[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/mm/memblock.c b/ap/os/linux/linux-3.4.x/mm/memblock.c
new file mode 100644
index 0000000..11e5bd1
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/mm/memblock.c
@@ -0,0 +1,1036 @@
+/*
+ * Procedures for maintaining information about logical memory blocks.
+ *
+ * Peter Bergner, IBM Corp.	June 2001.
+ * Copyright (C) 2001 Peter Bergner.
+ *
+ *      This program is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU General Public License
+ *      as published by the Free Software Foundation; either version
+ *      2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/bitops.h>
+#include <linux/poison.h>
+#include <linux/pfn.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+#include <linux/memblock.h>
+
+static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
+static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
+
+struct memblock memblock __initdata_memblock = {
+	.memory.regions		= memblock_memory_init_regions,
+	.memory.cnt		= 1,	/* empty dummy entry */
+	.memory.max		= INIT_MEMBLOCK_REGIONS,
+
+	.reserved.regions	= memblock_reserved_init_regions,
+	.reserved.cnt		= 1,	/* empty dummy entry */
+	.reserved.max		= INIT_MEMBLOCK_REGIONS,
+
+	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
+};
+
+int memblock_debug __initdata_memblock;
+static int memblock_can_resize __initdata_memblock;
+static int memblock_memory_in_slab __initdata_memblock = 0;
+static int memblock_reserved_in_slab __initdata_memblock = 0;
+
+/* inline so we don't get a warning when pr_debug is compiled out */
+static inline const char *memblock_type_name(struct memblock_type *type)
+{
+	if (type == &memblock.memory)
+		return "memory";
+	else if (type == &memblock.reserved)
+		return "reserved";
+	else
+		return "unknown";
+}
+
+/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
+static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
+{
+	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
+}
+
+/*
+ * Address comparison utilities
+ */
+static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
+				       phys_addr_t base2, phys_addr_t size2)
+{
+	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
+}
+
+static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
+					phys_addr_t base, phys_addr_t size)
+{
+	unsigned long i;
+
+	for (i = 0; i < type->cnt; i++) {
+		phys_addr_t rgnbase = type->regions[i].base;
+		phys_addr_t rgnsize = type->regions[i].size;
+		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
+			break;
+	}
+
+	return (i < type->cnt) ? i : -1;
+}
+
+/**
+ * memblock_find_in_range_node - find free area in given range and node
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ *
+ * Find @size free area aligned to @align in the specified range and node.
+ *
+ * RETURNS:
+ * Found address on success, %0 on failure.
+ */
+phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
+					phys_addr_t end, phys_addr_t size,
+					phys_addr_t align, int nid)
+{
+	phys_addr_t this_start, this_end, cand;
+	u64 i;
+
+	/* pump up @end */
+	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
+		end = memblock.current_limit;
+
+	/* avoid allocating the first page */
+	start = max_t(phys_addr_t, start, PAGE_SIZE);
+	end = max(start, end);
+
+	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
+		this_start = clamp(this_start, start, end);
+		this_end = clamp(this_end, start, end);
+
+		if (this_end < size)
+			continue;
+
+		cand = round_down(this_end - size, align);
+		if (cand >= this_start)
+			return cand;
+	}
+	return 0;
+}
+
+/**
+ * memblock_find_in_range - find free area in given range
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ *
+ * Find @size free area aligned to @align in the specified range.
+ *
+ * RETURNS:
+ * Found address on success, %0 on failure.
