[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/mm/filemap.c b/ap/os/linux/linux-3.4.x/mm/filemap.c
new file mode 100644
index 0000000..8da7574
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/mm/filemap.c
@@ -0,0 +1,2681 @@
+/*
+ *	linux/mm/filemap.c
+ *
+ * Copyright (C) 1994-1999  Linus Torvalds
+ */
+
+/*
+ * This file handles the generic file mmap semantics used by
+ * most "normal" filesystems (but you don't /have/ to use this:
+ * the NFS filesystem used to do this differently, for example)
+ */
+#include <linux/export.h>
+#include <linux/compiler.h>
+#include <linux/fs.h>
+#include <linux/uaccess.h>
+#include <linux/aio.h>
+#include <linux/capability.h>
+#include <linux/kernel_stat.h>
+#include <linux/gfp.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/mman.h>
+#include <linux/pagemap.h>
+#include <linux/file.h>
+#include <linux/uio.h>
+#include <linux/hash.h>
+#include <linux/writeback.h>
+#include <linux/backing-dev.h>
+#include <linux/pagevec.h>
+#include <linux/blkdev.h>
+#include <linux/security.h>
+#include <linux/syscalls.h>
+#include <linux/cpuset.h>
+#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
+#include <linux/memcontrol.h>
+#include <linux/cleancache.h>
+#include "internal.h"
+
+/*
+ * FIXME: remove all knowledge of the buffer layer from the core VM
+ */
+#include <linux/buffer_head.h> /* for try_to_free_buffers */
+
+#include <asm/mman.h>
+
+/*
+ * Shared mappings implemented 30.11.1994. It's not fully working yet,
+ * though.
+ *
+ * Shared mappings now work. 15.8.1995  Bruno.
+ *
+ * finished 'unifying' the page and buffer cache and SMP-threaded the
+ * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
+ *
+ * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
+ */
+
+/*
+ * Lock ordering:
+ *
+ *  ->i_mmap_mutex		(truncate_pagecache)
+ *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
+ *      ->swap_lock		(exclusive_swap_page, others)
+ *        ->mapping->tree_lock
+ *
+ *  ->i_mutex
+ *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
+ *
+ *  ->mmap_sem
+ *    ->i_mmap_mutex
+ *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
+ *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
+ *
+ *  ->mmap_sem
+ *    ->lock_page		(access_process_vm)
+ *
+ *  ->i_mutex			(generic_file_buffered_write)
+ *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
+ *
+ *  bdi->wb.list_lock
+ *    sb_lock			(fs/fs-writeback.c)
+ *    ->mapping->tree_lock	(__sync_single_inode)
+ *
+ *  ->i_mmap_mutex
+ *    ->anon_vma.lock		(vma_adjust)
+ *
+ *  ->anon_vma.lock
+ *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
+ *
+ *  ->page_table_lock or pte_lock
+ *    ->swap_lock		(try_to_unmap_one)
+ *    ->private_lock		(try_to_unmap_one)
+ *    ->tree_lock		(try_to_unmap_one)
+ *    ->zone.lru_lock		(follow_page->mark_page_accessed)
+ *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
+ *    ->private_lock		(page_remove_rmap->set_page_dirty)
+ *    ->tree_lock		(page_remove_rmap->set_page_dirty)
+ *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
+ *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
+ *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
+ *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
+ *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
+ *
+ * ->i_mmap_mutex
+ *   ->tasklist_lock            (memory_failure, collect_procs_ao)
+ */
+
+/*
+ * Delete a page from the page cache and free it. Caller has to make
+ * sure the page is locked and that nobody else uses it - or that usage
+ * is safe.  The caller must hold the mapping's tree_lock.
+ */
+void __delete_from_page_cache(struct page *page)
+{
+	struct address_space *mapping = page->mapping;
+
+	/*
+	 * if we're uptodate, flush out into the cleancache, otherwise
+	 * invalidate any existing cleancache entries.  We can't leave
+	 * stale data around in the cleancache once our page is gone
+	 */
+	if (PageUptodate(page) && PageMappedToDisk(page))
+		cleancache_put_page(page);
+	else
+		cleancache_invalidate_page(mapping, page);
+
+	radix_tree_delete(&mapping->page_tree, page->index);
+	page->mapping = NULL;
+	/* Leave page->index set: truncation lookup relies upon it */
+	mapping->nrpages--;
+	__dec_zone_page_state(page, NR_FILE_PAGES);
+	if (PageSwapBacked(page))
+		__dec_zone_page_state(page, NR_SHMEM);
+#ifdef CONFIG_LIMIT_PAGE_CACHE
+	if(mapping_gfp_mask(mapping) & __GFP_PAGERAMFS)
+		__dec_zone_page_state(page, NR_RAMFS_PAGES);
+	else if(mapping_gfp_mask(mapping) & __GFP_PAGETMPFS)
+		__dec_zone_page_state(page, NR_TMPFS_PAGES);
+#endif
+
+	BUG_ON(page_mapped(page));
+
+	/*
+	 * Some filesystems seem to re-dirty the page even after
+	 * the VM has canceled the dirty bit (eg ext3 journaling).
+	 *
+	 * Fix it up by doing a final dirty accounting check after
+	 * having removed the page entirely.
+	 */
+	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
+		dec_zone_page_state(page, NR_FILE_DIRTY);
+		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
+	}
+}
+
+/**
+ * delete_from_page_cache - delete page from page cache
+ * @page: the page which the kernel is trying to remove from page cache
+ *
+ * This must be called only on pages that have been verified to be in the page
+ * cache and locked.  It will never put the page into the free list, the caller
+ * has a reference on the page.
+ */
+void delete_from_page_cache(struct page *page)
+{
+	struct address_space *mapping = page->mapping;
+	void (*freepage)(struct page *);
+	unsigned long flags;
+
+	BUG_ON(!PageLocked(page));
+
+	freepage = mapping->a_ops->freepage;
+	spin_lock_irq(&mapping->tree_lock);
+	local_irq_save(flags);
+	__delete_from_page_cache(page);
+	local_irq_restore(flags);
+	spin_unlock_irq(&mapping->tree_lock);
+	mem_cgroup_uncharge_cache_page(page);
+
+	if (freepage)
+		freepage(page);
+	page_cache_release(page);
+}
+EXPORT_SYMBOL(delete_from_page_cache);
+
+static int sleep_on_page(void *word)
+{
+	io_schedule();
+	return 0;
+}
+
+static int sleep_on_page_killable(void *word)
+{
+	sleep_on_page(word);
+	return fatal_signal_pending(current) ? -EINTR : 0;
+}
+
+/**
+ * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
+ * @mapping:	address space structure to write
+ * @start:	offset in bytes where the range starts
+ * @end:	offset in bytes where the range ends (inclusive)
+ * @sync_mode:	enable synchronous operation
+ *
+ * Start writeback against all of a mapping's dirty pages that lie
+ * within the byte offsets <start, end> inclusive.
+ *
+ * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
+ * opposed to a regular memory cleansing writeback.  The difference between
+ * these two operations is that if a dirty page/buffer is encountered, it must
+ * be waited upon, and not just skipped over.
+ */
+int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
+				loff_t end, int sync_mode)
+{
+	int ret;
+	struct writeback_control wbc = {
+		.sync_mode = sync_mode,
+		.nr_to_write = LONG_MAX,
+		.range_start = start,
+		.range_end = end,
+	};
+
+	if (!mapping_cap_writeback_dirty(mapping))
+		return 0;
+
+	ret = do_writepages(mapping, &wbc);
+	return ret;
+}
+
+static inline int __filemap_fdatawrite(struct address_space *mapping,
+	int sync_mode)
+{
+	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
+}
+
+int filemap_fdatawrite(struct address_space *mapping)
+{
+	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
+}
+EXPORT_SYMBOL(filemap_fdatawrite);
+
+int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
+				loff_t end)
+{
+	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
+}
+EXPORT_SYMBOL(filemap_fdatawrite_range);
+
+/**
+ * filemap_flush - mostly a non-blocking flush
+ * @mapping:	target address_space
+ *
+ * This is a mostly non-blocking flush.  Not suitable for data-integrity
+ * purposes - I/O may not be started against all dirty pages.
+ */
+int filemap_flush(struct address_space *mapping)
+{
+	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
+}
+EXPORT_SYMBOL(filemap_flush);
+
+/**
+ * filemap_fdatawait_range - wait for writeback to complete
+ * @mapping:		address space structure to wait for
+ * @start_byte:		offset in bytes where the range starts
+ * @end_byte:		offset in bytes where the range ends (inclusive)
+ *
+ * Walk the list of under-writeback pages of the given address space
+ * in the given range and wait for all of them.
+ */
+int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
+			    loff_t end_byte)
+{
+	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
+	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
+	struct pagevec pvec;
+	int nr_pages;
+	int ret = 0;
+
+	if (end_byte < start_byte)
+		return 0;
+
+	pagevec_init(&pvec, 0);
+	while ((index <= end) &&
+			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
+			PAGECACHE_TAG_WRITEBACK,
+			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
+		unsigned i;
+
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+
+			/* until radix tree lookup accepts end_index */
+			if (page->index > end)
+				continue;
+
+			wait_on_page_writeback(page);
+			if (TestClearPageError(page))
+				ret = -EIO;
+		}
+		pagevec_release(&pvec);
+		cond_resched();
+	}
+
+	/* Check for outstanding write errors */
+	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
+		ret = -ENOSPC;
+	if (test_and_clear_bit(AS_EIO, &mapping->flags))
+		ret = -EIO;
+
+	return ret;
+}
+EXPORT_SYMBOL(filemap_fdatawait_range);
+
+/**
+ * filemap_fdatawait - wait for all under-writeback pages to complete
+ * @mapping: address space structure to wait for
+ *
+ * Walk the list of under-writeback pages of the given address space
+ * and wait for all of them.
