[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/kernel/sched/rt.c b/ap/os/linux/linux-3.4.x/kernel/sched/rt.c
new file mode 100644
index 0000000..89a985a
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/sched/rt.c
@@ -0,0 +1,2131 @@
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+
+#include "sched.h"
+
+#include <linux/slab.h>
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
+
+struct rt_bandwidth def_rt_bandwidth;
+
+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
+{
+	struct rt_bandwidth *rt_b =
+		container_of(timer, struct rt_bandwidth, rt_period_timer);
+	ktime_t now;
+	int overrun;
+	int idle = 0;
+
+	for (;;) {
+		now = hrtimer_cb_get_time(timer);
+		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
+
+		if (!overrun)
+			break;
+
+		idle = do_sched_rt_period_timer(rt_b, overrun);
+	}
+
+	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
+}
+
+void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
+{
+	rt_b->rt_period = ns_to_ktime(period);
+	rt_b->rt_runtime = runtime;
+
+	raw_spin_lock_init(&rt_b->rt_runtime_lock);
+
+	hrtimer_init(&rt_b->rt_period_timer,
+			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+	rt_b->rt_period_timer.irqsafe = 1;
+	rt_b->rt_period_timer.function = sched_rt_period_timer;
+}
+
+static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+		return;
+
+	if (hrtimer_active(&rt_b->rt_period_timer))
+		return;
+
+	raw_spin_lock(&rt_b->rt_runtime_lock);
+	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
+	raw_spin_unlock(&rt_b->rt_runtime_lock);
+}
+
+void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
+{
+	struct rt_prio_array *array;
+	int i;
+
+	array = &rt_rq->active;
+	for (i = 0; i < MAX_RT_PRIO; i++) {
+		INIT_LIST_HEAD(array->queue + i);
+		__clear_bit(i, array->bitmap);
+	}
+	/* delimiter for bitsearch: */
+	__set_bit(MAX_RT_PRIO, array->bitmap);
+
+#if defined CONFIG_SMP
+	rt_rq->highest_prio.curr = MAX_RT_PRIO;
+	rt_rq->highest_prio.next = MAX_RT_PRIO;
+	rt_rq->rt_nr_migratory = 0;
+	rt_rq->overloaded = 0;
+	plist_head_init(&rt_rq->pushable_tasks);
+#endif
+
+	rt_rq->rt_time = 0;
+	rt_rq->rt_throttled = 0;
+	rt_rq->rt_runtime = 0;
+	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
+{
+	hrtimer_cancel(&rt_b->rt_period_timer);
+}
+
+#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
+#endif
+	return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+	return rt_rq->rq;
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+	return rt_se->rt_rq;
+}
+
+void free_rt_sched_group(struct task_group *tg)
+{
+	int i;
+
+	if (tg->rt_se)
+		destroy_rt_bandwidth(&tg->rt_bandwidth);
+
+	for_each_possible_cpu(i) {
+		if (tg->rt_rq)
+			kfree(tg->rt_rq[i]);
+		if (tg->rt_se)
+			kfree(tg->rt_se[i]);
+	}
+
+	kfree(tg->rt_rq);
+	kfree(tg->rt_se);
+}
+
+void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+		struct sched_rt_entity *rt_se, int cpu,
+		struct sched_rt_entity *parent)
+{
+	struct rq *rq = cpu_rq(cpu);
+
+	rt_rq->highest_prio.curr = MAX_RT_PRIO;
+	rt_rq->rt_nr_boosted = 0;
+	rt_rq->rq = rq;
+	rt_rq->tg = tg;
+
+	tg->rt_rq[cpu] = rt_rq;
+	tg->rt_se[cpu] = rt_se;
+
+	if (!rt_se)
+		return;
+
+	if (!parent)
+		rt_se->rt_rq = &rq->rt;
+	else
+		rt_se->rt_rq = parent->my_q;
+
+	rt_se->my_q = rt_rq;
+	rt_se->parent = parent;
+	INIT_LIST_HEAD(&rt_se->run_list);
+}
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+	struct rt_rq *rt_rq;
+	struct sched_rt_entity *rt_se;
+	int i;
+
+	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
+	if (!tg->rt_rq)
+		goto err;
+	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
+	if (!tg->rt_se)
+		goto err;
+
+	init_rt_bandwidth(&tg->rt_bandwidth,
+			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
+
+	for_each_possible_cpu(i) {
+		rt_rq = kzalloc_node(sizeof(struct rt_rq),
+				     GFP_KERNEL, cpu_to_node(i));
+		if (!rt_rq)
+			goto err;
+
+		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
+				     GFP_KERNEL, cpu_to_node(i));
+		if (!rt_se)
+			goto err_free_rq;
+
+		init_rt_rq(rt_rq, cpu_rq(i));
+		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
+		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
+	}
+
+	return 1;
+
+err_free_rq:
+	kfree(rt_rq);
+err:
+	return 0;
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+#define rt_entity_is_task(rt_se) (1)
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+	return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+	return container_of(rt_rq, struct rq, rt);
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+	struct task_struct *p = rt_task_of(rt_se);
+	struct rq *rq = task_rq(p);
+
+	return &rq->rt;
+}
+
+void free_rt_sched_group(struct task_group *tg) { }
+
+int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
+{
+	return 1;
+}
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+
+static inline int rt_overloaded(struct rq *rq)
+{
+	return atomic_read(&rq->rd->rto_count);
+}
+
+static inline void rt_set_overload(struct rq *rq)
+{
+	if (!rq->online)
+		return;
+
+	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
+	/*
+	 * Make sure the mask is visible before we set
+	 * the overload count. That is checked to determine
+	 * if we should look at the mask. It would be a shame
+	 * if we looked at the mask, but the mask was not
+	 * updated yet.
