[T106][ZXW-22]7520V3SCV2.01.01.02P42U09_VEC_V0.8_AP_VEC origin source commit

Change-Id: Ic6e05d89ecd62fc34f82b23dcf306c93764aec4b
diff --git a/ap/os/linux/linux-3.4.x/mm/truncate.c b/ap/os/linux/linux-3.4.x/mm/truncate.c
new file mode 100644
index 0000000..57625f7
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/mm/truncate.c
@@ -0,0 +1,699 @@
+/*
+ * mm/truncate.c - code for taking down pages from address_spaces
+ *
+ * Copyright (C) 2002, Linus Torvalds
+ *
+ * 10Sep2002	Andrew Morton
+ *		Initial version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/backing-dev.h>
+#include <linux/gfp.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/export.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/pagevec.h>
+#include <linux/task_io_accounting_ops.h>
+#include <linux/buffer_head.h>	/* grr. try_to_release_page,
+				   do_invalidatepage */
+#include <linux/cleancache.h>
+#include <linux/rmap.h>
+#include "internal.h"
+
+
+/**
+ * do_invalidatepage - invalidate part or all of a page
+ * @page: the page which is affected
+ * @offset: the index of the truncation point
+ *
+ * do_invalidatepage() is called when all or part of the page has become
+ * invalidated by a truncate operation.
+ *
+ * do_invalidatepage() does not have to release all buffers, but it must
+ * ensure that no dirty buffer is left outside @offset and that no I/O
+ * is underway against any of the blocks which are outside the truncation
+ * point.  Because the caller is about to free (and possibly reuse) those
+ * blocks on-disk.
+ */
+void do_invalidatepage(struct page *page, unsigned long offset)
+{
+	void (*invalidatepage)(struct page *, unsigned long);
+	invalidatepage = page->mapping->a_ops->invalidatepage;
+#ifdef CONFIG_BLOCK
+	if (!invalidatepage)
+		invalidatepage = block_invalidatepage;
+#endif
+	if (invalidatepage)
+		(*invalidatepage)(page, offset);
+}
+
+static inline void truncate_partial_page(struct page *page, unsigned partial)
+{
+	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
+	cleancache_invalidate_page(page->mapping, page);
+	if (page_has_private(page))
+		do_invalidatepage(page, partial);
+}
+
+/*
+ * This cancels just the dirty bit on the kernel page itself, it
+ * does NOT actually remove dirty bits on any mmap's that may be
+ * around. It also leaves the page tagged dirty, so any sync
+ * activity will still find it on the dirty lists, and in particular,
+ * clear_page_dirty_for_io() will still look at the dirty bits in
+ * the VM.
+ *
+ * Doing this should *normally* only ever be done when a page
+ * is truncated, and is not actually mapped anywhere at all. However,
+ * fs/buffer.c does this when it notices that somebody has cleaned
+ * out all the buffers on a page without actually doing it through
+ * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
+ */
+void cancel_dirty_page(struct page *page, unsigned int account_size)
+{
+	if (TestClearPageDirty(page)) {
+		struct address_space *mapping = page->mapping;
+		if (mapping && mapping_cap_account_dirty(mapping)) {
+			dec_zone_page_state(page, NR_FILE_DIRTY);
+			dec_bdi_stat(mapping->backing_dev_info,
+					BDI_RECLAIMABLE);
+			if (account_size)
+				task_io_account_cancelled_write(account_size);
+		}
+	}
+}
+EXPORT_SYMBOL(cancel_dirty_page);
+
+/*
+ * If truncate cannot remove the fs-private metadata from the page, the page
+ * becomes orphaned.  It will be left on the LRU and may even be mapped into
+ * user pagetables if we're racing with filemap_fault().
