[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/mm/percpu.c b/ap/os/linux/linux-3.4.x/mm/percpu.c
new file mode 100644
index 0000000..13b2eef
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/mm/percpu.c
@@ -0,0 +1,1942 @@
+/*
+ * mm/percpu.c - percpu memory allocator
+ *
+ * Copyright (C) 2009		SUSE Linux Products GmbH
+ * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
+ *
+ * This file is released under the GPLv2.
+ *
+ * This is percpu allocator which can handle both static and dynamic
+ * areas.  Percpu areas are allocated in chunks.  Each chunk is
+ * consisted of boot-time determined number of units and the first
+ * chunk is used for static percpu variables in the kernel image
+ * (special boot time alloc/init handling necessary as these areas
+ * need to be brought up before allocation services are running).
+ * Unit grows as necessary and all units grow or shrink in unison.
+ * When a chunk is filled up, another chunk is allocated.
+ *
+ *  c0                           c1                         c2
+ *  -------------------          -------------------        ------------
+ * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
+ *  -------------------  ......  -------------------  ....  ------------
+ *
+ * Allocation is done in offset-size areas of single unit space.  Ie,
+ * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
+ * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
+ * cpus.  On NUMA, the mapping can be non-linear and even sparse.
+ * Percpu access can be done by configuring percpu base registers
+ * according to cpu to unit mapping and pcpu_unit_size.
+ *
+ * There are usually many small percpu allocations many of them being
+ * as small as 4 bytes.  The allocator organizes chunks into lists
+ * according to free size and tries to allocate from the fullest one.
+ * Each chunk keeps the maximum contiguous area size hint which is
+ * guaranteed to be equal to or larger than the maximum contiguous
+ * area in the chunk.  This helps the allocator not to iterate the
+ * chunk maps unnecessarily.
+ *
+ * Allocation state in each chunk is kept using an array of integers
+ * on chunk->map.  A positive value in the map represents a free
+ * region and negative allocated.  Allocation inside a chunk is done
+ * by scanning this map sequentially and serving the first matching
+ * entry.  This is mostly copied from the percpu_modalloc() allocator.
+ * Chunks can be determined from the address using the index field
+ * in the page struct. The index field contains a pointer to the chunk.
+ *
+ * To use this allocator, arch code should do the followings.
+ *
+ * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
+ *   regular address to percpu pointer and back if they need to be
+ *   different from the default
+ *
+ * - use pcpu_setup_first_chunk() during percpu area initialization to
+ *   setup the first chunk containing the kernel static percpu area
+ */
+
+#include <linux/bitmap.h>
+#include <linux/bootmem.h>
+#include <linux/err.h>
+#include <linux/list.h>
+#include <linux/log2.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/percpu.h>
+#include <linux/pfn.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/vmalloc.h>
+#include <linux/workqueue.h>
+#include <linux/kmemleak.h>
+
+#include <asm/cacheflush.h>
+#include <asm/sections.h>
+#include <asm/tlbflush.h>
+#include <asm/io.h>
+
+#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
+#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
+
+#ifdef CONFIG_SMP
+/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
+#ifndef __addr_to_pcpu_ptr
+#define __addr_to_pcpu_ptr(addr)					\
+	(void __percpu *)((unsigned long)(addr) -			\
+			  (unsigned long)pcpu_base_addr	+		\
+			  (unsigned long)__per_cpu_start)
+#endif
+#ifndef __pcpu_ptr_to_addr
+#define __pcpu_ptr_to_addr(ptr)						\
+	(void __force *)((unsigned long)(ptr) +				\
+			 (unsigned long)pcpu_base_addr -		\
+			 (unsigned long)__per_cpu_start)
+#endif
+#else	/* CONFIG_SMP */
+/* on UP, it's always identity mapped */
+#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
+#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
+#endif	/* CONFIG_SMP */
+
+struct pcpu_chunk {
+	struct list_head	list;		/* linked to pcpu_slot lists */
+	int			free_size;	/* free bytes in the chunk */
+	int			contig_hint;	/* max contiguous size hint */
+	void			*base_addr;	/* base address of this chunk */
+	int			map_used;	/* # of map entries used */
+	int			map_alloc;	/* # of map entries allocated */
+	int			*map;		/* allocation map */
+	void			*data;		/* chunk data */
+	bool			immutable;	/* no [de]population allowed */
+	unsigned long		populated[];	/* populated bitmap */
+};
+
+static int pcpu_unit_pages __read_mostly;
+static int pcpu_unit_size __read_mostly;
+static int pcpu_nr_units __read_mostly;
+static int pcpu_atom_size __read_mostly;
+static int pcpu_nr_slots __read_mostly;
+static size_t pcpu_chunk_struct_size __read_mostly;
+
+/* cpus with the lowest and highest unit addresses */
+static unsigned int pcpu_low_unit_cpu __read_mostly;
+static unsigned int pcpu_high_unit_cpu __read_mostly;
+
+/* the address of the first chunk which starts with the kernel static area */
+void *pcpu_base_addr __read_mostly;
+EXPORT_SYMBOL_GPL(pcpu_base_addr);
+
+static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
+const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
+
+/* group information, used for vm allocation */
+static int pcpu_nr_groups __read_mostly;
+static const unsigned long *pcpu_group_offsets __read_mostly;
+static const size_t *pcpu_group_sizes __read_mostly;
+
+/*
+ * The first chunk which always exists.  Note that unlike other
+ * chunks, this one can be allocated and mapped in several different
+ * ways and thus often doesn't live in the vmalloc area.
+ */
+static struct pcpu_chunk *pcpu_first_chunk;
+
+/*
+ * Optional reserved chunk.  This chunk reserves part of the first
+ * chunk and serves it for reserved allocations.  The amount of
+ * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
+ * area doesn't exist, the following variables contain NULL and 0
+ * respectively.
+ */
+static struct pcpu_chunk *pcpu_reserved_chunk;
+static int pcpu_reserved_chunk_limit;
+
+/*
+ * Synchronization rules.
+ *
+ * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
+ * protects allocation/reclaim paths, chunks, populated bitmap and
+ * vmalloc mapping.  The latter is a spinlock and protects the index
+ * data structures - chunk slots, chunks and area maps in chunks.
+ *
+ * During allocation, pcpu_alloc_mutex is kept locked all the time and
+ * pcpu_lock is grabbed and released as necessary.  All actual memory
+ * allocations are done using GFP_KERNEL with pcpu_lock released.  In
+ * general, percpu memory can't be allocated with irq off but
+ * irqsave/restore are still used in alloc path so that it can be used
+ * from early init path - sched_init() specifically.
+ *
+ * Free path accesses and alters only the index data structures, so it
+ * can be safely called from atomic context.  When memory needs to be
+ * returned to the system, free path schedules reclaim_work which
+ * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
+ * reclaimed, release both locks and frees the chunks.  Note that it's
+ * necessary to grab both locks to remove a chunk from circulation as
+ * allocation path might be referencing the chunk with only
+ * pcpu_alloc_mutex locked.