+	 */
+	wmb();
+	atomic_inc(&rq->rd->rto_count);
+}
+
+static inline void rt_clear_overload(struct rq *rq)
+{
+	if (!rq->online)
+		return;
+
+	/* the order here really doesn't matter */
+	atomic_dec(&rq->rd->rto_count);
+	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
+}
+
+static void update_rt_migration(struct rt_rq *rt_rq)
+{
+	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
+		if (!rt_rq->overloaded) {
+			rt_set_overload(rq_of_rt_rq(rt_rq));
+			rt_rq->overloaded = 1;
+		}
+	} else if (rt_rq->overloaded) {
+		rt_clear_overload(rq_of_rt_rq(rt_rq));
+		rt_rq->overloaded = 0;
+	}
+}
+
+static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	if (!rt_entity_is_task(rt_se))
+		return;
+
+	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+	rt_rq->rt_nr_total++;
+	if (rt_se->nr_cpus_allowed > 1)
+		rt_rq->rt_nr_migratory++;
+
+	update_rt_migration(rt_rq);
+}
+
+static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	if (!rt_entity_is_task(rt_se))
+		return;
+
+	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+
+	rt_rq->rt_nr_total--;
+	if (rt_se->nr_cpus_allowed > 1)
+		rt_rq->rt_nr_migratory--;
+
+	update_rt_migration(rt_rq);
+}
+
+static inline int has_pushable_tasks(struct rq *rq)
+{
+	return !plist_head_empty(&rq->rt.pushable_tasks);
+}
+
+static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+	plist_node_init(&p->pushable_tasks, p->prio);
+	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+	/* Update the highest prio pushable task */
+	if (p->prio < rq->rt.highest_prio.next)
+		rq->rt.highest_prio.next = p->prio;
+}
+
+static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
+
+	/* Update the new highest prio pushable task */
+	if (has_pushable_tasks(rq)) {
+		p = plist_first_entry(&rq->rt.pushable_tasks,
+				      struct task_struct, pushable_tasks);
+		rq->rt.highest_prio.next = p->prio;
+	} else
+		rq->rt.highest_prio.next = MAX_RT_PRIO;
+}
+
+#else
+
+static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+static inline
+void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+}
+
+#endif /* CONFIG_SMP */
+
+static inline int on_rt_rq(struct sched_rt_entity *rt_se)
+{
+	return !list_empty(&rt_se->run_list);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+	if (!rt_rq->tg)
+		return RUNTIME_INF;
+
+	return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
+}
+
+typedef struct task_group *rt_rq_iter_t;
+
+static inline struct task_group *next_task_group(struct task_group *tg)
+{
+	do {
+		tg = list_entry_rcu(tg->list.next,
+			typeof(struct task_group), list);
+	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
+
+	if (&tg->list == &task_groups)
+		tg = NULL;
+
+	return tg;
+}
+
+#define for_each_rt_rq(rt_rq, iter, rq)					\
+	for (iter = container_of(&task_groups, typeof(*iter), list);	\
+		(iter = next_task_group(iter)) &&			\
+		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
+
+static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+	list_add_rcu(&rt_rq->leaf_rt_rq_list,
+			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
+}
+
+static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+	list_del_rcu(&rt_rq->leaf_rt_rq_list);
+}
+
+#define for_each_leaf_rt_rq(rt_rq, rq) \
+	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
+
+#define for_each_sched_rt_entity(rt_se) \
+	for (; rt_se; rt_se = rt_se->parent)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+	return rt_se->my_q;
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
+
+static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+	struct sched_rt_entity *rt_se;
+
+	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
+
+	rt_se = rt_rq->tg->rt_se[cpu];
+
+	if (rt_rq->rt_nr_running) {
+		if (rt_se && !on_rt_rq(rt_se))
+			enqueue_rt_entity(rt_se, false);
+		if (rt_rq->highest_prio.curr < curr->prio)
+			resched_task(curr);
+	}
+}
+
+static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+	struct sched_rt_entity *rt_se;
+	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
+
+	rt_se = rt_rq->tg->rt_se[cpu];
+
+	if (rt_se && on_rt_rq(rt_se))
+		dequeue_rt_entity(rt_se);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
+}
+
+static int rt_se_boosted(struct sched_rt_entity *rt_se)
+{
+	struct rt_rq *rt_rq = group_rt_rq(rt_se);
+	struct task_struct *p;
+
+	if (rt_rq)
+		return !!rt_rq->rt_nr_boosted;
+
+	p = rt_task_of(rt_se);
+	return p->prio != p->normal_prio;
+}
+
+#ifdef CONFIG_SMP
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+	return cpu_rq(smp_processor_id())->rd->span;
+}
+#else
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+	return cpu_online_mask;
+}
+#endif
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+	return &rt_rq->tg->rt_bandwidth;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+	return ktime_to_ns(def_rt_bandwidth.rt_period);
+}
+
+typedef struct rt_rq *rt_rq_iter_t;
+
+#define for_each_rt_rq(rt_rq, iter, rq) \
+	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+}
+
+static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
+{
+}
+
+#define for_each_leaf_rt_rq(rt_rq, rq) \
+	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+#define for_each_sched_rt_entity(rt_se) \
+	for (; rt_se; rt_se = NULL)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+	return NULL;
+}
+
+static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+	if (rt_rq->rt_nr_running)
+		resched_task(rq_of_rt_rq(rt_rq)->curr);
+}
+
+static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+	return rt_rq->rt_throttled;
+}
+
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+	return cpu_online_mask;
+}
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+	return &cpu_rq(cpu)->rt;
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+	return &def_rt_bandwidth;
+}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+/*
+ * We ran out of runtime, see if we can borrow some from our neighbours.
+ */
+static int do_balance_runtime(struct rt_rq *rt_rq)
+{
+	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
+	int i, weight, more = 0;
+	u64 rt_period;
+
+	weight = cpumask_weight(rd->span);
+
+	raw_spin_lock(&rt_b->rt_runtime_lock);
+	rt_period = ktime_to_ns(rt_b->rt_period);
+	for_each_cpu(i, rd->span) {
+		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+		s64 diff;
+
+		if (iter == rt_rq)
+			continue;
+
+		raw_spin_lock(&iter->rt_runtime_lock);
+		/*
+		 * Either all rqs have inf runtime and there's nothing to steal
+		 * or __disable_runtime() below sets a specific rq to inf to
+		 * indicate its been disabled and disalow stealing.
+		 */
+		if (iter->rt_runtime == RUNTIME_INF)
+			goto next;
+
+		/*
+		 * From runqueues with spare time, take 1/n part of their
+		 * spare time, but no more than our period.
+		 */
+		diff = iter->rt_runtime - iter->rt_time;
+		if (diff > 0) {
+			diff = div_u64((u64)diff, weight);
+			if (rt_rq->rt_runtime + diff > rt_period)
+				diff = rt_period - rt_rq->rt_runtime;
+			iter->rt_runtime -= diff;
+			rt_rq->rt_runtime += diff;
+			more = 1;
+			if (rt_rq->rt_runtime == rt_period) {
+				raw_spin_unlock(&iter->rt_runtime_lock);
+				break;
+			}
+		}
+next:
+		raw_spin_unlock(&iter->rt_runtime_lock);
+	}
+	raw_spin_unlock(&rt_b->rt_runtime_lock);
+
+	return more;
+}
+
+/*
+ * Ensure this RQ takes back all the runtime it lend to its neighbours.