+ */
+phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
+					phys_addr_t end, phys_addr_t size,
+					phys_addr_t align)
+{
+	return memblock_find_in_range_node(start, end, size, align,
+					   MAX_NUMNODES);
+}
+
+static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
+{
+	type->total_size -= type->regions[r].size;
+	memmove(&type->regions[r], &type->regions[r + 1],
+		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
+	type->cnt--;
+
+	/* Special case for empty arrays */
+	if (type->cnt == 0) {
+		WARN_ON(type->total_size != 0);
+		type->cnt = 1;
+		type->regions[0].base = 0;
+		type->regions[0].size = 0;
+		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
+	}
+}
+
+phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
+					phys_addr_t *addr)
+{
+	if (memblock.reserved.regions == memblock_reserved_init_regions)
+		return 0;
+
+	*addr = __pa(memblock.reserved.regions);
+
+	return PAGE_ALIGN(sizeof(struct memblock_region) *
+			  memblock.reserved.max);
+}
+
+/**
+ * memblock_double_array - double the size of the memblock regions array
+ * @type: memblock type of the regions array being doubled
+ * @new_area_start: starting address of memory range to avoid overlap with
+ * @new_area_size: size of memory range to avoid overlap with
+ *
+ * Double the size of the @type regions array. If memblock is being used to
+ * allocate memory for a new reserved regions array and there is a previously
+ * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
+ * waiting to be reserved, ensure the memory used by the new array does
+ * not overlap.
+ *
+ * RETURNS:
+ * 0 on success, -1 on failure.
+ */
+static int __init_memblock memblock_double_array(struct memblock_type *type,
+						phys_addr_t new_area_start,
+						phys_addr_t new_area_size)
+{
+	struct memblock_region *new_array, *old_array;
+	phys_addr_t old_alloc_size, new_alloc_size;
+	phys_addr_t old_size, new_size, addr;
+	int use_slab = slab_is_available();
+	int *in_slab;
+
+	/* We don't allow resizing until we know about the reserved regions
+	 * of memory that aren't suitable for allocation
+	 */
+	if (!memblock_can_resize)
+		return -1;
+
+	/* Calculate new doubled size */
+	old_size = type->max * sizeof(struct memblock_region);
+	new_size = old_size << 1;
+	/*
+	 * We need to allocated new one align to PAGE_SIZE,
+	 *   so we can free them completely later.
+	 */
+	old_alloc_size = PAGE_ALIGN(old_size);
+	new_alloc_size = PAGE_ALIGN(new_size);
+
+	/* Retrieve the slab flag */
+	if (type == &memblock.memory)
+		in_slab = &memblock_memory_in_slab;
+	else
+		in_slab = &memblock_reserved_in_slab;
+
+	/* Try to find some space for it.
+	 *
+	 * WARNING: We assume that either slab_is_available() and we use it or
+	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
+	 * when bootmem is currently active (unless bootmem itself is implemented
+	 * on top of MEMBLOCK which isn't the case yet)
+	 *
+	 * This should however not be an issue for now, as we currently only
+	 * call into MEMBLOCK while it's still active, or much later when slab is
+	 * active for memory hotplug operations
+	 */
+	if (use_slab) {
+		new_array = kmalloc(new_size, GFP_KERNEL);
+		addr = new_array ? __pa(new_array) : 0;
+	} else {
+		/* only exclude range when trying to double reserved.regions */
+		if (type != &memblock.reserved)
+			new_area_start = new_area_size = 0;
+
+		addr = memblock_find_in_range(new_area_start + new_area_size,
+						memblock.current_limit,
+						new_alloc_size, PAGE_SIZE);
+		if (!addr && new_area_size)
+			addr = memblock_find_in_range(0,
+					min(new_area_start, memblock.current_limit),
+					new_alloc_size, PAGE_SIZE);
+
+		new_array = addr ? __va(addr) : 0;
+	}
+	if (!addr) {
+		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
+		       memblock_type_name(type), type->max, type->max * 2);
+		return -1;
+	}
+
+	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
+		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
+
+	/* Found space, we now need to move the array over before
+	 * we add the reserved region since it may be our reserved
+	 * array itself that is full.
+	 */
+	memcpy(new_array, type->regions, old_size);
+	memset(new_array + type->max, 0, old_size);
+	old_array = type->regions;
+	type->regions = new_array;
+	type->max <<= 1;
+
+	/* Free old array. We needn't free it if the array is the
+	 * static one
+	 */
+	if (*in_slab)
+		kfree(old_array);
+	else if (old_array != memblock_memory_init_regions &&
+		 old_array != memblock_reserved_init_regions)
+		memblock_free(__pa(old_array), old_alloc_size);
+
+	/* Reserve the new array if that comes from the memblock.
