[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/kernel/power/snapshot.c b/ap/os/linux/linux-3.4.x/kernel/power/snapshot.c
new file mode 100644
index 0000000..91c04f1
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/power/snapshot.c
@@ -0,0 +1,2355 @@
+/*
+ * linux/kernel/power/snapshot.c
+ *
+ * This file provides system snapshot/restore functionality for swsusp.
+ *
+ * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
+ * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
+ *
+ * This file is released under the GPLv2.
+ *
+ */
+
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/suspend.h>
+#include <linux/delay.h>
+#include <linux/bitops.h>
+#include <linux/spinlock.h>
+#include <linux/kernel.h>
+#include <linux/pm.h>
+#include <linux/device.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/syscalls.h>
+#include <linux/console.h>
+#include <linux/highmem.h>
+#include <linux/list.h>
+#include <linux/slab.h>
+
+#include <asm/uaccess.h>
+#include <asm/mmu_context.h>
+#include <asm/pgtable.h>
+#include <asm/tlbflush.h>
+#include <asm/io.h>
+
+#include "power.h"
+
+static int swsusp_page_is_free(struct page *);
+static void swsusp_set_page_forbidden(struct page *);
+static void swsusp_unset_page_forbidden(struct page *);
+
+/*
+ * Number of bytes to reserve for memory allocations made by device drivers
+ * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
+ * cause image creation to fail (tunable via /sys/power/reserved_size).
+ */
+unsigned long reserved_size;
+
+void __init hibernate_reserved_size_init(void)
+{
+	reserved_size = SPARE_PAGES * PAGE_SIZE;
+}
+
+/*
+ * Preferred image size in bytes (tunable via /sys/power/image_size).
+ * When it is set to N, swsusp will do its best to ensure the image
+ * size will not exceed N bytes, but if that is impossible, it will
+ * try to create the smallest image possible.
+ */
+unsigned long image_size;
+
+void __init hibernate_image_size_init(void)
+{
+	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
+}
+
+/* List of PBEs needed for restoring the pages that were allocated before
+ * the suspend and included in the suspend image, but have also been
+ * allocated by the "resume" kernel, so their contents cannot be written
+ * directly to their "original" page frames.
+ */
+struct pbe *restore_pblist;
+
+/* Pointer to an auxiliary buffer (1 page) */
+static void *buffer;
+
+/**
+ *	@safe_needed - on resume, for storing the PBE list and the image,
+ *	we can only use memory pages that do not conflict with the pages
+ *	used before suspend.  The unsafe pages have PageNosaveFree set
+ *	and we count them using unsafe_pages.
+ *
+ *	Each allocated image page is marked as PageNosave and PageNosaveFree
+ *	so that swsusp_free() can release it.
+ */
+
+#define PG_ANY		0
+#define PG_SAFE		1
+#define PG_UNSAFE_CLEAR	1
+#define PG_UNSAFE_KEEP	0
+
+static unsigned int allocated_unsafe_pages;
+
+static void *get_image_page(gfp_t gfp_mask, int safe_needed)
+{
+	void *res;
+
+	res = (void *)get_zeroed_page(gfp_mask);
+	if (safe_needed)
+		while (res && swsusp_page_is_free(virt_to_page(res))) {
+			/* The page is unsafe, mark it for swsusp_free() */
+			swsusp_set_page_forbidden(virt_to_page(res));
+			allocated_unsafe_pages++;
+			res = (void *)get_zeroed_page(gfp_mask);
+		}
+	if (res) {
+		swsusp_set_page_forbidden(virt_to_page(res));
+		swsusp_set_page_free(virt_to_page(res));
+	}
+	return res;
+}
+
+unsigned long get_safe_page(gfp_t gfp_mask)
+{
+	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
+}
+
+static struct page *alloc_image_page(gfp_t gfp_mask)
+{
+	struct page *page;
+
+	page = alloc_page(gfp_mask);
+	if (page) {
+		swsusp_set_page_forbidden(page);
+		swsusp_set_page_free(page);
+	}
+	return page;
+}
+
+/**
+ *	free_image_page - free page represented by @addr, allocated with
+ *	get_image_page (page flags set by it must be cleared)
+ */
+
+static inline void free_image_page(void *addr, int clear_nosave_free)
+{
+	struct page *page;
+
+	BUG_ON(!virt_addr_valid(addr));
+
+	page = virt_to_page(addr);
+
+	swsusp_unset_page_forbidden(page);
+	if (clear_nosave_free)
+		swsusp_unset_page_free(page);
+
+	__free_page(page);
+}
+
+/* struct linked_page is used to build chains of pages */
+
+#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
+
+struct linked_page {
+	struct linked_page *next;
+	char data[LINKED_PAGE_DATA_SIZE];
+} __attribute__((packed));
+
+static inline void
+free_list_of_pages(struct linked_page *list, int clear_page_nosave)
+{
+	while (list) {
+		struct linked_page *lp = list->next;
+
+		free_image_page(list, clear_page_nosave);
+		list = lp;
+	}
+}
+
+/**
+  *	struct chain_allocator is used for allocating small objects out of
+  *	a linked list of pages called 'the chain'.
+  *
+  *	The chain grows each time when there is no room for a new object in
+  *	the current page.  The allocated objects cannot be freed individually.
+  *	It is only possible to free them all at once, by freeing the entire
+  *	chain.
+  *
+  *	NOTE: The chain allocator may be inefficient if the allocated objects
+  *	are not much smaller than PAGE_SIZE.
+  */
+
+struct chain_allocator {
+	struct linked_page *chain;	/* the chain */
+	unsigned int used_space;	/* total size of objects allocated out
+					 * of the current page
+					 */
+	gfp_t gfp_mask;		/* mask for allocating pages */
+	int safe_needed;	/* if set, only "safe" pages are allocated */
+};
+
+static void
+chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
+{
+	ca->chain = NULL;
+	ca->used_space = LINKED_PAGE_DATA_SIZE;
+	ca->gfp_mask = gfp_mask;
+	ca->safe_needed = safe_needed;
+}
+
+static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
+{
+	void *ret;
+
+	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
+		struct linked_page *lp;
+
+		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
+		if (!lp)
+			return NULL;
+
+		lp->next = ca->chain;
+		ca->chain = lp;
+		ca->used_space = 0;
+	}
+	ret = ca->chain->data + ca->used_space;
+	ca->used_space += size;
+	return ret;
+}
+
+/**
+ *	Data types related to memory bitmaps.
+ *
+ *	Memory bitmap is a structure consiting of many linked lists of
+ *	objects.  The main list's elements are of type struct zone_bitmap
+ *	and each of them corresonds to one zone.  For each zone bitmap
+ *	object there is a list of objects of type struct bm_block that
+ *	represent each blocks of bitmap in which information is stored.
+ *
+ *	struct memory_bitmap contains a pointer to the main list of zone
+ *	bitmap objects, a struct bm_position used for browsing the bitmap,
+ *	and a pointer to the list of pages used for allocating all of the
+ *	zone bitmap objects and bitmap block objects.
+ *
+ *	NOTE: It has to be possible to lay out the bitmap in memory
+ *	using only allocations of order 0.  Additionally, the bitmap is
+ *	designed to work with arbitrary number of zones (this is over the
+ *	top for now, but let's avoid making unnecessary assumptions ;-).
+ *
+ *	struct zone_bitmap contains a pointer to a list of bitmap block
+ *	objects and a pointer to the bitmap block object that has been
+ *	most recently used for setting bits.  Additionally, it contains the
+ *	pfns that correspond to the start and end of the represented zone.
+ *
+ *	struct bm_block contains a pointer to the memory page in which
+ *	information is stored (in the form of a block of bitmap)
+ *	It also contains the pfns that correspond to the start and end of
+ *	the represented memory area.