+ */
+static void __disable_runtime(struct rq *rq)
+{
+	struct root_domain *rd = rq->rd;
+	rt_rq_iter_t iter;
+	struct rt_rq *rt_rq;
+
+	if (unlikely(!scheduler_running))
+		return;
+
+	for_each_rt_rq(rt_rq, iter, rq) {
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+		s64 want;
+		int i;
+
+		raw_spin_lock(&rt_b->rt_runtime_lock);
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		/*
+		 * Either we're all inf and nobody needs to borrow, or we're
+		 * already disabled and thus have nothing to do, or we have
+		 * exactly the right amount of runtime to take out.
+		 */
+		if (rt_rq->rt_runtime == RUNTIME_INF ||
+				rt_rq->rt_runtime == rt_b->rt_runtime)
+			goto balanced;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+
+		/*
+		 * Calculate the difference between what we started out with
+		 * and what we current have, that's the amount of runtime
+		 * we lend and now have to reclaim.
+		 */
+		want = rt_b->rt_runtime - rt_rq->rt_runtime;
+
+		/*
+		 * Greedy reclaim, take back as much as we can.
+		 */
+		for_each_cpu(i, rd->span) {
+			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+			s64 diff;
+
+			/*
+			 * Can't reclaim from ourselves or disabled runqueues.
+			 */
+			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
+				continue;
+
+			raw_spin_lock(&iter->rt_runtime_lock);
+			if (want > 0) {
+				diff = min_t(s64, iter->rt_runtime, want);
+				iter->rt_runtime -= diff;
+				want -= diff;
+			} else {
+				iter->rt_runtime -= want;
+				want -= want;
+			}
+			raw_spin_unlock(&iter->rt_runtime_lock);
+
+			if (!want)
+				break;
+		}
+
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		/*
+		 * We cannot be left wanting - that would mean some runtime
+		 * leaked out of the system.
+		 */
+		BUG_ON(want);
+balanced:
+		/*
+		 * Disable all the borrow logic by pretending we have inf
+		 * runtime - in which case borrowing doesn't make sense.
+		 */
+		rt_rq->rt_runtime = RUNTIME_INF;
+		rt_rq->rt_throttled = 0;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		raw_spin_unlock(&rt_b->rt_runtime_lock);
+	}
+}
+
+static void disable_runtime(struct rq *rq)
+{
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&rq->lock, flags);
+	__disable_runtime(rq);
+	raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+static void __enable_runtime(struct rq *rq)
+{
+	rt_rq_iter_t iter;
+	struct rt_rq *rt_rq;
+
+	if (unlikely(!scheduler_running))
+		return;
+
+	/*
+	 * Reset each runqueue's bandwidth settings
+	 */
+	for_each_rt_rq(rt_rq, iter, rq) {
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+		raw_spin_lock(&rt_b->rt_runtime_lock);
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+		rt_rq->rt_runtime = rt_b->rt_runtime;
+		rt_rq->rt_time = 0;
+		rt_rq->rt_throttled = 0;
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		raw_spin_unlock(&rt_b->rt_runtime_lock);
+	}
+}
+
+static void enable_runtime(struct rq *rq)
+{
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&rq->lock, flags);
+	__enable_runtime(rq);
+	raw_spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
+{
+	int cpu = (int)(long)hcpu;
+
+	switch (action) {
+	case CPU_DOWN_PREPARE:
+	case CPU_DOWN_PREPARE_FROZEN:
+		disable_runtime(cpu_rq(cpu));
+		return NOTIFY_OK;
+
+	case CPU_DOWN_FAILED:
+	case CPU_DOWN_FAILED_FROZEN:
+	case CPU_ONLINE:
+	case CPU_ONLINE_FROZEN:
+		enable_runtime(cpu_rq(cpu));
+		return NOTIFY_OK;
+
+	default:
+		return NOTIFY_DONE;
+	}
+}
+
+static int balance_runtime(struct rt_rq *rt_rq)
+{
+	int more = 0;
+
+	if (!sched_feat(RT_RUNTIME_SHARE))
+		return more;
+
+	if (rt_rq->rt_time > rt_rq->rt_runtime) {
+		raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		more = do_balance_runtime(rt_rq);
+		raw_spin_lock(&rt_rq->rt_runtime_lock);
+	}
+
+	return more;
+}
+#else /* !CONFIG_SMP */
+static inline int balance_runtime(struct rt_rq *rt_rq)
+{
+	return 0;
+}
+#endif /* CONFIG_SMP */
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
+{
+	int i, idle = 1, throttled = 0;
+	const struct cpumask *span;
+
+	span = sched_rt_period_mask();
+#ifdef CONFIG_RT_GROUP_SCHED
+	/*
+	 * FIXME: isolated CPUs should really leave the root task group,
+	 * whether they are isolcpus or were isolated via cpusets, lest
+	 * the timer run on a CPU which does not service all runqueues,
+	 * potentially leaving other CPUs indefinitely throttled.  If
+	 * isolation is really required, the user will turn the throttle
+	 * off to kill the perturbations it causes anyway.  Meanwhile,
+	 * this maintains functionality for boot and/or troubleshooting.
+	 */
+	if (rt_b == &root_task_group.rt_bandwidth)
+		span = cpu_online_mask;
+#endif
+	for_each_cpu(i, span) {
+		int enqueue = 0;
+		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
+		struct rq *rq = rq_of_rt_rq(rt_rq);
+
+		raw_spin_lock(&rq->lock);
+		if (rt_rq->rt_time) {
+			u64 runtime;
+
+			raw_spin_lock(&rt_rq->rt_runtime_lock);
+			if (rt_rq->rt_throttled)
+				balance_runtime(rt_rq);
+			runtime = rt_rq->rt_runtime;
+			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
+			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
+				rt_rq->rt_throttled = 0;
+				enqueue = 1;
+
+				/*
+				 * Force a clock update if the CPU was idle,
+				 * lest wakeup -> unthrottle time accumulate.
+				 */
+				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
+					rq->skip_clock_update = -1;
+			}
+			if (rt_rq->rt_time || rt_rq->rt_nr_running)
+				idle = 0;
+			raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		} else if (rt_rq->rt_nr_running) {
+			idle = 0;
+			if (!rt_rq_throttled(rt_rq))
+				enqueue = 1;
+		}
+		if (rt_rq->rt_throttled)
+			throttled = 1;
+
+		if (enqueue)
+			sched_rt_rq_enqueue(rt_rq);
+		raw_spin_unlock(&rq->lock);
+	}
+
+	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
+		return 1;
+
+	return idle;
+}
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+	struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+	if (rt_rq)
+		return rt_rq->highest_prio.curr;
+#endif
+
+	return rt_task_of(rt_se)->prio;
+}
+
+static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
+{
+	u64 runtime = sched_rt_runtime(rt_rq);
+
+	if (rt_rq->rt_throttled)
+		return rt_rq_throttled(rt_rq);
+
+	if (runtime >= sched_rt_period(rt_rq))
+		return 0;
+
+	balance_runtime(rt_rq);
+	runtime = sched_rt_runtime(rt_rq);
+	if (runtime == RUNTIME_INF)
+		return 0;
+
+	if (rt_rq->rt_time > runtime) {
+		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+		/*
+		 * Don't actually throttle groups that have no runtime assigned
+		 * but accrue some time due to boosting.