+ */
+static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
+static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
+
+static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
+
+/* reclaim work to release fully free chunks, scheduled from free path */
+static void pcpu_reclaim(struct work_struct *work);
+static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
+
+static bool pcpu_addr_in_first_chunk(void *addr)
+{
+	void *first_start = pcpu_first_chunk->base_addr;
+
+	return addr >= first_start && addr < first_start + pcpu_unit_size;
+}
+
+static bool pcpu_addr_in_reserved_chunk(void *addr)
+{
+	void *first_start = pcpu_first_chunk->base_addr;
+
+	return addr >= first_start &&
+		addr < first_start + pcpu_reserved_chunk_limit;
+}
+
+static int __pcpu_size_to_slot(int size)
+{
+	int highbit = fls(size);	/* size is in bytes */
+	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
+}
+
+static int pcpu_size_to_slot(int size)
+{
+	if (size == pcpu_unit_size)
+		return pcpu_nr_slots - 1;
+	return __pcpu_size_to_slot(size);
+}
+
+static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
+{
+	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
+		return 0;
+
+	return pcpu_size_to_slot(chunk->free_size);
+}
+
+/* set the pointer to a chunk in a page struct */
+static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
+{
+	page->index = (unsigned long)pcpu;
+}
+
+/* obtain pointer to a chunk from a page struct */
+static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
+{
+	return (struct pcpu_chunk *)page->index;
+}
+
+static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
+{
+	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
+}
+
+static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
+				     unsigned int cpu, int page_idx)
+{
+	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
+		(page_idx << PAGE_SHIFT);
+}
+
+static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
+					   int *rs, int *re, int end)
+{
+	*rs = find_next_zero_bit(chunk->populated, end, *rs);
+	*re = find_next_bit(chunk->populated, end, *rs + 1);
+}
+
+static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
+					 int *rs, int *re, int end)
+{
+	*rs = find_next_bit(chunk->populated, end, *rs);
+	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
+}
+
+/*
+ * (Un)populated page region iterators.  Iterate over (un)populated
+ * page regions between @start and @end in @chunk.  @rs and @re should
+ * be integer variables and will be set to start and end page index of
+ * the current region.
+ */
+#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
+	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
+	     (rs) < (re);						    \
+	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
+
+#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
+	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
+	     (rs) < (re);						    \
+	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
+
+/**
+ * pcpu_mem_zalloc - allocate memory
+ * @size: bytes to allocate
+ *
+ * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
+ * kzalloc() is used; otherwise, vzalloc() is used.  The returned
+ * memory is always zeroed.
+ *
+ * CONTEXT:
+ * Does GFP_KERNEL allocation.
+ *
+ * RETURNS:
+ * Pointer to the allocated area on success, NULL on failure.
+ */
+static void *pcpu_mem_zalloc(size_t size)
+{
+	if (WARN_ON_ONCE(!slab_is_available()))
+		return NULL;
+
+	if (size <= PAGE_SIZE)
+		return kzalloc(size, GFP_KERNEL);
+	else
+		return vzalloc(size);
+}
+
+/**
+ * pcpu_mem_free - free memory
+ * @ptr: memory to free
+ * @size: size of the area
+ *
+ * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
+ */
+static void pcpu_mem_free(void *ptr, size_t size)
+{
+	if (size <= PAGE_SIZE)
+		kfree(ptr);
+	else
+		vfree(ptr);
+}
+
+/**
+ * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
+ * @chunk: chunk of interest
+ * @oslot: the previous slot it was on
+ *
+ * This function is called after an allocation or free changed @chunk.
+ * New slot according to the changed state is determined and @chunk is
+ * moved to the slot.  Note that the reserved chunk is never put on
+ * chunk slots.
+ *
+ * CONTEXT:
+ * pcpu_lock.
+ */
+static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
+{
+	int nslot = pcpu_chunk_slot(chunk);
+
+	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
+		if (oslot < nslot)
+			list_move(&chunk->list, &pcpu_slot[nslot]);
+		else
+			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
+	}
+}
+
+/**
+ * pcpu_need_to_extend - determine whether chunk area map needs to be extended
+ * @chunk: chunk of interest
+ *
+ * Determine whether area map of @chunk needs to be extended to
+ * accommodate a new allocation.
+ *
+ * CONTEXT:
+ * pcpu_lock.
+ *
+ * RETURNS:
+ * New target map allocation length if extension is necessary, 0
+ * otherwise.
+ */
+static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
+{
+	int new_alloc;
+
+	if (chunk->map_alloc >= chunk->map_used + 2)
+		return 0;
+
+	new_alloc = PCPU_DFL_MAP_ALLOC;
+	while (new_alloc < chunk->map_used + 2)
+		new_alloc *= 2;
+
+	return new_alloc;
+}
+
+/**
+ * pcpu_extend_area_map - extend area map of a chunk
+ * @chunk: chunk of interest
+ * @new_alloc: new target allocation length of the area map
+ *
+ * Extend area map of @chunk to have @new_alloc entries.
+ *
+ * CONTEXT:
+ * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
+{
+	int *old = NULL, *new = NULL;
+	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
+	unsigned long flags;
+
+	new = pcpu_mem_zalloc(new_size);
+	if (!new)
+		return -ENOMEM;
+
+	/* acquire pcpu_lock and switch to new area map */
+	spin_lock_irqsave(&pcpu_lock, flags);
+
+	if (new_alloc <= chunk->map_alloc)
+		goto out_unlock;
+
+	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
+	old = chunk->map;
+
+	memcpy(new, old, old_size);
+
+	chunk->map_alloc = new_alloc;
+	chunk->map = new;
+	new = NULL;
+
+out_unlock:
+	spin_unlock_irqrestore(&pcpu_lock, flags);
+
+	/*
+	 * pcpu_mem_free() might end up calling vfree() which uses
+	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
+	 */
+	pcpu_mem_free(old, old_size);
+	pcpu_mem_free(new, new_size);
+
+	return 0;
+}
+
+/**
+ * pcpu_split_block - split a map block
+ * @chunk: chunk of interest
+ * @i: index of map block to split
+ * @head: head size in bytes (can be 0)
+ * @tail: tail size in bytes (can be 0)
+ *
+ * Split the @i'th map block into two or three blocks.  If @head is
+ * non-zero, @head bytes block is inserted before block @i moving it
+ * to @i+1 and reducing its size by @head bytes.
+ *
+ * If @tail is non-zero, the target block, which can be @i or @i+1
+ * depending on @head, is reduced by @tail bytes and @tail byte block
+ * is inserted after the target block.
+ *
+ * @chunk->map must have enough free slots to accommodate the split.
+ *
+ * CONTEXT:
+ * pcpu_lock.
+ */
+static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
+			     int head, int tail)
+{
+	int nr_extra = !!head + !!tail;
+
+	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
+
+	/* insert new subblocks */
+	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
+		sizeof(chunk->map[0]) * (chunk->map_used - i));
+	chunk->map_used += nr_extra;
+
+	if (head) {
+		chunk->map[i + 1] = chunk->map[i] - head;
+		chunk->map[i++] = head;
+	}
+	if (tail) {
+		chunk->map[i++] -= tail;
+		chunk->map[i] = tail;
+	}
+}
+
+/**
+ * pcpu_alloc_area - allocate area from a pcpu_chunk
+ * @chunk: chunk of interest
+ * @size: wanted size in bytes
+ * @align: wanted align
+ *
+ * Try to allocate @size bytes area aligned at @align from @chunk.
+ * Note that this function only allocates the offset.  It doesn't
+ * populate or map the area.
+ *
+ * @chunk->map must have at least two free slots.
+ *
+ * CONTEXT:
+ * pcpu_lock.
+ *
+ * RETURNS:
+ * Allocated offset in @chunk on success, -1 if no matching area is
+ * found.