+ */
+
+#define BM_END_OF_MAP	(~0UL)
+
+#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
+
+struct bm_block {
+	struct list_head hook;	/* hook into a list of bitmap blocks */
+	unsigned long start_pfn;	/* pfn represented by the first bit */
+	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
+	unsigned long *data;	/* bitmap representing pages */
+};
+
+static inline unsigned long bm_block_bits(struct bm_block *bb)
+{
+	return bb->end_pfn - bb->start_pfn;
+}
+
+/* strcut bm_position is used for browsing memory bitmaps */
+
+struct bm_position {
+	struct bm_block *block;
+	int bit;
+};
+
+struct memory_bitmap {
+	struct list_head blocks;	/* list of bitmap blocks */
+	struct linked_page *p_list;	/* list of pages used to store zone
+					 * bitmap objects and bitmap block
+					 * objects
+					 */
+	struct bm_position cur;	/* most recently used bit position */
+};
+
+/* Functions that operate on memory bitmaps */
+
+static void memory_bm_position_reset(struct memory_bitmap *bm)
+{
+	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
+	bm->cur.bit = 0;
+}
+
+static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
+
+/**
+ *	create_bm_block_list - create a list of block bitmap objects
+ *	@pages - number of pages to track
+ *	@list - list to put the allocated blocks into
+ *	@ca - chain allocator to be used for allocating memory
+ */
+static int create_bm_block_list(unsigned long pages,
+				struct list_head *list,
+				struct chain_allocator *ca)
+{
+	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
+
+	while (nr_blocks-- > 0) {
+		struct bm_block *bb;
+
+		bb = chain_alloc(ca, sizeof(struct bm_block));
+		if (!bb)
+			return -ENOMEM;
+		list_add(&bb->hook, list);
+	}
+
+	return 0;
+}
+
+struct mem_extent {
+	struct list_head hook;
+	unsigned long start;
+	unsigned long end;
+};
+
+/**
+ *	free_mem_extents - free a list of memory extents
+ *	@list - list of extents to empty
+ */
+static void free_mem_extents(struct list_head *list)
+{
+	struct mem_extent *ext, *aux;
+
+	list_for_each_entry_safe(ext, aux, list, hook) {
+		list_del(&ext->hook);
+		kfree(ext);
+	}
+}
+
+/**
+ *	create_mem_extents - create a list of memory extents representing
+ *	                     contiguous ranges of PFNs
+ *	@list - list to put the extents into
+ *	@gfp_mask - mask to use for memory allocations
+ */
+static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
+{
+	struct zone *zone;
+
+	INIT_LIST_HEAD(list);
+
+	for_each_populated_zone(zone) {
+		unsigned long zone_start, zone_end;
+		struct mem_extent *ext, *cur, *aux;
+
+		zone_start = zone->zone_start_pfn;
+		zone_end = zone->zone_start_pfn + zone->spanned_pages;
+
+		list_for_each_entry(ext, list, hook)
+			if (zone_start <= ext->end)
+				break;
+
+		if (&ext->hook == list || zone_end < ext->start) {
+			/* New extent is necessary */
+			struct mem_extent *new_ext;
+
+			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
+			if (!new_ext) {
+				free_mem_extents(list);
+				return -ENOMEM;
+			}
+			new_ext->start = zone_start;
+			new_ext->end = zone_end;
+			list_add_tail(&new_ext->hook, &ext->hook);
+			continue;
+		}
+
+		/* Merge this zone's range of PFNs with the existing one */
+		if (zone_start < ext->start)
+			ext->start = zone_start;
+		if (zone_end > ext->end)
+			ext->end = zone_end;
+
+		/* More merging may be possible */
+		cur = ext;
+		list_for_each_entry_safe_continue(cur, aux, list, hook) {
+			if (zone_end < cur->start)
+				break;
+			if (zone_end < cur->end)
+				ext->end = cur->end;
+			list_del(&cur->hook);
+			kfree(cur);
+		}
+	}
+
+	return 0;
+}
+
+/**
+  *	memory_bm_create - allocate memory for a memory bitmap
+  */
+static int
+memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
+{
+	struct chain_allocator ca;
+	struct list_head mem_extents;
+	struct mem_extent *ext;
+	int error;
+
+	chain_init(&ca, gfp_mask, safe_needed);
+	INIT_LIST_HEAD(&bm->blocks);
+
+	error = create_mem_extents(&mem_extents, gfp_mask);
+	if (error)
+		return error;
+
+	list_for_each_entry(ext, &mem_extents, hook) {
+		struct bm_block *bb;
+		unsigned long pfn = ext->start;
+		unsigned long pages = ext->end - ext->start;
+
+		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
+
+		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
+		if (error)
+			goto Error;
+
+		list_for_each_entry_continue(bb, &bm->blocks, hook) {
+			bb->data = get_image_page(gfp_mask, safe_needed);
+			if (!bb->data) {
+				error = -ENOMEM;
+				goto Error;
+			}
+
+			bb->start_pfn = pfn;
+			if (pages >= BM_BITS_PER_BLOCK) {
+				pfn += BM_BITS_PER_BLOCK;
+				pages -= BM_BITS_PER_BLOCK;
+			} else {
+				/* This is executed only once in the loop */
+				pfn += pages;
+			}
+			bb->end_pfn = pfn;
+		}
+	}
+
+	bm->p_list = ca.chain;
+	memory_bm_position_reset(bm);
+ Exit:
+	free_mem_extents(&mem_extents);
+	return error;
+
+ Error:
+	bm->p_list = ca.chain;
+	memory_bm_free(bm, PG_UNSAFE_CLEAR);
+	goto Exit;
+}
+
+/**
+  *	memory_bm_free - free memory occupied by the memory bitmap @bm
+  */
+static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
+{
+	struct bm_block *bb;
+
+	list_for_each_entry(bb, &bm->blocks, hook)
+		if (bb->data)
+			free_image_page(bb->data, clear_nosave_free);
+
+	free_list_of_pages(bm->p_list, clear_nosave_free);
+
+	INIT_LIST_HEAD(&bm->blocks);
+}
+
+/**
+ *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
+ *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
+ *	of @bm->cur_zone_bm are updated.
+ */
+static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
+				void **addr, unsigned int *bit_nr)
+{
+	struct bm_block *bb;
+
+	/*
+	 * Check if the pfn corresponds to the current bitmap block and find
+	 * the block where it fits if this is not the case.
+	 */
+	bb = bm->cur.block;
+	if (pfn < bb->start_pfn)
+		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
+			if (pfn >= bb->start_pfn)
+				break;
+
+	if (pfn >= bb->end_pfn)
+		list_for_each_entry_continue(bb, &bm->blocks, hook)
+			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
+				break;
+
+	if (&bb->hook == &bm->blocks)
+		return -EFAULT;
+
+	/* The block has been found */
+	bm->cur.block = bb;
+	pfn -= bb->start_pfn;
+	bm->cur.bit = pfn + 1;
+	*bit_nr = pfn;
+	*addr = bb->data;
+	return 0;
+}
+
+static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+	void *addr;
+	unsigned int bit;
+	int error;
+
+	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+	BUG_ON(error);
+	set_bit(bit, addr);
+}
+
+static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
+{
+	void *addr;
+	unsigned int bit;
+	int error;
+
+	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+	if (!error)
+		set_bit(bit, addr);
+	return error;
+}
+
+static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+	void *addr;
+	unsigned int bit;
+	int error;
+
+	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+	BUG_ON(error);
+	clear_bit(bit, addr);
+}
+
+static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
+{
+	void *addr;
+	unsigned int bit;
+	int error;
+
+	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
+	BUG_ON(error);
+	return test_bit(bit, addr);
+}
+
+static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
+{
+	void *addr;
+	unsigned int bit;
+
+	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
+}
+
+/**
+ *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
+ *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
+ *	returned.
+ *
+ *	It is required to run memory_bm_position_reset() before the first call to
+ *	this function.
+ */
+
+static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
+{
+	struct bm_block *bb;
+	int bit;
+
+	bb = bm->cur.block;
+	do {
+		bit = bm->cur.bit;
+		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
+		if (bit < bm_block_bits(bb))
+			goto Return_pfn;
+
+		bb = list_entry(bb->hook.next, struct bm_block, hook);
+		bm->cur.block = bb;
+		bm->cur.bit = 0;
+	} while (&bb->hook != &bm->blocks);
+
+	memory_bm_position_reset(bm);
+	return BM_END_OF_MAP;
+
+ Return_pfn:
+	bm->cur.bit = bit + 1;
+	return bb->start_pfn + bit;
+}
+
+/**
+ *	This structure represents a range of page frames the contents of which
+ *	should not be saved during the suspend.