+		 */
+		if (likely(rt_b->rt_runtime)) {
+			static bool once = false;
+
+			rt_rq->rt_throttled = 1;
+
+			if (!once) {
+				once = true;
+				printk_deferred("sched: RT throttling activated\n");
+			}
+		} else {
+			/*
+			 * In case we did anyway, make it go away,
+			 * replenishment is a joke, since it will replenish us
+			 * with exactly 0 ns.
+			 */
+			rt_rq->rt_time = 0;
+		}
+
+		if (rt_rq_throttled(rt_rq)) {
+			sched_rt_rq_dequeue(rt_rq);
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static void update_curr_rt(struct rq *rq)
+{
+	struct task_struct *curr = rq->curr;
+	struct sched_rt_entity *rt_se = &curr->rt;
+	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+	u64 delta_exec;
+
+	if (curr->sched_class != &rt_sched_class)
+		return;
+
+	delta_exec = rq->clock_task - curr->se.exec_start;
+	if (unlikely((s64)delta_exec < 0))
+		delta_exec = 0;
+
+	schedstat_set(curr->se.statistics.exec_max,
+		      max(curr->se.statistics.exec_max, delta_exec));
+
+	curr->se.sum_exec_runtime += delta_exec;
+	account_group_exec_runtime(curr, delta_exec);
+
+	curr->se.exec_start = rq->clock_task;
+	cpuacct_charge(curr, delta_exec);
+
+	sched_rt_avg_update(rq, delta_exec);
+
+	if (!rt_bandwidth_enabled())
+		return;
+
+	for_each_sched_rt_entity(rt_se) {
+		rt_rq = rt_rq_of_se(rt_se);
+
+		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
+			raw_spin_lock(&rt_rq->rt_runtime_lock);
+			rt_rq->rt_time += delta_exec;
+			if (sched_rt_runtime_exceeded(rt_rq))
+				resched_task(curr);
+			raw_spin_unlock(&rt_rq->rt_runtime_lock);
+		}
+	}
+}
+
+#if defined CONFIG_SMP
+
+static void
+inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	/*
+	 * Change rq's cpupri only if rt_rq is the top queue.
+	 */
+	if (&rq->rt != rt_rq)
+		return;
+#endif
+	if (rq->online && prio < prev_prio)
+		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
+}
+
+static void
+dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+{
+	struct rq *rq = rq_of_rt_rq(rt_rq);
+
+#ifdef CONFIG_RT_GROUP_SCHED
+	/*
+	 * Change rq's cpupri only if rt_rq is the top queue.
+	 */
+	if (&rq->rt != rt_rq)
+		return;
+#endif
+	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
+		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
+}
+
+#else /* CONFIG_SMP */
+
+static inline
+void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+static inline
+void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+
+#endif /* CONFIG_SMP */
+
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+static void
+inc_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+	int prev_prio = rt_rq->highest_prio.curr;
+
+	if (prio < prev_prio)
+		rt_rq->highest_prio.curr = prio;
+
+	inc_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+static void
+dec_rt_prio(struct rt_rq *rt_rq, int prio)
+{
+	int prev_prio = rt_rq->highest_prio.curr;
+
+	if (rt_rq->rt_nr_running) {
+
+		WARN_ON(prio < prev_prio);
+
+		/*
+		 * This may have been our highest task, and therefore
+		 * we may have some recomputation to do
+		 */
+		if (prio == prev_prio) {
+			struct rt_prio_array *array = &rt_rq->active;
+
+			rt_rq->highest_prio.curr =
+				sched_find_first_bit(array->bitmap);
+		}
+
+	} else
+		rt_rq->highest_prio.curr = MAX_RT_PRIO;
+
+	dec_rt_prio_smp(rt_rq, prio, prev_prio);
+}
+
+#else
+
+static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
+static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
+
+#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	if (rt_se_boosted(rt_se))
+		rt_rq->rt_nr_boosted++;
+
+	if (rt_rq->tg)
+		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
+}
+
+static void
+dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	if (rt_se_boosted(rt_se))
+		rt_rq->rt_nr_boosted--;
+
+	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
+}
+
+#else /* CONFIG_RT_GROUP_SCHED */
+
+static void
+inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	start_rt_bandwidth(&def_rt_bandwidth);
+}
+
+static inline
+void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static inline
+void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	int prio = rt_se_prio(rt_se);
+
+	WARN_ON(!rt_prio(prio));
+	rt_rq->rt_nr_running++;
+
+	inc_rt_prio(rt_rq, prio);
+	inc_rt_migration(rt_se, rt_rq);
+	inc_rt_group(rt_se, rt_rq);
+}
+
+static inline
+void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+	WARN_ON(!rt_rq->rt_nr_running);
+	rt_rq->rt_nr_running--;
+
+	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
+	dec_rt_migration(rt_se, rt_rq);
+	dec_rt_group(rt_se, rt_rq);
+}
+
+static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+{
+	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+	struct rt_prio_array *array = &rt_rq->active;
+	struct rt_rq *group_rq = group_rt_rq(rt_se);
+	struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+	/*
+	 * Don't enqueue the group if its throttled, or when empty.
+	 * The latter is a consequence of the former when a child group
+	 * get throttled and the current group doesn't have any other
+	 * active members.
+	 */
+	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
+		return;
+
+	if (!rt_rq->rt_nr_running)
+		list_add_leaf_rt_rq(rt_rq);
+
+	if (head)
+		list_add(&rt_se->run_list, queue);
+	else
+		list_add_tail(&rt_se->run_list, queue);
+	__set_bit(rt_se_prio(rt_se), array->bitmap);
+
+	inc_rt_tasks(rt_se, rt_rq);
+}
+
+static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+	struct rt_prio_array *array = &rt_rq->active;
+
+	list_del_init(&rt_se->run_list);
+	if (list_empty(array->queue + rt_se_prio(rt_se)))
+		__clear_bit(rt_se_prio(rt_se), array->bitmap);
+
+	dec_rt_tasks(rt_se, rt_rq);
+	if (!rt_rq->rt_nr_running)
+		list_del_leaf_rt_rq(rt_rq);
+}
+
+/*
+ * Because the prio of an upper entry depends on the lower
+ * entries, we must remove entries top - down.
