[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/lib/swiotlb.c b/ap/os/linux/linux-3.4.x/lib/swiotlb.c
new file mode 100644
index 0000000..414f46e
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/lib/swiotlb.c
@@ -0,0 +1,930 @@
+/*
+ * Dynamic DMA mapping support.
+ *
+ * This implementation is a fallback for platforms that do not support
+ * I/O TLBs (aka DMA address translation hardware).
+ * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
+ * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
+ * Copyright (C) 2000, 2003 Hewlett-Packard Co
+ *	David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
+ * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
+ *			unnecessary i-cache flushing.
+ * 04/07/.. ak		Better overflow handling. Assorted fixes.
+ * 05/09/10 linville	Add support for syncing ranges, support syncing for
+ *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
+ * 08/12/11 beckyb	Add highmem support
+ */
+
+#include <linux/cache.h>
+#include <linux/dma-mapping.h>
+#include <linux/mm.h>
+#include <linux/export.h>
+#include <linux/spinlock.h>
+#include <linux/string.h>
+#include <linux/swiotlb.h>
+#include <linux/pfn.h>
+#include <linux/types.h>
+#include <linux/ctype.h>
+#include <linux/highmem.h>
+#include <linux/gfp.h>
+
+#include <asm/io.h>
+#include <asm/dma.h>
+#include <asm/scatterlist.h>
+
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/iommu-helper.h>
+
+#define OFFSET(val,align) ((unsigned long)	\
+	                   ( (val) & ( (align) - 1)))
+
+#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
+
+/*
+ * Minimum IO TLB size to bother booting with.  Systems with mainly
+ * 64bit capable cards will only lightly use the swiotlb.  If we can't
+ * allocate a contiguous 1MB, we're probably in trouble anyway.
+ */
+#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
+
+int swiotlb_force;
+
+/*
+ * Used to do a quick range check in swiotlb_tbl_unmap_single and
+ * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
+ * API.
+ */
+static char *io_tlb_start, *io_tlb_end;
+
+/*
+ * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
+ * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
+ */
+static unsigned long io_tlb_nslabs;
+
+/*
+ * When the IOMMU overflows we return a fallback buffer. This sets the size.
+ */
+static unsigned long io_tlb_overflow = 32*1024;
+
+static void *io_tlb_overflow_buffer;
+
+/*
+ * This is a free list describing the number of free entries available from
+ * each index
+ */
+static unsigned int *io_tlb_list;
+static unsigned int io_tlb_index;
+
+/*
+ * We need to save away the original address corresponding to a mapped entry
+ * for the sync operations.
+ */
+static phys_addr_t *io_tlb_orig_addr;
+
+/*
+ * Protect the above data structures in the map and unmap calls
+ */
+static DEFINE_SPINLOCK(io_tlb_lock);
+
+static int late_alloc;
+
+static int __init
+setup_io_tlb_npages(char *str)
+{
+	if (isdigit(*str)) {
+		io_tlb_nslabs = simple_strtoul(str, &str, 0);
+		/* avoid tail segment of size < IO_TLB_SEGSIZE */
+		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
+	}
+	if (*str == ',')
+		++str;
+	if (!strcmp(str, "force"))
+		swiotlb_force = 1;
+
+	return 1;
+}
+__setup("swiotlb=", setup_io_tlb_npages);
+/* make io_tlb_overflow tunable too? */
+
+unsigned long swiotlb_nr_tbl(void)
+{
+	return io_tlb_nslabs;
+}
+EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
+/* Note that this doesn't work with highmem page */
+static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
+				      volatile void *address)
+{
+	return phys_to_dma(hwdev, virt_to_phys(address));
+}
+
+void swiotlb_print_info(void)
+{
+	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
+	phys_addr_t pstart, pend;
+
+	pstart = virt_to_phys(io_tlb_start);
+	pend = virt_to_phys(io_tlb_end);
+
+	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
+	       bytes >> 20, io_tlb_start, io_tlb_end);
+	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
+	       (unsigned long long)pstart,
+	       (unsigned long long)pend);
+}
+
+void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
+{
+	unsigned long i, bytes;
+
+	bytes = nslabs << IO_TLB_SHIFT;
+
+	io_tlb_nslabs = nslabs;
+	io_tlb_start = tlb;
+	io_tlb_end = io_tlb_start + bytes;
+
+	/*
+	 * Allocate and initialize the free list array.  This array is used
+	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
+	 * between io_tlb_start and io_tlb_end.