+ */
+
+struct nosave_region {
+	struct list_head list;
+	unsigned long start_pfn;
+	unsigned long end_pfn;
+};
+
+static LIST_HEAD(nosave_regions);
+
+/**
+ *	register_nosave_region - register a range of page frames the contents
+ *	of which should not be saved during the suspend (to be used in the early
+ *	initialization code)
+ */
+
+void __init
+__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
+			 int use_kmalloc)
+{
+	struct nosave_region *region;
+
+	if (start_pfn >= end_pfn)
+		return;
+
+	if (!list_empty(&nosave_regions)) {
+		/* Try to extend the previous region (they should be sorted) */
+		region = list_entry(nosave_regions.prev,
+					struct nosave_region, list);
+		if (region->end_pfn == start_pfn) {
+			region->end_pfn = end_pfn;
+			goto Report;
+		}
+	}
+	if (use_kmalloc) {
+		/* during init, this shouldn't fail */
+		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
+		BUG_ON(!region);
+	} else
+		/* This allocation cannot fail */
+		region = alloc_bootmem(sizeof(struct nosave_region));
+	region->start_pfn = start_pfn;
+	region->end_pfn = end_pfn;
+	list_add_tail(&region->list, &nosave_regions);
+ Report:
+	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
+		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
+}
+
+/*
+ * Set bits in this map correspond to the page frames the contents of which
+ * should not be saved during the suspend.
+ */
+static struct memory_bitmap *forbidden_pages_map;
+
+/* Set bits in this map correspond to free page frames. */
+static struct memory_bitmap *free_pages_map;
+
+/*
+ * Each page frame allocated for creating the image is marked by setting the
+ * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
+ */
+
+void swsusp_set_page_free(struct page *page)
+{
+	if (free_pages_map)
+		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
+}
+
+static int swsusp_page_is_free(struct page *page)
+{
+	return free_pages_map ?
+		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
+}
+
+void swsusp_unset_page_free(struct page *page)
+{
+	if (free_pages_map)
+		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
+}
+
+static void swsusp_set_page_forbidden(struct page *page)
+{
+	if (forbidden_pages_map)
+		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
+}
+
+int swsusp_page_is_forbidden(struct page *page)
+{
+	return forbidden_pages_map ?
+		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
+}
+
+static void swsusp_unset_page_forbidden(struct page *page)
+{
+	if (forbidden_pages_map)
+		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
+}
+
+/**
+ *	mark_nosave_pages - set bits corresponding to the page frames the
+ *	contents of which should not be saved in a given bitmap.
+ */
+
+static void mark_nosave_pages(struct memory_bitmap *bm)
+{
+	struct nosave_region *region;
+
+	if (list_empty(&nosave_regions))
+		return;
+
+	list_for_each_entry(region, &nosave_regions, list) {
+		unsigned long pfn;
+
+		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
+			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
+			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
+				- 1);
+
+		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
+			if (pfn_valid(pfn)) {
+				/*
+				 * It is safe to ignore the result of
+				 * mem_bm_set_bit_check() here, since we won't
+				 * touch the PFNs for which the error is
+				 * returned anyway.
+				 */
+				mem_bm_set_bit_check(bm, pfn);
+			}
+	}
+}
+
+/**
+ *	create_basic_memory_bitmaps - create bitmaps needed for marking page
+ *	frames that should not be saved and free page frames.  The pointers
+ *	forbidden_pages_map and free_pages_map are only modified if everything
+ *	goes well, because we don't want the bits to be used before both bitmaps
+ *	are set up.
+ */
+
+int create_basic_memory_bitmaps(void)
+{
+	struct memory_bitmap *bm1, *bm2;
+	int error = 0;
+
+	BUG_ON(forbidden_pages_map || free_pages_map);
+
+	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
+	if (!bm1)
+		return -ENOMEM;
+
+	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
+	if (error)
+		goto Free_first_object;
+
+	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
+	if (!bm2)
+		goto Free_first_bitmap;
+
+	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
+	if (error)
+		goto Free_second_object;
+
+	forbidden_pages_map = bm1;
+	free_pages_map = bm2;
+	mark_nosave_pages(forbidden_pages_map);
+
+	pr_debug("PM: Basic memory bitmaps created\n");
+
+	return 0;
+
+ Free_second_object:
+	kfree(bm2);
+ Free_first_bitmap:
+ 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
+ Free_first_object:
+	kfree(bm1);
+	return -ENOMEM;
+}
+
+/**
+ *	free_basic_memory_bitmaps - free memory bitmaps allocated by
+ *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
+ *	so that the bitmaps themselves are not referred to while they are being
+ *	freed.
+ */
+
+void free_basic_memory_bitmaps(void)
+{
+	struct memory_bitmap *bm1, *bm2;
+
+	BUG_ON(!(forbidden_pages_map && free_pages_map));
+
+	bm1 = forbidden_pages_map;
+	bm2 = free_pages_map;
+	forbidden_pages_map = NULL;
+	free_pages_map = NULL;
+	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
+	kfree(bm1);
+	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
+	kfree(bm2);
+
+	pr_debug("PM: Basic memory bitmaps freed\n");
+}
+
+/**
+ *	snapshot_additional_pages - estimate the number of additional pages
+ *	be needed for setting up the suspend image data structures for given
+ *	zone (usually the returned value is greater than the exact number)
+ */
+
+unsigned int snapshot_additional_pages(struct zone *zone)
+{
+	unsigned int res;
+
+	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
+	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
+			    LINKED_PAGE_DATA_SIZE);
+	return 2 * res;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+ *	count_free_highmem_pages - compute the total number of free highmem
+ *	pages, system-wide.
+ */
+
+static unsigned int count_free_highmem_pages(void)
+{
+	struct zone *zone;
+	unsigned int cnt = 0;
+
+	for_each_populated_zone(zone)
+		if (is_highmem(zone))
+			cnt += zone_page_state(zone, NR_FREE_PAGES);
+
+	return cnt;
+}
+
+/**
+ *	saveable_highmem_page - Determine whether a highmem page should be
+ *	included in the suspend image.
+ *
+ *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
+ *	and it isn't a part of a free chunk of pages.
+ */
+static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
+{
+	struct page *page;
+
+	if (!pfn_valid(pfn))
+		return NULL;
+
+	page = pfn_to_page(pfn);
+	if (page_zone(page) != zone)
+		return NULL;
+
+	BUG_ON(!PageHighMem(page));
+
+	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
+	    PageReserved(page))
+		return NULL;
+
+	if (page_is_guard(page))
+		return NULL;
+
+	return page;
+}
+
+/**
+ *	count_highmem_pages - compute the total number of saveable highmem
+ *	pages.
+ */
+
+static unsigned int count_highmem_pages(void)
+{
+	struct zone *zone;
+	unsigned int n = 0;
+
+	for_each_populated_zone(zone) {
+		unsigned long pfn, max_zone_pfn;
+
+		if (!is_highmem(zone))
+			continue;
+
+		mark_free_pages(zone);
+		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+			if (saveable_highmem_page(zone, pfn))
+				n++;
+	}
+	return n;
+}
+#else
+static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
+{
+	return NULL;
+}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *	saveable_page - Determine whether a non-highmem page should be included
+ *	in the suspend image.
+ *
+ *	We should save the page if it isn't Nosave, and is not in the range
+ *	of pages statically defined as 'unsaveable', and it isn't a part of
+ *	a free chunk of pages.
+ */
+static struct page *saveable_page(struct zone *zone, unsigned long pfn)
+{
+	struct page *page;
+
+	if (!pfn_valid(pfn))
+		return NULL;
+
+	page = pfn_to_page(pfn);
+	if (page_zone(page) != zone)
+		return NULL;
+
+	BUG_ON(PageHighMem(page));
+
+	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
+		return NULL;
+
+	if (PageReserved(page)
+	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
+		return NULL;
+
+	if (page_is_guard(page))
+		return NULL;
+
+	return page;
+}
+
+/**
+ *	count_data_pages - compute the total number of saveable non-highmem
+ *	pages.