+ */
+int filemap_fdatawait(struct address_space *mapping)
+{
+	loff_t i_size = i_size_read(mapping->host);
+
+	if (i_size == 0)
+		return 0;
+
+	return filemap_fdatawait_range(mapping, 0, i_size - 1);
+}
+EXPORT_SYMBOL(filemap_fdatawait);
+
+int filemap_write_and_wait(struct address_space *mapping)
+{
+	int err = 0;
+
+	if (mapping->nrpages) {
+		err = filemap_fdatawrite(mapping);
+		/*
+		 * Even if the above returned error, the pages may be
+		 * written partially (e.g. -ENOSPC), so we wait for it.
+		 * But the -EIO is special case, it may indicate the worst
+		 * thing (e.g. bug) happened, so we avoid waiting for it.
+		 */
+		if (err != -EIO) {
+			int err2 = filemap_fdatawait(mapping);
+			if (!err)
+				err = err2;
+		}
+	}
+	return err;
+}
+EXPORT_SYMBOL(filemap_write_and_wait);
+
+/**
+ * filemap_write_and_wait_range - write out & wait on a file range
+ * @mapping:	the address_space for the pages
+ * @lstart:	offset in bytes where the range starts
+ * @lend:	offset in bytes where the range ends (inclusive)
+ *
+ * Write out and wait upon file offsets lstart->lend, inclusive.
+ *
+ * Note that `lend' is inclusive (describes the last byte to be written) so
+ * that this function can be used to write to the very end-of-file (end = -1).
+ */
+int filemap_write_and_wait_range(struct address_space *mapping,
+				 loff_t lstart, loff_t lend)
+{
+	int err = 0;
+
+	if (mapping->nrpages) {
+		err = __filemap_fdatawrite_range(mapping, lstart, lend,
+						 WB_SYNC_ALL);
+		/* See comment of filemap_write_and_wait() */
+		if (err != -EIO) {
+			int err2 = filemap_fdatawait_range(mapping,
+						lstart, lend);
+			if (!err)
+				err = err2;
+		}
+	}
+	return err;
+}
+EXPORT_SYMBOL(filemap_write_and_wait_range);
+
+/**
+ * replace_page_cache_page - replace a pagecache page with a new one
+ * @old:	page to be replaced
+ * @new:	page to replace with
+ * @gfp_mask:	allocation mode
+ *
+ * This function replaces a page in the pagecache with a new one.  On
+ * success it acquires the pagecache reference for the new page and
+ * drops it for the old page.  Both the old and new pages must be
+ * locked.  This function does not add the new page to the LRU, the
+ * caller must do that.
+ *
+ * The remove + add is atomic.  The only way this function can fail is
+ * memory allocation failure.
+ */
+int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
+{
+	int error;
+	
+	VM_BUG_ON(!PageLocked(old));
+	VM_BUG_ON(!PageLocked(new));
+	VM_BUG_ON(new->mapping);
+
+	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
+	if (!error) {
+		struct address_space *mapping = old->mapping;
+		void (*freepage)(struct page *);
+
+		pgoff_t offset = old->index;
+		freepage = mapping->a_ops->freepage;
+
+		page_cache_get(new);
+		new->mapping = mapping;
+		new->index = offset;
+
+		spin_lock_irq(&mapping->tree_lock);
+		__delete_from_page_cache(old);
+		error = radix_tree_insert(&mapping->page_tree, offset, new);
+		BUG_ON(error);
+		mapping->nrpages++;
+		__inc_zone_page_state(new, NR_FILE_PAGES);
+		if (PageSwapBacked(new))
+			__inc_zone_page_state(new, NR_SHMEM);
+#ifdef CONFIG_LIMIT_PAGE_CACHE
+		if(mapping_gfp_mask(mapping) & __GFP_PAGERAMFS)
+			__inc_zone_page_state(new, NR_RAMFS_PAGES);
+		else if(mapping_gfp_mask(mapping) & __GFP_PAGETMPFS)
+			__inc_zone_page_state(new, NR_TMPFS_PAGES);
+#endif
+		spin_unlock_irq(&mapping->tree_lock);
+		/* mem_cgroup codes must not be called under tree_lock */
+		mem_cgroup_replace_page_cache(old, new);
+		radix_tree_preload_end();
+		if (freepage)
+			freepage(old);
+		page_cache_release(old);
+	}
+
+	return error;
+}
+EXPORT_SYMBOL_GPL(replace_page_cache_page);
+
+/**
+ * add_to_page_cache_locked - add a locked page to the pagecache
+ * @page:	page to add
+ * @mapping:	the page's address_space
+ * @offset:	page index
+ * @gfp_mask:	page allocation mode
+ *
+ * This function is used to add a page to the pagecache. It must be locked.
+ * This function does not add the page to the LRU.  The caller must do that.
+ */
+int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
+		pgoff_t offset, gfp_t gfp_mask)
+{
+	int error;
+
+	VM_BUG_ON(!PageLocked(page));
+	VM_BUG_ON(PageSwapBacked(page));
+
+	error = mem_cgroup_cache_charge(page, current->mm,
+					gfp_mask & GFP_RECLAIM_MASK);
+	if (error)
+		goto out;
+
+	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
+	if (error == 0) {
+		page_cache_get(page);
+		page->mapping = mapping;
+		page->index = offset;
+
+		spin_lock_irq(&mapping->tree_lock);
+		error = radix_tree_insert(&mapping->page_tree, offset, page);
+		if (likely(!error)) {
+			mapping->nrpages++;
+			__inc_zone_page_state(page, NR_FILE_PAGES);
+#ifdef CONFIG_LIMIT_PAGE_CACHE
+			if(mapping_gfp_mask(mapping) & __GFP_PAGERAMFS)
+				__inc_zone_page_state(page, NR_RAMFS_PAGES);
+			else if(mapping_gfp_mask(mapping) & __GFP_PAGETMPFS)
+				__inc_zone_page_state(page, NR_TMPFS_PAGES);
+#endif
+			spin_unlock_irq(&mapping->tree_lock);
+		} else {
+			page->mapping = NULL;
+			/* Leave page->index set: truncation relies upon it */
+			spin_unlock_irq(&mapping->tree_lock);
+			mem_cgroup_uncharge_cache_page(page);
+			page_cache_release(page);
+		}
+		radix_tree_preload_end();
+	} else
+		mem_cgroup_uncharge_cache_page(page);
+out:
+	return error;
+}
+EXPORT_SYMBOL(add_to_page_cache_locked);
+
+int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
+				pgoff_t offset, gfp_t gfp_mask)
+{
+	int ret;
+
+	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
+	if (ret == 0)
+		lru_cache_add_file(page);
+	return ret;
+}
+EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
+
+#ifdef CONFIG_NUMA
+struct page *__page_cache_alloc(gfp_t gfp)
+{
+	int n;
+	struct page *page;
+
+	if (cpuset_do_page_mem_spread()) {
+		unsigned int cpuset_mems_cookie;
+		do {
+			cpuset_mems_cookie = get_mems_allowed();
+			n = cpuset_mem_spread_node();
+			page = alloc_pages_exact_node(n, gfp, 0);
+		} while (!put_mems_allowed(cpuset_mems_cookie) && !page);
+
+		return page;
+	}
+	return alloc_pages(gfp, 0);
+}
+EXPORT_SYMBOL(__page_cache_alloc);
+#endif
+
+/*
+ * In order to wait for pages to become available there must be
+ * waitqueues associated with pages. By using a hash table of
+ * waitqueues where the bucket discipline is to maintain all
+ * waiters on the same queue and wake all when any of the pages
+ * become available, and for the woken contexts to check to be
+ * sure the appropriate page became available, this saves space
+ * at a cost of "thundering herd" phenomena during rare hash
+ * collisions.
+ */
+static wait_queue_head_t *page_waitqueue(struct page *page)
+{
+	const struct zone *zone = page_zone(page);
+
+	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
+}
+
+static inline void wake_up_page(struct page *page, int bit)
+{
+	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
+}
+
+void wait_on_page_bit(struct page *page, int bit_nr)
+{
+	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
+
+	if (test_bit(bit_nr, &page->flags))
+		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
+							TASK_UNINTERRUPTIBLE);
+}
+EXPORT_SYMBOL(wait_on_page_bit);
+
+int wait_on_page_bit_killable(struct page *page, int bit_nr)
+{
+	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
+
+	if (!test_bit(bit_nr, &page->flags))
+		return 0;
+
+	return __wait_on_bit(page_waitqueue(page), &wait,
+			     sleep_on_page_killable, TASK_KILLABLE);
+}
+
+/**
+ * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
+ * @page: Page defining the wait queue of interest
+ * @waiter: Waiter to add to the queue
+ *
+ * Add an arbitrary @waiter to the wait queue for the nominated @page.
+ */
+void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
+{
+	wait_queue_head_t *q = page_waitqueue(page);
+	unsigned long flags;
+
+	spin_lock_irqsave(&q->lock, flags);
+	__add_wait_queue(q, waiter);
+	spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL_GPL(add_page_wait_queue);
+
+/**
+ * unlock_page - unlock a locked page
+ * @page: the page
+ *
+ * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
+ * Also wakes sleepers in wait_on_page_writeback() because the wakeup
+ * mechananism between PageLocked pages and PageWriteback pages is shared.
+ * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
+ *
+ * The mb is necessary to enforce ordering between the clear_bit and the read
+ * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
+ */
+void unlock_page(struct page *page)
+{
+	VM_BUG_ON(!PageLocked(page));
+	clear_bit_unlock(PG_locked, &page->flags);
+	smp_mb__after_clear_bit();
+	wake_up_page(page, PG_locked);
+}
+EXPORT_SYMBOL(unlock_page);
+
+/**
+ * end_page_writeback - end writeback against a page
+ * @page: the page
+ */
+void end_page_writeback(struct page *page)
+{
+	if (TestClearPageReclaim(page))
+		rotate_reclaimable_page(page);
+
+	if (!test_clear_page_writeback(page))
+		BUG();
+
+	smp_mb__after_clear_bit();
+	wake_up_page(page, PG_writeback);
+}
+EXPORT_SYMBOL(end_page_writeback);
+
+/**
+ * __lock_page - get a lock on the page, assuming we need to sleep to get it
+ * @page: the page to lock
+ */
+void __lock_page(struct page *page)
+{
+	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
+
+	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
+							TASK_UNINTERRUPTIBLE);
+}
+EXPORT_SYMBOL(__lock_page);
+
+int __lock_page_killable(struct page *page)
+{
+	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
+
+	return __wait_on_bit_lock(page_waitqueue(page), &wait,
+					sleep_on_page_killable, TASK_KILLABLE);
+}
+EXPORT_SYMBOL_GPL(__lock_page_killable);
+
+int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
+			 unsigned int flags)
+{
+	if (flags & FAULT_FLAG_ALLOW_RETRY) {
+		/*
+		 * CAUTION! In this case, mmap_sem is not released
+		 * even though return 0.
+		 */
+		if (flags & FAULT_FLAG_RETRY_NOWAIT)
+			return 0;
+
+		up_read(&mm->mmap_sem);
+		if (flags & FAULT_FLAG_KILLABLE)
+			wait_on_page_locked_killable(page);
+		else
+			wait_on_page_locked(page);
+		return 0;
+	} else {
+		if (flags & FAULT_FLAG_KILLABLE) {
+			int ret;
+
+			ret = __lock_page_killable(page);
+			if (ret) {
+				up_read(&mm->mmap_sem);
+				return 0;
+			}
+		} else
+			__lock_page(page);
+		return 1;
+	}
+}
+
+/**
+ * find_get_page - find and get a page reference
+ * @mapping: the address_space to search
+ * @offset: the page index
+ *
+ * Is there a pagecache struct page at the given (mapping, offset) tuple?
+ * If yes, increment its refcount and return it; if no, return NULL.
+ */
+struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
+{
+	void **pagep;
+	struct page *page;
+
+	rcu_read_lock();
+repeat:
+	page = NULL;
+	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
+	if (pagep) {
+		page = radix_tree_deref_slot(pagep);
+		if (unlikely(!page))
+			goto out;
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page))
+				goto repeat;
+			/*
+			 * Otherwise, shmem/tmpfs must be storing a swap entry
+			 * here as an exceptional entry: so return it without
+			 * attempting to raise page count.
+			 */
+			goto out;
+		}
+		if (!page_cache_get_speculative(page))
+			goto repeat;
+
+		/*
+		 * Has the page moved?
+		 * This is part of the lockless pagecache protocol. See
+		 * include/linux/pagemap.h for details.
+		 */
+		if (unlikely(page != *pagep)) {
+			page_cache_release(page);
+			goto repeat;
+		}
+	}
+out:
+	rcu_read_unlock();
+
+	return page;
+}
+EXPORT_SYMBOL(find_get_page);
+
+/**
+ * find_lock_page - locate, pin and lock a pagecache page
+ * @mapping: the address_space to search
+ * @offset: the page index
+ *
+ * Locates the desired pagecache page, locks it, increments its reference
+ * count and returns its address.
+ *
+ * Returns zero if the page was not present. find_lock_page() may sleep.
+ */
+struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
+{
+	struct page *page;
+
+repeat:
+	page = find_get_page(mapping, offset);
+	if (page && !radix_tree_exception(page)) {
+		lock_page(page);
+		/* Has the page been truncated? */
+		if (unlikely(page->mapping != mapping)) {
+			unlock_page(page);
+			page_cache_release(page);
+			goto repeat;
+		}
+		VM_BUG_ON(page->index != offset);
+	}
+	return page;
+}
+EXPORT_SYMBOL(find_lock_page);
+
+/**
+ * find_or_create_page - locate or add a pagecache page
+ * @mapping: the page's address_space
+ * @index: the page's index into the mapping
+ * @gfp_mask: page allocation mode
+ *
+ * Locates a page in the pagecache.  If the page is not present, a new page
+ * is allocated using @gfp_mask and is added to the pagecache and to the VM's
+ * LRU list.  The returned page is locked and has its reference count
+ * incremented.
+ *
+ * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
+ * allocation!
+ *
+ * find_or_create_page() returns the desired page's address, or zero on
+ * memory exhaustion.
+ */
+struct page *find_or_create_page(struct address_space *mapping,
+		pgoff_t index, gfp_t gfp_mask)
+{
+	struct page *page;
+	int err;
+repeat:
+	page = find_lock_page(mapping, index);
+	if (!page) {
+		page = __page_cache_alloc(gfp_mask);
+		if (!page)
+			return NULL;
+		/*
+		 * We want a regular kernel memory (not highmem or DMA etc)
+		 * allocation for the radix tree nodes, but we need to honour
+		 * the context-specific requirements the caller has asked for.
+		 * GFP_RECLAIM_MASK collects those requirements.
+		 */
+		err = add_to_page_cache_lru(page, mapping, index,
+			(gfp_mask & GFP_RECLAIM_MASK));
+		if (unlikely(err)) {
+			page_cache_release(page);
+			page = NULL;
+			if (err == -EEXIST)
+				goto repeat;
+		}
+	}
+	return page;
+}
+EXPORT_SYMBOL(find_or_create_page);
+
+/**
+ * find_get_pages - gang pagecache lookup
+ * @mapping:	The address_space to search
+ * @start:	The starting page index
+ * @nr_pages:	The maximum number of pages
+ * @pages:	Where the resulting pages are placed
+ *
+ * find_get_pages() will search for and return a group of up to
+ * @nr_pages pages in the mapping.  The pages are placed at @pages.
+ * find_get_pages() takes a reference against the returned pages.
+ *
+ * The search returns a group of mapping-contiguous pages with ascending
+ * indexes.  There may be holes in the indices due to not-present pages.
+ *
+ * find_get_pages() returns the number of pages which were found.
+ */
+unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
+			    unsigned int nr_pages, struct page **pages)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	unsigned ret = 0;
+
+	if (unlikely(!nr_pages))
+		return 0;
+
+	rcu_read_lock();
+restart:
+	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
+		struct page *page;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			continue;
+
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				/*
+				 * Transient condition which can only trigger
+				 * when entry at index 0 moves out of or back
+				 * to root: none yet gotten, safe to restart.
+				 */
+				WARN_ON(iter.index);
+				goto restart;
+			}
+			/*
+			 * Otherwise, shmem/tmpfs must be storing a swap entry
+			 * here as an exceptional entry: so skip over it -
+			 * we only reach this from invalidate_mapping_pages().
+			 */
+			continue;
+		}
+
+		if (!page_cache_get_speculative(page))
+			goto repeat;
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			page_cache_release(page);
+			goto repeat;
+		}
+
+		pages[ret] = page;
+		if (++ret == nr_pages)
+			break;
+	}
+
+	rcu_read_unlock();
+	return ret;
+}
+
+/**
+ * find_get_pages_contig - gang contiguous pagecache lookup
+ * @mapping:	The address_space to search
+ * @index:	The starting page index
+ * @nr_pages:	The maximum number of pages
+ * @pages:	Where the resulting pages are placed
+ *
+ * find_get_pages_contig() works exactly like find_get_pages(), except
+ * that the returned number of pages are guaranteed to be contiguous.
+ *
+ * find_get_pages_contig() returns the number of pages which were found.
+ */
+unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
+			       unsigned int nr_pages, struct page **pages)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	unsigned int ret = 0;
+
+	if (unlikely(!nr_pages))
+		return 0;
+
+	rcu_read_lock();
+restart:
+	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
+		struct page *page;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		/* The hole, there no reason to continue */
+		if (unlikely(!page))
+			break;
+
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				/*
+				 * Transient condition which can only trigger
+				 * when entry at index 0 moves out of or back
+				 * to root: none yet gotten, safe to restart.
+				 */
+				goto restart;
+			}
+			/*
+			 * Otherwise, shmem/tmpfs must be storing a swap entry
+			 * here as an exceptional entry: so stop looking for
+			 * contiguous pages.
+			 */
+			break;
+		}
+
+		if (!page_cache_get_speculative(page))
+			goto repeat;
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			page_cache_release(page);
+			goto repeat;
+		}
+
+		/*
+		 * must check mapping and index after taking the ref.
+		 * otherwise we can get both false positives and false
+		 * negatives, which is just confusing to the caller.
+		 */
+		if (page->mapping == NULL || page->index != iter.index) {
+			page_cache_release(page);
+			break;
+		}
+
+		pages[ret] = page;
+		if (++ret == nr_pages)
+			break;
+	}
+	rcu_read_unlock();
+	return ret;
+}
+EXPORT_SYMBOL(find_get_pages_contig);
+
+/**
+ * find_get_pages_tag - find and return pages that match @tag
+ * @mapping:	the address_space to search
+ * @index:	the starting page index
+ * @tag:	the tag index
+ * @nr_pages:	the maximum number of pages
+ * @pages:	where the resulting pages are placed
+ *
+ * Like find_get_pages, except we only return pages which are tagged with
+ * @tag.   We update @index to index the next page for the traversal.
+ */
+unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
+			int tag, unsigned int nr_pages, struct page **pages)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	unsigned ret = 0;
+
+	if (unlikely(!nr_pages))
+		return 0;
+
+	rcu_read_lock();
+restart:
+	radix_tree_for_each_tagged(slot, &mapping->page_tree,
+				   &iter, *index, tag) {
+		struct page *page;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			continue;
+
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				/*
+				 * Transient condition which can only trigger
+				 * when entry at index 0 moves out of or back
+				 * to root: none yet gotten, safe to restart.