+ *
+ * We need to bale out if page->mapping is no longer equal to the original
+ * mapping.  This happens a) when the VM reclaimed the page while we waited on
+ * its lock, b) when a concurrent invalidate_mapping_pages got there first and
+ * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
+ */
+static int
+truncate_complete_page(struct address_space *mapping, struct page *page)
+{
+	if (page->mapping != mapping)
+		return -EIO;
+
+	if (page_has_private(page))
+		do_invalidatepage(page, 0);
+
+	cancel_dirty_page(page, PAGE_CACHE_SIZE);
+
+	clear_page_mlock(page);
+	ClearPageMappedToDisk(page);
+	delete_from_page_cache(page);
+	return 0;
+}
+
+/*
+ * This is for invalidate_mapping_pages().  That function can be called at
+ * any time, and is not supposed to throw away dirty pages.  But pages can
+ * be marked dirty at any time too, so use remove_mapping which safely
+ * discards clean, unused pages.
+ *
+ * Returns non-zero if the page was successfully invalidated.
+ */
+static int
+invalidate_complete_page(struct address_space *mapping, struct page *page)
+{
+	int ret;
+
+	if (page->mapping != mapping)
+		return 0;
+
+	if (page_has_private(page) && !try_to_release_page(page, 0))
+		return 0;
+
+	clear_page_mlock(page);
+	ret = remove_mapping(mapping, page);
+
+	return ret;
+}
+
+int truncate_inode_page(struct address_space *mapping, struct page *page)
+{
+	if (page_mapped(page)) {
+		unmap_mapping_range(mapping,
+				   (loff_t)page->index << PAGE_CACHE_SHIFT,
+				   PAGE_CACHE_SIZE, 0);
+	}
+	return truncate_complete_page(mapping, page);
+}
+
+/*
+ * Used to get rid of pages on hardware memory corruption.
+ */
+int generic_error_remove_page(struct address_space *mapping, struct page *page)
+{
+	if (!mapping)
+		return -EINVAL;
+	/*
+	 * Only punch for normal data pages for now.
+	 * Handling other types like directories would need more auditing.
+	 */
+	if (!S_ISREG(mapping->host->i_mode))
+		return -EIO;
+	return truncate_inode_page(mapping, page);
+}
+EXPORT_SYMBOL(generic_error_remove_page);
+
+/*
+ * Safely invalidate one page from its pagecache mapping.
+ * It only drops clean, unused pages. The page must be locked.
+ *
+ * Returns 1 if the page is successfully invalidated, otherwise 0.
+ */
+int invalidate_inode_page(struct page *page)
+{
+	struct address_space *mapping = page_mapping(page);
+	if (!mapping)
+		return 0;
+	if (PageDirty(page) || PageWriteback(page))
+		return 0;
+	if (page_mapped(page))
+		return 0;
+	return invalidate_complete_page(mapping, page);
+}
+
+/**
+ * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
+ * @mapping: mapping to truncate
+ * @lstart: offset from which to truncate
+ * @lend: offset to which to truncate
+ *
+ * Truncate the page cache, removing the pages that are between
+ * specified offsets (and zeroing out partial page
+ * (if lstart is not page aligned)).
+ *
+ * Truncate takes two passes - the first pass is nonblocking.  It will not
+ * block on page locks and it will not block on writeback.  The second pass
+ * will wait.  This is to prevent as much IO as possible in the affected region.
+ * The first pass will remove most pages, so the search cost of the second pass
+ * is low.
+ *
+ * We pass down the cache-hot hint to the page freeing code.  Even if the
+ * mapping is large, it is probably the case that the final pages are the most
+ * recently touched, and freeing happens in ascending file offset order.