+ */
+
+static unsigned int count_data_pages(void)
+{
+	struct zone *zone;
+	unsigned long pfn, max_zone_pfn;
+	unsigned int n = 0;
+
+	for_each_populated_zone(zone) {
+		if (is_highmem(zone))
+			continue;
+
+		mark_free_pages(zone);
+		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+			if (saveable_page(zone, pfn))
+				n++;
+	}
+	return n;
+}
+
+/* This is needed, because copy_page and memcpy are not usable for copying
+ * task structs.
+ */
+static inline void do_copy_page(long *dst, long *src)
+{
+	int n;
+
+	for (n = PAGE_SIZE / sizeof(long); n; n--)
+		*dst++ = *src++;
+}
+
+
+/**
+ *	safe_copy_page - check if the page we are going to copy is marked as
+ *		present in the kernel page tables (this always is the case if
+ *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
+ *		kernel_page_present() always returns 'true').
+ */
+static void safe_copy_page(void *dst, struct page *s_page)
+{
+	if (kernel_page_present(s_page)) {
+		do_copy_page(dst, page_address(s_page));
+	} else {
+		kernel_map_pages(s_page, 1, 1);
+		do_copy_page(dst, page_address(s_page));
+		kernel_map_pages(s_page, 1, 0);
+	}
+}
+
+
+#ifdef CONFIG_HIGHMEM
+static inline struct page *
+page_is_saveable(struct zone *zone, unsigned long pfn)
+{
+	return is_highmem(zone) ?
+		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
+}
+
+static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
+{
+	struct page *s_page, *d_page;
+	void *src, *dst;
+
+	s_page = pfn_to_page(src_pfn);
+	d_page = pfn_to_page(dst_pfn);
+	if (PageHighMem(s_page)) {
+		src = kmap_atomic(s_page);
+		dst = kmap_atomic(d_page);
+		do_copy_page(dst, src);
+		kunmap_atomic(dst);
+		kunmap_atomic(src);
+	} else {
+		if (PageHighMem(d_page)) {
+			/* Page pointed to by src may contain some kernel
+			 * data modified by kmap_atomic()
+			 */
+			safe_copy_page(buffer, s_page);
+			dst = kmap_atomic(d_page);
+			copy_page(dst, buffer);
+			kunmap_atomic(dst);
+		} else {
+			safe_copy_page(page_address(d_page), s_page);
+		}
+	}
+}
+#else
+#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
+
+static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
+{
+	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
+				pfn_to_page(src_pfn));
+}
+#endif /* CONFIG_HIGHMEM */
+
+static void
+copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
+{
+	struct zone *zone;
+	unsigned long pfn;
+
+	for_each_populated_zone(zone) {
+		unsigned long max_zone_pfn;
+
+		mark_free_pages(zone);
+		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+			if (page_is_saveable(zone, pfn))
+				memory_bm_set_bit(orig_bm, pfn);
+	}
+	memory_bm_position_reset(orig_bm);
+	memory_bm_position_reset(copy_bm);
+	for(;;) {
+		pfn = memory_bm_next_pfn(orig_bm);
+		if (unlikely(pfn == BM_END_OF_MAP))
+			break;
+		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
+	}
+}
+
+/* Total number of image pages */
+static unsigned int nr_copy_pages;
+/* Number of pages needed for saving the original pfns of the image pages */
+static unsigned int nr_meta_pages;
+/*
+ * Numbers of normal and highmem page frames allocated for hibernation image
+ * before suspending devices.
+ */
+unsigned int alloc_normal, alloc_highmem;
+/*
+ * Memory bitmap used for marking saveable pages (during hibernation) or
+ * hibernation image pages (during restore)
+ */
+static struct memory_bitmap orig_bm;
+/*
+ * Memory bitmap used during hibernation for marking allocated page frames that
+ * will contain copies of saveable pages.  During restore it is initially used
+ * for marking hibernation image pages, but then the set bits from it are
+ * duplicated in @orig_bm and it is released.  On highmem systems it is next
+ * used for marking "safe" highmem pages, but it has to be reinitialized for
+ * this purpose.
+ */
+static struct memory_bitmap copy_bm;
+
+/**
+ *	swsusp_free - free pages allocated for the suspend.
+ *
+ *	Suspend pages are alocated before the atomic copy is made, so we
+ *	need to release them after the resume.
+ */
+
+void swsusp_free(void)
+{
+	struct zone *zone;
+	unsigned long pfn, max_zone_pfn;
+
+	for_each_populated_zone(zone) {
+		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+			if (pfn_valid(pfn)) {
+				struct page *page = pfn_to_page(pfn);
+
+				if (swsusp_page_is_forbidden(page) &&
+				    swsusp_page_is_free(page)) {
+					swsusp_unset_page_forbidden(page);
+					swsusp_unset_page_free(page);
+					__free_page(page);
+				}
+			}
+	}
+	nr_copy_pages = 0;
+	nr_meta_pages = 0;
+	restore_pblist = NULL;
+	buffer = NULL;
+	alloc_normal = 0;
+	alloc_highmem = 0;
+}
+
+/* Helper functions used for the shrinking of memory. */
+
+#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
+
+/**
+ * preallocate_image_pages - Allocate a number of pages for hibernation image
+ * @nr_pages: Number of page frames to allocate.
+ * @mask: GFP flags to use for the allocation.
+ *
+ * Return value: Number of page frames actually allocated
+ */
+static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
+{
+	unsigned long nr_alloc = 0;
+
+	while (nr_pages > 0) {
+		struct page *page;
+
+		page = alloc_image_page(mask);
+		if (!page)
+			break;
+		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
+		if (PageHighMem(page))
+			alloc_highmem++;
+		else
+			alloc_normal++;
+		nr_pages--;
+		nr_alloc++;
+	}
+
+	return nr_alloc;
+}
+
+static unsigned long preallocate_image_memory(unsigned long nr_pages,
+					      unsigned long avail_normal)
+{
+	unsigned long alloc;
+
+	if (avail_normal <= alloc_normal)
+		return 0;
+
+	alloc = avail_normal - alloc_normal;
+	if (nr_pages < alloc)
+		alloc = nr_pages;
+
+	return preallocate_image_pages(alloc, GFP_IMAGE);
+}
+
+#ifdef CONFIG_HIGHMEM
+static unsigned long preallocate_image_highmem(unsigned long nr_pages)
+{
+	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
+}
+
+/**
+ *  __fraction - Compute (an approximation of) x * (multiplier / base)
+ */
+static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
+{
+	x *= multiplier;
+	do_div(x, base);
+	return (unsigned long)x;
+}
+
+static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
+						unsigned long highmem,
+						unsigned long total)
+{
+	unsigned long alloc = __fraction(nr_pages, highmem, total);
+
+	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
+}
+#else /* CONFIG_HIGHMEM */
+static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
+{
+	return 0;
+}
+
+static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
+						unsigned long highmem,
+						unsigned long total)
+{
+	return 0;
+}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ * free_unnecessary_pages - Release preallocated pages not needed for the image
+ */
+static void free_unnecessary_pages(void)
+{
+	unsigned long save, to_free_normal, to_free_highmem;
+
+	save = count_data_pages();
+	if (alloc_normal >= save) {
+		to_free_normal = alloc_normal - save;
+		save = 0;
+	} else {
+		to_free_normal = 0;
+		save -= alloc_normal;
+	}
+	save += count_highmem_pages();
+	if (alloc_highmem >= save) {
+		to_free_highmem = alloc_highmem - save;
+	} else {
+		to_free_highmem = 0;
+		save -= alloc_highmem;
+		if (to_free_normal > save)
+			to_free_normal -= save;
+		else
+			to_free_normal = 0;
+	}
+
+	memory_bm_position_reset(&copy_bm);
+
+	while (to_free_normal > 0 || to_free_highmem > 0) {
+		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
+		struct page *page = pfn_to_page(pfn);
+
+		if (PageHighMem(page)) {
+			if (!to_free_highmem)
+				continue;
+			to_free_highmem--;
+			alloc_highmem--;
+		} else {
+			if (!to_free_normal)
+				continue;
+			to_free_normal--;
+			alloc_normal--;
+		}
+		memory_bm_clear_bit(&copy_bm, pfn);
+		swsusp_unset_page_forbidden(page);
+		swsusp_unset_page_free(page);
+		__free_page(page);
+	}
+}
+
+/**
+ * minimum_image_size - Estimate the minimum acceptable size of an image
+ * @saveable: Number of saveable pages in the system.