+	 * Otherwise, we needn't do it
+	 */
+	if (!use_slab)
+		BUG_ON(memblock_reserve(addr, new_alloc_size));
+
+	/* Update slab flag */
+	*in_slab = use_slab;
+
+	return 0;
+}
+
+/**
+ * memblock_merge_regions - merge neighboring compatible regions
+ * @type: memblock type to scan
+ *
+ * Scan @type and merge neighboring compatible regions.
+ */
+static void __init_memblock memblock_merge_regions(struct memblock_type *type)
+{
+	int i = 0;
+
+	/* cnt never goes below 1 */
+	while (i < type->cnt - 1) {
+		struct memblock_region *this = &type->regions[i];
+		struct memblock_region *next = &type->regions[i + 1];
+
+		if (this->base + this->size != next->base ||
+		    memblock_get_region_node(this) !=
+		    memblock_get_region_node(next)) {
+			BUG_ON(this->base + this->size > next->base);
+			i++;
+			continue;
+		}
+
+		this->size += next->size;
+		memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
+		type->cnt--;
+	}
+}
+
+/**
+ * memblock_insert_region - insert new memblock region
+ * @type: memblock type to insert into
+ * @idx: index for the insertion point
+ * @base: base address of the new region
+ * @size: size of the new region
+ *
+ * Insert new memblock region [@base,@base+@size) into @type at @idx.
+ * @type must already have extra room to accomodate the new region.
+ */
+static void __init_memblock memblock_insert_region(struct memblock_type *type,
+						   int idx, phys_addr_t base,
+						   phys_addr_t size, int nid)
+{
+	struct memblock_region *rgn = &type->regions[idx];
+
+	BUG_ON(type->cnt >= type->max);
+	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
+	rgn->base = base;
+	rgn->size = size;
+	memblock_set_region_node(rgn, nid);
+	type->cnt++;
+	type->total_size += size;
+}
+
+/**
+ * memblock_add_region - add new memblock region
+ * @type: memblock type to add new region into
+ * @base: base address of the new region
+ * @size: size of the new region
+ * @nid: nid of the new region
+ *
+ * Add new memblock region [@base,@base+@size) into @type.  The new region
+ * is allowed to overlap with existing ones - overlaps don't affect already
+ * existing regions.  @type is guaranteed to be minimal (all neighbouring
+ * compatible regions are merged) after the addition.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_add_region(struct memblock_type *type,
+				phys_addr_t base, phys_addr_t size, int nid)
+{
+	bool insert = false;
+	phys_addr_t obase = base;
+	phys_addr_t end = base + memblock_cap_size(base, &size);
+	int i, nr_new;
+
+	if (!size)
+		return 0;
+
+	/* special case for empty array */
+	if (type->regions[0].size == 0) {
+		WARN_ON(type->cnt != 1 || type->total_size);
+		type->regions[0].base = base;
+		type->regions[0].size = size;
+		memblock_set_region_node(&type->regions[0], nid);
+		type->total_size = size;
+		return 0;
+	}
+repeat:
+	/*
+	 * The following is executed twice.  Once with %false @insert and
+	 * then with %true.  The first counts the number of regions needed
+	 * to accomodate the new area.  The second actually inserts them.
+	 */
+	base = obase;
+	nr_new = 0;
+
+	for (i = 0; i < type->cnt; i++) {
+		struct memblock_region *rgn = &type->regions[i];
+		phys_addr_t rbase = rgn->base;
+		phys_addr_t rend = rbase + rgn->size;
+
+		if (rbase >= end)
+			break;
+		if (rend <= base)
+			continue;
+		/*
+		 * @rgn overlaps.  If it separates the lower part of new
+		 * area, insert that portion.
+		 */
+		if (rbase > base) {
+			nr_new++;
+			if (insert)
+				memblock_insert_region(type, i++, base,
+						       rbase - base, nid);
+		}
+		/* area below @rend is dealt with, forget about it */
+		base = min(rend, end);
+	}
+
+	/* insert the remaining portion */
+	if (base < end) {
+		nr_new++;
+		if (insert)
+			memblock_insert_region(type, i, base, end - base, nid);
+	}
+
+	/*
+	 * If this was the first round, resize array and repeat for actual
+	 * insertions; otherwise, merge and return.
