[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/kernel/time/timecompare.c b/ap/os/linux/linux-3.4.x/kernel/time/timecompare.c
new file mode 100644
index 0000000..a9ae369
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/time/timecompare.c
@@ -0,0 +1,193 @@
+/*
+ * Copyright (C) 2009 Intel Corporation.
+ * Author: Patrick Ohly <patrick.ohly@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/timecompare.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/math64.h>
+#include <linux/kernel.h>
+
+/*
+ * fixed point arithmetic scale factor for skew
+ *
+ * Usually one would measure skew in ppb (parts per billion, 1e9), but
+ * using a factor of 2 simplifies the math.
+ */
+#define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30)
+
+ktime_t timecompare_transform(struct timecompare *sync,
+			      u64 source_tstamp)
+{
+	u64 nsec;
+
+	nsec = source_tstamp + sync->offset;
+	nsec += (s64)(source_tstamp - sync->last_update) * sync->skew /
+		TIMECOMPARE_SKEW_RESOLUTION;
+
+	return ns_to_ktime(nsec);
+}
+EXPORT_SYMBOL_GPL(timecompare_transform);
+
+int timecompare_offset(struct timecompare *sync,
+		       s64 *offset,
+		       u64 *source_tstamp)
+{
+	u64 start_source = 0, end_source = 0;
+	struct {
+		s64 offset;
+		s64 duration_target;
+	} buffer[10], sample, *samples;
+	int counter = 0, i;
+	int used;
+	int index;
+	int num_samples = sync->num_samples;
+
+	if (num_samples > ARRAY_SIZE(buffer)) {
+		samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC);
+		if (!samples) {
+			samples = buffer;
+			num_samples = ARRAY_SIZE(buffer);
+		}
+	} else {
+		samples = buffer;
+	}
+
+	/* run until we have enough valid samples, but do not try forever */
+	i = 0;
+	counter = 0;
+	while (1) {
+		u64 ts;
+		ktime_t start, end;
+
+		start = sync->target();
+		ts = timecounter_read(sync->source);
+		end = sync->target();
+
+		if (!i)
+			start_source = ts;
+
+		/* ignore negative durations */
+		sample.duration_target = ktime_to_ns(ktime_sub(end, start));
+		if (sample.duration_target >= 0) {
+			/*
+			 * assume symetric delay to and from source:
+			 * average target time corresponds to measured
+			 * source time
+			 */
+			sample.offset =
+				(ktime_to_ns(end) + ktime_to_ns(start)) / 2 -
+				ts;
+
+			/* simple insertion sort based on duration */
+			index = counter - 1;
+			while (index >= 0) {
+				if (samples[index].duration_target <
+				    sample.duration_target)
+					break;
+				samples[index + 1] = samples[index];
+				index--;
+			}
+			samples[index + 1] = sample;
+			counter++;
+		}
+
+		i++;
+		if (counter >= num_samples || i >= 100000) {
+			end_source = ts;
+			break;
+		}
+	}
+
+	*source_tstamp = (end_source + start_source) / 2;
+
+	/* remove outliers by only using 75% of the samples */
+	used = counter * 3 / 4;
+	if (!used)
+		used = counter;
+	if (used) {
+		/* calculate average */
+		s64 off = 0;
+		for (index = 0; index < used; index++)
+			off += samples[index].offset;
+		*offset = div_s64(off, used);
+	}
+
+	if (samples && samples != buffer)
+		kfree(samples);
+
+	return used;
+}
+EXPORT_SYMBOL_GPL(timecompare_offset);
+
+void __timecompare_update(struct timecompare *sync,
+			  u64 source_tstamp)
+{
+	s64 offset;
+	u64 average_time;
+
+	if (!timecompare_offset(sync, &offset, &average_time))
+		return;
+
+	if (!sync->last_update) {
+		sync->last_update = average_time;
+		sync->offset = offset;
+		sync->skew = 0;
+	} else {
+		s64 delta_nsec = average_time - sync->last_update;
+
+		/* avoid division by negative or small deltas */
+		if (delta_nsec >= 10000) {
+			s64 delta_offset_nsec = offset - sync->offset;
+			s64 skew; /* delta_offset_nsec *
+				     TIMECOMPARE_SKEW_RESOLUTION /
+				     delta_nsec */
+			u64 divisor;
+
+			/* div_s64() is limited to 32 bit divisor */
+			skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION;
+			divisor = delta_nsec;
+			while (unlikely(divisor >= ((s64)1) << 32)) {
+				/* divide both by 2; beware, right shift
+				   of negative value has undefined
+				   behavior and can only be used for
+				   the positive divisor */
+				skew = div_s64(skew, 2);
+				divisor >>= 1;
+			}
+			skew = div_s64(skew, divisor);
+
+			/*
+			 * Calculate new overall skew as 4/16 the
+			 * old value and 12/16 the new one. This is
+			 * a rather arbitrary tradeoff between
+			 * only using the latest measurement (0/16 and
+			 * 16/16) and even more weight on past measurements.
+			 */
+#define TIMECOMPARE_NEW_SKEW_PER_16 12
+			sync->skew =
+				div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) *
+					sync->skew +
+					TIMECOMPARE_NEW_SKEW_PER_16 * skew,
+					16);
+			sync->last_update = average_time;
+			sync->offset = offset;
+		}
+	}
+}
+EXPORT_SYMBOL_GPL(__timecompare_update);