+ */
+static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
+{
+	int oslot = pcpu_chunk_slot(chunk);
+	int max_contig = 0;
+	int i, off;
+
+	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
+		bool is_last = i + 1 == chunk->map_used;
+		int head, tail;
+
+		/* extra for alignment requirement */
+		head = ALIGN(off, align) - off;
+		BUG_ON(i == 0 && head != 0);
+
+		if (chunk->map[i] < 0)
+			continue;
+		if (chunk->map[i] < head + size) {
+			max_contig = max(chunk->map[i], max_contig);
+			continue;
+		}
+
+		/*
+		 * If head is small or the previous block is free,
+		 * merge'em.  Note that 'small' is defined as smaller
+		 * than sizeof(int), which is very small but isn't too
+		 * uncommon for percpu allocations.
+		 */
+		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
+			if (chunk->map[i - 1] > 0)
+				chunk->map[i - 1] += head;
+			else {
+				chunk->map[i - 1] -= head;
+				chunk->free_size -= head;
+			}
+			chunk->map[i] -= head;
+			off += head;
+			head = 0;
+		}
+
+		/* if tail is small, just keep it around */
+		tail = chunk->map[i] - head - size;
+		if (tail < sizeof(int))
+			tail = 0;
+
+		/* split if warranted */
+		if (head || tail) {
+			pcpu_split_block(chunk, i, head, tail);
+			if (head) {
+				i++;
+				off += head;
+				max_contig = max(chunk->map[i - 1], max_contig);
+			}
+			if (tail)
+				max_contig = max(chunk->map[i + 1], max_contig);
+		}
+
+		/* update hint and mark allocated */
+		if (is_last)
+			chunk->contig_hint = max_contig; /* fully scanned */
+		else
+			chunk->contig_hint = max(chunk->contig_hint,
+						 max_contig);
+
+		chunk->free_size -= chunk->map[i];
+		chunk->map[i] = -chunk->map[i];
+
+		pcpu_chunk_relocate(chunk, oslot);
+		return off;
+	}
+
+	chunk->contig_hint = max_contig;	/* fully scanned */
+	pcpu_chunk_relocate(chunk, oslot);
+
+	/* tell the upper layer that this chunk has no matching area */
+	return -1;
+}
+
+/**
+ * pcpu_free_area - free area to a pcpu_chunk
+ * @chunk: chunk of interest
+ * @freeme: offset of area to free
+ *
+ * Free area starting from @freeme to @chunk.  Note that this function
+ * only modifies the allocation map.  It doesn't depopulate or unmap
+ * the area.
+ *
+ * CONTEXT:
+ * pcpu_lock.
+ */
+static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
+{
+	int oslot = pcpu_chunk_slot(chunk);
+	int i, off;
+
+	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
+		if (off == freeme)
+			break;
+	BUG_ON(off != freeme);
+	BUG_ON(chunk->map[i] > 0);
+
+	chunk->map[i] = -chunk->map[i];
+	chunk->free_size += chunk->map[i];
+
+	/* merge with previous? */
+	if (i > 0 && chunk->map[i - 1] >= 0) {
+		chunk->map[i - 1] += chunk->map[i];
+		chunk->map_used--;
+		memmove(&chunk->map[i], &chunk->map[i + 1],
+			(chunk->map_used - i) * sizeof(chunk->map[0]));
+		i--;
+	}
+	/* merge with next? */
+	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
+		chunk->map[i] += chunk->map[i + 1];
+		chunk->map_used--;
+		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
+			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
+	}
+
+	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
+	pcpu_chunk_relocate(chunk, oslot);
+}
+
+static struct pcpu_chunk *pcpu_alloc_chunk(void)
+{
+	struct pcpu_chunk *chunk;
+
+	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
+	if (!chunk)
+		return NULL;
+
+	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
+						sizeof(chunk->map[0]));
+	if (!chunk->map) {
+		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
+		return NULL;
+	}
+
+	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
+	chunk->map[chunk->map_used++] = pcpu_unit_size;
+
+	INIT_LIST_HEAD(&chunk->list);
+	chunk->free_size = pcpu_unit_size;
+	chunk->contig_hint = pcpu_unit_size;
+
+	return chunk;
+}
+
+static void pcpu_free_chunk(struct pcpu_chunk *chunk)
+{
+	if (!chunk)
+		return;
+	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
+	kfree(chunk);
+}
+
+/*
+ * Chunk management implementation.
+ *
+ * To allow different implementations, chunk alloc/free and
+ * [de]population are implemented in a separate file which is pulled
+ * into this file and compiled together.  The following functions
+ * should be implemented.
+ *
+ * pcpu_populate_chunk		- populate the specified range of a chunk
+ * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
+ * pcpu_create_chunk		- create a new chunk
+ * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
+ * pcpu_addr_to_page		- translate address to physical address
+ * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
+ */
+static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
+static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
+static struct pcpu_chunk *pcpu_create_chunk(void);
+static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
+static struct page *pcpu_addr_to_page(void *addr);
+static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
+
+#ifdef CONFIG_NEED_PER_CPU_KM
+#include "percpu-km.c"
+#else
+#include "percpu-vm.c"
+#endif
+
+/**
+ * pcpu_chunk_addr_search - determine chunk containing specified address
+ * @addr: address for which the chunk needs to be determined.
+ *
+ * RETURNS:
+ * The address of the found chunk.
+ */
+static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
+{
+	/* is it in the first chunk? */
+	if (pcpu_addr_in_first_chunk(addr)) {
+		/* is it in the reserved area? */
+		if (pcpu_addr_in_reserved_chunk(addr))
+			return pcpu_reserved_chunk;
+		return pcpu_first_chunk;
+	}
+
+	/*
+	 * The address is relative to unit0 which might be unused and
+	 * thus unmapped.  Offset the address to the unit space of the
+	 * current processor before looking it up in the vmalloc
+	 * space.  Note that any possible cpu id can be used here, so
+	 * there's no need to worry about preemption or cpu hotplug.
+	 */
+	addr += pcpu_unit_offsets[raw_smp_processor_id()];
+	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
+}
+
+/**
+ * pcpu_alloc - the percpu allocator
+ * @size: size of area to allocate in bytes
+ * @align: alignment of area (max PAGE_SIZE)
+ * @reserved: allocate from the reserved chunk if available
+ *
+ * Allocate percpu area of @size bytes aligned at @align.
+ *
+ * CONTEXT:
+ * Does GFP_KERNEL allocation.
+ *
+ * RETURNS:
+ * Percpu pointer to the allocated area on success, NULL on failure.
+ */
+static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
+{
+	static int warn_limit = 10;
+	struct pcpu_chunk *chunk;
+	const char *err;
+	int slot, off, new_alloc;
+	unsigned long flags;
+	void __percpu *ptr;
+
+	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
+		WARN(true, "illegal size (%zu) or align (%zu) for "
+		     "percpu allocation\n", size, align);
+		return NULL;
+	}
+
+	mutex_lock(&pcpu_alloc_mutex);
+	spin_lock_irqsave(&pcpu_lock, flags);
+
+	/* serve reserved allocations from the reserved chunk if available */
+	if (reserved && pcpu_reserved_chunk) {
+		chunk = pcpu_reserved_chunk;
+
+		if (size > chunk->contig_hint) {
+			err = "alloc from reserved chunk failed";
+			goto fail_unlock;
+		}
+
+		while ((new_alloc = pcpu_need_to_extend(chunk))) {
+			spin_unlock_irqrestore(&pcpu_lock, flags);
+			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
+				err = "failed to extend area map of reserved chunk";
+				goto fail_unlock_mutex;
+			}
+			spin_lock_irqsave(&pcpu_lock, flags);
+		}
+
+		off = pcpu_alloc_area(chunk, size, align);
+		if (off >= 0)
+			goto area_found;
+
+		err = "alloc from reserved chunk failed";
+		goto fail_unlock;
+	}
+
+restart:
+	/* search through normal chunks */
+	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
+		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
+			if (size > chunk->contig_hint)
+				continue;
+
+			new_alloc = pcpu_need_to_extend(chunk);
+			if (new_alloc) {
+				spin_unlock_irqrestore(&pcpu_lock, flags);
+				if (pcpu_extend_area_map(chunk,
+							 new_alloc) < 0) {
+					err = "failed to extend area map";
+					goto fail_unlock_mutex;
+				}
+				spin_lock_irqsave(&pcpu_lock, flags);
+				/*
+				 * pcpu_lock has been dropped, need to
+				 * restart cpu_slot list walking.