+	 */
+	if (!insert) {
+		while (type->cnt + nr_new > type->max)
+			if (memblock_double_array(type, obase, size) < 0)
+				return -ENOMEM;
+		insert = true;
+		goto repeat;
+	} else {
+		memblock_merge_regions(type);
+		return 0;
+	}
+}
+
+int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
+				       int nid)
+{
+	return memblock_add_region(&memblock.memory, base, size, nid);
+}
+
+int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
+{
+	return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
+}
+
+/**
+ * memblock_isolate_range - isolate given range into disjoint memblocks
+ * @type: memblock type to isolate range for
+ * @base: base of range to isolate
+ * @size: size of range to isolate
+ * @start_rgn: out parameter for the start of isolated region
+ * @end_rgn: out parameter for the end of isolated region
+ *
+ * Walk @type and ensure that regions don't cross the boundaries defined by
+ * [@base,@base+@size).  Crossing regions are split at the boundaries,
+ * which may create at most two more regions.  The index of the first
+ * region inside the range is returned in *@start_rgn and end in *@end_rgn.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_isolate_range(struct memblock_type *type,
+					phys_addr_t base, phys_addr_t size,
+					int *start_rgn, int *end_rgn)
+{
+	phys_addr_t end = base + memblock_cap_size(base, &size);
+	int i;
+
+	*start_rgn = *end_rgn = 0;
+
+	if (!size)
+		return 0;
+
+	/* we'll create at most two more regions */
+	while (type->cnt + 2 > type->max)
+		if (memblock_double_array(type, base, size) < 0)
+			return -ENOMEM;
+
+	for (i = 0; i < type->cnt; i++) {
+		struct memblock_region *rgn = &type->regions[i];
+		phys_addr_t rbase = rgn->base;
+		phys_addr_t rend = rbase + rgn->size;
+
+		if (rbase >= end)
+			break;
+		if (rend <= base)
+			continue;
+
+		if (rbase < base) {
+			/*
+			 * @rgn intersects from below.  Split and continue
+			 * to process the next region - the new top half.
+			 */
+			rgn->base = base;
+			rgn->size -= base - rbase;
+			type->total_size -= base - rbase;
+			memblock_insert_region(type, i, rbase, base - rbase,
+					       memblock_get_region_node(rgn));
+		} else if (rend > end) {
+			/*
+			 * @rgn intersects from above.  Split and redo the
+			 * current region - the new bottom half.
+			 */
+			rgn->base = end;
+			rgn->size -= end - rbase;
+			type->total_size -= end - rbase;
+			memblock_insert_region(type, i--, rbase, end - rbase,
+					       memblock_get_region_node(rgn));
+		} else {
+			/* @rgn is fully contained, record it */
+			if (!*end_rgn)
+				*start_rgn = i;
+			*end_rgn = i + 1;
+		}
+	}
+
+	return 0;
+}
+
+static int __init_memblock __memblock_remove(struct memblock_type *type,
+					     phys_addr_t base, phys_addr_t size)
+{
+	int start_rgn, end_rgn;
+	int i, ret;
+
+	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+	if (ret)
+		return ret;
+
+	for (i = end_rgn - 1; i >= start_rgn; i--)
+		memblock_remove_region(type, i);
+	return 0;
+}
+
+int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
+{
+	return __memblock_remove(&memblock.memory, base, size);
+}
+
+int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
+{
+	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
+		     (unsigned long long)base,
+		     (unsigned long long)base + size,
+		     (void *)_RET_IP_);
+
+	return __memblock_remove(&memblock.reserved, base, size);
+}
+
+int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
+{
+	struct memblock_type *_rgn = &memblock.reserved;
+
+	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
+		     (unsigned long long)base,
+		     (unsigned long long)base + size,
+		     (void *)_RET_IP_);
+
+	return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
+}
+
+/**
+ * __next_free_mem_range - next function for for_each_free_mem_range()
+ * @idx: pointer to u64 loop variable
+ * @nid: nid: node selector, %MAX_NUMNODES for all nodes
+ * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
+ * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
+ * @p_nid: ptr to int for nid of the range, can be %NULL
+ *
+ * Find the first free area from *@idx which matches @nid, fill the out
+ * parameters, and update *@idx for the next iteration.  The lower 32bit of
+ * *@idx contains index into memory region and the upper 32bit indexes the
+ * areas before each reserved region.  For example, if reserved regions
+ * look like the following,
+ *
+ *	0:[0-16), 1:[32-48), 2:[128-130)
+ *
+ * The upper 32bit indexes the following regions.