+ *
+ * We want to avoid attempting to free too much memory too hard, so estimate the
+ * minimum acceptable size of a hibernation image to use as the lower limit for
+ * preallocating memory.
+ *
+ * We assume that the minimum image size should be proportional to
+ *
+ * [number of saveable pages] - [number of pages that can be freed in theory]
+ *
+ * where the second term is the sum of (1) reclaimable slab pages, (2) active
+ * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
+ * minus mapped file pages.
+ */
+static unsigned long minimum_image_size(unsigned long saveable)
+{
+	unsigned long size;
+
+	size = global_page_state(NR_SLAB_RECLAIMABLE)
+		+ global_page_state(NR_ACTIVE_ANON)
+		+ global_page_state(NR_INACTIVE_ANON)
+		+ global_page_state(NR_ACTIVE_FILE)
+		+ global_page_state(NR_INACTIVE_FILE)
+		- global_page_state(NR_FILE_MAPPED);
+
+	return saveable <= size ? 0 : saveable - size;
+}
+
+/**
+ * hibernate_preallocate_memory - Preallocate memory for hibernation image
+ *
+ * To create a hibernation image it is necessary to make a copy of every page
+ * frame in use.  We also need a number of page frames to be free during
+ * hibernation for allocations made while saving the image and for device
+ * drivers, in case they need to allocate memory from their hibernation
+ * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
+ * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
+ * /sys/power/reserved_size, respectively).  To make this happen, we compute the
+ * total number of available page frames and allocate at least
+ *
+ * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
+ *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
+ *
+ * of them, which corresponds to the maximum size of a hibernation image.
+ *
+ * If image_size is set below the number following from the above formula,
+ * the preallocation of memory is continued until the total number of saveable
+ * pages in the system is below the requested image size or the minimum
+ * acceptable image size returned by minimum_image_size(), whichever is greater.
+ */
+int hibernate_preallocate_memory(void)
+{
+	struct zone *zone;
+	unsigned long saveable, size, max_size, count, highmem, pages = 0;
+	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
+	struct timeval start, stop;
+	int error;
+
+	printk(KERN_INFO "PM: Preallocating image memory... ");
+	do_gettimeofday(&start);
+
+	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
+	if (error)
+		goto err_out;
+
+	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
+	if (error)
+		goto err_out;
+
+	alloc_normal = 0;
+	alloc_highmem = 0;
+
+	/* Count the number of saveable data pages. */
+	save_highmem = count_highmem_pages();
+	saveable = count_data_pages();
+
+	/*
+	 * Compute the total number of page frames we can use (count) and the
+	 * number of pages needed for image metadata (size).
+	 */
+	count = saveable;
+	saveable += save_highmem;
+	highmem = save_highmem;
+	size = 0;
+	for_each_populated_zone(zone) {
+		size += snapshot_additional_pages(zone);
+		if (is_highmem(zone))
+			highmem += zone_page_state(zone, NR_FREE_PAGES);
+		else
+			count += zone_page_state(zone, NR_FREE_PAGES);
+	}
+	avail_normal = count;
+	count += highmem;
+	count -= totalreserve_pages;
+
+	/* Add number of pages required for page keys (s390 only). */
+	size += page_key_additional_pages(saveable);
+
+	/* Compute the maximum number of saveable pages to leave in memory. */
+	max_size = (count - (size + PAGES_FOR_IO)) / 2
+			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
+	/* Compute the desired number of image pages specified by image_size. */
+	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
+	if (size > max_size)
+		size = max_size;
+	/*
+	 * If the desired number of image pages is at least as large as the
+	 * current number of saveable pages in memory, allocate page frames for
+	 * the image and we're done.
+	 */
+	if (size >= saveable) {
+		pages = preallocate_image_highmem(save_highmem);
+		pages += preallocate_image_memory(saveable - pages, avail_normal);
+		goto out;
+	}
+
+	/* Estimate the minimum size of the image. */
+	pages = minimum_image_size(saveable);
+	/*
+	 * To avoid excessive pressure on the normal zone, leave room in it to
+	 * accommodate an image of the minimum size (unless it's already too
+	 * small, in which case don't preallocate pages from it at all).
+	 */
+	if (avail_normal > pages)
+		avail_normal -= pages;
+	else
+		avail_normal = 0;
+	if (size < pages)
+		size = min_t(unsigned long, pages, max_size);
+
+	/*
+	 * Let the memory management subsystem know that we're going to need a
+	 * large number of page frames to allocate and make it free some memory.
+	 * NOTE: If this is not done, performance will be hurt badly in some
+	 * test cases.
+	 */
+	shrink_all_memory(saveable - size);
+
+	/*
+	 * The number of saveable pages in memory was too high, so apply some
+	 * pressure to decrease it.  First, make room for the largest possible
+	 * image and fail if that doesn't work.  Next, try to decrease the size
+	 * of the image as much as indicated by 'size' using allocations from
+	 * highmem and non-highmem zones separately.
+	 */
+	pages_highmem = preallocate_image_highmem(highmem / 2);
+	alloc = count - max_size;
+	if (alloc > pages_highmem)
+		alloc -= pages_highmem;
+	else
+		alloc = 0;
+	pages = preallocate_image_memory(alloc, avail_normal);
+	if (pages < alloc) {
+		/* We have exhausted non-highmem pages, try highmem. */
+		alloc -= pages;
+		pages += pages_highmem;
+		pages_highmem = preallocate_image_highmem(alloc);
+		if (pages_highmem < alloc)
+			goto err_out;
+		pages += pages_highmem;
+		/*
+		 * size is the desired number of saveable pages to leave in
+		 * memory, so try to preallocate (all memory - size) pages.
+		 */
+		alloc = (count - pages) - size;
+		pages += preallocate_image_highmem(alloc);
+	} else {
+		/*
+		 * There are approximately max_size saveable pages at this point
+		 * and we want to reduce this number down to size.
+		 */
+		alloc = max_size - size;
+		size = preallocate_highmem_fraction(alloc, highmem, count);
+		pages_highmem += size;
+		alloc -= size;
+		size = preallocate_image_memory(alloc, avail_normal);
+		pages_highmem += preallocate_image_highmem(alloc - size);
+		pages += pages_highmem + size;
+	}
+
+	/*
+	 * We only need as many page frames for the image as there are saveable
+	 * pages in memory, but we have allocated more.  Release the excessive
+	 * ones now.
+	 */
+	free_unnecessary_pages();
+
+ out:
+	do_gettimeofday(&stop);
+	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
+	swsusp_show_speed(&start, &stop, pages, "Allocated");
+
+	return 0;
+
+ err_out:
+	printk(KERN_CONT "\n");
+	swsusp_free();
+	return -ENOMEM;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+  *	count_pages_for_highmem - compute the number of non-highmem pages
+  *	that will be necessary for creating copies of highmem pages.
+  */
+
+static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
+{
+	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
+
+	if (free_highmem >= nr_highmem)
+		nr_highmem = 0;
+	else
+		nr_highmem -= free_highmem;
+
+	return nr_highmem;
+}
+#else
+static unsigned int
+count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *	enough_free_mem - Make sure we have enough free memory for the
+ *	snapshot image.
+ */
+
+static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
+{
+	struct zone *zone;
+	unsigned int free = alloc_normal;
+
+	for_each_populated_zone(zone)
+		if (!is_highmem(zone))
+			free += zone_page_state(zone, NR_FREE_PAGES);
+
+	nr_pages += count_pages_for_highmem(nr_highmem);
+	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
+		nr_pages, PAGES_FOR_IO, free);
+
+	return free > nr_pages + PAGES_FOR_IO;
+}
+
+#ifdef CONFIG_HIGHMEM
+/**
+ *	get_highmem_buffer - if there are some highmem pages in the suspend
+ *	image, we may need the buffer to copy them and/or load their data.
+ */
+
+static inline int get_highmem_buffer(int safe_needed)
+{
+	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
+	return buffer ? 0 : -ENOMEM;
+}
+
+/**
+ *	alloc_highmem_image_pages - allocate some highmem pages for the image.