+ */
+static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
+{
+	struct sched_rt_entity *back = NULL;
+
+	for_each_sched_rt_entity(rt_se) {
+		rt_se->back = back;
+		back = rt_se;
+	}
+
+	for (rt_se = back; rt_se; rt_se = rt_se->back) {
+		if (on_rt_rq(rt_se))
+			__dequeue_rt_entity(rt_se);
+	}
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+{
+	dequeue_rt_stack(rt_se);
+	for_each_sched_rt_entity(rt_se)
+		__enqueue_rt_entity(rt_se, head);
+}
+
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+	dequeue_rt_stack(rt_se);
+
+	for_each_sched_rt_entity(rt_se) {
+		struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+		if (rt_rq && rt_rq->rt_nr_running)
+			__enqueue_rt_entity(rt_se, false);
+	}
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+
+	if (flags & ENQUEUE_WAKEUP)
+		rt_se->timeout = 0;
+
+	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
+
+	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
+		enqueue_pushable_task(rq, p);
+
+	inc_nr_running(rq);
+}
+
+static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+
+	update_curr_rt(rq);
+	dequeue_rt_entity(rt_se);
+
+	dequeue_pushable_task(rq, p);
+
+	dec_nr_running(rq);
+}
+
+/*
+ * Put task to the head or the end of the run list without the overhead of
+ * dequeue followed by enqueue.
+ */
+static void
+requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
+{
+	if (on_rt_rq(rt_se)) {
+		struct rt_prio_array *array = &rt_rq->active;
+		struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+		if (head)
+			list_move(&rt_se->run_list, queue);
+		else
+			list_move_tail(&rt_se->run_list, queue);
+	}
+}
+
+static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+	struct rt_rq *rt_rq;
+
+	for_each_sched_rt_entity(rt_se) {
+		rt_rq = rt_rq_of_se(rt_se);
+		requeue_rt_entity(rt_rq, rt_se, head);
+	}
+}
+
+static void yield_task_rt(struct rq *rq)
+{
+	requeue_task_rt(rq, rq->curr, 0);
+}
+
+#ifdef CONFIG_SMP
+static int find_lowest_rq(struct task_struct *task);
+
+static int
+select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
+{
+	struct task_struct *curr;
+	struct rq *rq;
+	int cpu;
+
+	cpu = task_cpu(p);
+
+	if (p->rt.nr_cpus_allowed == 1)
+		goto out;
+
+	/* For anything but wake ups, just return the task_cpu */
+	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
+		goto out;
+
+	rq = cpu_rq(cpu);
+
+	rcu_read_lock();
+	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
+
+	/*
+	 * If the current task on @p's runqueue is an RT task, then
+	 * try to see if we can wake this RT task up on another
+	 * runqueue. Otherwise simply start this RT task
+	 * on its current runqueue.
+	 *
+	 * We want to avoid overloading runqueues. If the woken
+	 * task is a higher priority, then it will stay on this CPU
+	 * and the lower prio task should be moved to another CPU.
+	 * Even though this will probably make the lower prio task
+	 * lose its cache, we do not want to bounce a higher task
+	 * around just because it gave up its CPU, perhaps for a
+	 * lock?
+	 *
+	 * For equal prio tasks, we just let the scheduler sort it out.
+	 *
+	 * Otherwise, just let it ride on the affined RQ and the
+	 * post-schedule router will push the preempted task away
+	 *
+	 * This test is optimistic, if we get it wrong the load-balancer
+	 * will have to sort it out.
+	 */
+	if (curr && unlikely(rt_task(curr)) &&
+	    (curr->rt.nr_cpus_allowed < 2 ||
+	     curr->prio <= p->prio) &&
+	    (p->rt.nr_cpus_allowed > 1)) {
+		int target = find_lowest_rq(p);
+
+		/*
+		 * Don't bother moving it if the destination CPU is
+		 * not running a lower priority task.
+		 */
+		if (target != -1 &&
+		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
+			cpu = target;
+	}
+	rcu_read_unlock();
+
+out:
+	return cpu;
+}
+
+static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
+{
+	if (rq->curr->rt.nr_cpus_allowed == 1)
+		return;
+
+	if (p->rt.nr_cpus_allowed != 1
+	    && cpupri_find(&rq->rd->cpupri, p, NULL))
+		return;
+
+	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
+		return;
+
+	/*
+	 * There appears to be other cpus that can accept
+	 * current and none to run 'p', so lets reschedule
+	 * to try and push current away:
+	 */
+	requeue_task_rt(rq, p, 1);
+	resched_task(rq->curr);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
+{
+	if (p->prio < rq->curr->prio) {
+		resched_task(rq->curr);
+		return;
+	}
+
+#ifdef CONFIG_SMP
+	/*
+	 * If:
+	 *
+	 * - the newly woken task is of equal priority to the current task
+	 * - the newly woken task is non-migratable while current is migratable
+	 * - current will be preempted on the next reschedule
+	 *
+	 * we should check to see if current can readily move to a different
+	 * cpu.  If so, we will reschedule to allow the push logic to try
+	 * to move current somewhere else, making room for our non-migratable
+	 * task.