+ *
+ *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
+ *
+ * As both region arrays are sorted, the function advances the two indices
+ * in lockstep and returns each intersection.
+ */
+void __init_memblock __next_free_mem_range(u64 *idx, int nid,
+					   phys_addr_t *out_start,
+					   phys_addr_t *out_end, int *out_nid)
+{
+	struct memblock_type *mem = &memblock.memory;
+	struct memblock_type *rsv = &memblock.reserved;
+	int mi = *idx & 0xffffffff;
+	int ri = *idx >> 32;
+
+	for ( ; mi < mem->cnt; mi++) {
+		struct memblock_region *m = &mem->regions[mi];
+		phys_addr_t m_start = m->base;
+		phys_addr_t m_end = m->base + m->size;
+
+		/* only memory regions are associated with nodes, check it */
+		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
+			continue;
+
+		/* scan areas before each reservation for intersection */
+		for ( ; ri < rsv->cnt + 1; ri++) {
+			struct memblock_region *r = &rsv->regions[ri];
+			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
+			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
+
+			/* if ri advanced past mi, break out to advance mi */
+			if (r_start >= m_end)
+				break;
+			/* if the two regions intersect, we're done */
+			if (m_start < r_end) {
+				if (out_start)
+					*out_start = max(m_start, r_start);
+				if (out_end)
+					*out_end = min(m_end, r_end);
+				if (out_nid)
+					*out_nid = memblock_get_region_node(m);
+				/*
+				 * The region which ends first is advanced
+				 * for the next iteration.
+				 */
+				if (m_end <= r_end)
+					mi++;
+				else
+					ri++;
+				*idx = (u32)mi | (u64)ri << 32;
+				return;
+			}
+		}
+	}
+
+	/* signal end of iteration */
+	*idx = ULLONG_MAX;
+}
+
+/**
+ * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
+ * @idx: pointer to u64 loop variable
+ * @nid: nid: node selector, %MAX_NUMNODES for all nodes
+ * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
+ * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
+ * @p_nid: ptr to int for nid of the range, can be %NULL
+ *
+ * Reverse of __next_free_mem_range().
+ */
+void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
+					   phys_addr_t *out_start,
+					   phys_addr_t *out_end, int *out_nid)
+{
+	struct memblock_type *mem = &memblock.memory;
+	struct memblock_type *rsv = &memblock.reserved;
+	int mi = *idx & 0xffffffff;
+	int ri = *idx >> 32;
+
+	if (*idx == (u64)ULLONG_MAX) {
+		mi = mem->cnt - 1;
+		ri = rsv->cnt;
+	}
+
+	for ( ; mi >= 0; mi--) {
+		struct memblock_region *m = &mem->regions[mi];
+		phys_addr_t m_start = m->base;
+		phys_addr_t m_end = m->base + m->size;
+
+		/* only memory regions are associated with nodes, check it */
+		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
+			continue;
+
+		/* scan areas before each reservation for intersection */
+		for ( ; ri >= 0; ri--) {
+			struct memblock_region *r = &rsv->regions[ri];
+			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
+			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
+
+			/* if ri advanced past mi, break out to advance mi */
+			if (r_end <= m_start)
+				break;
+			/* if the two regions intersect, we're done */
+			if (m_end > r_start) {
+				if (out_start)
+					*out_start = max(m_start, r_start);
+				if (out_end)
+					*out_end = min(m_end, r_end);
+				if (out_nid)
+					*out_nid = memblock_get_region_node(m);
+
+				if (m_start >= r_start)
+					mi--;
+				else
+					ri--;
+				*idx = (u32)mi | (u64)ri << 32;
+				return;
+			}
+		}
+	}
+
+	*idx = ULLONG_MAX;
+}
+
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+/*
+ * Common iterator interface used to define for_each_mem_range().