+ *	Try to allocate as many pages as needed, but if the number of free
+ *	highmem pages is lesser than that, allocate them all.
+ */
+
+static inline unsigned int
+alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
+{
+	unsigned int to_alloc = count_free_highmem_pages();
+
+	if (to_alloc > nr_highmem)
+		to_alloc = nr_highmem;
+
+	nr_highmem -= to_alloc;
+	while (to_alloc-- > 0) {
+		struct page *page;
+
+		page = alloc_image_page(__GFP_HIGHMEM);
+		memory_bm_set_bit(bm, page_to_pfn(page));
+	}
+	return nr_highmem;
+}
+#else
+static inline int get_highmem_buffer(int safe_needed) { return 0; }
+
+static inline unsigned int
+alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *	swsusp_alloc - allocate memory for the suspend image
+ *
+ *	We first try to allocate as many highmem pages as there are
+ *	saveable highmem pages in the system.  If that fails, we allocate
+ *	non-highmem pages for the copies of the remaining highmem ones.
+ *
+ *	In this approach it is likely that the copies of highmem pages will
+ *	also be located in the high memory, because of the way in which
+ *	copy_data_pages() works.
+ */
+
+static int
+swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
+		unsigned int nr_pages, unsigned int nr_highmem)
+{
+	if (nr_highmem > 0) {
+		if (get_highmem_buffer(PG_ANY))
+			goto err_out;
+		if (nr_highmem > alloc_highmem) {
+			nr_highmem -= alloc_highmem;
+			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
+		}
+	}
+	if (nr_pages > alloc_normal) {
+		nr_pages -= alloc_normal;
+		while (nr_pages-- > 0) {
+			struct page *page;
+
+			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
+			if (!page)
+				goto err_out;
+			memory_bm_set_bit(copy_bm, page_to_pfn(page));
+		}
+	}
+
+	return 0;
+
+ err_out:
+	swsusp_free();
+	return -ENOMEM;
+}
+
+asmlinkage int swsusp_save(void)
+{
+	unsigned int nr_pages, nr_highmem;
+
+	printk(KERN_INFO "PM: Creating hibernation image:\n");
+
+	drain_local_pages(NULL);
+	nr_pages = count_data_pages();
+	nr_highmem = count_highmem_pages();
+	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
+
+	if (!enough_free_mem(nr_pages, nr_highmem)) {
+		printk(KERN_ERR "PM: Not enough free memory\n");
+		return -ENOMEM;
+	}
+
+	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
+		printk(KERN_ERR "PM: Memory allocation failed\n");
+		return -ENOMEM;
+	}
+
+	/* During allocating of suspend pagedir, new cold pages may appear.
+	 * Kill them.
+	 */
+	drain_local_pages(NULL);
+	copy_data_pages(&copy_bm, &orig_bm);
+
+	/*
+	 * End of critical section. From now on, we can write to memory,
+	 * but we should not touch disk. This specially means we must _not_
+	 * touch swap space! Except we must write out our image of course.
+	 */
+
+	nr_pages += nr_highmem;
+	nr_copy_pages = nr_pages;
+	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
+
+	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
+		nr_pages);
+
+	return 0;
+}
+
+#ifndef CONFIG_ARCH_HIBERNATION_HEADER
+static int init_header_complete(struct swsusp_info *info)
+{
+	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
+	info->version_code = LINUX_VERSION_CODE;
+	return 0;
+}
+
+static char *check_image_kernel(struct swsusp_info *info)
+{
+	if (info->version_code != LINUX_VERSION_CODE)
+		return "kernel version";
+	if (strcmp(info->uts.sysname,init_utsname()->sysname))
+		return "system type";
+	if (strcmp(info->uts.release,init_utsname()->release))
+		return "kernel release";
+	if (strcmp(info->uts.version,init_utsname()->version))
+		return "version";
+	if (strcmp(info->uts.machine,init_utsname()->machine))
+		return "machine";
+	return NULL;
+}
+#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
+
+unsigned long snapshot_get_image_size(void)
+{
+	return nr_copy_pages + nr_meta_pages + 1;
+}
+
+static int init_header(struct swsusp_info *info)
+{
+	memset(info, 0, sizeof(struct swsusp_info));
+	info->num_physpages = num_physpages;
+	info->image_pages = nr_copy_pages;
+	info->pages = snapshot_get_image_size();
+	info->size = info->pages;
+	info->size <<= PAGE_SHIFT;
+	return init_header_complete(info);
+}
+
+/**
+ *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
+ *	are stored in the array @buf[] (1 page at a time)
+ */
+
+static inline void
+pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
+{
+	int j;
+
+	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
+		buf[j] = memory_bm_next_pfn(bm);
+		if (unlikely(buf[j] == BM_END_OF_MAP))
+			break;
+		/* Save page key for data page (s390 only). */
+		page_key_read(buf + j);
+	}
+}
+
+/**
+ *	snapshot_read_next - used for reading the system memory snapshot.
+ *
+ *	On the first call to it @handle should point to a zeroed
+ *	snapshot_handle structure.  The structure gets updated and a pointer
+ *	to it should be passed to this function every next time.
+ *
+ *	On success the function returns a positive number.  Then, the caller
+ *	is allowed to read up to the returned number of bytes from the memory
+ *	location computed by the data_of() macro.
+ *
+ *	The function returns 0 to indicate the end of data stream condition,
+ *	and a negative number is returned on error.  In such cases the
+ *	structure pointed to by @handle is not updated and should not be used
+ *	any more.
+ */
+
+int snapshot_read_next(struct snapshot_handle *handle)
+{
+	if (handle->cur > nr_meta_pages + nr_copy_pages)
+		return 0;
+
+	if (!buffer) {
+		/* This makes the buffer be freed by swsusp_free() */
+		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
+		if (!buffer)
+			return -ENOMEM;
+	}
+	if (!handle->cur) {
+		int error;
+
+		error = init_header((struct swsusp_info *)buffer);
+		if (error)
+			return error;
+		handle->buffer = buffer;
+		memory_bm_position_reset(&orig_bm);
+		memory_bm_position_reset(&copy_bm);
+	} else if (handle->cur <= nr_meta_pages) {
+		clear_page(buffer);
+		pack_pfns(buffer, &orig_bm);
+	} else {
+		struct page *page;
+
+		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
+		if (PageHighMem(page)) {
+			/* Highmem pages are copied to the buffer,
+			 * because we can't return with a kmapped
+			 * highmem page (we may not be called again).
+			 */
+			void *kaddr;
+
+			kaddr = kmap_atomic(page);
+			copy_page(buffer, kaddr);
+			kunmap_atomic(kaddr);
+			handle->buffer = buffer;
+		} else {
+			handle->buffer = page_address(page);
+		}
+	}
+	handle->cur++;
+	return PAGE_SIZE;
+}
+
+/**
+ *	mark_unsafe_pages - mark the pages that cannot be used for storing
+ *	the image during resume, because they conflict with the pages that
+ *	had been used before suspend
+ */
+
+static int mark_unsafe_pages(struct memory_bitmap *bm)
+{
+	struct zone *zone;
+	unsigned long pfn, max_zone_pfn;
+
+	/* Clear page flags */
+	for_each_populated_zone(zone) {
+		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
+		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+			if (pfn_valid(pfn))
+				swsusp_unset_page_free(pfn_to_page(pfn));
+	}
+
+	/* Mark pages that correspond to the "original" pfns as "unsafe" */
+	memory_bm_position_reset(bm);
+	do {
+		pfn = memory_bm_next_pfn(bm);
+		if (likely(pfn != BM_END_OF_MAP)) {
+			if (likely(pfn_valid(pfn)))
+				swsusp_set_page_free(pfn_to_page(pfn));
+			else
+				return -EFAULT;
+		}
+	} while (pfn != BM_END_OF_MAP);
+
+	allocated_unsafe_pages = 0;
+
+	return 0;
+}
+
+static void
+duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
+{
+	unsigned long pfn;
+
+	memory_bm_position_reset(src);
+	pfn = memory_bm_next_pfn(src);
+	while (pfn != BM_END_OF_MAP) {
+		memory_bm_set_bit(dst, pfn);
+		pfn = memory_bm_next_pfn(src);
+	}
+}
+
+static int check_header(struct swsusp_info *info)
+{
+	char *reason;
+
+	reason = check_image_kernel(info);
+	if (!reason && info->num_physpages != num_physpages)
+		reason = "memory size";
+	if (reason) {
+		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
+		return -EPERM;
+	}
+	return 0;
+}
+
+/**
+ *	load header - check the image header and copy data from it
+ */
+
+static int
+load_header(struct swsusp_info *info)
+{
+	int error;
+
+	restore_pblist = NULL;
+	error = check_header(info);
+	if (!error) {
+		nr_copy_pages = info->image_pages;
+		nr_meta_pages = info->pages - info->image_pages - 1;
+	}
+	return error;
+}
+
+/**
+ *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
+ *	the corresponding bit in the memory bitmap @bm
+ */
+static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
+{
+	int j;
+
+	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
+		if (unlikely(buf[j] == BM_END_OF_MAP))
+			break;
+
+		/* Extract and buffer page key for data page (s390 only). */
+		page_key_memorize(buf + j);
+
+		if (memory_bm_pfn_present(bm, buf[j]))
+			memory_bm_set_bit(bm, buf[j]);
+		else
+			return -EFAULT;
+	}
+
+	return 0;
+}
+
+/* List of "safe" pages that may be used to store data loaded from the suspend
+ * image
+ */
+static struct linked_page *safe_pages_list;
+
+#ifdef CONFIG_HIGHMEM
+/* struct highmem_pbe is used for creating the list of highmem pages that
+ * should be restored atomically during the resume from disk, because the page
+ * frames they have occupied before the suspend are in use.