+				 */
+				goto restart;
+			}
+			/*
+			 * This function is never used on a shmem/tmpfs
+			 * mapping, so a swap entry won't be found here.
+			 */
+			BUG();
+		}
+
+		if (!page_cache_get_speculative(page))
+			goto repeat;
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			page_cache_release(page);
+			goto repeat;
+		}
+
+		pages[ret] = page;
+		if (++ret == nr_pages)
+			break;
+	}
+
+	rcu_read_unlock();
+
+	if (ret)
+		*index = pages[ret - 1]->index + 1;
+
+	return ret;
+}
+EXPORT_SYMBOL(find_get_pages_tag);
+
+/**
+ * grab_cache_page_nowait - returns locked page at given index in given cache
+ * @mapping: target address_space
+ * @index: the page index
+ *
+ * Same as grab_cache_page(), but do not wait if the page is unavailable.
+ * This is intended for speculative data generators, where the data can
+ * be regenerated if the page couldn't be grabbed.  This routine should
+ * be safe to call while holding the lock for another page.
+ *
+ * Clear __GFP_FS when allocating the page to avoid recursion into the fs
+ * and deadlock against the caller's locked page.
+ */
+struct page *
+grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
+{
+	struct page *page = find_get_page(mapping, index);
+
+	if (page) {
+		if (trylock_page(page))
+			return page;
+		page_cache_release(page);
+		return NULL;
+	}
+	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
+	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
+		page_cache_release(page);
+		page = NULL;
+	}
+	return page;
+}
+EXPORT_SYMBOL(grab_cache_page_nowait);
+
+/*
+ * CD/DVDs are error prone. When a medium error occurs, the driver may fail
+ * a _large_ part of the i/o request. Imagine the worst scenario:
+ *
+ *      ---R__________________________________________B__________
+ *         ^ reading here                             ^ bad block(assume 4k)
+ *
+ * read(R) => miss => readahead(R...B) => media error => frustrating retries
+ * => failing the whole request => read(R) => read(R+1) =>
+ * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
+ * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
+ * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
+ *
+ * It is going insane. Fix it by quickly scaling down the readahead size.
+ */
+static void shrink_readahead_size_eio(struct file *filp,
+					struct file_ra_state *ra)
+{
+	ra->ra_pages /= 4;
+}
+
+/**
+ * do_generic_file_read - generic file read routine
+ * @filp:	the file to read
+ * @ppos:	current file position
+ * @desc:	read_descriptor
+ * @actor:	read method
+ *
+ * This is a generic file read routine, and uses the
+ * mapping->a_ops->readpage() function for the actual low-level stuff.
+ *
+ * This is really ugly. But the goto's actually try to clarify some
+ * of the logic when it comes to error handling etc.
+ */
+static void do_generic_file_read(struct file *filp, loff_t *ppos,
+		read_descriptor_t *desc, read_actor_t actor)
+{
+	struct address_space *mapping = filp->f_mapping;
+	struct inode *inode = mapping->host;
+	struct file_ra_state *ra = &filp->f_ra;
+	pgoff_t index;
+	pgoff_t last_index;
+	pgoff_t prev_index;
+	unsigned long offset;      /* offset into pagecache page */
+	unsigned int prev_offset;
+	int error;
+
+	index = *ppos >> PAGE_CACHE_SHIFT;
+	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
+	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
+	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
+	offset = *ppos & ~PAGE_CACHE_MASK;
+
+	for (;;) {
+		struct page *page;
+		pgoff_t end_index;
+		loff_t isize;
+		unsigned long nr, ret;
+
+		cond_resched();
+find_page:
+		page = find_get_page(mapping, index);
+		if (!page) {
+			page_cache_sync_readahead(mapping,
+					ra, filp,
+					index, last_index - index);
+			page = find_get_page(mapping, index);
+			if (unlikely(page == NULL))
+				goto no_cached_page;
+		}
+		if (PageReadahead(page)) {
+			page_cache_async_readahead(mapping,
+					ra, filp, page,
+					index, last_index - index);
+		}
+		if (!PageUptodate(page)) {
+			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
+					!mapping->a_ops->is_partially_uptodate)
+				goto page_not_up_to_date;
+			if (!trylock_page(page))
+				goto page_not_up_to_date;
+			/* Did it get truncated before we got the lock? */
+			if (!page->mapping)
+				goto page_not_up_to_date_locked;
+			if (!mapping->a_ops->is_partially_uptodate(page,
+								desc, offset))
+				goto page_not_up_to_date_locked;
+			unlock_page(page);
+		}
+page_ok:
+		/*
+		 * i_size must be checked after we know the page is Uptodate.
+		 *
+		 * Checking i_size after the check allows us to calculate
+		 * the correct value for "nr", which means the zero-filled
+		 * part of the page is not copied back to userspace (unless
+		 * another truncate extends the file - this is desired though).
+		 */
+
+		isize = i_size_read(inode);
+		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
+		if (unlikely(!isize || index > end_index)) {
+			page_cache_release(page);
+			goto out;
+		}
+
+		/* nr is the maximum number of bytes to copy from this page */
+		nr = PAGE_CACHE_SIZE;
+		if (index == end_index) {
+			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
+			if (nr <= offset) {
+				page_cache_release(page);
+				goto out;
+			}
+		}
+		nr = nr - offset;
+
+		/* If users can be writing to this page using arbitrary
+		 * virtual addresses, take care about potential aliasing
+		 * before reading the page on the kernel side.
+		 */
+		if (mapping_writably_mapped(mapping))
+			flush_dcache_page(page);
+
+		/*
+		 * When a sequential read accesses a page several times,
+		 * only mark it as accessed the first time.
+		 */
+		if (prev_index != index || offset != prev_offset)
+			mark_page_accessed(page);
+		prev_index = index;
+
+		/*
+		 * Ok, we have the page, and it's up-to-date, so
+		 * now we can copy it to user space...
+		 *
+		 * The actor routine returns how many bytes were actually used..
+		 * NOTE! This may not be the same as how much of a user buffer
+		 * we filled up (we may be padding etc), so we can only update
+		 * "pos" here (the actor routine has to update the user buffer
+		 * pointers and the remaining count).
+		 */
+		ret = actor(desc, page, offset, nr);
+		offset += ret;
+		index += offset >> PAGE_CACHE_SHIFT;
+		offset &= ~PAGE_CACHE_MASK;
+		prev_offset = offset;
+
+		page_cache_release(page);
+		if (ret == nr && desc->count)
+			continue;
+		goto out;
+
+page_not_up_to_date:
+		/* Get exclusive access to the page ... */
+		error = lock_page_killable(page);
+		if (unlikely(error))
+			goto readpage_error;
+
+page_not_up_to_date_locked:
+		/* Did it get truncated before we got the lock? */
+		if (!page->mapping) {
+			unlock_page(page);
+			page_cache_release(page);
+			continue;
+		}
+
+		/* Did somebody else fill it already? */
+		if (PageUptodate(page)) {
+			unlock_page(page);
+			goto page_ok;
+		}
+
+readpage:
+		/*
+		 * A previous I/O error may have been due to temporary
+		 * failures, eg. multipath errors.
+		 * PG_error will be set again if readpage fails.
+		 */
+		ClearPageError(page);
+		/* Start the actual read. The read will unlock the page. */
+		error = mapping->a_ops->readpage(filp, page);
+
+		if (unlikely(error)) {
+			if (error == AOP_TRUNCATED_PAGE) {
+				page_cache_release(page);
+				goto find_page;
+			}
+			goto readpage_error;
+		}
+
+		if (!PageUptodate(page)) {
+			error = lock_page_killable(page);
+			if (unlikely(error))
+				goto readpage_error;
+			if (!PageUptodate(page)) {
+				if (page->mapping == NULL) {
+					/*
+					 * invalidate_mapping_pages got it
+					 */
+					unlock_page(page);
+					page_cache_release(page);
+					goto find_page;
+				}
+				unlock_page(page);
+				shrink_readahead_size_eio(filp, ra);
+				error = -EIO;
+				goto readpage_error;
+			}
+			unlock_page(page);
+		}
+
+		goto page_ok;
+
+readpage_error:
+		/* UHHUH! A synchronous read error occurred. Report it */
+		desc->error = error;
+		page_cache_release(page);
+		goto out;
+
+no_cached_page:
+		/*
+		 * Ok, it wasn't cached, so we need to create a new
+		 * page..
+		 */
+		page = page_cache_alloc_cold(mapping);
+		if (!page) {
+			desc->error = -ENOMEM;
+			goto out;
+		}
+		error = add_to_page_cache_lru(page, mapping,
+						index, GFP_KERNEL);
+		if (error) {
+			page_cache_release(page);
+			if (error == -EEXIST)
+				goto find_page;
+			desc->error = error;
+			goto out;
+		}
+		goto readpage;
+	}
+
+out:
+	ra->prev_pos = prev_index;
+	ra->prev_pos <<= PAGE_CACHE_SHIFT;
+	ra->prev_pos |= prev_offset;
+
+	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
+	file_accessed(filp);
+}
+
+int file_read_actor(read_descriptor_t *desc, struct page *page,
+			unsigned long offset, unsigned long size)
+{
+	char *kaddr;
+	unsigned long left, count = desc->count;
+
+	if (size > count)
+		size = count;
+
+	/*
+	 * Faults on the destination of a read are common, so do it before
+	 * taking the kmap.