+	 */
+	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
+		check_preempt_equal_prio(rq, p);
+#endif
+}
+
+static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
+						   struct rt_rq *rt_rq)
+{
+	struct rt_prio_array *array = &rt_rq->active;
+	struct sched_rt_entity *next = NULL;
+	struct list_head *queue;
+	int idx;
+
+	idx = sched_find_first_bit(array->bitmap);
+	BUG_ON(idx >= MAX_RT_PRIO);
+
+	queue = array->queue + idx;
+	next = list_entry(queue->next, struct sched_rt_entity, run_list);
+
+	return next;
+}
+
+static struct task_struct *_pick_next_task_rt(struct rq *rq)
+{
+	struct sched_rt_entity *rt_se;
+	struct task_struct *p;
+	struct rt_rq *rt_rq;
+
+	rt_rq = &rq->rt;
+
+	if (!rt_rq->rt_nr_running)
+		return NULL;
+
+	if (rt_rq_throttled(rt_rq))
+		return NULL;
+
+	do {
+		rt_se = pick_next_rt_entity(rq, rt_rq);
+		BUG_ON(!rt_se);
+		rt_rq = group_rt_rq(rt_se);
+	} while (rt_rq);
+
+	p = rt_task_of(rt_se);
+	p->se.exec_start = rq->clock_task;
+
+	return p;
+}
+
+static struct task_struct *pick_next_task_rt(struct rq *rq)
+{
+	struct task_struct *p = _pick_next_task_rt(rq);
+
+	/* The running task is never eligible for pushing */
+	if (p)
+		dequeue_pushable_task(rq, p);
+
+#ifdef CONFIG_SMP
+	/*
+	 * We detect this state here so that we can avoid taking the RQ
+	 * lock again later if there is no need to push
+	 */
+	rq->post_schedule = has_pushable_tasks(rq);
+#endif
+
+	return p;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
+{
+	update_curr_rt(rq);
+
+	/*
+	 * The previous task needs to be made eligible for pushing
+	 * if it is still active
+	 */
+	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
+		enqueue_pushable_task(rq, p);
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define RT_MAX_TRIES 3
+
+static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+	if (!task_running(rq, p) &&
+	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
+	    (p->rt.nr_cpus_allowed > 1))
+		return 1;
+	return 0;
+}
+
+/* Return the second highest RT task, NULL otherwise */
+static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
+{
+	struct task_struct *next = NULL;
+	struct sched_rt_entity *rt_se;
+	struct rt_prio_array *array;
+	struct rt_rq *rt_rq;
+	int idx;
+
+	for_each_leaf_rt_rq(rt_rq, rq) {
+		array = &rt_rq->active;
+		idx = sched_find_first_bit(array->bitmap);
+next_idx:
+		if (idx >= MAX_RT_PRIO)
+			continue;
+		if (next && next->prio <= idx)
+			continue;
+		list_for_each_entry(rt_se, array->queue + idx, run_list) {
+			struct task_struct *p;
+
+			if (!rt_entity_is_task(rt_se))
+				continue;
+
+			p = rt_task_of(rt_se);
+			if (pick_rt_task(rq, p, cpu)) {
+				next = p;
+				break;
+			}
+		}
+		if (!next) {
+			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
+			goto next_idx;
+		}
+	}
+
+	return next;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
+
+static int find_lowest_rq(struct task_struct *task)
+{
+	struct sched_domain *sd;
+	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
+	int this_cpu = smp_processor_id();
+	int cpu      = task_cpu(task);
+
+	/* Make sure the mask is initialized first */
+	if (unlikely(!lowest_mask))
+		return -1;
+
+	if (task->rt.nr_cpus_allowed == 1)
+		return -1; /* No other targets possible */
+
+	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
+		return -1; /* No targets found */
+
+	/*
+	 * At this point we have built a mask of cpus representing the
+	 * lowest priority tasks in the system.  Now we want to elect
+	 * the best one based on our affinity and topology.
+	 *
+	 * We prioritize the last cpu that the task executed on since
+	 * it is most likely cache-hot in that location.
+	 */
+	if (cpumask_test_cpu(cpu, lowest_mask))
+		return cpu;
+
+	/*
+	 * Otherwise, we consult the sched_domains span maps to figure
+	 * out which cpu is logically closest to our hot cache data.
+	 */
+	if (!cpumask_test_cpu(this_cpu, lowest_mask))
+		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
+
+	rcu_read_lock();
+	for_each_domain(cpu, sd) {
+		if (sd->flags & SD_WAKE_AFFINE) {
+			int best_cpu;
+
+			/*
+			 * "this_cpu" is cheaper to preempt than a
+			 * remote processor.
+			 */
+			if (this_cpu != -1 &&
+			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+				rcu_read_unlock();
+				return this_cpu;
+			}
+
+			best_cpu = cpumask_first_and(lowest_mask,
+						     sched_domain_span(sd));
+			if (best_cpu < nr_cpu_ids) {
+				rcu_read_unlock();
+				return best_cpu;
+			}
+		}
+	}
+	rcu_read_unlock();
+
+	/*
+	 * And finally, if there were no matches within the domains
+	 * just give the caller *something* to work with from the compatible
+	 * locations.
+	 */
+	if (this_cpu != -1)
+		return this_cpu;
+
+	cpu = cpumask_any(lowest_mask);
+	if (cpu < nr_cpu_ids)
+		return cpu;
+	return -1;
+}
+
+/* Will lock the rq it finds */
+static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
+{
+	struct rq *lowest_rq = NULL;
+	int tries;
+	int cpu;
+
+	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
+		cpu = find_lowest_rq(task);
+
+		if ((cpu == -1) || (cpu == rq->cpu))
+			break;
+
+		lowest_rq = cpu_rq(cpu);
+
+		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
+			/*
+			 * Target rq has tasks of equal or higher priority,
+			 * retrying does not release any lock and is unlikely
+			 * to yield a different result.
+			 */
+			lowest_rq = NULL;
+			break;
+		}
+
+		/* if the prio of this runqueue changed, try again */
+		if (double_lock_balance(rq, lowest_rq)) {
+			/*
+			 * We had to unlock the run queue. In
+			 * the mean time, task could have
+			 * migrated already or had its affinity changed.
+			 * Also make sure that it wasn't scheduled on its rq.
+			 */
+			if (unlikely(task_rq(task) != rq ||
+				     !cpumask_test_cpu(lowest_rq->cpu,
+						       tsk_cpus_allowed(task)) ||
+				     task_running(rq, task) ||
+				     !task->on_rq)) {
+
+				raw_spin_unlock(&lowest_rq->lock);
+				lowest_rq = NULL;
+				break;
+			}
+		}
+
+		/* If this rq is still suitable use it. */
+		if (lowest_rq->rt.highest_prio.curr > task->prio)
+			break;
+
+		/* try again */
+		double_unlock_balance(rq, lowest_rq);
+		lowest_rq = NULL;
+	}
+
+	return lowest_rq;
+}
+
+static struct task_struct *pick_next_pushable_task(struct rq *rq)
+{
+	struct task_struct *p;
+
+	if (!has_pushable_tasks(rq))
+		return NULL;
+
+	p = plist_first_entry(&rq->rt.pushable_tasks,
+			      struct task_struct, pushable_tasks);
+
+	BUG_ON(rq->cpu != task_cpu(p));
+	BUG_ON(task_current(rq, p));
+	BUG_ON(p->rt.nr_cpus_allowed <= 1);
+
+	BUG_ON(!p->on_rq);
+	BUG_ON(!rt_task(p));
+
+	return p;
+}
+
+/*
+ * If the current CPU has more than one RT task, see if the non
+ * running task can migrate over to a CPU that is running a task
+ * of lesser priority.
+ */
+static int push_rt_task(struct rq *rq)
+{
+	struct task_struct *next_task;
+	struct rq *lowest_rq;
+	int ret = 0;
+
+	if (!rq->rt.overloaded)
+		return 0;
+
+	next_task = pick_next_pushable_task(rq);
+	if (!next_task)
+		return 0;
+
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
+       if (unlikely(task_running(rq, next_task)))
+               return 0;
+#endif
+
+retry:
+	if (unlikely(next_task == rq->curr)) {
+		WARN_ON(1);
+		return 0;
+	}
+
+	/*
+	 * It's possible that the next_task slipped in of
+	 * higher priority than current. If that's the case
+	 * just reschedule current.