+ */
+void truncate_inode_pages_range(struct address_space *mapping,
+				loff_t lstart, loff_t lend)
+{
+	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
+	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
+	struct pagevec pvec;
+	pgoff_t index;
+	pgoff_t end;
+	int i;
+
+	cleancache_invalidate_inode(mapping);
+	if (mapping->nrpages == 0)
+		return;
+
+	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
+	end = (lend >> PAGE_CACHE_SHIFT);
+
+	pagevec_init(&pvec, 0);
+	index = start;
+	while (index <= end && pagevec_lookup(&pvec, mapping, index,
+			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
+		mem_cgroup_uncharge_start();
+		for (i = 0; i < pagevec_count(&pvec); i++) {
+			struct page *page = pvec.pages[i];
+
+			/* We rely upon deletion not changing page->index */
+			index = page->index;
+			if (index > end)
+				break;
+
+			if (!trylock_page(page))
+				continue;
+			WARN_ON(page->index != index);
+			if (PageWriteback(page)) {
+				unlock_page(page);
+				continue;
+			}
+			truncate_inode_page(mapping, page);
+			unlock_page(page);
+		}
+		pagevec_release(&pvec);
+		mem_cgroup_uncharge_end();
+		cond_resched();
+		index++;
+	}
+
+	if (partial) {
+		struct page *page = find_lock_page(mapping, start - 1);
+		if (page) {
+			wait_on_page_writeback(page);
+			truncate_partial_page(page, partial);
+			unlock_page(page);
+			page_cache_release(page);
+		}
+	}
+
+	index = start;
+	for ( ; ; ) {
+		cond_resched();
+		if (!pagevec_lookup(&pvec, mapping, index,
+			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
+			if (index == start)
+				break;
+			index = start;
+			continue;
+		}
+		if (index == start && pvec.pages[0]->index > end) {
+			pagevec_release(&pvec);
+			break;
+		}
+		mem_cgroup_uncharge_start();
+		for (i = 0; i < pagevec_count(&pvec); i++) {
+			struct page *page = pvec.pages[i];
+
+			/* We rely upon deletion not changing page->index */
+			index = page->index;
+			if (index > end)
+				break;
+
+			lock_page(page);
+			WARN_ON(page->index != index);
+			wait_on_page_writeback(page);
+			truncate_inode_page(mapping, page);
+			unlock_page(page);
+		}
+		pagevec_release(&pvec);
+		mem_cgroup_uncharge_end();
+		index++;
+	}
+	cleancache_invalidate_inode(mapping);
+}
+EXPORT_SYMBOL(truncate_inode_pages_range);
+
+/**
+ * truncate_inode_pages - truncate *all* the pages from an offset
+ * @mapping: mapping to truncate
+ * @lstart: offset from which to truncate
+ *
+ * Called under (and serialised by) inode->i_mutex.
+ *
+ * Note: When this function returns, there can be a page in the process of
+ * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
+ * mapping->nrpages can be non-zero when this function returns even after
+ * truncation of the whole mapping.
+ */
+void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
+{
+	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
+}
+EXPORT_SYMBOL(truncate_inode_pages);
+
+/**
+ * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
+ * @mapping: the address_space which holds the pages to invalidate
+ * @start: the offset 'from' which to invalidate
+ * @end: the offset 'to' which to invalidate (inclusive)
+ *
+ * This function only removes the unlocked pages, if you want to
+ * remove all the pages of one inode, you must call truncate_inode_pages.
+ *
+ * invalidate_mapping_pages() will not block on IO activity. It will not
+ * invalidate pages which are dirty, locked, under writeback or mapped into
+ * pagetables.
+ */
+unsigned long invalidate_mapping_pages(struct address_space *mapping,
+		pgoff_t start, pgoff_t end)
+{
+	struct pagevec pvec;
+	pgoff_t index = start;
+	unsigned long ret;
+	unsigned long count = 0;
+	int i;
+
+	/*
+	 * Note: this function may get called on a shmem/tmpfs mapping:
+	 * pagevec_lookup() might then return 0 prematurely (because it
+	 * got a gangful of swap entries); but it's hardly worth worrying
+	 * about - it can rarely have anything to free from such a mapping
+	 * (most pages are dirty), and already skips over any difficulties.