+	 */
+	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
+		kaddr = kmap_atomic(page);
+		left = __copy_to_user_inatomic(desc->arg.buf,
+						kaddr + offset, size);
+		kunmap_atomic(kaddr);
+		if (left == 0)
+			goto success;
+	}
+
+	/* Do it the slow way */
+	kaddr = kmap(page);
+	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
+	kunmap(page);
+
+	if (left) {
+		size -= left;
+		desc->error = -EFAULT;
+	}
+success:
+	desc->count = count - size;
+	desc->written += size;
+	desc->arg.buf += size;
+	return size;
+}
+
+/*
+ * Performs necessary checks before doing a write
+ * @iov:	io vector request
+ * @nr_segs:	number of segments in the iovec
+ * @count:	number of bytes to write
+ * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
+ *
+ * Adjust number of segments and amount of bytes to write (nr_segs should be
+ * properly initialized first). Returns appropriate error code that caller
+ * should return or zero in case that write should be allowed.
+ */
+int generic_segment_checks(const struct iovec *iov,
+			unsigned long *nr_segs, size_t *count, int access_flags)
+{
+	unsigned long   seg;
+	size_t cnt = 0;
+	for (seg = 0; seg < *nr_segs; seg++) {
+		const struct iovec *iv = &iov[seg];
+
+		/*
+		 * If any segment has a negative length, or the cumulative
+		 * length ever wraps negative then return -EINVAL.
+		 */
+		cnt += iv->iov_len;
+		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
+			return -EINVAL;
+		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
+			continue;
+		if (seg == 0)
+			return -EFAULT;
+		*nr_segs = seg;
+		cnt -= iv->iov_len;	/* This segment is no good */
+		break;
+	}
+	*count = cnt;
+	return 0;
+}
+EXPORT_SYMBOL(generic_segment_checks);
+
+/**
+ * generic_file_aio_read - generic filesystem read routine
+ * @iocb:	kernel I/O control block
+ * @iov:	io vector request
+ * @nr_segs:	number of segments in the iovec
+ * @pos:	current file position
+ *
+ * This is the "read()" routine for all filesystems
+ * that can use the page cache directly.
+ */
+ssize_t
+generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
+		unsigned long nr_segs, loff_t pos)
+{
+	struct file *filp = iocb->ki_filp;
+	ssize_t retval;
+	unsigned long seg = 0;
+	size_t count;
+	loff_t *ppos = &iocb->ki_pos;
+
+	count = 0;
+	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
+	if (retval)
+		return retval;
+
+	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
+	if (filp->f_flags & O_DIRECT) {
+		loff_t size;
+		struct address_space *mapping;
+		struct inode *inode;
+
+		mapping = filp->f_mapping;
+		inode = mapping->host;
+		if (!count)
+			goto out; /* skip atime */
+		size = i_size_read(inode);
+		if (pos < size) {
+			retval = filemap_write_and_wait_range(mapping, pos,
+					pos + iov_length(iov, nr_segs) - 1);
+			if (!retval) {
+				struct blk_plug plug;
+
+				blk_start_plug(&plug);
+				retval = mapping->a_ops->direct_IO(READ, iocb,
+							iov, pos, nr_segs);
+				blk_finish_plug(&plug);
+			}
+			if (retval > 0) {
+				*ppos = pos + retval;
+				count -= retval;
+			}
+
+			/*
+			 * Btrfs can have a short DIO read if we encounter
+			 * compressed extents, so if there was an error, or if
+			 * we've already read everything we wanted to, or if
+			 * there was a short read because we hit EOF, go ahead
+			 * and return.  Otherwise fallthrough to buffered io for
+			 * the rest of the read.
+			 */
+			if (retval < 0 || !count || *ppos >= size) {
+				file_accessed(filp);
+				goto out;
+			}
+		}
+	}
+
+	count = retval;
+	for (seg = 0; seg < nr_segs; seg++) {
+		read_descriptor_t desc;
+		loff_t offset = 0;
+
+		/*
+		 * If we did a short DIO read we need to skip the section of the
+		 * iov that we've already read data into.
+		 */
+		if (count) {
+			if (count > iov[seg].iov_len) {
+				count -= iov[seg].iov_len;
+				continue;
+			}
+			offset = count;
+			count = 0;
+		}
+
+		desc.written = 0;
+		desc.arg.buf = iov[seg].iov_base + offset;
+		desc.count = iov[seg].iov_len - offset;
+		if (desc.count == 0)
+			continue;
+		desc.error = 0;
+		do_generic_file_read(filp, ppos, &desc, file_read_actor);
+		retval += desc.written;
+		if (desc.error) {
+			retval = retval ?: desc.error;
+			break;
+		}
+		if (desc.count > 0)
+			break;
+	}
+out:
+	return retval;
+}
+EXPORT_SYMBOL(generic_file_aio_read);
+
+static ssize_t
+do_readahead(struct address_space *mapping, struct file *filp,
+	     pgoff_t index, unsigned long nr)
+{
+	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
+		return -EINVAL;
+
+	force_page_cache_readahead(mapping, filp, index, nr);
+	return 0;
+}
+
+SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
+{
+	ssize_t ret;
+	struct file *file;
+
+	ret = -EBADF;
+	file = fget(fd);
+	if (file) {
+		if (file->f_mode & FMODE_READ) {
+			struct address_space *mapping = file->f_mapping;
+			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
+			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
+			unsigned long len = end - start + 1;
+			ret = do_readahead(mapping, file, start, len);
+		}
+		fput(file);
+	}
+	return ret;
+}
+#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
+asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
+{
+	return SYSC_readahead((int) fd, offset, (size_t) count);
+}
+SYSCALL_ALIAS(sys_readahead, SyS_readahead);
+#endif
+
+#ifdef CONFIG_MMU
+/**
+ * page_cache_read - adds requested page to the page cache if not already there
+ * @file:	file to read
+ * @offset:	page index
+ *
+ * This adds the requested page to the page cache if it isn't already there,
+ * and schedules an I/O to read in its contents from disk.
+ */
+static int page_cache_read(struct file *file, pgoff_t offset)
+{
+	struct address_space *mapping = file->f_mapping;
+	struct page *page; 
+	int ret;
+
+	do {
+		page = page_cache_alloc_cold(mapping);
+		if (!page)
+			return -ENOMEM;
+
+		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
+		if (ret == 0)
+			ret = mapping->a_ops->readpage(file, page);
+		else if (ret == -EEXIST)
+			ret = 0; /* losing race to add is OK */
+
+		page_cache_release(page);
+
+	} while (ret == AOP_TRUNCATED_PAGE);
+		
+	return ret;
+}
+
+#define MMAP_LOTSAMISS  (100)
+
+/*
+ * Synchronous readahead happens when we don't even find
+ * a page in the page cache at all.
+ */
+static void do_sync_mmap_readahead(struct vm_area_struct *vma,
+				   struct file_ra_state *ra,
+				   struct file *file,
+				   pgoff_t offset)
+{
+	unsigned long ra_pages;
+	struct address_space *mapping = file->f_mapping;
+
+	/* If we don't want any read-ahead, don't bother */
+	if (VM_RandomReadHint(vma))
+		return;
+	if (!ra->ra_pages)
+		return;
+
+	if (VM_SequentialReadHint(vma)) {
+		page_cache_sync_readahead(mapping, ra, file, offset,
+					  ra->ra_pages);
+		return;
+	}
+
+	/* Avoid banging the cache line if not needed */
+	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
+		ra->mmap_miss++;
+
+	/*
+	 * Do we miss much more than hit in this file? If so,
+	 * stop bothering with read-ahead. It will only hurt.
+	 */
+	if (ra->mmap_miss > MMAP_LOTSAMISS)
+		return;
+
+	/*
+	 * mmap read-around
+	 */
+	ra_pages = max_sane_readahead(ra->ra_pages);
+	ra->start = max_t(long, 0, offset - ra_pages / 2);
+	ra->size = ra_pages;
+	ra->async_size = ra_pages / 4;
+	ra_submit(ra, mapping, file);
+}
+
+/*
+ * Asynchronous readahead happens when we find the page and PG_readahead,
+ * so we want to possibly extend the readahead further..
+ */
+static void do_async_mmap_readahead(struct vm_area_struct *vma,
+				    struct file_ra_state *ra,
+				    struct file *file,
+				    struct page *page,
+				    pgoff_t offset)
+{
+	struct address_space *mapping = file->f_mapping;
+
+	/* If we don't want any read-ahead, don't bother */
+	if (VM_RandomReadHint(vma))
+		return;
+	if (ra->mmap_miss > 0)
+		ra->mmap_miss--;
+	if (PageReadahead(page))
+		page_cache_async_readahead(mapping, ra, file,
+					   page, offset, ra->ra_pages);
+}
+
+/**
+ * filemap_fault - read in file data for page fault handling
+ * @vma:	vma in which the fault was taken
+ * @vmf:	struct vm_fault containing details of the fault
+ *
+ * filemap_fault() is invoked via the vma operations vector for a
+ * mapped memory region to read in file data during a page fault.
+ *
+ * The goto's are kind of ugly, but this streamlines the normal case of having
+ * it in the page cache, and handles the special cases reasonably without
+ * having a lot of duplicated code.
+ */
+int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+	int error;
+	struct file *file = vma->vm_file;
+	struct address_space *mapping = file->f_mapping;
+	struct file_ra_state *ra = &file->f_ra;
+	struct inode *inode = mapping->host;
+	pgoff_t offset = vmf->pgoff;
+	struct page *page;
+	pgoff_t size;
+	int ret = 0;
+
+	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+	if (offset >= size)
+		return VM_FAULT_SIGBUS;
+
+	/*
+	 * Do we have something in the page cache already?
+	 */
+	page = find_get_page(mapping, offset);
+	if (likely(page)) {
+		/*
+		 * We found the page, so try async readahead before
+		 * waiting for the lock.