+	 */
+	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
+	for (i = 0; i < io_tlb_nslabs; i++)
+ 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
+	io_tlb_index = 0;
+	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
+
+	/*
+	 * Get the overflow emergency buffer
+	 */
+	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
+	if (!io_tlb_overflow_buffer)
+		panic("Cannot allocate SWIOTLB overflow buffer!\n");
+	if (verbose)
+		swiotlb_print_info();
+}
+
+/*
+ * Statically reserve bounce buffer space and initialize bounce buffer data
+ * structures for the software IO TLB used to implement the DMA API.
+ */
+void __init
+swiotlb_init_with_default_size(size_t default_size, int verbose)
+{
+	unsigned long bytes;
+
+	if (!io_tlb_nslabs) {
+		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
+		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
+	}
+
+	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
+
+	/*
+	 * Get IO TLB memory from the low pages
+	 */
+	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
+	if (!io_tlb_start)
+		panic("Cannot allocate SWIOTLB buffer");
+
+	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
+}
+
+void __init
+swiotlb_init(int verbose)
+{
+	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
+}
+
+/*
+ * Systems with larger DMA zones (those that don't support ISA) can
+ * initialize the swiotlb later using the slab allocator if needed.
+ * This should be just like above, but with some error catching.
+ */
+int
+swiotlb_late_init_with_default_size(size_t default_size)
+{
+	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
+	unsigned int order;
+
+	if (!io_tlb_nslabs) {
+		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
+		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
+	}
+
+	/*
+	 * Get IO TLB memory from the low pages
+	 */
+	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
+	io_tlb_nslabs = SLABS_PER_PAGE << order;
+	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
+
+	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
+		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
+							order);
+		if (io_tlb_start)
+			break;
+		order--;
+	}
+
+	if (!io_tlb_start)
+		goto cleanup1;
+
+	if (order != get_order(bytes)) {
+		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
+		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
+		io_tlb_nslabs = SLABS_PER_PAGE << order;
+		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
+	}
+	io_tlb_end = io_tlb_start + bytes;
+	memset(io_tlb_start, 0, bytes);
+
+	/*
+	 * Allocate and initialize the free list array.  This array is used
+	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
+	 * between io_tlb_start and io_tlb_end.
+	 */
+	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
+	                              get_order(io_tlb_nslabs * sizeof(int)));
+	if (!io_tlb_list)
+		goto cleanup2;
+
+	for (i = 0; i < io_tlb_nslabs; i++)
+ 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
+	io_tlb_index = 0;
+
+	io_tlb_orig_addr = (phys_addr_t *)
+		__get_free_pages(GFP_KERNEL,
+				 get_order(io_tlb_nslabs *
+					   sizeof(phys_addr_t)));
+	if (!io_tlb_orig_addr)
+		goto cleanup3;
+
+	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
+
+	/*
+	 * Get the overflow emergency buffer
+	 */
+	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
+	                                          get_order(io_tlb_overflow));
+	if (!io_tlb_overflow_buffer)
+		goto cleanup4;
+
+	swiotlb_print_info();
+
+	late_alloc = 1;
+
+	return 0;
+
+cleanup4:
+	free_pages((unsigned long)io_tlb_orig_addr,
+		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
+	io_tlb_orig_addr = NULL;
+cleanup3:
+	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
+	                                                 sizeof(int)));
+	io_tlb_list = NULL;
+cleanup2:
+	io_tlb_end = NULL;
+	free_pages((unsigned long)io_tlb_start, order);
+	io_tlb_start = NULL;
+cleanup1:
+	io_tlb_nslabs = req_nslabs;
+	return -ENOMEM;
+}
+
+void __init swiotlb_free(void)
+{