+	 */
+	if (unlikely(next_task->prio < rq->curr->prio)) {
+		resched_task(rq->curr);
+		return 0;
+	}
+
+	/* We might release rq lock */
+	get_task_struct(next_task);
+
+	/* find_lock_lowest_rq locks the rq if found */
+	lowest_rq = find_lock_lowest_rq(next_task, rq);
+	if (!lowest_rq) {
+		struct task_struct *task;
+		/*
+		 * find_lock_lowest_rq releases rq->lock
+		 * so it is possible that next_task has migrated.
+		 *
+		 * We need to make sure that the task is still on the same
+		 * run-queue and is also still the next task eligible for
+		 * pushing.
+		 */
+		task = pick_next_pushable_task(rq);
+		if (task_cpu(next_task) == rq->cpu && task == next_task) {
+			/*
+			 * The task hasn't migrated, and is still the next
+			 * eligible task, but we failed to find a run-queue
+			 * to push it to.  Do not retry in this case, since
+			 * other cpus will pull from us when ready.
+			 */
+			goto out;
+		}
+
+		if (!task)
+			/* No more tasks, just exit */
+			goto out;
+
+		/*
+		 * Something has shifted, try again.
+		 */
+		put_task_struct(next_task);
+		next_task = task;
+		goto retry;
+	}
+
+	deactivate_task(rq, next_task, 0);
+	set_task_cpu(next_task, lowest_rq->cpu);
+	activate_task(lowest_rq, next_task, 0);
+	ret = 1;
+
+	resched_task(lowest_rq->curr);
+
+	double_unlock_balance(rq, lowest_rq);
+
+out:
+	put_task_struct(next_task);
+
+	return ret;
+}
+
+static void push_rt_tasks(struct rq *rq)
+{
+	/* push_rt_task will return true if it moved an RT */
+	while (push_rt_task(rq))
+		;
+}
+
+static int pull_rt_task(struct rq *this_rq)
+{
+	int this_cpu = this_rq->cpu, ret = 0, cpu;
+	struct task_struct *p;
+	struct rq *src_rq;
+
+	if (likely(!rt_overloaded(this_rq)))
+		return 0;
+
+	for_each_cpu(cpu, this_rq->rd->rto_mask) {
+		if (this_cpu == cpu)
+			continue;
+
+		src_rq = cpu_rq(cpu);
+
+		/*
+		 * Don't bother taking the src_rq->lock if the next highest
+		 * task is known to be lower-priority than our current task.
+		 * This may look racy, but if this value is about to go
+		 * logically higher, the src_rq will push this task away.
+		 * And if its going logically lower, we do not care
+		 */
+		if (src_rq->rt.highest_prio.next >=
+		    this_rq->rt.highest_prio.curr)
+			continue;
+
+		/*
+		 * We can potentially drop this_rq's lock in
+		 * double_lock_balance, and another CPU could
+		 * alter this_rq
+		 */
+		double_lock_balance(this_rq, src_rq);
+
+		/*
+		 * Are there still pullable RT tasks?
+		 */
+		if (src_rq->rt.rt_nr_running <= 1)
+			goto skip;
+
+		p = pick_next_highest_task_rt(src_rq, this_cpu);
+
+		/*
+		 * Do we have an RT task that preempts
+		 * the to-be-scheduled task?
+		 */
+		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
+			WARN_ON(p == src_rq->curr);
+			WARN_ON(!p->on_rq);
+
+			/*
+			 * There's a chance that p is higher in priority
+			 * than what's currently running on its cpu.
+			 * This is just that p is wakeing up and hasn't
+			 * had a chance to schedule. We only pull
+			 * p if it is lower in priority than the
+			 * current task on the run queue
+			 */
+			if (p->prio < src_rq->curr->prio)
+				goto skip;
+
+			ret = 1;
+
+			deactivate_task(src_rq, p, 0);
+			set_task_cpu(p, this_cpu);
+			activate_task(this_rq, p, 0);
+			/*
+			 * We continue with the search, just in
+			 * case there's an even higher prio task
+			 * in another runqueue. (low likelihood
+			 * but possible)
+			 */
+		}
+skip:
+		double_unlock_balance(this_rq, src_rq);
+	}
+
+	return ret;
+}
+
+static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
+{
+	/* Try to pull RT tasks here if we lower this rq's prio */
+	if (rq->rt.highest_prio.curr > prev->prio)
+		pull_rt_task(rq);
+}
+
+static void post_schedule_rt(struct rq *rq)
+{
+	push_rt_tasks(rq);
+}
+
+/*
+ * If we are not running and we are not going to reschedule soon, we should
+ * try to push tasks away now
+ */
+static void task_woken_rt(struct rq *rq, struct task_struct *p)
+{
+	if (!task_running(rq, p) &&
+	    !test_tsk_need_resched(rq->curr) &&
+	    has_pushable_tasks(rq) &&
+	    p->rt.nr_cpus_allowed > 1 &&
+	    rt_task(rq->curr) &&
+	    (rq->curr->rt.nr_cpus_allowed < 2 ||
+	     rq->curr->prio <= p->prio))
+		push_rt_tasks(rq);
+}
+
+static void set_cpus_allowed_rt(struct task_struct *p,
+				const struct cpumask *new_mask)
+{
+	int weight = cpumask_weight(new_mask);
+
+	BUG_ON(!rt_task(p));
+
+	/*
+	 * Update the migration status of the RQ if we have an RT task
+	 * which is running AND changing its weight value.
+	 */
+	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
+		struct rq *rq = task_rq(p);
+
+		if (!task_current(rq, p)) {
+			/*
+			 * Make sure we dequeue this task from the pushable list
+			 * before going further.  It will either remain off of
+			 * the list because we are no longer pushable, or it
+			 * will be requeued.
+			 */
+			if (p->rt.nr_cpus_allowed > 1)
+				dequeue_pushable_task(rq, p);
+
+			/*
+			 * Requeue if our weight is changing and still > 1
+			 */
+			if (weight > 1)
+				enqueue_pushable_task(rq, p);
+
+		}
+
+		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
+			rq->rt.rt_nr_migratory++;
+		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
+			BUG_ON(!rq->rt.rt_nr_migratory);
+			rq->rt.rt_nr_migratory--;
+		}
+
+		update_rt_migration(&rq->rt);
+	}
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_rt(struct rq *rq)
+{
+	if (rq->rt.overloaded)
+		rt_set_overload(rq);
+
+	__enable_runtime(rq);
+
+	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_rt(struct rq *rq)
+{
+	if (rq->rt.overloaded)
+		rt_clear_overload(rq);
+
+	__disable_runtime(rq);
+
+	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
+}
+
+/*
+ * When switch from the rt queue, we bring ourselves to a position
+ * that we might want to pull RT tasks from other runqueues.