+		 */
+		do_async_mmap_readahead(vma, ra, file, page, offset);
+	} else {
+		/* No page in the page cache at all */
+		do_sync_mmap_readahead(vma, ra, file, offset);
+		count_vm_event(PGMAJFAULT);
+		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
+		ret = VM_FAULT_MAJOR;
+retry_find:
+		page = find_get_page(mapping, offset);
+		if (!page)
+			goto no_cached_page;
+	}
+
+	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
+		page_cache_release(page);
+		return ret | VM_FAULT_RETRY;
+	}
+
+	/* Did it get truncated? */
+	if (unlikely(page->mapping != mapping)) {
+		unlock_page(page);
+		put_page(page);
+		goto retry_find;
+	}
+	VM_BUG_ON(page->index != offset);
+
+	/*
+	 * We have a locked page in the page cache, now we need to check
+	 * that it's up-to-date. If not, it is going to be due to an error.
+	 */
+	if (unlikely(!PageUptodate(page)))
+		goto page_not_uptodate;
+
+	/*
+	 * Found the page and have a reference on it.
+	 * We must recheck i_size under page lock.
+	 */
+	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+	if (unlikely(offset >= size)) {
+		unlock_page(page);
+		page_cache_release(page);
+		return VM_FAULT_SIGBUS;
+	}
+
+	vmf->page = page;
+	return ret | VM_FAULT_LOCKED;
+
+no_cached_page:
+	/*
+	 * We're only likely to ever get here if MADV_RANDOM is in
+	 * effect.
+	 */
+	error = page_cache_read(file, offset);
+
+	/*
+	 * The page we want has now been added to the page cache.
+	 * In the unlikely event that someone removed it in the
+	 * meantime, we'll just come back here and read it again.
+	 */
+	if (error >= 0)
+		goto retry_find;
+
+	/*
+	 * An error return from page_cache_read can result if the
+	 * system is low on memory, or a problem occurs while trying
+	 * to schedule I/O.
+	 */
+	if (error == -ENOMEM)
+		return VM_FAULT_OOM;
+	return VM_FAULT_SIGBUS;
+
+page_not_uptodate:
+	/*
+	 * Umm, take care of errors if the page isn't up-to-date.
+	 * Try to re-read it _once_. We do this synchronously,
+	 * because there really aren't any performance issues here
+	 * and we need to check for errors.
+	 */
+	ClearPageError(page);
+	error = mapping->a_ops->readpage(file, page);
+	if (!error) {
+		wait_on_page_locked(page);
+		if (!PageUptodate(page))
+			error = -EIO;
+	}
+	page_cache_release(page);
+
+	if (!error || error == AOP_TRUNCATED_PAGE)
+		goto retry_find;
+
+	/* Things didn't work out. Return zero to tell the mm layer so. */
+	shrink_readahead_size_eio(file, ra);
+	return VM_FAULT_SIGBUS;
+}
+EXPORT_SYMBOL(filemap_fault);
+
+const struct vm_operations_struct generic_file_vm_ops = {
+	.fault		= filemap_fault,
+};
+
+/* This is used for a general mmap of a disk file */
+
+int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
+{
+	struct address_space *mapping = file->f_mapping;
+
+	if (!mapping->a_ops->readpage)
+		return -ENOEXEC;
+	file_accessed(file);
+	vma->vm_ops = &generic_file_vm_ops;
+	vma->vm_flags |= VM_CAN_NONLINEAR;
+	return 0;
+}
+
+/*
+ * This is for filesystems which do not implement ->writepage.
+ */
+int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
+{
+	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
+		return -EINVAL;
+	return generic_file_mmap(file, vma);
+}
+#else
+int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
+{
+	return -ENOSYS;
+}
+int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
+{
+	return -ENOSYS;
+}
+#endif /* CONFIG_MMU */
+
+EXPORT_SYMBOL(generic_file_mmap);
+EXPORT_SYMBOL(generic_file_readonly_mmap);
+
+static struct page *__read_cache_page(struct address_space *mapping,
+				pgoff_t index,
+				int (*filler)(void *, struct page *),
+				void *data,
+				gfp_t gfp)
+{
+	struct page *page;
+	int err;
+repeat:
+	page = find_get_page(mapping, index);
+	if (!page) {
+		page = __page_cache_alloc(gfp | __GFP_COLD);
+		if (!page)
+			return ERR_PTR(-ENOMEM);
+		err = add_to_page_cache_lru(page, mapping, index, gfp);
+		if (unlikely(err)) {
+			page_cache_release(page);
+			if (err == -EEXIST)
+				goto repeat;
+			/* Presumably ENOMEM for radix tree node */
+			return ERR_PTR(err);
+		}
+		err = filler(data, page);
+		if (err < 0) {
+			page_cache_release(page);
+			page = ERR_PTR(err);
+		}
+	}
+	return page;
+}
+
+static struct page *do_read_cache_page(struct address_space *mapping,
+				pgoff_t index,
+				int (*filler)(void *, struct page *),
+				void *data,
+				gfp_t gfp)
+
+{
+	struct page *page;
+	int err;
+
+retry:
+	page = __read_cache_page(mapping, index, filler, data, gfp);
+	if (IS_ERR(page))
+		return page;
+	if (PageUptodate(page))
+		goto out;
+
+	lock_page(page);
+	if (!page->mapping) {
+		unlock_page(page);
+		page_cache_release(page);
+		goto retry;
+	}
+	if (PageUptodate(page)) {
+		unlock_page(page);
+		goto out;
+	}
+	err = filler(data, page);
+	if (err < 0) {
+		page_cache_release(page);
+		return ERR_PTR(err);
+	}
+out:
+	mark_page_accessed(page);
+	return page;
+}
+
+/**
+ * read_cache_page_async - read into page cache, fill it if needed
+ * @mapping:	the page's address_space
+ * @index:	the page index
+ * @filler:	function to perform the read
+ * @data:	first arg to filler(data, page) function, often left as NULL
+ *
+ * Same as read_cache_page, but don't wait for page to become unlocked
+ * after submitting it to the filler.
+ *
+ * Read into the page cache. If a page already exists, and PageUptodate() is
+ * not set, try to fill the page but don't wait for it to become unlocked.
+ *
+ * If the page does not get brought uptodate, return -EIO.
+ */
+struct page *read_cache_page_async(struct address_space *mapping,
+				pgoff_t index,
+				int (*filler)(void *, struct page *),
+				void *data)
+{
+	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
+}
+EXPORT_SYMBOL(read_cache_page_async);
+
+static struct page *wait_on_page_read(struct page *page)
+{
+	if (!IS_ERR(page)) {
+		wait_on_page_locked(page);
+		if (!PageUptodate(page)) {
+			page_cache_release(page);
+			page = ERR_PTR(-EIO);
+		}
+	}
+	return page;
+}
+
+/**
+ * read_cache_page_gfp - read into page cache, using specified page allocation flags.
+ * @mapping:	the page's address_space
+ * @index:	the page index
+ * @gfp:	the page allocator flags to use if allocating
+ *
+ * This is the same as "read_mapping_page(mapping, index, NULL)", but with
+ * any new page allocations done using the specified allocation flags.
+ *
+ * If the page does not get brought uptodate, return -EIO.
+ */
+struct page *read_cache_page_gfp(struct address_space *mapping,
+				pgoff_t index,
+				gfp_t gfp)
+{
+	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
+
+	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
+}
+EXPORT_SYMBOL(read_cache_page_gfp);
+
+/**
+ * read_cache_page - read into page cache, fill it if needed
+ * @mapping:	the page's address_space
+ * @index:	the page index
+ * @filler:	function to perform the read
+ * @data:	first arg to filler(data, page) function, often left as NULL
+ *
+ * Read into the page cache. If a page already exists, and PageUptodate() is
+ * not set, try to fill the page then wait for it to become unlocked.
+ *
+ * If the page does not get brought uptodate, return -EIO.
+ */
+struct page *read_cache_page(struct address_space *mapping,
+				pgoff_t index,
+				int (*filler)(void *, struct page *),
+				void *data)
+{
+	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
+}
+EXPORT_SYMBOL(read_cache_page);
+
+/*
+ * The logic we want is
+ *
+ *	if suid or (sgid and xgrp)
+ *		remove privs
+ */
+int should_remove_suid(struct dentry *dentry)
+{
+	umode_t mode = dentry->d_inode->i_mode;
+	int kill = 0;
+
+	/* suid always must be killed */
+	if (unlikely(mode & S_ISUID))
+		kill = ATTR_KILL_SUID;
+
+	/*
+	 * sgid without any exec bits is just a mandatory locking mark; leave
+	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
+	 */
+	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
+		kill |= ATTR_KILL_SGID;
+
+	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
+		return kill;
+
+	return 0;
+}
+EXPORT_SYMBOL(should_remove_suid);
+
+static int __remove_suid(struct dentry *dentry, int kill)
+{
+	struct iattr newattrs;
+
+	newattrs.ia_valid = ATTR_FORCE | kill;
+	return notify_change(dentry, &newattrs);
+}
+
+int file_remove_suid(struct file *file)
+{
+	struct dentry *dentry = file->f_path.dentry;
+	struct inode *inode = dentry->d_inode;
+	int killsuid;
+	int killpriv;
+	int error = 0;
+
+	/* Fast path for nothing security related */
+	if (IS_NOSEC(inode))
+		return 0;
+
+	killsuid = should_remove_suid(dentry);
+	killpriv = security_inode_need_killpriv(dentry);
+
+	if (killpriv < 0)
+		return killpriv;
+	if (killpriv)
+		error = security_inode_killpriv(dentry);
+	if (!error && killsuid)
+		error = __remove_suid(dentry, killsuid);
+	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
+		inode->i_flags |= S_NOSEC;
+
+	return error;
+}
+EXPORT_SYMBOL(file_remove_suid);
+
+static size_t __iovec_copy_from_user_inatomic(char *vaddr,
+			const struct iovec *iov, size_t base, size_t bytes)
+{
+	size_t copied = 0, left = 0;
+
+	while (bytes) {
+		char __user *buf = iov->iov_base + base;
+		int copy = min(bytes, iov->iov_len - base);
+
+		base = 0;
+		left = __copy_from_user_inatomic(vaddr, buf, copy);
+		copied += copy;
+		bytes -= copy;
+		vaddr += copy;
+		iov++;
+
+		if (unlikely(left))
+			break;
+	}
+	return copied - left;
+}
+
+/*
+ * Copy as much as we can into the page and return the number of bytes which
+ * were successfully copied.  If a fault is encountered then return the number of
+ * bytes which were copied.