+				 */
+				goto restart;
+			}
+
+			off = pcpu_alloc_area(chunk, size, align);
+			if (off >= 0)
+				goto area_found;
+		}
+	}
+
+	/* hmmm... no space left, create a new chunk */
+	spin_unlock_irqrestore(&pcpu_lock, flags);
+
+	chunk = pcpu_create_chunk();
+	if (!chunk) {
+		err = "failed to allocate new chunk";
+		goto fail_unlock_mutex;
+	}
+
+	spin_lock_irqsave(&pcpu_lock, flags);
+	pcpu_chunk_relocate(chunk, -1);
+	goto restart;
+
+area_found:
+	spin_unlock_irqrestore(&pcpu_lock, flags);
+
+	/* populate, map and clear the area */
+	if (pcpu_populate_chunk(chunk, off, size)) {
+		spin_lock_irqsave(&pcpu_lock, flags);
+		pcpu_free_area(chunk, off);
+		err = "failed to populate";
+		goto fail_unlock;
+	}
+
+	mutex_unlock(&pcpu_alloc_mutex);
+
+	/* return address relative to base address */
+	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
+	kmemleak_alloc_percpu(ptr, size);
+	return ptr;
+
+fail_unlock:
+	spin_unlock_irqrestore(&pcpu_lock, flags);
+fail_unlock_mutex:
+	mutex_unlock(&pcpu_alloc_mutex);
+	if (warn_limit) {
+		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
+			   "%s\n", size, align, err);
+		dump_stack();
+		if (!--warn_limit)
+			pr_info("PERCPU: limit reached, disable warning\n");
+	}
+	return NULL;
+}
+
+/**
+ * __alloc_percpu - allocate dynamic percpu area
+ * @size: size of area to allocate in bytes
+ * @align: alignment of area (max PAGE_SIZE)
+ *
+ * Allocate zero-filled percpu area of @size bytes aligned at @align.
+ * Might sleep.  Might trigger writeouts.
+ *
+ * CONTEXT:
+ * Does GFP_KERNEL allocation.
+ *
+ * RETURNS:
+ * Percpu pointer to the allocated area on success, NULL on failure.
+ */
+void __percpu *__alloc_percpu(size_t size, size_t align)
+{
+	return pcpu_alloc(size, align, false);
+}
+EXPORT_SYMBOL_GPL(__alloc_percpu);
+
+/**
+ * __alloc_reserved_percpu - allocate reserved percpu area
+ * @size: size of area to allocate in bytes
+ * @align: alignment of area (max PAGE_SIZE)
+ *
+ * Allocate zero-filled percpu area of @size bytes aligned at @align
+ * from reserved percpu area if arch has set it up; otherwise,
+ * allocation is served from the same dynamic area.  Might sleep.
+ * Might trigger writeouts.
+ *
+ * CONTEXT:
+ * Does GFP_KERNEL allocation.
+ *
+ * RETURNS:
+ * Percpu pointer to the allocated area on success, NULL on failure.
+ */
+void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
+{
+	return pcpu_alloc(size, align, true);
+}
+
+/**
+ * pcpu_reclaim - reclaim fully free chunks, workqueue function
+ * @work: unused
+ *
+ * Reclaim all fully free chunks except for the first one.
+ *
+ * CONTEXT:
+ * workqueue context.
+ */
+static void pcpu_reclaim(struct work_struct *work)
+{
+	LIST_HEAD(todo);
+	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
+	struct pcpu_chunk *chunk, *next;
+
+	mutex_lock(&pcpu_alloc_mutex);
+	spin_lock_irq(&pcpu_lock);
+
+	list_for_each_entry_safe(chunk, next, head, list) {
+		WARN_ON(chunk->immutable);
+
+		/* spare the first one */
+		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
+			continue;
+
+		list_move(&chunk->list, &todo);
+	}
+
+	spin_unlock_irq(&pcpu_lock);
+
+	list_for_each_entry_safe(chunk, next, &todo, list) {
+		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
+		pcpu_destroy_chunk(chunk);
+	}
+
+	mutex_unlock(&pcpu_alloc_mutex);
+}
+
+/**
+ * free_percpu - free percpu area
+ * @ptr: pointer to area to free
+ *
+ * Free percpu area @ptr.
+ *
+ * CONTEXT:
+ * Can be called from atomic context.
+ */
+void free_percpu(void __percpu *ptr)
+{
+	void *addr;
+	struct pcpu_chunk *chunk;
+	unsigned long flags;
+	int off;
+
+	if (!ptr)
+		return;
+
+	kmemleak_free_percpu(ptr);
+
+	addr = __pcpu_ptr_to_addr(ptr);
+
+	spin_lock_irqsave(&pcpu_lock, flags);
+
+	chunk = pcpu_chunk_addr_search(addr);
+	off = addr - chunk->base_addr;
+
+	pcpu_free_area(chunk, off);
+
+	/* if there are more than one fully free chunks, wake up grim reaper */
+	if (chunk->free_size == pcpu_unit_size) {
+		struct pcpu_chunk *pos;
+
+		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
+			if (pos != chunk) {
+				schedule_work(&pcpu_reclaim_work);
+				break;
+			}
+	}
+
+	spin_unlock_irqrestore(&pcpu_lock, flags);
+}
+EXPORT_SYMBOL_GPL(free_percpu);
+
+/**
+ * is_kernel_percpu_address - test whether address is from static percpu area
+ * @addr: address to test
+ *
+ * Test whether @addr belongs to in-kernel static percpu area.  Module
+ * static percpu areas are not considered.  For those, use
+ * is_module_percpu_address().
+ *
+ * RETURNS:
+ * %true if @addr is from in-kernel static percpu area, %false otherwise.
+ */
+bool is_kernel_percpu_address(unsigned long addr)
+{
+#ifdef CONFIG_SMP
+	const size_t static_size = __per_cpu_end - __per_cpu_start;
+	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
+	unsigned int cpu;
+
+	for_each_possible_cpu(cpu) {
+		void *start = per_cpu_ptr(base, cpu);
+
+		if ((void *)addr >= start && (void *)addr < start + static_size)
+			return true;
+        }
+#endif
+	/* on UP, can't distinguish from other static vars, always false */
+	return false;
+}
+
+/**
+ * per_cpu_ptr_to_phys - convert translated percpu address to physical address
+ * @addr: the address to be converted to physical address
+ *
+ * Given @addr which is dereferenceable address obtained via one of
+ * percpu access macros, this function translates it into its physical
+ * address.  The caller is responsible for ensuring @addr stays valid
+ * until this function finishes.
+ *
+ * percpu allocator has special setup for the first chunk, which currently
+ * supports either embedding in linear address space or vmalloc mapping,
+ * and, from the second one, the backing allocator (currently either vm or
+ * km) provides translation.