+	 */
+
+	pagevec_init(&pvec, 0);
+	while (index <= end && pagevec_lookup(&pvec, mapping, index,
+			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
+		mem_cgroup_uncharge_start();
+		for (i = 0; i < pagevec_count(&pvec); i++) {
+			struct page *page = pvec.pages[i];
+
+			/* We rely upon deletion not changing page->index */
+			index = page->index;
+			if (index > end)
+				break;
+
+			if (!trylock_page(page))
+				continue;
+			WARN_ON(page->index != index);
+			ret = invalidate_inode_page(page);
+			unlock_page(page);
+			/*
+			 * Invalidation is a hint that the page is no longer
+			 * of interest and try to speed up its reclaim.
+			 */
+			if (!ret)
+				deactivate_page(page);
+			count += ret;
+		}
+		pagevec_release(&pvec);
+		mem_cgroup_uncharge_end();
+		cond_resched();
+		index++;
+	}
+	return count;
+}
+EXPORT_SYMBOL(invalidate_mapping_pages);
+
+/*
+ * This is like invalidate_complete_page(), except it ignores the page's
+ * refcount.  We do this because invalidate_inode_pages2() needs stronger
+ * invalidation guarantees, and cannot afford to leave pages behind because
+ * shrink_page_list() has a temp ref on them, or because they're transiently
+ * sitting in the lru_cache_add() pagevecs.
+ */
+static int
+invalidate_complete_page2(struct address_space *mapping, struct page *page)
+{
+	if (page->mapping != mapping)
+		return 0;
+
+	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
+		return 0;
+
+	clear_page_mlock(page);
+
+	spin_lock_irq(&mapping->tree_lock);
+	if (PageDirty(page))
+		goto failed;
+
+	BUG_ON(page_has_private(page));
+	__delete_from_page_cache(page);
+	spin_unlock_irq(&mapping->tree_lock);
+	mem_cgroup_uncharge_cache_page(page);
+
+	if (mapping->a_ops->freepage)
+		mapping->a_ops->freepage(page);
+
+	page_cache_release(page);	/* pagecache ref */
+	return 1;
+failed:
+	spin_unlock_irq(&mapping->tree_lock);
+	return 0;
+}
+
+static int do_launder_page(struct address_space *mapping, struct page *page)
+{
+	if (!PageDirty(page))
+		return 0;
+	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
+		return 0;
+	return mapping->a_ops->launder_page(page);
+}
+
+/**
+ * invalidate_inode_pages2_range - remove range of pages from an address_space
+ * @mapping: the address_space
+ * @start: the page offset 'from' which to invalidate
+ * @end: the page offset 'to' which to invalidate (inclusive)
+ *
+ * Any pages which are found to be mapped into pagetables are unmapped prior to
+ * invalidation.
+ *
+ * Returns -EBUSY if any pages could not be invalidated.
+ */
+int invalidate_inode_pages2_range(struct address_space *mapping,
+				  pgoff_t start, pgoff_t end)
+{
+	struct pagevec pvec;
+	pgoff_t index;
+	int i;
+	int ret = 0;
+	int ret2 = 0;
+	int did_range_unmap = 0;
+
+	cleancache_invalidate_inode(mapping);
+	pagevec_init(&pvec, 0);
+	index = start;
+	while (index <= end && pagevec_lookup(&pvec, mapping, index,
+			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
+		mem_cgroup_uncharge_start();
+		for (i = 0; i < pagevec_count(&pvec); i++) {
+			struct page *page = pvec.pages[i];
+
+			/* We rely upon deletion not changing page->index */
+			index = page->index;
+			if (index > end)
+				break;
+
+			lock_page(page);
+			WARN_ON(page->index != index);
+			if (page->mapping != mapping) {
+				unlock_page(page);
+				continue;
+			}
+			wait_on_page_writeback(page);
+			if (page_mapped(page)) {
+				if (!did_range_unmap) {
+					/*
+					 * Zap the rest of the file in one hit.
