_work);
+
+	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
+	if (!all_buf)
+		goto fail_all_buf;
+
+	rb->user_page = all_buf;
+	rb->data_pages[0] = all_buf + PAGE_SIZE;
+	rb->page_order = ilog2(nr_pages);
+	rb->nr_pages = 1;
+
+	ring_buffer_init(rb, watermark, flags);
+
+	return rb;
+
+fail_all_buf:
+	kfree(rb);
+
+fail:
+	return NULL;
+}
+
+#endif