+ */
+size_t iov_iter_copy_from_user_atomic(struct page *page,
+		struct iov_iter *i, unsigned long offset, size_t bytes)
+{
+	char *kaddr;
+	size_t copied;
+
+	BUG_ON(!pagefault_disabled());
+	kaddr = kmap_atomic(page);
+	if (likely(i->nr_segs == 1)) {
+		int left;
+		char __user *buf = i->iov->iov_base + i->iov_offset;
+		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
+		copied = bytes - left;
+	} else {
+		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
+						i->iov, i->iov_offset, bytes);
+	}
+	kunmap_atomic(kaddr);
+
+	return copied;
+}
+EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
+
+/*
+ * This has the same sideeffects and return value as
+ * iov_iter_copy_from_user_atomic().
+ * The difference is that it attempts to resolve faults.
+ * Page must not be locked.
+ */
+size_t iov_iter_copy_from_user(struct page *page,
+		struct iov_iter *i, unsigned long offset, size_t bytes)
+{
+	char *kaddr;
+	size_t copied;
+
+	kaddr = kmap(page);
+	if (likely(i->nr_segs == 1)) {
+		int left;
+		char __user *buf = i->iov->iov_base + i->iov_offset;
+		left = __copy_from_user(kaddr + offset, buf, bytes);
+		copied = bytes - left;
+	} else {
+		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
+						i->iov, i->iov_offset, bytes);
+	}
+	kunmap(page);
+	return copied;
+}
+EXPORT_SYMBOL(iov_iter_copy_from_user);
+
+void iov_iter_advance(struct iov_iter *i, size_t bytes)
+{
+	BUG_ON(i->count < bytes);
+
+	if (likely(i->nr_segs == 1)) {
+		i->iov_offset += bytes;
+		i->count -= bytes;
+	} else {
+		const struct iovec *iov = i->iov;
+		size_t base = i->iov_offset;
+		unsigned long nr_segs = i->nr_segs;
+
+		/*
+		 * The !iov->iov_len check ensures we skip over unlikely
+		 * zero-length segments (without overruning the iovec).
+		 */
+		while (bytes || unlikely(i->count && !iov->iov_len)) {
+			int copy;
+
+			copy = min(bytes, iov->iov_len - base);
+			BUG_ON(!i->count || i->count < copy);
+			i->count -= copy;
+			bytes -= copy;
+			base += copy;
+			if (iov->iov_len == base) {
+				iov++;
+				nr_segs--;
+				base = 0;
+			}
+		}
+		i->iov = iov;
+		i->iov_offset = base;
+		i->nr_segs = nr_segs;
+	}
+}
+EXPORT_SYMBOL(iov_iter_advance);
+
+/*
+ * Fault in the first iovec of the given iov_iter, to a maximum length
+ * of bytes. Returns 0 on success, or non-zero if the memory could not be
+ * accessed (ie. because it is an invalid address).
+ *
+ * writev-intensive code may want this to prefault several iovecs -- that
+ * would be possible (callers must not rely on the fact that _only_ the
+ * first iovec will be faulted with the current implementation).
+ */
+int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
+{
+	char __user *buf = i->iov->iov_base + i->iov_offset;
+	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
+	return fault_in_pages_readable(buf, bytes);
+}
+EXPORT_SYMBOL(iov_iter_fault_in_readable);
+
+/*
+ * Return the count of just the current iov_iter segment.
+ */
+size_t iov_iter_single_seg_count(struct iov_iter *i)
+{
+	const struct iovec *iov = i->iov;
+	if (i->nr_segs == 1)
+		return i->count;
+	else
+		return min(i->count, iov->iov_len - i->iov_offset);
+}
+EXPORT_SYMBOL(iov_iter_single_seg_count);
+
+/*
+ * Performs necessary checks before doing a write
+ *
+ * Can adjust writing position or amount of bytes to write.
+ * Returns appropriate error code that caller should return or
+ * zero in case that write should be allowed.
+ */
+inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
+{
+	struct inode *inode = file->f_mapping->host;
+	unsigned long limit = rlimit(RLIMIT_FSIZE);
+
+        if (unlikely(*pos < 0))
+                return -EINVAL;
+
+	if (!isblk) {
+		/* FIXME: this is for backwards compatibility with 2.4 */
+		if (file->f_flags & O_APPEND)
+                        *pos = i_size_read(inode);
+
+		if (limit != RLIM_INFINITY) {
+			if (*pos >= limit) {
+				send_sig(SIGXFSZ, current, 0);
+				return -EFBIG;
+			}
+			if (*count > limit - (typeof(limit))*pos) {
+				*count = limit - (typeof(limit))*pos;
+			}
+		}
+	}
+
+	/*
+	 * LFS rule
+	 */
+	if (unlikely(*pos + *count > MAX_NON_LFS &&
+				!(file->f_flags & O_LARGEFILE))) {
+		if (*pos >= MAX_NON_LFS) {
+			return -EFBIG;
+		}
+		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
+			*count = MAX_NON_LFS - (unsigned long)*pos;
+		}
+	}
+
+	/*
+	 * Are we about to exceed the fs block limit ?
+	 *
+	 * If we have written data it becomes a short write.  If we have
+	 * exceeded without writing data we send a signal and return EFBIG.
+	 * Linus frestrict idea will clean these up nicely..
+	 */
+	if (likely(!isblk)) {
+		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
+			if (*count || *pos > inode->i_sb->s_maxbytes) {
+				return -EFBIG;
+			}
+			/* zero-length writes at ->s_maxbytes are OK */
+		}
+
+		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
+			*count = inode->i_sb->s_maxbytes - *pos;
+	} else {
+#ifdef CONFIG_BLOCK
+		loff_t isize;
+		if (bdev_read_only(I_BDEV(inode)))
+			return -EPERM;
+		isize = i_size_read(inode);
+		if (*pos >= isize) {
+			if (*count || *pos > isize)
+				return -ENOSPC;
+		}
+
+		if (*pos + *count > isize)
+			*count = isize - *pos;
+#else
+		return -EPERM;
+#endif
+	}
+	return 0;
+}
+EXPORT_SYMBOL(generic_write_checks);
+
+int pagecache_write_begin(struct file *file, struct address_space *mapping,
+				loff_t pos, unsigned len, unsigned flags,
+				struct page **pagep, void **fsdata)
+{
+	const struct address_space_operations *aops = mapping->a_ops;
+
+	return aops->write_begin(file, mapping, pos, len, flags,
+							pagep, fsdata);
+}
+EXPORT_SYMBOL(pagecache_write_begin);
+
+int pagecache_write_end(struct file *file, struct address_space *mapping,
+				loff_t pos, unsigned len, unsigned copied,
+				struct page *page, void *fsdata)
+{
+	const struct address_space_operations *aops = mapping->a_ops;
+
+	mark_page_accessed(page);
+	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
+}
+EXPORT_SYMBOL(pagecache_write_end);
+
+ssize_t
+generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
+		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
+		size_t count, size_t ocount)
+{
+	struct file	*file = iocb->ki_filp;
+	struct address_space *mapping = file->f_mapping;
+	struct inode	*inode = mapping->host;
+	ssize_t		written;
+	size_t		write_len;
+	pgoff_t		end;
+
+	if (count != ocount)
+		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
+
+	write_len = iov_length(iov, *nr_segs);
+	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
+
+	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
+	if (written)
+		goto out;
+
+	/*
+	 * After a write we want buffered reads to be sure to go to disk to get
+	 * the new data.  We invalidate clean cached page from the region we're
+	 * about to write.  We do this *before* the write so that we can return
+	 * without clobbering -EIOCBQUEUED from ->direct_IO().
+	 */
+	if (mapping->nrpages) {
+		written = invalidate_inode_pages2_range(mapping,
+					pos >> PAGE_CACHE_SHIFT, end);
+		/*
+		 * If a page can not be invalidated, return 0 to fall back
+		 * to buffered write.
+		 */
+		if (written) {
+			if (written == -EBUSY)
+				return 0;
+			goto out;
+		}
+	}
+
+	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
+
+	/*
+	 * Finally, try again to invalidate clean pages which might have been
+	 * cached by non-direct readahead, or faulted in by get_user_pages()
+	 * if the source of the write was an mmap'ed region of the file
+	 * we're writing.  Either one is a pretty crazy thing to do,
+	 * so we don't support it 100%.  If this invalidation
+	 * fails, tough, the write still worked...
+	 */
+	if (mapping->nrpages) {
+		invalidate_inode_pages2_range(mapping,
+					      pos >> PAGE_CACHE_SHIFT, end);
+	}
+
+	if (written > 0) {
+		pos += written;
+		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
+			i_size_write(inode, pos);
+			mark_inode_dirty(inode);
+		}
+		*ppos = pos;
+	}
+out:
+	return written;
+}
+EXPORT_SYMBOL(generic_file_direct_write);
+
+/*
+ * Find or create a page at the given pagecache position. Return the locked
+ * page. This function is specifically for buffered writes.