+ *
+ * The addr can be tranlated simply without checking if it falls into the
+ * first chunk. But the current code reflects better how percpu allocator
+ * actually works, and the verification can discover both bugs in percpu
+ * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
+ * code.
+ *
+ * RETURNS:
+ * The physical address for @addr.
+ */
+phys_addr_t per_cpu_ptr_to_phys(void *addr)
+{
+	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
+	bool in_first_chunk = false;
+	unsigned long first_low, first_high;
+	unsigned int cpu;
+
+	/*
+	 * The following test on unit_low/high isn't strictly
+	 * necessary but will speed up lookups of addresses which
+	 * aren't in the first chunk.
+	 */
+	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
+	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
+				     pcpu_unit_pages);
+	if ((unsigned long)addr >= first_low &&
+	    (unsigned long)addr < first_high) {
+		for_each_possible_cpu(cpu) {
+			void *start = per_cpu_ptr(base, cpu);
+
+			if (addr >= start && addr < start + pcpu_unit_size) {
+				in_first_chunk = true;
+				break;
+			}
+		}
+	}
+
+	if (in_first_chunk) {
+		if (!is_vmalloc_addr(addr))
+			return __pa(addr);
+		else
+			return page_to_phys(vmalloc_to_page(addr)) +
+			       offset_in_page(addr);
+	} else
+		return page_to_phys(pcpu_addr_to_page(addr)) +
+		       offset_in_page(addr);
+}
+
+/**
+ * pcpu_alloc_alloc_info - allocate percpu allocation info
+ * @nr_groups: the number of groups
+ * @nr_units: the number of units
+ *
+ * Allocate ai which is large enough for @nr_groups groups containing
+ * @nr_units units.  The returned ai's groups[0].cpu_map points to the
+ * cpu_map array which is long enough for @nr_units and filled with
+ * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
+ * pointer of other groups.
+ *
+ * RETURNS:
+ * Pointer to the allocated pcpu_alloc_info on success, NULL on
+ * failure.
+ */
+struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
+						      int nr_units)
+{
+	struct pcpu_alloc_info *ai;
+	size_t base_size, ai_size;
+	void *ptr;
+	int unit;
+
+	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
+			  __alignof__(ai->groups[0].cpu_map[0]));
+	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
+
+	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
+	if (!ptr)
+		return NULL;
+	ai = ptr;
+	ptr += base_size;
+
+	ai->groups[0].cpu_map = ptr;
+
+	for (unit = 0; unit < nr_units; unit++)
+		ai->groups[0].cpu_map[unit] = NR_CPUS;
+
+	ai->nr_groups = nr_groups;
+	ai->__ai_size = PFN_ALIGN(ai_size);
+
+	return ai;
+}
+
+/**
+ * pcpu_free_alloc_info - free percpu allocation info
+ * @ai: pcpu_alloc_info to free
+ *
+ * Free @ai which was allocated by pcpu_alloc_alloc_info().
+ */
+void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
+{
+	free_bootmem(__pa(ai), ai->__ai_size);
+}
+
+/**
+ * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
+ * @lvl: loglevel
+ * @ai: allocation info to dump
+ *
+ * Print out information about @ai using loglevel @lvl.
+ */
+static void pcpu_dump_alloc_info(const char *lvl,
+				 const struct pcpu_alloc_info *ai)
+{
+	int group_width = 1, cpu_width = 1, width;
+	char empty_str[] = "--------";
+	int alloc = 0, alloc_end = 0;
+	int group, v;
+	int upa, apl;	/* units per alloc, allocs per line */
+
+	v = ai->nr_groups;
+	while (v /= 10)
+		group_width++;
+
+	v = num_possible_cpus();
+	while (v /= 10)
+		cpu_width++;
+	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
+
+	upa = ai->alloc_size / ai->unit_size;
+	width = upa * (cpu_width + 1) + group_width + 3;
+	apl = rounddown_pow_of_two(max(60 / width, 1));
+
+	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
+	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
+	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
+
+	for (group = 0; group < ai->nr_groups; group++) {
+		const struct pcpu_group_info *gi = &ai->groups[group];
+		int unit = 0, unit_end = 0;
+
+		BUG_ON(gi->nr_units % upa);
+		for (alloc_end += gi->nr_units / upa;
+		     alloc < alloc_end; alloc++) {
+			if (!(alloc % apl)) {
+				printk(KERN_CONT "\n");
+				printk("%spcpu-alloc: ", lvl);
+			}
+			printk(KERN_CONT "[%0*d] ", group_width, group);
+
+			for (unit_end += upa; unit < unit_end; unit++)
+				if (gi->cpu_map[unit] != NR_CPUS)
+					printk(KERN_CONT "%0*d ", cpu_width,
+					       gi->cpu_map[unit]);
+				else
+					printk(KERN_CONT "%s ", empty_str);
+		}
+	}
+	printk(KERN_CONT "\n");
+}
+
+/**
+ * pcpu_setup_first_chunk - initialize the first percpu chunk
+ * @ai: pcpu_alloc_info describing how to percpu area is shaped
+ * @base_addr: mapped address
+ *
+ * Initialize the first percpu chunk which contains the kernel static
+ * perpcu area.  This function is to be called from arch percpu area
+ * setup path.
+ *
+ * @ai contains all information necessary to initialize the first
+ * chunk and prime the dynamic percpu allocator.
+ *
+ * @ai->static_size is the size of static percpu area.
+ *
+ * @ai->reserved_size, if non-zero, specifies the amount of bytes to
+ * reserve after the static area in the first chunk.  This reserves
+ * the first chunk such that it's available only through reserved
+ * percpu allocation.  This is primarily used to serve module percpu
+ * static areas on architectures where the addressing model has
+ * limited offset range for symbol relocations to guarantee module
+ * percpu symbols fall inside the relocatable range.
+ *
+ * @ai->dyn_size determines the number of bytes available for dynamic
+ * allocation in the first chunk.  The area between @ai->static_size +
+ * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
+ *
+ * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
+ * and equal to or larger than @ai->static_size + @ai->reserved_size +
+ * @ai->dyn_size.
+ *
+ * @ai->atom_size is the allocation atom size and used as alignment
+ * for vm areas.
+ *
+ * @ai->alloc_size is the allocation size and always multiple of
+ * @ai->atom_size.  This is larger than @ai->atom_size if
+ * @ai->unit_size is larger than @ai->atom_size.
+ *
+ * @ai->nr_groups and @ai->groups describe virtual memory layout of
+ * percpu areas.  Units which should be colocated are put into the
+ * same group.  Dynamic VM areas will be allocated according to these
+ * groupings.  If @ai->nr_groups is zero, a single group containing
+ * all units is assumed.
+ *
+ * The caller should have mapped the first chunk at @base_addr and
+ * copied static data to each unit.