+	if (!io_tlb_overflow_buffer)
+		return;
+
+	if (late_alloc) {
+		free_pages((unsigned long)io_tlb_overflow_buffer,
+			   get_order(io_tlb_overflow));
+		free_pages((unsigned long)io_tlb_orig_addr,
+			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
+		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
+								 sizeof(int)));
+		free_pages((unsigned long)io_tlb_start,
+			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
+	} else {
+		free_bootmem_late(__pa(io_tlb_overflow_buffer),
+				  PAGE_ALIGN(io_tlb_overflow));
+		free_bootmem_late(__pa(io_tlb_orig_addr),
+				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
+		free_bootmem_late(__pa(io_tlb_list),
+				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
+		free_bootmem_late(__pa(io_tlb_start),
+				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
+	}
+	io_tlb_nslabs = 0;
+}
+
+static int is_swiotlb_buffer(phys_addr_t paddr)
+{
+	return paddr >= virt_to_phys(io_tlb_start) &&
+		paddr < virt_to_phys(io_tlb_end);
+}
+
+/*
+ * Bounce: copy the swiotlb buffer back to the original dma location
+ */
+void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
+		    enum dma_data_direction dir)
+{
+	unsigned long pfn = PFN_DOWN(phys);
+
+	if (PageHighMem(pfn_to_page(pfn))) {
+		/* The buffer does not have a mapping.  Map it in and copy */
+		unsigned int offset = phys & ~PAGE_MASK;
+		char *buffer;
+		unsigned int sz = 0;
+		unsigned long flags;
+
+		while (size) {
+			sz = min_t(size_t, PAGE_SIZE - offset, size);
+
+			local_irq_save(flags);
+			buffer = kmap_atomic(pfn_to_page(pfn));
+			if (dir == DMA_TO_DEVICE)
+				memcpy(dma_addr, buffer + offset, sz);
+			else
+				memcpy(buffer + offset, dma_addr, sz);
+			kunmap_atomic(buffer);
+			local_irq_restore(flags);
+
+			size -= sz;
+			pfn++;
+			dma_addr += sz;
+			offset = 0;
+		}
+	} else {
+		if (dir == DMA_TO_DEVICE)
+			memcpy(dma_addr, phys_to_virt(phys), size);
+		else
+			memcpy(phys_to_virt(phys), dma_addr, size);
+	}
+}
+EXPORT_SYMBOL_GPL(swiotlb_bounce);
+
+void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
+			     phys_addr_t phys, size_t size,
+			     enum dma_data_direction dir)
+{
+	unsigned long flags;
+	char *dma_addr;
+	unsigned int nslots, stride, index, wrap;
+	int i;
+	unsigned long mask;
+	unsigned long offset_slots;
+	unsigned long max_slots;
+
+	mask = dma_get_seg_boundary(hwdev);
+
+	tbl_dma_addr &= mask;
+
+	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
+
+	/*
+ 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
+ 	 */
+	max_slots = mask + 1
+		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
+		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
+
+	/*
+	 * For mappings greater than a page, we limit the stride (and
+	 * hence alignment) to a page size.
+	 */
+	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
+	if (size > PAGE_SIZE)
+		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
+	else
+		stride = 1;
+
+	BUG_ON(!nslots);
+
+	/*
+	 * Find suitable number of IO TLB entries size that will fit this
+	 * request and allocate a buffer from that IO TLB pool.
+	 */
+	spin_lock_irqsave(&io_tlb_lock, flags);
+	index = ALIGN(io_tlb_index, stride);
+	if (index >= io_tlb_nslabs)
+		index = 0;
+	wrap = index;
+
+	do {
+		while (iommu_is_span_boundary(index, nslots, offset_slots,
+					      max_slots)) {
+			index += stride;
+			if (index >= io_tlb_nslabs)
+				index = 0;
+			if (index == wrap)
+				goto not_found;
+		}
+
+		/*
+		 * If we find a slot that indicates we have 'nslots' number of
+		 * contiguous buffers, we allocate the buffers from that slot
+		 * and mark the entries as '0' indicating unavailable.
+		 */
+		if (io_tlb_list[index] >= nslots) {
+			int count = 0;
+
+			for (i = index; i < (int) (index + nslots); i++)
+				io_tlb_list[i] = 0;
+			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
+				io_tlb_list[i] = ++count;
+			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
+
+			/*
+			 * Update the indices to avoid searching in the next
+			 * round.