+ */
+void __init_memblock __next_mem_pfn_range(int *idx, int nid,
+				unsigned long *out_start_pfn,
+				unsigned long *out_end_pfn, int *out_nid)
+{
+	struct memblock_type *type = &memblock.memory;
+	struct memblock_region *r;
+
+	while (++*idx < type->cnt) {
+		r = &type->regions[*idx];
+
+		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
+			continue;
+		if (nid == MAX_NUMNODES || nid == r->nid)
+			break;
+	}
+	if (*idx >= type->cnt) {
+		*idx = -1;
+		return;
+	}
+
+	if (out_start_pfn)
+		*out_start_pfn = PFN_UP(r->base);
+	if (out_end_pfn)
+		*out_end_pfn = PFN_DOWN(r->base + r->size);
+	if (out_nid)
+		*out_nid = r->nid;
+}
+
+/**
+ * memblock_set_node - set node ID on memblock regions
+ * @base: base of area to set node ID for
+ * @size: size of area to set node ID for
+ * @nid: node ID to set
+ *
+ * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
+ * Regions which cross the area boundaries are split as necessary.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
+				      int nid)
+{
+	struct memblock_type *type = &memblock.memory;
+	int start_rgn, end_rgn;
+	int i, ret;
+
+	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+	if (ret)
+		return ret;
+
+	for (i = start_rgn; i < end_rgn; i++)
+		type->regions[i].nid = nid;
+
+	memblock_merge_regions(type);
+	return 0;
+}
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+
+static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
+					phys_addr_t align, phys_addr_t max_addr,
+					int nid)
+{
+	phys_addr_t found;
+
+	/* align @size to avoid excessive fragmentation on reserved array */
+	size = round_up(size, align);
+
+	found = memblock_find_in_range_node(0, max_addr, size, align, nid);
+	if (found && !memblock_reserve(found, size))
+		return found;
+
+	return 0;
+}
+
+phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
+{
+	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+}
+
+phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+{
+	return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
+}
+
+phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+{
+	phys_addr_t alloc;
+
+	alloc = __memblock_alloc_base(size, align, max_addr);
+
+	if (alloc == 0)
+		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
+		      (unsigned long long) size, (unsigned long long) max_addr);
+
+	return alloc;
+}
+
+phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
+{
+	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
+}
+
+phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
+{
+	phys_addr_t res = memblock_alloc_nid(size, align, nid);
+
+	if (res)
+		return res;
+	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
+}
+
+
+/*
+ * Remaining API functions
+ */
+
+phys_addr_t __init memblock_phys_mem_size(void)
+{
+	return memblock.memory.total_size;
+}
+
+/* lowest address */
+phys_addr_t __init_memblock memblock_start_of_DRAM(void)
+{
+	return memblock.memory.regions[0].base;
+}
+
+phys_addr_t __init_memblock memblock_end_of_DRAM(void)
+{
+	int idx = memblock.memory.cnt - 1;
+
+	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
+}
+
+void __init memblock_enforce_memory_limit(phys_addr_t limit)
+{
+	unsigned long i;
+	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
+
+	if (!limit)
+		return;
+
+	/* find out max address */
+	for (i = 0; i < memblock.memory.cnt; i++) {
+		struct memblock_region *r = &memblock.memory.regions[i];
+
+		if (limit <= r->size) {
+			max_addr = r->base + limit;
+			break;
+		}
+		limit -= r->size;
+	}
+
+	/* truncate both memory and reserved regions */
+	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
+	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
+}
+
+static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
+{
+	unsigned int left = 0, right = type->cnt;
+
+	do {
+		unsigned int mid = (right + left) / 2;
+
+		if (addr < type->regions[mid].base)
+			right = mid;
+		else if (addr >= (type->regions[mid].base +
+				  type->regions[mid].size))
+			left = mid + 1;
+		else