+ *
+ * If the first chunk ends up with both reserved and dynamic areas, it
+ * is served by two chunks - one to serve the core static and reserved
+ * areas and the other for the dynamic area.  They share the same vm
+ * and page map but uses different area allocation map to stay away
+ * from each other.  The latter chunk is circulated in the chunk slots
+ * and available for dynamic allocation like any other chunks.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
+				  void *base_addr)
+{
+	static char cpus_buf[4096] __initdata;
+	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
+	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
+	size_t dyn_size = ai->dyn_size;
+	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
+	struct pcpu_chunk *schunk, *dchunk = NULL;
+	unsigned long *group_offsets;
+	size_t *group_sizes;
+	unsigned long *unit_off;
+	unsigned int cpu;
+	int *unit_map;
+	int group, unit, i;
+
+	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
+
+#define PCPU_SETUP_BUG_ON(cond)	do {					\
+	if (unlikely(cond)) {						\
+		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
+		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
+		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
+		BUG();							\
+	}								\
+} while (0)
+
+	/* sanity checks */
+	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
+#ifdef CONFIG_SMP
+	PCPU_SETUP_BUG_ON(!ai->static_size);
+	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
+#endif
+	PCPU_SETUP_BUG_ON(!base_addr);
+	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
+	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
+	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
+	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
+	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
+	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
+
+	/* process group information and build config tables accordingly */
+	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
+	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
+	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
+	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
+
+	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
+		unit_map[cpu] = UINT_MAX;
+
+	pcpu_low_unit_cpu = NR_CPUS;
+	pcpu_high_unit_cpu = NR_CPUS;
+
+	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
+		const struct pcpu_group_info *gi = &ai->groups[group];
+
+		group_offsets[group] = gi->base_offset;
+		group_sizes[group] = gi->nr_units * ai->unit_size;
+
+		for (i = 0; i < gi->nr_units; i++) {
+			cpu = gi->cpu_map[i];
+			if (cpu == NR_CPUS)
+				continue;
+
+			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
+			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
+			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
+
+			unit_map[cpu] = unit + i;
+			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
+
+			/* determine low/high unit_cpu */
+			if (pcpu_low_unit_cpu == NR_CPUS ||
+			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
+				pcpu_low_unit_cpu = cpu;
+			if (pcpu_high_unit_cpu == NR_CPUS ||
+			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
+				pcpu_high_unit_cpu = cpu;
+		}
+	}
+	pcpu_nr_units = unit;
+
+	for_each_possible_cpu(cpu)
+		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
+
+	/* we're done parsing the input, undefine BUG macro and dump config */
+#undef PCPU_SETUP_BUG_ON
+	pcpu_dump_alloc_info(KERN_DEBUG, ai);
+
+	pcpu_nr_groups = ai->nr_groups;
+	pcpu_group_offsets = group_offsets;
+	pcpu_group_sizes = group_sizes;
+	pcpu_unit_map = unit_map;
+	pcpu_unit_offsets = unit_off;
+
+	/* determine basic parameters */
+	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
+	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
+	pcpu_atom_size = ai->atom_size;
+	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
+		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
+
+	/*
+	 * Allocate chunk slots.  The additional last slot is for
+	 * empty chunks.
+	 */
+	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
+	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
+	for (i = 0; i < pcpu_nr_slots; i++)
+		INIT_LIST_HEAD(&pcpu_slot[i]);
+
+	/*
+	 * Initialize static chunk.  If reserved_size is zero, the
+	 * static chunk covers static area + dynamic allocation area
+	 * in the first chunk.  If reserved_size is not zero, it
+	 * covers static area + reserved area (mostly used for module
+	 * static percpu allocation).
+	 */
+	schunk = alloc_bootmem(pcpu_chunk_struct_size);
+	INIT_LIST_HEAD(&schunk->list);
+	schunk->base_addr = base_addr;
+	schunk->map = smap;
+	schunk->map_alloc = ARRAY_SIZE(smap);
+	schunk->immutable = true;
+	bitmap_fill(schunk->populated, pcpu_unit_pages);
+
+	if (ai->reserved_size) {
+		schunk->free_size = ai->reserved_size;
+		pcpu_reserved_chunk = schunk;
+		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
+	} else {
+		schunk->free_size = dyn_size;
+		dyn_size = 0;			/* dynamic area covered */
+	}
+	schunk->contig_hint = schunk->free_size;
+
+	schunk->map[schunk->map_used++] = -ai->static_size;
+	if (schunk->free_size)
+		schunk->map[schunk->map_used++] = schunk->free_size;
+
+	/* init dynamic chunk if necessary */
+	if (dyn_size) {
+		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
+		INIT_LIST_HEAD(&dchunk->list);
+		dchunk->base_addr = base_addr;
+		dchunk->map = dmap;
+		dchunk->map_alloc = ARRAY_SIZE(dmap);
+		dchunk->immutable = true;
+		bitmap_fill(dchunk->populated, pcpu_unit_pages);
+
+		dchunk->contig_hint = dchunk->free_size = dyn_size;
+		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
+		dchunk->map[dchunk->map_used++] = dchunk->free_size;
+	}
+
+	/* link the first chunk in */
+	pcpu_first_chunk = dchunk ?: schunk;
+	pcpu_chunk_relocate(pcpu_first_chunk, -1);
+
+	/* we're done */
+	pcpu_base_addr = base_addr;
+	return 0;
+}
+
+#ifdef CONFIG_SMP
+
+const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
+	[PCPU_FC_AUTO]	= "auto",
+	[PCPU_FC_EMBED]	= "embed",
+	[PCPU_FC_PAGE]	= "page",
+};
+
+enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
+
+static int __init percpu_alloc_setup(char *str)
+{
+	if (0)
+		/* nada */;
+#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
+	else if (!strcmp(str, "embed"))
+		pcpu_chosen_fc = PCPU_FC_EMBED;
+#endif
+#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
+	else if (!strcmp(str, "page"))
+		pcpu_chosen_fc = PCPU_FC_PAGE;
+#endif
+	else
+		pr_warning("PERCPU: unknown allocator %s specified\n", str);
+
+	return 0;
+}
+early_param("percpu_alloc", percpu_alloc_setup);
+
+/*
+ * pcpu_embed_first_chunk() is used by the generic percpu setup.
+ * Build it if needed by the arch config or the generic setup is going
+ * to be used.
+ */
+#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
+	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
+#define BUILD_EMBED_FIRST_CHUNK
+#endif
+
+/* build pcpu_page_first_chunk() iff needed by the arch config */
+#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
+#define BUILD_PAGE_FIRST_CHUNK
+#endif
+
+/* pcpu_build_alloc_info() is used by both embed and page first chunk */
+#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
+/**
+ * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
+ * @reserved_size: the size of reserved percpu area in bytes
+ * @dyn_size: minimum free size for dynamic allocation in bytes
+ * @atom_size: allocation atom size
+ * @cpu_distance_fn: callback to determine distance between cpus, optional
+ *
+ * This function determines grouping of units, their mappings to cpus
+ * and other parameters considering needed percpu size, allocation
+ * atom size and distances between CPUs.
+ *
+ * Groups are always mutliples of atom size and CPUs which are of
+ * LOCAL_DISTANCE both ways are grouped together and share space for
+ * units in the same group.  The returned configuration is guaranteed
+ * to have CPUs on different nodes on different groups and >=75% usage
+ * of allocated virtual address space.
+ *
+ * RETURNS:
+ * On success, pointer to the new allocation_info is returned.  On
+ * failure, ERR_PTR value is returned.
+ */
+static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
+				size_t reserved_size, size_t dyn_size,
+				size_t atom_size,
+				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
+{
+	static int group_map[NR_CPUS] __initdata;
+	static int group_cnt[NR_CPUS] __initdata;
+	const size_t static_size = __per_cpu_end - __per_cpu_start;
+	int nr_groups = 1, nr_units = 0;
+	size_t size_sum, min_unit_size, alloc_size;
+	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
+	int last_allocs, group, unit;
+	unsigned int cpu, tcpu;
+	struct pcpu_alloc_info *ai;
+	unsigned int *cpu_map;
+
+	/* this function may be called multiple times */
+	memset(group_map, 0, sizeof(group_map));
+	memset(group_cnt, 0, sizeof(group_cnt));
+
+	/* calculate size_sum and ensure dyn_size is enough for early alloc */
+	size_sum = PFN_ALIGN(static_size + reserved_size +
+			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
+	dyn_size = size_sum - static_size - reserved_size;
+
+	/*
+	 * Determine min_unit_size, alloc_size and max_upa such that
+	 * alloc_size is multiple of atom_size and is the smallest
+	 * which can accommodate 4k aligned segments which are equal to
+	 * or larger than min_unit_size.