+ */
+struct highmem_pbe {
+	struct page *copy_page;	/* data is here now */
+	struct page *orig_page;	/* data was here before the suspend */
+	struct highmem_pbe *next;
+};
+
+/* List of highmem PBEs needed for restoring the highmem pages that were
+ * allocated before the suspend and included in the suspend image, but have
+ * also been allocated by the "resume" kernel, so their contents cannot be
+ * written directly to their "original" page frames.
+ */
+static struct highmem_pbe *highmem_pblist;
+
+/**
+ *	count_highmem_image_pages - compute the number of highmem pages in the
+ *	suspend image.  The bits in the memory bitmap @bm that correspond to the
+ *	image pages are assumed to be set.
+ */
+
+static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
+{
+	unsigned long pfn;
+	unsigned int cnt = 0;
+
+	memory_bm_position_reset(bm);
+	pfn = memory_bm_next_pfn(bm);
+	while (pfn != BM_END_OF_MAP) {
+		if (PageHighMem(pfn_to_page(pfn)))
+			cnt++;
+
+		pfn = memory_bm_next_pfn(bm);
+	}
+	return cnt;
+}
+
+/**
+ *	prepare_highmem_image - try to allocate as many highmem pages as
+ *	there are highmem image pages (@nr_highmem_p points to the variable
+ *	containing the number of highmem image pages).  The pages that are
+ *	"safe" (ie. will not be overwritten when the suspend image is
+ *	restored) have the corresponding bits set in @bm (it must be
+ *	unitialized).
+ *
+ *	NOTE: This function should not be called if there are no highmem
+ *	image pages.
+ */
+
+static unsigned int safe_highmem_pages;
+
+static struct memory_bitmap *safe_highmem_bm;
+
+static int
+prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
+{
+	unsigned int to_alloc;
+
+	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
+		return -ENOMEM;
+
+	if (get_highmem_buffer(PG_SAFE))
+		return -ENOMEM;
+
+	to_alloc = count_free_highmem_pages();
+	if (to_alloc > *nr_highmem_p)
+		to_alloc = *nr_highmem_p;
+	else
+		*nr_highmem_p = to_alloc;
+
+	safe_highmem_pages = 0;
+	while (to_alloc-- > 0) {
+		struct page *page;
+
+		page = alloc_page(__GFP_HIGHMEM);
+		if (!swsusp_page_is_free(page)) {
+			/* The page is "safe", set its bit the bitmap */
+			memory_bm_set_bit(bm, page_to_pfn(page));
+			safe_highmem_pages++;
+		}
+		/* Mark the page as allocated */
+		swsusp_set_page_forbidden(page);
+		swsusp_set_page_free(page);
+	}
+	memory_bm_position_reset(bm);
+	safe_highmem_bm = bm;
+	return 0;
+}
+
+/**
+ *	get_highmem_page_buffer - for given highmem image page find the buffer
+ *	that suspend_write_next() should set for its caller to write to.
+ *
+ *	If the page is to be saved to its "original" page frame or a copy of
+ *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
+ *	the copy of the page is to be made in normal memory, so the address of
+ *	the copy is returned.
+ *
+ *	If @buffer is returned, the caller of suspend_write_next() will write
+ *	the page's contents to @buffer, so they will have to be copied to the
+ *	right location on the next call to suspend_write_next() and it is done
+ *	with the help of copy_last_highmem_page().  For this purpose, if
+ *	@buffer is returned, @last_highmem page is set to the page to which
+ *	the data will have to be copied from @buffer.
+ */
+
+static struct page *last_highmem_page;
+
+static void *
+get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
+{
+	struct highmem_pbe *pbe;
+	void *kaddr;
+
+	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
+		/* We have allocated the "original" page frame and we can
+		 * use it directly to store the loaded page.
+		 */
+		last_highmem_page = page;
+		return buffer;
+	}
+	/* The "original" page frame has not been allocated and we have to
+	 * use a "safe" page frame to store the loaded page.
+	 */
+	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
+	if (!pbe) {
+		swsusp_free();
+		return ERR_PTR(-ENOMEM);
+	}
+	pbe->orig_page = page;
+	if (safe_highmem_pages > 0) {
+		struct page *tmp;
+
+		/* Copy of the page will be stored in high memory */
+		kaddr = buffer;
+		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
+		safe_highmem_pages--;
+		last_highmem_page = tmp;
+		pbe->copy_page = tmp;
+	} else {
+		/* Copy of the page will be stored in normal memory */
+		kaddr = safe_pages_list;
+		safe_pages_list = safe_pages_list->next;
+		pbe->copy_page = virt_to_page(kaddr);
+	}
+	pbe->next = highmem_pblist;
+	highmem_pblist = pbe;
+	return kaddr;
+}
+
+/**
+ *	copy_last_highmem_page - copy the contents of a highmem image from
+ *	@buffer, where the caller of snapshot_write_next() has place them,
+ *	to the right location represented by @last_highmem_page .
+ */
+
+static void copy_last_highmem_page(void)
+{
+	if (last_highmem_page) {
+		void *dst;
+
+		dst = kmap_atomic(last_highmem_page);
+		copy_page(dst, buffer);
+		kunmap_atomic(dst);
+		last_highmem_page = NULL;
+	}
+}
+
+static inline int last_highmem_page_copied(void)
+{
+	return !last_highmem_page;
+}
+
+static inline void free_highmem_data(void)
+{
+	if (safe_highmem_bm)
+		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
+
+	if (buffer)
+		free_image_page(buffer, PG_UNSAFE_CLEAR);
+}
+#else
+static inline int get_safe_write_buffer(void) { return 0; }
+
+static unsigned int
+count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
+
+static inline int
+prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
+{
+	return 0;
+}
+
+static inline void *
+get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
+{
+	return ERR_PTR(-EINVAL);
+}
+
+static inline void copy_last_highmem_page(void) {}
+static inline int last_highmem_page_copied(void) { return 1; }
+static inline void free_highmem_data(void) {}
+#endif /* CONFIG_HIGHMEM */
+
+/**
+ *	prepare_image - use the memory bitmap @bm to mark the pages that will
+ *	be overwritten in the process of restoring the system memory state
+ *	from the suspend image ("unsafe" pages) and allocate memory for the
+ *	image.
+ *
+ *	The idea is to allocate a new memory bitmap first and then allocate
+ *	as many pages as needed for the image data, but not to assign these
+ *	pages to specific tasks initially.  Instead, we just mark them as
+ *	allocated and create a lists of "safe" pages that will be used
+ *	later.  On systems with high memory a list of "safe" highmem pages is
+ *	also created.