+			return mid;
+	} while (left < right);
+	return -1;
+}
+
+int __init memblock_is_reserved(phys_addr_t addr)
+{
+	return memblock_search(&memblock.reserved, addr) != -1;
+}
+
+int __init_memblock memblock_is_memory(phys_addr_t addr)
+{
+	return memblock_search(&memblock.memory, addr) != -1;
+}
+
+int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
+{
+	int idx = memblock_search(&memblock.memory, base);
+	phys_addr_t end = base + memblock_cap_size(base, &size);
+
+	if (idx == -1)
+		return 0;
+	return memblock.memory.regions[idx].base <= base &&
+		(memblock.memory.regions[idx].base +
+		 memblock.memory.regions[idx].size) >= end;
+}
+
+int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
+{
+	memblock_cap_size(base, &size);
+	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
+}
+
+void __init_memblock memblock_trim_memory(phys_addr_t align)
+{
+	int i;
+	phys_addr_t start, end, orig_start, orig_end;
+	struct memblock_type *mem = &memblock.memory;
+
+	for (i = 0; i < mem->cnt; i++) {
+		orig_start = mem->regions[i].base;
+		orig_end = mem->regions[i].base + mem->regions[i].size;
+		start = round_up(orig_start, align);
+		end = round_down(orig_end, align);
+
+		if (start == orig_start && end == orig_end)
+			continue;
+
+		if (start < end) {
+			mem->regions[i].base = start;
+			mem->regions[i].size = end - start;
+		} else {
+			memblock_remove_region(mem, i);
+			i--;
+		}
+	}
+}
+
+void __init_memblock memblock_set_current_limit(phys_addr_t limit)
+{
+	memblock.current_limit = limit;
+}
+
+static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
+{
+	unsigned long long base, size;
+	int i;
+
+	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
+
+	for (i = 0; i < type->cnt; i++) {
+		struct memblock_region *rgn = &type->regions[i];
+		char nid_buf[32] = "";
+
+		base = rgn->base;
+		size = rgn->size;
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
+			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
+				 memblock_get_region_node(rgn));
+#endif
+		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
+			name, i, base, base + size - 1, size, nid_buf);
+	}
+}
+
+void __init_memblock __memblock_dump_all(void)
+{
+	pr_info("MEMBLOCK configuration:\n");
+	pr_info(" memory size = %#llx reserved size = %#llx\n",
+		(unsigned long long)memblock.memory.total_size,
+		(unsigned long long)memblock.reserved.total_size);
+
+	memblock_dump(&memblock.memory, "memory");
+	memblock_dump(&memblock.reserved, "reserved");
+}
+
+void __init memblock_allow_resize(void)
+{
+	memblock_can_resize = 1;
+}
+
+static int __init early_memblock(char *p)
+{
+	if (p && strstr(p, "debug"))
+		memblock_debug = 1;
+	return 0;
+}
+early_param("memblock", early_memblock);
+
+#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
+
+static int memblock_debug_show(struct seq_file *m, void *private)
+{
+	struct memblock_type *type = m->private;
+	struct memblock_region *reg;
+	int i;
+
+	for (i = 0; i < type->cnt; i++) {
+		reg = &type->regions[i];
+		seq_printf(m, "%4d: ", i);
+		if (sizeof(phys_addr_t) == 4)
+			seq_printf(m, "0x%08lx..0x%08lx\n",
+				   (unsigned long)reg->base,
+				   (unsigned long)(reg->base + reg->size - 1));
+		else
+			seq_printf(m, "0x%016llx..0x%016llx\n",
+				   (unsigned long long)reg->base,
+				   (unsigned long long)(reg->base + reg->size - 1));
+
+	}
+	return 0;
+}
+
+static int memblock_debug_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, memblock_debug_show, inode->i_private);
+}
+
+static const struct file_operations memblock_debug_fops = {
+	.open = memblock_debug_open,
+	.read = seq_read,
+	.llseek = seq_lseek,
+	.release = single_release,
+};
+
+static int __init memblock_init_debugfs(void)
+{
+	struct dentry *root = debugfs_create_dir("memblock", NULL);
+	if (!root)
+		return -ENXIO;
+	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
+	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
+
+	return 0;
+}
+__initcall(memblock_init_debugfs);
+
+#endif /* CONFIG_DEBUG_FS */