+			 */
+			io_tlb_index = ((index + nslots) < io_tlb_nslabs
+					? (index + nslots) : 0);
+
+			goto found;
+		}
+		index += stride;
+		if (index >= io_tlb_nslabs)
+			index = 0;
+	} while (index != wrap);
+
+not_found:
+	spin_unlock_irqrestore(&io_tlb_lock, flags);
+	return NULL;
+found:
+	spin_unlock_irqrestore(&io_tlb_lock, flags);
+
+	/*
+	 * Save away the mapping from the original address to the DMA address.
+	 * This is needed when we sync the memory.  Then we sync the buffer if
+	 * needed.
+	 */
+	for (i = 0; i < nslots; i++)
+		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
+	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
+		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
+
+	return dma_addr;
+}
+EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
+
+/*
+ * Allocates bounce buffer and returns its kernel virtual address.
+ */
+
+static void *
+map_single(struct device *hwdev, phys_addr_t phys, size_t size,
+	   enum dma_data_direction dir)
+{
+	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
+
+	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
+}
+
+/*
+ * dma_addr is the kernel virtual address of the bounce buffer to unmap.
+ */
+void
+swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
+			enum dma_data_direction dir)
+{
+	unsigned long flags;
+	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
+	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
+	phys_addr_t phys = io_tlb_orig_addr[index];
+
+	/*
+	 * First, sync the memory before unmapping the entry
+	 */
+	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
+		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
+
+	/*
+	 * Return the buffer to the free list by setting the corresponding
+	 * entries to indicate the number of contiguous entries available.
+	 * While returning the entries to the free list, we merge the entries
+	 * with slots below and above the pool being returned.
+	 */
+	spin_lock_irqsave(&io_tlb_lock, flags);
+	{
+		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
+			 io_tlb_list[index + nslots] : 0);
+		/*
+		 * Step 1: return the slots to the free list, merging the
+		 * slots with superceeding slots
+		 */
+		for (i = index + nslots - 1; i >= index; i--)
+			io_tlb_list[i] = ++count;
+		/*
+		 * Step 2: merge the returned slots with the preceding slots,
+		 * if available (non zero)
+		 */
+		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
+			io_tlb_list[i] = ++count;
+	}
+	spin_unlock_irqrestore(&io_tlb_lock, flags);
+}
+EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
+
+void
+swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
+			enum dma_data_direction dir,
+			enum dma_sync_target target)
+{
+	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
+	phys_addr_t phys = io_tlb_orig_addr[index];
+
+	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
+
+	switch (target) {
+	case SYNC_FOR_CPU:
+		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
+			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
+		else
+			BUG_ON(dir != DMA_TO_DEVICE);
+		break;
+	case SYNC_FOR_DEVICE:
+		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
+			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
+		else
+			BUG_ON(dir != DMA_FROM_DEVICE);
+		break;
+	default:
+		BUG();
+	}
+}
+EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
+
+void *
+swiotlb_alloc_coherent(struct device *hwdev, size_t size,
+		       dma_addr_t *dma_handle, gfp_t flags)
+{
+	dma_addr_t dev_addr;
+	void *ret;
+	int order = get_order(size);
+	u64 dma_mask = DMA_BIT_MASK(32);
+
+	if (hwdev && hwdev->coherent_dma_mask)
+		dma_mask = hwdev->coherent_dma_mask;
+
+	ret = (void *)__get_free_pages(flags, order);
+	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
+		/*
+		 * The allocated memory isn't reachable by the device.
+		 */
+		free_pages((unsigned long) ret, order);
+		ret = NULL;
+	}
+	if (!ret) {
+		/*
+		 * We are either out of memory or the device can't DMA to
+		 * GFP_DMA memory; fall back on map_single(), which
+		 * will grab memory from the lowest available address range.
+		 */
+		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
+		if (!ret)
+			return NULL;
+	}
+
+	memset(ret, 0, size);
+	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
+
+	/* Confirm address can be DMA'd by device */
+	if (dev_addr + size - 1 > dma_mask) {
+		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
+		       (unsigned long long)dma_mask,
+		       (unsigned long long)dev_addr);
+
+		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
+		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
+		return NULL;
+	}
+	*dma_handle = dev_addr;
+	return ret;
+}
+EXPORT_SYMBOL(swiotlb_alloc_coherent);
+
+void
+swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
+		      dma_addr_t dev_addr)
+{
+	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
+
+	WARN_ON(irqs_disabled());
+	if (!is_swiotlb_buffer(paddr))
+		free_pages((unsigned long)vaddr, get_order(size));
+	else
+		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
+		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
+}
+EXPORT_SYMBOL(swiotlb_free_coherent);
+
+static void
+swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
+	     int do_panic)
+{
+	/*
+	 * Ran out of IOMMU space for this operation. This is very bad.