+					 */
+					unmap_mapping_range(mapping,
+					   (loff_t)index << PAGE_CACHE_SHIFT,
+					   (loff_t)(1 + end - index)
+							 << PAGE_CACHE_SHIFT,
+					    0);
+					did_range_unmap = 1;
+				} else {
+					/*
+					 * Just zap this page
+					 */
+					unmap_mapping_range(mapping,
+					   (loff_t)index << PAGE_CACHE_SHIFT,
+					   PAGE_CACHE_SIZE, 0);
+				}
+			}
+			BUG_ON(page_mapped(page));
+			ret2 = do_launder_page(mapping, page);
+			if (ret2 == 0) {
+				if (!invalidate_complete_page2(mapping, page))
+					ret2 = -EBUSY;
+			}
+			if (ret2 < 0)
+				ret = ret2;
+			unlock_page(page);
+		}
+		pagevec_release(&pvec);
+		mem_cgroup_uncharge_end();
+		cond_resched();
+		index++;
+	}
+	cleancache_invalidate_inode(mapping);
+	return ret;
+}
+EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
+
+/**
+ * invalidate_inode_pages2 - remove all pages from an address_space
+ * @mapping: the address_space
+ *
+ * Any pages which are found to be mapped into pagetables are unmapped prior to
+ * invalidation.
+ *
+ * Returns -EBUSY if any pages could not be invalidated.
+ */
+int invalidate_inode_pages2(struct address_space *mapping)
+{
+	return invalidate_inode_pages2_range(mapping, 0, -1);
+}
+EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
+
+/**
+ * truncate_pagecache - unmap and remove pagecache that has been truncated
+ * @inode: inode
+ * @oldsize: old file size
+ * @newsize: new file size
+ *
+ * inode's new i_size must already be written before truncate_pagecache
+ * is called.
+ *
+ * This function should typically be called before the filesystem
+ * releases resources associated with the freed range (eg. deallocates
+ * blocks). This way, pagecache will always stay logically coherent
+ * with on-disk format, and the filesystem would not have to deal with
+ * situations such as writepage being called for a page that has already
+ * had its underlying blocks deallocated.
+ */
+void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
+{
+	struct address_space *mapping = inode->i_mapping;
+	loff_t holebegin = round_up(newsize, PAGE_SIZE);
+
+	/*
+	 * unmap_mapping_range is called twice, first simply for
+	 * efficiency so that truncate_inode_pages does fewer
+	 * single-page unmaps.  However after this first call, and
+	 * before truncate_inode_pages finishes, it is possible for
+	 * private pages to be COWed, which remain after
+	 * truncate_inode_pages finishes, hence the second
+	 * unmap_mapping_range call must be made for correctness.
+	 */
+	unmap_mapping_range(mapping, holebegin, 0, 1);
+	truncate_inode_pages(mapping, newsize);
+	unmap_mapping_range(mapping, holebegin, 0, 1);
+}
+EXPORT_SYMBOL(truncate_pagecache);
+
+/**
+ * truncate_setsize - update inode and pagecache for a new file size
+ * @inode: inode
+ * @newsize: new file size
+ *
+ * truncate_setsize updates i_size and performs pagecache truncation (if
+ * necessary) to @newsize. It will be typically be called from the filesystem's
+ * setattr function when ATTR_SIZE is passed in.
+ *
+ * Must be called with inode_mutex held and before all filesystem specific
+ * block truncation has been performed.
+ */
+void truncate_setsize(struct inode *inode, loff_t newsize)
+{
+	loff_t oldsize = inode->i_size;
+	i_size_write(inode, newsize);
+
+	if (newsize > oldsize)
+		pagecache_isize_extended(inode, oldsize, newsize);
+	truncate_pagecache(inode, oldsize, newsize);
+}
+EXPORT_SYMBOL(truncate_setsize);
+
+/**
+ * pagecache_isize_extended - update pagecache after extension of i_size
+ * @inode:	inode for which i_size was extended
+ * @from:	original inode size
+ * @to:		new inode size
+ *
+ * Handle extension of inode size either caused by extending truncate or by
+ * write starting after current i_size. We mark the page straddling current
+ * i_size RO so that page_mkwrite() is called on the nearest write access to
+ * the page.  This way filesystem can be sure that page_mkwrite() is called on
+ * the page before user writes to the page via mmap after the i_size has been
+ * changed.