+	 */
+	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
+
+	alloc_size = roundup(min_unit_size, atom_size);
+	upa = alloc_size / min_unit_size;
+	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
+		upa--;
+	max_upa = upa;
+
+	/* group cpus according to their proximity */
+	for_each_possible_cpu(cpu) {
+		group = 0;
+	next_group:
+		for_each_possible_cpu(tcpu) {
+			if (cpu == tcpu)
+				break;
+			if (group_map[tcpu] == group && cpu_distance_fn &&
+			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
+			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
+				group++;
+				nr_groups = max(nr_groups, group + 1);
+				goto next_group;
+			}
+		}
+		group_map[cpu] = group;
+		group_cnt[group]++;
+	}
+
+	/*
+	 * Expand unit size until address space usage goes over 75%
+	 * and then as much as possible without using more address
+	 * space.
+	 */
+	last_allocs = INT_MAX;
+	for (upa = max_upa; upa; upa--) {
+		int allocs = 0, wasted = 0;
+
+		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
+			continue;
+
+		for (group = 0; group < nr_groups; group++) {
+			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
+			allocs += this_allocs;
+			wasted += this_allocs * upa - group_cnt[group];
+		}
+
+		/*
+		 * Don't accept if wastage is over 1/3.  The
+		 * greater-than comparison ensures upa==1 always
+		 * passes the following check.
+		 */
+		if (wasted > num_possible_cpus() / 3)
+			continue;
+
+		/* and then don't consume more memory */
+		if (allocs > last_allocs)
+			break;
+		last_allocs = allocs;
+		best_upa = upa;
+	}
+	upa = best_upa;
+
+	/* allocate and fill alloc_info */
+	for (group = 0; group < nr_groups; group++)
+		nr_units += roundup(group_cnt[group], upa);
+
+	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
+	if (!ai)
+		return ERR_PTR(-ENOMEM);
+	cpu_map = ai->groups[0].cpu_map;
+
+	for (group = 0; group < nr_groups; group++) {
+		ai->groups[group].cpu_map = cpu_map;
+		cpu_map += roundup(group_cnt[group], upa);
+	}
+
+	ai->static_size = static_size;
+	ai->reserved_size = reserved_size;
+	ai->dyn_size = dyn_size;
+	ai->unit_size = alloc_size / upa;
+	ai->atom_size = atom_size;
+	ai->alloc_size = alloc_size;
+
+	for (group = 0, unit = 0; group_cnt[group]; group++) {
+		struct pcpu_group_info *gi = &ai->groups[group];
+
+		/*
+		 * Initialize base_offset as if all groups are located
+		 * back-to-back.  The caller should update this to
+		 * reflect actual allocation.
+		 */
+		gi->base_offset = unit * ai->unit_size;
+
+		for_each_possible_cpu(cpu)
+			if (group_map[cpu] == group)
+				gi->cpu_map[gi->nr_units++] = cpu;
+		gi->nr_units = roundup(gi->nr_units, upa);
+		unit += gi->nr_units;
+	}
+	BUG_ON(unit != nr_units);
+
+	return ai;
+}
+#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
+
+#if defined(BUILD_EMBED_FIRST_CHUNK)
+/**
+ * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
+ * @reserved_size: the size of reserved percpu area in bytes
+ * @dyn_size: minimum free size for dynamic allocation in bytes
+ * @atom_size: allocation atom size
+ * @cpu_distance_fn: callback to determine distance between cpus, optional
+ * @alloc_fn: function to allocate percpu page
+ * @free_fn: function to free percpu page
+ *
+ * This is a helper to ease setting up embedded first percpu chunk and
+ * can be called where pcpu_setup_first_chunk() is expected.
+ *
+ * If this function is used to setup the first chunk, it is allocated
+ * by calling @alloc_fn and used as-is without being mapped into
+ * vmalloc area.  Allocations are always whole multiples of @atom_size
+ * aligned to @atom_size.
+ *
+ * This enables the first chunk to piggy back on the linear physical
+ * mapping which often uses larger page size.  Please note that this
+ * can result in very sparse cpu->unit mapping on NUMA machines thus
+ * requiring large vmalloc address space.  Don't use this allocator if
+ * vmalloc space is not orders of magnitude larger than distances
+ * between node memory addresses (ie. 32bit NUMA machines).
+ *
+ * @dyn_size specifies the minimum dynamic area size.
+ *
+ * If the needed size is smaller than the minimum or specified unit
+ * size, the leftover is returned using @free_fn.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
+				  size_t atom_size,
+				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
+				  pcpu_fc_alloc_fn_t alloc_fn,
+				  pcpu_fc_free_fn_t free_fn)
+{
+	void *base = (void *)ULONG_MAX;
+	void **areas = NULL;
+	struct pcpu_alloc_info *ai;
+	size_t size_sum, areas_size, max_distance;
+	int group, i, rc;
+
+	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
+				   cpu_distance_fn);
+	if (IS_ERR(ai))
+		return PTR_ERR(ai);
+
+	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
+	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
+
+	areas = alloc_bootmem_nopanic(areas_size);
+	if (!areas) {
+		rc = -ENOMEM;
+		goto out_free;
+	}
+
+	/* allocate, copy and determine base address */
+	for (group = 0; group < ai->nr_groups; group++) {
+		struct pcpu_group_info *gi = &ai->groups[group];
+		unsigned int cpu = NR_CPUS;
+		void *ptr;
+
+		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
+			cpu = gi->cpu_map[i];
+		BUG_ON(cpu == NR_CPUS);
+
+		/* allocate space for the whole group */
+		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
+		if (!ptr) {
+			rc = -ENOMEM;
+			goto out_free_areas;
+		}
+		/* kmemleak tracks the percpu allocations separately */
+		kmemleak_free(ptr);
+		areas[group] = ptr;
+
+		base = min(ptr, base);
+	}
+
+	/*
+	 * Copy data and free unused parts.  This should happen after all
+	 * allocations are complete; otherwise, we may end up with
+	 * overlapping groups.
+	 */
+	for (group = 0; group < ai->nr_groups; group++) {
+		struct pcpu_group_info *gi = &ai->groups[group];
+		void *ptr = areas[group];
+
+		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
+			if (gi->cpu_map[i] == NR_CPUS) {
+				/* unused unit, free whole */
+				free_fn(ptr, ai->unit_size);
+				continue;
+			}
+			/* copy and return the unused part */
+			memcpy(ptr, __per_cpu_load, ai->static_size);
+			free_fn(ptr + size_sum, ai->unit_size - size_sum);
+		}
+	}
+
+	/* base address is now known, determine group base offsets */
+	max_distance = 0;
+	for (group = 0; group < ai->nr_groups; group++) {
+		ai->groups[group].base_offset = areas[group] - base;
+		max_distance = max_t(size_t, max_distance,
+				     ai->groups[group].base_offset);
+	}
+	max_distance += ai->unit_size;
+
+	/* warn if maximum distance is further than 75% of vmalloc space */
+	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
+		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
+			   "space 0x%lx\n", max_distance,
+			   (unsigned long)(VMALLOC_END - VMALLOC_START));
+#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
+		/* and fail if we have fallback */
+		rc = -EINVAL;
+		goto out_free;
+#endif
+	}
+
+	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
+		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
+		ai->dyn_size, ai->unit_size);
+
+	rc = pcpu_setup_first_chunk(ai, base);
+	goto out_free;
+
+out_free_areas:
+	for (group = 0; group < ai->nr_groups; group++)
+		free_fn(areas[group],
+			ai->groups[group].nr_units * ai->unit_size);
+out_free:
+	pcpu_free_alloc_info(ai);
+	if (areas)
+		free_bootmem(__pa(areas), areas_size);
+	return rc;
+}
+#endif /* BUILD_EMBED_FIRST_CHUNK */
+
+#ifdef BUILD_PAGE_FIRST_CHUNK
+/**
+ * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
+ * @reserved_size: the size of reserved percpu area in bytes
+ * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
+ * @free_fn: function to free percpu page, always called with PAGE_SIZE
+ * @populate_pte_fn: function to populate pte
+ *
+ * This is a helper to ease setting up page-remapped first percpu
+ * chunk and can be called where pcpu_setup_first_chunk() is expected.