+	 * Unfortunately the drivers cannot handle this operation properly.
+	 * unless they check for dma_mapping_error (most don't)
+	 * When the mapping is small enough return a static buffer to limit
+	 * the damage, or panic when the transfer is too big.
+	 */
+	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
+	       "device %s\n", size, dev ? dev_name(dev) : "?");
+
+	if (size <= io_tlb_overflow || !do_panic)
+		return;
+
+	if (dir == DMA_BIDIRECTIONAL)
+		panic("DMA: Random memory could be DMA accessed\n");
+	if (dir == DMA_FROM_DEVICE)
+		panic("DMA: Random memory could be DMA written\n");
+	if (dir == DMA_TO_DEVICE)
+		panic("DMA: Random memory could be DMA read\n");
+}
+
+/*
+ * Map a single buffer of the indicated size for DMA in streaming mode.  The
+ * physical address to use is returned.
+ *
+ * Once the device is given the dma address, the device owns this memory until
+ * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
+ */
+dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
+			    unsigned long offset, size_t size,
+			    enum dma_data_direction dir,
+			    struct dma_attrs *attrs)
+{
+	phys_addr_t phys = page_to_phys(page) + offset;
+	dma_addr_t dev_addr = phys_to_dma(dev, phys);
+	void *map;
+
+	BUG_ON(dir == DMA_NONE);
+	/*
+	 * If the address happens to be in the device's DMA window,
+	 * we can safely return the device addr and not worry about bounce
+	 * buffering it.
+	 */
+	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
+		return dev_addr;
+
+	/*
+	 * Oh well, have to allocate and map a bounce buffer.
+	 */
+	map = map_single(dev, phys, size, dir);
+	if (!map) {
+		swiotlb_full(dev, size, dir, 1);
+		map = io_tlb_overflow_buffer;
+	}
+
+	dev_addr = swiotlb_virt_to_bus(dev, map);
+
+	/*
+	 * Ensure that the address returned is DMA'ble
+	 */
+	if (!dma_capable(dev, dev_addr, size)) {
+		swiotlb_tbl_unmap_single(dev, map, size, dir);
+		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
+	}
+
+	return dev_addr;
+}
+EXPORT_SYMBOL_GPL(swiotlb_map_page);
+
+/*
+ * Unmap a single streaming mode DMA translation.  The dma_addr and size must
+ * match what was provided for in a previous swiotlb_map_page call.  All
+ * other usages are undefined.
+ *
+ * After this call, reads by the cpu to the buffer are guaranteed to see
+ * whatever the device wrote there.
+ */
+static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
+			 size_t size, enum dma_data_direction dir)
+{
+	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
+
+	BUG_ON(dir == DMA_NONE);
+
+	if (is_swiotlb_buffer(paddr)) {
+		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
+		return;
+	}
+
+	if (dir != DMA_FROM_DEVICE)
+		return;
+
+	/*
+	 * phys_to_virt doesn't work with hihgmem page but we could
+	 * call dma_mark_clean() with hihgmem page here. However, we
+	 * are fine since dma_mark_clean() is null on POWERPC. We can
+	 * make dma_mark_clean() take a physical address if necessary.
+	 */
+	dma_mark_clean(phys_to_virt(paddr), size);
+}
+
+void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
+			size_t size, enum dma_data_direction dir,
+			struct dma_attrs *attrs)
+{
+	unmap_single(hwdev, dev_addr, size, dir);
+}
+EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
+
+/*
+ * Make physical memory consistent for a single streaming mode DMA translation
+ * after a transfer.