+ */
+
+#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
+
+static int
+prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
+{
+	unsigned int nr_pages, nr_highmem;
+	struct linked_page *sp_list, *lp;
+	int error;
+
+	/* If there is no highmem, the buffer will not be necessary */
+	free_image_page(buffer, PG_UNSAFE_CLEAR);
+	buffer = NULL;
+
+	nr_highmem = count_highmem_image_pages(bm);
+	error = mark_unsafe_pages(bm);
+	if (error)
+		goto Free;
+
+	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
+	if (error)
+		goto Free;
+
+	duplicate_memory_bitmap(new_bm, bm);
+	memory_bm_free(bm, PG_UNSAFE_KEEP);
+	if (nr_highmem > 0) {
+		error = prepare_highmem_image(bm, &nr_highmem);
+		if (error)
+			goto Free;
+	}
+	/* Reserve some safe pages for potential later use.
+	 *
+	 * NOTE: This way we make sure there will be enough safe pages for the
+	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
+	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
+	 */
+	sp_list = NULL;
+	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
+	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
+	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
+	while (nr_pages > 0) {
+		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
+		if (!lp) {
+			error = -ENOMEM;
+			goto Free;
+		}
+		lp->next = sp_list;
+		sp_list = lp;
+		nr_pages--;
+	}
+	/* Preallocate memory for the image */
+	safe_pages_list = NULL;
+	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
+	while (nr_pages > 0) {
+		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
+		if (!lp) {
+			error = -ENOMEM;
+			goto Free;
+		}
+		if (!swsusp_page_is_free(virt_to_page(lp))) {
+			/* The page is "safe", add it to the list */
+			lp->next = safe_pages_list;
+			safe_pages_list = lp;
+		}
+		/* Mark the page as allocated */
+		swsusp_set_page_forbidden(virt_to_page(lp));
+		swsusp_set_page_free(virt_to_page(lp));
+		nr_pages--;
+	}
+	/* Free the reserved safe pages so that chain_alloc() can use them */
+	while (sp_list) {
+		lp = sp_list->next;
+		free_image_page(sp_list, PG_UNSAFE_CLEAR);
+		sp_list = lp;
+	}
+	return 0;
+
+ Free:
+	swsusp_free();
+	return error;
+}
+
+/**
+ *	get_buffer - compute the address that snapshot_write_next() should
+ *	set for its caller to write to.
+ */
+
+static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
+{
+	struct pbe *pbe;
+	struct page *page;
+	unsigned long pfn = memory_bm_next_pfn(bm);
+
+	if (pfn == BM_END_OF_MAP)
+		return ERR_PTR(-EFAULT);
+
+	page = pfn_to_page(pfn);
+	if (PageHighMem(page))
+		return get_highmem_page_buffer(page, ca);
+
+	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
+		/* We have allocated the "original" page frame and we can
+		 * use it directly to store the loaded page.
+		 */
+		return page_address(page);
+
+	/* The "original" page frame has not been allocated and we have to
+	 * use a "safe" page frame to store the loaded page.
+	 */
+	pbe = chain_alloc(ca, sizeof(struct pbe));
+	if (!pbe) {
+		swsusp_free();
+		return ERR_PTR(-ENOMEM);
+	}
+	pbe->orig_address = page_address(page);
+	pbe->address = safe_pages_list;
+	safe_pages_list = safe_pages_list->next;
+	pbe->next = restore_pblist;
+	restore_pblist = pbe;
+	return pbe->address;
+}
+
+/**
+ *	snapshot_write_next - used for writing the system memory snapshot.
+ *
+ *	On the first call to it @handle should point to a zeroed
+ *	snapshot_handle structure.  The structure gets updated and a pointer
+ *	to it should be passed to this function every next time.
+ *
+ *	On success the function returns a positive number.  Then, the caller
+ *	is allowed to write up to the returned number of bytes to the memory
+ *	location computed by the data_of() macro.
+ *
+ *	The function returns 0 to indicate the "end of file" condition,
+ *	and a negative number is returned on error.  In such cases the
+ *	structure pointed to by @handle is not updated and should not be used
+ *	any more.
+ */
+
+int snapshot_write_next(struct snapshot_handle *handle)
+{
+	static struct chain_allocator ca;
+	int error = 0;
+
+	/* Check if we have already loaded the entire image */
+	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
+		return 0;
+
+	handle->sync_read = 1;
+
+	if (!handle->cur) {
+		if (!buffer)
+			/* This makes the buffer be freed by swsusp_free() */
+			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
+
+		if (!buffer)
+			return -ENOMEM;
+
+		handle->buffer = buffer;
+	} else if (handle->cur == 1) {
+		error = load_header(buffer);
+		if (error)
+			return error;
+
+		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
+		if (error)
+			return error;
+
+		/* Allocate buffer for page keys. */
+		error = page_key_alloc(nr_copy_pages);
+		if (error)
+			return error;
+
+	} else if (handle->cur <= nr_meta_pages + 1) {
+		error = unpack_orig_pfns(buffer, &copy_bm);
+		if (error)
+			return error;
+
+		if (handle->cur == nr_meta_pages + 1) {
+			error = prepare_image(&orig_bm, &copy_bm);
+			if (error)
+				return error;
+
+			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
+			memory_bm_position_reset(&orig_bm);
+			restore_pblist = NULL;
+			handle->buffer = get_buffer(&orig_bm, &ca);
+			handle->sync_read = 0;
+			if (IS_ERR(handle->buffer))
+				return PTR_ERR(handle->buffer);
+		}
+	} else {
+		copy_last_highmem_page();
+		/* Restore page key for data page (s390 only). */
+		page_key_write(handle->buffer);
+		handle->buffer = get_buffer(&orig_bm, &ca);
+		if (IS_ERR(handle->buffer))
+			return PTR_ERR(handle->buffer);
+		if (handle->buffer != buffer)
+			handle->sync_read = 0;
+	}
+	handle->cur++;
+	return PAGE_SIZE;
+}
+
+/**
+ *	snapshot_write_finalize - must be called after the last call to
+ *	snapshot_write_next() in case the last page in the image happens
+ *	to be a highmem page and its contents should be stored in the
+ *	highmem.  Additionally, it releases the memory that will not be
+ *	used any more.
+ */
+
+void snapshot_write_finalize(struct snapshot_handle *handle)
+{
+	copy_last_highmem_page();
+	/* Restore page key for data page (s390 only). */
+	page_key_write(handle->buffer);
+	page_key_free();
+	/* Free only if we have loaded the image entirely */
+	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
+		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
+		free_highmem_data();
+	}
+}
+
+int snapshot_image_loaded(struct snapshot_handle *handle)
+{
+	return !(!nr_copy_pages || !last_highmem_page_copied() ||
+			handle->cur <= nr_meta_pages + nr_copy_pages);
+}
+
+#ifdef CONFIG_HIGHMEM
+/* Assumes that @buf is ready and points to a "safe" page */
+static inline void
+swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
+{
+	void *kaddr1, *kaddr2;
+
+	kaddr1 = kmap_atomic(p1);
+	kaddr2 = kmap_atomic(p2);
+	copy_page(buf, kaddr1);
+	copy_page(kaddr1, kaddr2);
+	copy_page(kaddr2, buf);
+	kunmap_atomic(kaddr2);
+	kunmap_atomic(kaddr1);
+}
+
+/**
+ *	restore_highmem - for each highmem page that was allocated before
+ *	the suspend and included in the suspend image, and also has been
+ *	allocated by the "resume" kernel swap its current (ie. "before
+ *	resume") contents with the previous (ie. "before suspend") one.
+ *
+ *	If the resume eventually fails, we can call this function once
+ *	again and restore the "before resume" highmem state.
+ */
+
+int restore_highmem(void)
+{
+	struct highmem_pbe *pbe = highmem_pblist;
+	void *buf;
+
+	if (!pbe)
+		return 0;
+
+	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
+	if (!buf)
+		return -ENOMEM;
+
+	while (pbe) {
+		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
+		pbe = pbe->next;
+	}
+	free_image_page(buf, PG_UNSAFE_CLEAR);
+	return 0;
+}
+#endif /* CONFIG_HIGHMEM */