+ *
+ * This is the basic allocator.  Static percpu area is allocated
+ * page-by-page into vmalloc area.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int __init pcpu_page_first_chunk(size_t reserved_size,
+				 pcpu_fc_alloc_fn_t alloc_fn,
+				 pcpu_fc_free_fn_t free_fn,
+				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
+{
+	static struct vm_struct vm;
+	struct pcpu_alloc_info *ai;
+	char psize_str[16];
+	int unit_pages;
+	size_t pages_size;
+	struct page **pages;
+	int unit, i, j, rc;
+
+	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
+
+	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
+	if (IS_ERR(ai))
+		return PTR_ERR(ai);
+	BUG_ON(ai->nr_groups != 1);
+	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
+
+	unit_pages = ai->unit_size >> PAGE_SHIFT;
+
+	/* unaligned allocations can't be freed, round up to page size */
+	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
+			       sizeof(pages[0]));
+	pages = alloc_bootmem(pages_size);
+
+	/* allocate pages */
+	j = 0;
+	for (unit = 0; unit < num_possible_cpus(); unit++)
+		for (i = 0; i < unit_pages; i++) {
+			unsigned int cpu = ai->groups[0].cpu_map[unit];
+			void *ptr;
+
+			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
+			if (!ptr) {
+				pr_warning("PERCPU: failed to allocate %s page "
+					   "for cpu%u\n", psize_str, cpu);
+				goto enomem;
+			}
+			/* kmemleak tracks the percpu allocations separately */
+			kmemleak_free(ptr);
+			pages[j++] = virt_to_page(ptr);
+		}
+
+	/* allocate vm area, map the pages and copy static data */
+	vm.flags = VM_ALLOC;
+	vm.size = num_possible_cpus() * ai->unit_size;
+	vm_area_register_early(&vm, PAGE_SIZE);
+
+	for (unit = 0; unit < num_possible_cpus(); unit++) {
+		unsigned long unit_addr =
+			(unsigned long)vm.addr + unit * ai->unit_size;
+
+		for (i = 0; i < unit_pages; i++)
+			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
+
+		/* pte already populated, the following shouldn't fail */
+		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
+				      unit_pages);
+		if (rc < 0)
+			panic("failed to map percpu area, err=%d\n", rc);
+
+		/*
+		 * FIXME: Archs with virtual cache should flush local
+		 * cache for the linear mapping here - something
+		 * equivalent to flush_cache_vmap() on the local cpu.
+		 * flush_cache_vmap() can't be used as most supporting
+		 * data structures are not set up yet.
+		 */
+
+		/* copy static data */
+		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
+	}
+
+	/* we're ready, commit */
+	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
+		unit_pages, psize_str, vm.addr, ai->static_size,
+		ai->reserved_size, ai->dyn_size);
+
+	rc = pcpu_setup_first_chunk(ai, vm.addr);
+	goto out_free_ar;
+
+enomem:
+	while (--j >= 0)
+		free_fn(page_address(pages[j]), PAGE_SIZE);
+	rc = -ENOMEM;
+out_free_ar:
+	free_bootmem(__pa(pages), pages_size);
+	pcpu_free_alloc_info(ai);
+	return rc;
+}
+#endif /* BUILD_PAGE_FIRST_CHUNK */
+
+#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
+/*
+ * Generic SMP percpu area setup.
+ *
+ * The embedding helper is used because its behavior closely resembles
+ * the original non-dynamic generic percpu area setup.  This is
+ * important because many archs have addressing restrictions and might
+ * fail if the percpu area is located far away from the previous
+ * location.  As an added bonus, in non-NUMA cases, embedding is
+ * generally a good idea TLB-wise because percpu area can piggy back
+ * on the physical linear memory mapping which uses large page
+ * mappings on applicable archs.
+ */
+unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
+EXPORT_SYMBOL(__per_cpu_offset);
+
+static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
+				       size_t align)
+{
+	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
+}
+
+static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
+{
+	free_bootmem(__pa(ptr), size);
+}
+
+void __init setup_per_cpu_areas(void)
+{
+	unsigned long delta;
+	unsigned int cpu;
+	int rc;
+
+	/*
+	 * Always reserve area for module percpu variables.  That's
+	 * what the legacy allocator did.
+	 */
+	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
+				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
+				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
+	if (rc < 0)
+		panic("Failed to initialize percpu areas.");
+
+	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
+	for_each_possible_cpu(cpu)
+		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
+}
+#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
+
+#else	/* CONFIG_SMP */
+
+/*
+ * UP percpu area setup.
+ *
+ * UP always uses km-based percpu allocator with identity mapping.
+ * Static percpu variables are indistinguishable from the usual static
+ * variables and don't require any special preparation.
+ */
+void __init setup_per_cpu_areas(void)
+{
+	const size_t unit_size =
+		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
+					 PERCPU_DYNAMIC_RESERVE));
+	struct pcpu_alloc_info *ai;
+	void *fc;
+
+	ai = pcpu_alloc_alloc_info(1, 1);
+	fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
+	if (!ai || !fc)
+		panic("Failed to allocate memory for percpu areas.");
+	/* kmemleak tracks the percpu allocations separately */
+	kmemleak_free(fc);
+
+	ai->dyn_size = unit_size;
+	ai->unit_size = unit_size;
+	ai->atom_size = unit_size;
+	ai->alloc_size = unit_size;
+	ai->groups[0].nr_units = 1;
+	ai->groups[0].cpu_map[0] = 0;
+
+	if (pcpu_setup_first_chunk(ai, fc) < 0)
+		panic("Failed to initialize percpu areas.");
+}
+
+#endif	/* CONFIG_SMP */
+
+/*
+ * First and reserved chunks are initialized with temporary allocation
+ * map in initdata so that they can be used before slab is online.
+ * This function is called after slab is brought up and replaces those
+ * with properly allocated maps.
+ */
+void __init percpu_init_late(void)
+{
+	struct pcpu_chunk *target_chunks[] =
+		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
+	struct pcpu_chunk *chunk;
+	unsigned long flags;
+	int i;
+
+	for (i = 0; (chunk = target_chunks[i]); i++) {
+		int *map;
+		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
+
+		BUILD_BUG_ON(size > PAGE_SIZE);
+
+		map = pcpu_mem_zalloc(size);
+		BUG_ON(!map);
+
+		spin_lock_irqsave(&pcpu_lock, flags);
+		memcpy(map, chunk->map, size);
+		chunk->map = map;
+		spin_unlock_irqrestore(&pcpu_lock, flags);
+	}
+}