+ *
+ * If you perform a swiotlb_map_page() but wish to interrogate the buffer
+ * using the cpu, yet do not wish to teardown the dma mapping, you must
+ * call this function before doing so.  At the next point you give the dma
+ * address back to the card, you must first perform a
+ * swiotlb_dma_sync_for_device, and then the device again owns the buffer
+ */
+static void
+swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
+		    size_t size, enum dma_data_direction dir,
+		    enum dma_sync_target target)
+{
+	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
+
+	BUG_ON(dir == DMA_NONE);
+
+	if (is_swiotlb_buffer(paddr)) {
+		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
+				       target);
+		return;
+	}
+
+	if (dir != DMA_FROM_DEVICE)
+		return;
+
+	dma_mark_clean(phys_to_virt(paddr), size);
+}
+
+void
+swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
+			    size_t size, enum dma_data_direction dir)
+{
+	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
+}
+EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
+
+void
+swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
+			       size_t size, enum dma_data_direction dir)
+{
+	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
+}
+EXPORT_SYMBOL(swiotlb_sync_single_for_device);
+
+/*
+ * Map a set of buffers described by scatterlist in streaming mode for DMA.
+ * This is the scatter-gather version of the above swiotlb_map_page
+ * interface.  Here the scatter gather list elements are each tagged with the
+ * appropriate dma address and length.  They are obtained via
+ * sg_dma_{address,length}(SG).
+ *
+ * NOTE: An implementation may be able to use a smaller number of
+ *       DMA address/length pairs than there are SG table elements.
+ *       (for example via virtual mapping capabilities)
+ *       The routine returns the number of addr/length pairs actually
+ *       used, at most nents.
+ *
+ * Device ownership issues as mentioned above for swiotlb_map_page are the
+ * same here.
+ */
+int
+swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
+		     enum dma_data_direction dir, struct dma_attrs *attrs)
+{
+	struct scatterlist *sg;
+	int i;
+
+	BUG_ON(dir == DMA_NONE);
+
+	for_each_sg(sgl, sg, nelems, i) {
+		phys_addr_t paddr = sg_phys(sg);
+		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
+
+		if (swiotlb_force ||
+		    !dma_capable(hwdev, dev_addr, sg->length)) {
+			void *map = map_single(hwdev, sg_phys(sg),
+					       sg->length, dir);
+			if (!map) {
+				/* Don't panic here, we expect map_sg users
+				   to do proper error handling. */
+				swiotlb_full(hwdev, sg->length, dir, 0);
+				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
+						       attrs);
+				sgl[0].dma_length = 0;
+				return 0;
+			}
+			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
+		} else
+			sg->dma_address = dev_addr;
+		sg->dma_length = sg->length;
+	}
+	return nelems;
+}
+EXPORT_SYMBOL(swiotlb_map_sg_attrs);
+
+int
+swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
+	       enum dma_data_direction dir)
+{
+	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
+}
+EXPORT_SYMBOL(swiotlb_map_sg);
+
+/*
+ * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
+ * concerning calls here are the same as for swiotlb_unmap_page() above.
+ */
+void
+swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
+		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
+{
+	struct scatterlist *sg;
+	int i;
+
+	BUG_ON(dir == DMA_NONE);
+
+	for_each_sg(sgl, sg, nelems, i)
+		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
+
+}
+EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
+
+void
+swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
+		 enum dma_data_direction dir)
+{
+	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
+}
+EXPORT_SYMBOL(swiotlb_unmap_sg);
+
+/*
+ * Make physical memory consistent for a set of streaming mode DMA translations
+ * after a transfer.
+ *
+ * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
+ * and usage.
+ */
+static void
+swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
+		int nelems, enum dma_data_direction dir,
+		enum dma_sync_target target)
+{
+	struct scatterlist *sg;
+	int i;
+
+	for_each_sg(sgl, sg, nelems, i)
+		swiotlb_sync_single(hwdev, sg->dma_address,
+				    sg->dma_length, dir, target);
+}
+
+void
+swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
+			int nelems, enum dma_data_direction dir)
+{
+	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
+}
+EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
+
+void
+swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
+			   int nelems, enum dma_data_direction dir)
+{
+	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
+}
+EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
+
+int
+swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
+{
+	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
+}
+EXPORT_SYMBOL(swiotlb_dma_mapping_error);
+
+/*
+ * Return whether the given device DMA address mask can be supported
+ * properly.  For example, if your device can only drive the low 24-bits
+ * during bus mastering, then you would pass 0x00ffffff as the mask to
+ * this function.
+ */
+int
+swiotlb_dma_supported(struct device *hwdev, u64 mask)
+{
+	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
+}
+EXPORT_SYMBOL(swiotlb_dma_supported);