+ */
+struct page *grab_cache_page_write_begin(struct address_space *mapping,
+					pgoff_t index, unsigned flags)
+{
+	int status;
+	gfp_t gfp_mask;
+	struct page *page;
+	gfp_t gfp_notmask = 0;
+
+	gfp_mask = mapping_gfp_mask(mapping);
+	if (mapping_cap_account_dirty(mapping))
+		gfp_mask |= __GFP_WRITE;
+	if (flags & AOP_FLAG_NOFS)
+		gfp_notmask = __GFP_FS;
+repeat:
+	page = find_lock_page(mapping, index);
+	if (page)
+		goto found;
+
+	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
+	if (!page)
+		return NULL;
+	status = add_to_page_cache_lru(page, mapping, index,
+						GFP_KERNEL & ~gfp_notmask);
+	if (unlikely(status)) {
+		page_cache_release(page);
+		if (status == -EEXIST)
+			goto repeat;
+		return NULL;
+	}
+found:
+	wait_on_page_writeback(page);
+	return page;
+}
+EXPORT_SYMBOL(grab_cache_page_write_begin);
+
+static ssize_t generic_perform_write(struct file *file,
+				struct iov_iter *i, loff_t pos)
+{
+	struct address_space *mapping = file->f_mapping;
+	const struct address_space_operations *a_ops = mapping->a_ops;
+	long status = 0;
+	ssize_t written = 0;
+	unsigned int flags = 0;
+
+	/*
+	 * Copies from kernel address space cannot fail (NFSD is a big user).
+	 */
+	if (segment_eq(get_fs(), KERNEL_DS))
+		flags |= AOP_FLAG_UNINTERRUPTIBLE;
+
+	do {
+		struct page *page;
+		unsigned long offset;	/* Offset into pagecache page */
+		unsigned long bytes;	/* Bytes to write to page */
+		size_t copied;		/* Bytes copied from user */
+		void *fsdata;
+
+		offset = (pos & (PAGE_CACHE_SIZE - 1));
+		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
+						iov_iter_count(i));
+
+again:
+		/*
+		 * Bring in the user page that we will copy from _first_.
+		 * Otherwise there's a nasty deadlock on copying from the
+		 * same page as we're writing to, without it being marked
+		 * up-to-date.
+		 *
+		 * Not only is this an optimisation, but it is also required
+		 * to check that the address is actually valid, when atomic
+		 * usercopies are used, below.
+		 */
+		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
+			status = -EFAULT;
+			break;
+		}
+
+		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
+						&page, &fsdata);
+		if (unlikely(status))
+			break;
+
+		if (mapping_writably_mapped(mapping))
+			flush_dcache_page(page);
+
+		pagefault_disable();
+		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
+		pagefault_enable();
+		flush_dcache_page(page);
+
+		mark_page_accessed(page);
+		status = a_ops->write_end(file, mapping, pos, bytes, copied,
+						page, fsdata);
+		if (unlikely(status < 0))
+			break;
+		copied = status;
+
+		cond_resched();
+
+		iov_iter_advance(i, copied);
+		if (unlikely(copied == 0)) {
+			/*
+			 * If we were unable to copy any data at all, we must
+			 * fall back to a single segment length write.
+			 *
+			 * If we didn't fallback here, we could livelock
+			 * because not all segments in the iov can be copied at
+			 * once without a pagefault.
+			 */
+			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
+						iov_iter_single_seg_count(i));
+			goto again;
+		}
+		pos += copied;
+		written += copied;
+
+		balance_dirty_pages_ratelimited(mapping);
+		if (fatal_signal_pending(current)) {
+			status = -EINTR;
+			break;
+		}
+	} while (iov_iter_count(i));
+
+	return written ? written : status;
+}
+
+ssize_t
+generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
+		unsigned long nr_segs, loff_t pos, loff_t *ppos,
+		size_t count, ssize_t written)
+{
+	struct file *file = iocb->ki_filp;
+	ssize_t status;
+	struct iov_iter i;
+
+	iov_iter_init(&i, iov, nr_segs, count, written);
+	status = generic_perform_write(file, &i, pos);
+
+	if (likely(status >= 0)) {
+		written += status;
+		*ppos = pos + status;
+  	}
+	
+	return written ? written : status;
+}
+EXPORT_SYMBOL(generic_file_buffered_write);
+
+/**
+ * __generic_file_aio_write - write data to a file
+ * @iocb:	IO state structure (file, offset, etc.)
+ * @iov:	vector with data to write
+ * @nr_segs:	number of segments in the vector
+ * @ppos:	position where to write
+ *
+ * This function does all the work needed for actually writing data to a
+ * file. It does all basic checks, removes SUID from the file, updates
+ * modification times and calls proper subroutines depending on whether we
+ * do direct IO or a standard buffered write.
+ *
+ * It expects i_mutex to be grabbed unless we work on a block device or similar
+ * object which does not need locking at all.
+ *
+ * This function does *not* take care of syncing data in case of O_SYNC write.
+ * A caller has to handle it. This is mainly due to the fact that we want to
+ * avoid syncing under i_mutex.
+ */
+ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
+				 unsigned long nr_segs, loff_t *ppos)
+{
+	struct file *file = iocb->ki_filp;
+	struct address_space * mapping = file->f_mapping;
+	size_t ocount;		/* original count */
+	size_t count;		/* after file limit checks */
+	struct inode 	*inode = mapping->host;
+	loff_t		pos;
+	ssize_t		written;
+	ssize_t		err;
+
+	ocount = 0;
+	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
+	if (err)
+		return err;
+
+	count = ocount;
+	pos = *ppos;
+
+	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
+
+	/* We can write back this queue in page reclaim */
+	current->backing_dev_info = mapping->backing_dev_info;
+	written = 0;
+
+	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
+	if (err)
+		goto out;
+
+	if (count == 0)
+		goto out;
+
+	err = file_remove_suid(file);
+	if (err)
+		goto out;
+
+	file_update_time(file);
+
+	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
+	if (unlikely(file->f_flags & O_DIRECT)) {
+		loff_t endbyte;
+		ssize_t written_buffered;
+
+		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
+							ppos, count, ocount);
+		if (written < 0 || written == count)
+			goto out;
+		/*
+		 * direct-io write to a hole: fall through to buffered I/O
+		 * for completing the rest of the request.
+		 */
+		pos += written;
+		count -= written;
+		written_buffered = generic_file_buffered_write(iocb, iov,
+						nr_segs, pos, ppos, count,
+						written);
+		/*
+		 * If generic_file_buffered_write() retuned a synchronous error
+		 * then we want to return the number of bytes which were
+		 * direct-written, or the error code if that was zero.  Note
+		 * that this differs from normal direct-io semantics, which
+		 * will return -EFOO even if some bytes were written.
+		 */
+		if (written_buffered < 0) {
+			err = written_buffered;
+			goto out;
+		}
+
+		/*
+		 * We need to ensure that the page cache pages are written to
+		 * disk and invalidated to preserve the expected O_DIRECT
+		 * semantics.
+		 */
+		endbyte = pos + written_buffered - written - 1;
+		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
+		if (err == 0) {
+			written = written_buffered;
+			invalidate_mapping_pages(mapping,
+						 pos >> PAGE_CACHE_SHIFT,
+						 endbyte >> PAGE_CACHE_SHIFT);
+		} else {
+			/*
+			 * We don't know how much we wrote, so just return
+			 * the number of bytes which were direct-written
+			 */
+		}
+	} else {
+		written = generic_file_buffered_write(iocb, iov, nr_segs,
+				pos, ppos, count, written);
+	}
+out:
+	current->backing_dev_info = NULL;
+	return written ? written : err;
+}
+EXPORT_SYMBOL(__generic_file_aio_write);
+
+/**
+ * generic_file_aio_write - write data to a file
+ * @iocb:	IO state structure
+ * @iov:	vector with data to write
+ * @nr_segs:	number of segments in the vector
+ * @pos:	position in file where to write
+ *
+ * This is a wrapper around __generic_file_aio_write() to be used by most
+ * filesystems. It takes care of syncing the file in case of O_SYNC file
+ * and acquires i_mutex as needed.
+ */
+ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
+		unsigned long nr_segs, loff_t pos)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	struct blk_plug plug;
+	ssize_t ret;
+
+	BUG_ON(iocb->ki_pos != pos);
+
+	mutex_lock(&inode->i_mutex);
+	blk_start_plug(&plug);
+	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
+	mutex_unlock(&inode->i_mutex);
+
+	if (ret > 0 || ret == -EIOCBQUEUED) {
+		ssize_t err;
+
+		err = generic_write_sync(file, pos, ret);
+		if (err < 0 && ret > 0)
+			ret = err;
+	}
+	blk_finish_plug(&plug);
+	return ret;
+}
+EXPORT_SYMBOL(generic_file_aio_write);
+
+/**
+ * try_to_release_page() - release old fs-specific metadata on a page
+ *
+ * @page: the page which the kernel is trying to free
+ * @gfp_mask: memory allocation flags (and I/O mode)
+ *
+ * The address_space is to try to release any data against the page
+ * (presumably at page->private).  If the release was successful, return `1'.
+ * Otherwise return zero.
+ *
+ * This may also be called if PG_fscache is set on a page, indicating that the
+ * page is known to the local caching routines.
+ *
+ * The @gfp_mask argument specifies whether I/O may be performed to release
+ * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
+ *
+ */
+int try_to_release_page(struct page *page, gfp_t gfp_mask)
+{
+	struct address_space * const mapping = page->mapping;
+
+	BUG_ON(!PageLocked(page));
+	if (PageWriteback(page))
+		return 0;
+
+	if (mapping && mapping->a_ops->releasepage)
+		return mapping->a_ops->releasepage(page, gfp_mask);
+	return try_to_free_buffers(page);
+}
+
+EXPORT_SYMBOL(try_to_release_page);