+ */
+static void switched_from_rt(struct rq *rq, struct task_struct *p)
+{
+	/*
+	 * If there are other RT tasks then we will reschedule
+	 * and the scheduling of the other RT tasks will handle
+	 * the balancing. But if we are the last RT task
+	 * we may need to handle the pulling of RT tasks
+	 * now.
+	 */
+	if (p->on_rq && !rq->rt.rt_nr_running)
+		pull_rt_task(rq);
+}
+
+void init_sched_rt_class(void)
+{
+	unsigned int i;
+
+	for_each_possible_cpu(i) {
+		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
+					GFP_KERNEL, cpu_to_node(i));
+	}
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * When switching a task to RT, we may overload the runqueue
+ * with RT tasks. In this case we try to push them off to
+ * other runqueues.
+ */
+static void switched_to_rt(struct rq *rq, struct task_struct *p)
+{
+	int check_resched = 1;
+
+	/*
+	 * If we are already running, then there's nothing
+	 * that needs to be done. But if we are not running
+	 * we may need to preempt the current running task.
+	 * If that current running task is also an RT task
+	 * then see if we can move to another run queue.
+	 */
+	if (p->on_rq && rq->curr != p) {
+#ifdef CONFIG_SMP
+		if (rq->rt.overloaded && push_rt_task(rq) &&
+		    /* Don't resched if we changed runqueues */
+		    rq != task_rq(p))
+			check_resched = 0;
+#endif /* CONFIG_SMP */
+		if (check_resched && p->prio < rq->curr->prio)
+			resched_task(rq->curr);
+	}
+}
+
+/*
+ * Priority of the task has changed. This may cause
+ * us to initiate a push or pull.
+ */
+static void
+prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
+{
+	if (!p->on_rq)
+		return;
+
+	if (rq->curr == p) {
+#ifdef CONFIG_SMP
+		/*
+		 * If our priority decreases while running, we
+		 * may need to pull tasks to this runqueue.
+		 */
+		if (oldprio < p->prio)
+			pull_rt_task(rq);
+		/*
+		 * If there's a higher priority task waiting to run
+		 * then reschedule. Note, the above pull_rt_task
+		 * can release the rq lock and p could migrate.
+		 * Only reschedule if p is still on the same runqueue.
+		 */
+		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
+			resched_task(p);
+#else
+		/* For UP simply resched on drop of prio */
+		if (oldprio < p->prio)
+			resched_task(p);
+#endif /* CONFIG_SMP */
+	} else {
+		/*
+		 * This task is not running, but if it is
+		 * greater than the current running task
+		 * then reschedule.
+		 */
+		if (p->prio < rq->curr->prio)
+			resched_task(rq->curr);
+	}
+}
+
+static void watchdog(struct rq *rq, struct task_struct *p)
+{
+	unsigned long soft, hard;
+
+	/* max may change after cur was read, this will be fixed next tick */
+	soft = task_rlimit(p, RLIMIT_RTTIME);
+	hard = task_rlimit_max(p, RLIMIT_RTTIME);
+
+	if (soft != RLIM_INFINITY) {
+		unsigned long next;
+
+		if (p->rt.watchdog_stamp != jiffies) {
+			p->rt.timeout++;
+			p->rt.watchdog_stamp = jiffies;
+		}
+
+		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
+		if (p->rt.timeout > next)
+			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
+	}
+}
+
+static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
+{
+	struct sched_rt_entity *rt_se = &p->rt;
+
+	update_curr_rt(rq);
+
+	watchdog(rq, p);
+
+	/*
+	 * RR tasks need a special form of timeslice management.
+	 * FIFO tasks have no timeslices.
+	 */
+	if (p->policy != SCHED_RR)
+		return;
+
+	if (--p->rt.time_slice)
+		return;
+
+	p->rt.time_slice = RR_TIMESLICE;
+
+	/*
+	 * Requeue to the end of queue if we (and all of our ancestors) are the
+	 * only element on the queue
+	 */
+	for_each_sched_rt_entity(rt_se) {
+		if (rt_se->run_list.prev != rt_se->run_list.next) {
+			requeue_task_rt(rq, p, 0);
+			set_tsk_need_resched(p);
+			return;
+		}
+	}
+}
+
+static void set_curr_task_rt(struct rq *rq)
+{
+	struct task_struct *p = rq->curr;
+
+	p->se.exec_start = rq->clock_task;
+
+	/* The running task is never eligible for pushing */
+	dequeue_pushable_task(rq, p);
+}
+
+static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
+{
+	/*
+	 * Time slice is 0 for SCHED_FIFO tasks
+	 */
+	if (task->policy == SCHED_RR)
+		return RR_TIMESLICE;
+	else
+		return 0;
+}
+
+const struct sched_class rt_sched_class = {
+	.next			= &fair_sched_class,
+	.enqueue_task		= enqueue_task_rt,
+	.dequeue_task		= dequeue_task_rt,
+	.yield_task		= yield_task_rt,
+
+	.check_preempt_curr	= check_preempt_curr_rt,
+
+	.pick_next_task		= pick_next_task_rt,
+	.put_prev_task		= put_prev_task_rt,
+
+#ifdef CONFIG_SMP
+	.select_task_rq		= select_task_rq_rt,
+
+	.set_cpus_allowed       = set_cpus_allowed_rt,
+	.rq_online              = rq_online_rt,
+	.rq_offline             = rq_offline_rt,
+	.pre_schedule		= pre_schedule_rt,
+	.post_schedule		= post_schedule_rt,
+	.task_woken		= task_woken_rt,
+	.switched_from		= switched_from_rt,
+#endif
+
+	.set_curr_task          = set_curr_task_rt,
+	.task_tick		= task_tick_rt,
+
+	.get_rr_interval	= get_rr_interval_rt,
+
+	.prio_changed		= prio_changed_rt,
+	.switched_to		= switched_to_rt,
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
+
+void print_rt_stats(struct seq_file *m, int cpu)
+{
+	rt_rq_iter_t iter;
+	struct rt_rq *rt_rq;
+
+	rcu_read_lock();
+	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
+		print_rt_rq(m, cpu, rt_rq);
+	rcu_read_unlock();
+}
+#endif /* CONFIG_SCHED_DEBUG */