+ *
+ * The function must be called after i_size is updated so that page fault
+ * coming after we unlock the page will already see the new i_size.
+ * The function must be called while we still hold i_mutex - this not only
+ * makes sure i_size is stable but also that userspace cannot observe new
+ * i_size value before we are prepared to store mmap writes at new inode size.
+ */
+void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
+{
+	int bsize = 1 << inode->i_blkbits;
+	loff_t rounded_from;
+	struct page *page;
+	pgoff_t index;
+
+	WARN_ON(to > inode->i_size);
+
+	if (from >= to || bsize == PAGE_CACHE_SIZE)
+		return;
+	/* Page straddling @from will not have any hole block created? */
+	rounded_from = round_up(from, bsize);
+	if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
+		return;
+
+	index = from >> PAGE_CACHE_SHIFT;
+	page = find_lock_page(inode->i_mapping, index);
+	/* Page not cached? Nothing to do */
+	if (!page)
+		return;
+	/*
+	 * See clear_page_dirty_for_io() for details why set_page_dirty()
+	 * is needed.
+	 */
+	if (page_mkclean(page))
+		set_page_dirty(page);
+	unlock_page(page);
+	page_cache_release(page);
+}
+EXPORT_SYMBOL(pagecache_isize_extended);
+
+/**
+ * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
+ * @inode: inode
+ * @lstart: offset of beginning of hole
+ * vmtruncate - unmap mappings "freed" by truncate() syscall
+ * @inode: inode of the file used
+ * @newsize: file offset to start truncating
+ *
+ * This function is deprecated and truncate_setsize or truncate_pagecache
+ * should be used instead, together with filesystem specific block truncation.
+ */
+int vmtruncate(struct inode *inode, loff_t newsize)
+{
+	int error;
+
+	error = inode_newsize_ok(inode, newsize);
+	if (error)
+		return error;
+
+	truncate_setsize(inode, newsize);
+	if (inode->i_op->truncate)
+		inode->i_op->truncate(inode);
+	return 0;
+}
+EXPORT_SYMBOL(vmtruncate);
+
+/**
+ * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
+ * @inode: inode
+ * @lstart: offset of beginning of hole
+ * @lend: offset of last byte of hole
+ *
+ * This function should typically be called before the filesystem
+ * releases resources associated with the freed range (eg. deallocates
+ * blocks). This way, pagecache will always stay logically coherent
+ * with on-disk format, and the filesystem would not have to deal with
+ * situations such as writepage being called for a page that has already
+ * had its underlying blocks deallocated.
+ */
+void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
+{
+	struct address_space *mapping = inode->i_mapping;
+	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
+	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
+	/*
+	 * This rounding is currently just for example: unmap_mapping_range
+	 * expands its hole outwards, whereas we want it to contract the hole
+	 * inwards.  However, existing callers of truncate_pagecache_range are
+	 * doing their own page rounding first; and truncate_inode_pages_range
+	 * currently BUGs if lend is not pagealigned-1 (it handles partial
+	 * page at start of hole, but not partial page at end of hole).  Note
+	 * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
+	 */
+
+	/*
+	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
+	 * once (before truncating pagecache), and without "even_cows" flag:
+	 * hole-punching should not remove private COWed pages from the hole.
+	 */
+	if ((u64)unmap_end > (u64)unmap_start)
+		unmap_mapping_range(mapping, unmap_start,
+				    1 + unmap_end - unmap_start, 0);
+	truncate_inode_pages_range(mapping, lstart, lend);
+}
+EXPORT_SYMBOL(truncate_pagecache_range);