|  | /* | 
|  | * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <openssl/crypto.h> | 
|  | #include "modes_local.h" | 
|  | #include <string.h> | 
|  |  | 
|  | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) | 
|  | typedef size_t size_t_aX __attribute((__aligned__(1))); | 
|  | #else | 
|  | typedef size_t size_t_aX; | 
|  | #endif | 
|  |  | 
|  | #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) | 
|  | /* redefine, because alignment is ensured */ | 
|  | # undef  GETU32 | 
|  | # define GETU32(p)       BSWAP4(*(const u32 *)(p)) | 
|  | # undef  PUTU32 | 
|  | # define PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v) | 
|  | #endif | 
|  |  | 
|  | #define PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16)) | 
|  | #define REDUCE1BIT(V)   do { \ | 
|  | if (sizeof(size_t)==8) { \ | 
|  | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ | 
|  | V.lo  = (V.hi<<63)|(V.lo>>1); \ | 
|  | V.hi  = (V.hi>>1 )^T; \ | 
|  | } \ | 
|  | else { \ | 
|  | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ | 
|  | V.lo  = (V.hi<<63)|(V.lo>>1); \ | 
|  | V.hi  = (V.hi>>1 )^((u64)T<<32); \ | 
|  | } \ | 
|  | } while(0) | 
|  |  | 
|  | /*- | 
|  | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | 
|  | * never be set to 8. 8 is effectively reserved for testing purposes. | 
|  | * TABLE_BITS>1 are lookup-table-driven implementations referred to as | 
|  | * "Shoup's" in GCM specification. In other words OpenSSL does not cover | 
|  | * whole spectrum of possible table driven implementations. Why? In | 
|  | * non-"Shoup's" case memory access pattern is segmented in such manner, | 
|  | * that it's trivial to see that cache timing information can reveal | 
|  | * fair portion of intermediate hash value. Given that ciphertext is | 
|  | * always available to attacker, it's possible for him to attempt to | 
|  | * deduce secret parameter H and if successful, tamper with messages | 
|  | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's | 
|  | * not as trivial, but there is no reason to believe that it's resistant | 
|  | * to cache-timing attack. And the thing about "8-bit" implementation is | 
|  | * that it consumes 16 (sixteen) times more memory, 4KB per individual | 
|  | * key + 1KB shared. Well, on pros side it should be twice as fast as | 
|  | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version | 
|  | * was observed to run ~75% faster, closer to 100% for commercial | 
|  | * compilers... Yet "4-bit" procedure is preferred, because it's | 
|  | * believed to provide better security-performance balance and adequate | 
|  | * all-round performance. "All-round" refers to things like: | 
|  | * | 
|  | * - shorter setup time effectively improves overall timing for | 
|  | *   handling short messages; | 
|  | * - larger table allocation can become unbearable because of VM | 
|  | *   subsystem penalties (for example on Windows large enough free | 
|  | *   results in VM working set trimming, meaning that consequent | 
|  | *   malloc would immediately incur working set expansion); | 
|  | * - larger table has larger cache footprint, which can affect | 
|  | *   performance of other code paths (not necessarily even from same | 
|  | *   thread in Hyper-Threading world); | 
|  | * | 
|  | * Value of 1 is not appropriate for performance reasons. | 
|  | */ | 
|  | #if     TABLE_BITS==8 | 
|  |  | 
|  | static void gcm_init_8bit(u128 Htable[256], u64 H[2]) | 
|  | { | 
|  | int i, j; | 
|  | u128 V; | 
|  |  | 
|  | Htable[0].hi = 0; | 
|  | Htable[0].lo = 0; | 
|  | V.hi = H[0]; | 
|  | V.lo = H[1]; | 
|  |  | 
|  | for (Htable[128] = V, i = 64; i > 0; i >>= 1) { | 
|  | REDUCE1BIT(V); | 
|  | Htable[i] = V; | 
|  | } | 
|  |  | 
|  | for (i = 2; i < 256; i <<= 1) { | 
|  | u128 *Hi = Htable + i, H0 = *Hi; | 
|  | for (j = 1; j < i; ++j) { | 
|  | Hi[j].hi = H0.hi ^ Htable[j].hi; | 
|  | Hi[j].lo = H0.lo ^ Htable[j].lo; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) | 
|  | { | 
|  | u128 Z = { 0, 0 }; | 
|  | const u8 *xi = (const u8 *)Xi + 15; | 
|  | size_t rem, n = *xi; | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | static const size_t rem_8bit[256] = { | 
|  | PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), | 
|  | PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), | 
|  | PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), | 
|  | PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), | 
|  | PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), | 
|  | PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), | 
|  | PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), | 
|  | PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), | 
|  | PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), | 
|  | PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), | 
|  | PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), | 
|  | PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), | 
|  | PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), | 
|  | PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), | 
|  | PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), | 
|  | PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), | 
|  | PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), | 
|  | PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), | 
|  | PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), | 
|  | PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), | 
|  | PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), | 
|  | PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), | 
|  | PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), | 
|  | PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), | 
|  | PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), | 
|  | PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), | 
|  | PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), | 
|  | PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), | 
|  | PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), | 
|  | PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), | 
|  | PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), | 
|  | PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), | 
|  | PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), | 
|  | PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), | 
|  | PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), | 
|  | PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), | 
|  | PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), | 
|  | PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), | 
|  | PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), | 
|  | PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), | 
|  | PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), | 
|  | PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), | 
|  | PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), | 
|  | PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), | 
|  | PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), | 
|  | PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), | 
|  | PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), | 
|  | PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), | 
|  | PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), | 
|  | PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), | 
|  | PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), | 
|  | PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), | 
|  | PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), | 
|  | PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), | 
|  | PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), | 
|  | PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), | 
|  | PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), | 
|  | PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), | 
|  | PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), | 
|  | PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), | 
|  | PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), | 
|  | PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), | 
|  | PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), | 
|  | PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) | 
|  | }; | 
|  |  | 
|  | while (1) { | 
|  | Z.hi ^= Htable[n].hi; | 
|  | Z.lo ^= Htable[n].lo; | 
|  |  | 
|  | if ((u8 *)Xi == xi) | 
|  | break; | 
|  |  | 
|  | n = *(--xi); | 
|  |  | 
|  | rem = (size_t)Z.lo & 0xff; | 
|  | Z.lo = (Z.hi << 56) | (Z.lo >> 8); | 
|  | Z.hi = (Z.hi >> 8); | 
|  | if (sizeof(size_t) == 8) | 
|  | Z.hi ^= rem_8bit[rem]; | 
|  | else | 
|  | Z.hi ^= (u64)rem_8bit[rem] << 32; | 
|  | } | 
|  |  | 
|  | if (is_endian.little) { | 
|  | # ifdef BSWAP8 | 
|  | Xi[0] = BSWAP8(Z.hi); | 
|  | Xi[1] = BSWAP8(Z.lo); | 
|  | # else | 
|  | u8 *p = (u8 *)Xi; | 
|  | u32 v; | 
|  | v = (u32)(Z.hi >> 32); | 
|  | PUTU32(p, v); | 
|  | v = (u32)(Z.hi); | 
|  | PUTU32(p + 4, v); | 
|  | v = (u32)(Z.lo >> 32); | 
|  | PUTU32(p + 8, v); | 
|  | v = (u32)(Z.lo); | 
|  | PUTU32(p + 12, v); | 
|  | # endif | 
|  | } else { | 
|  | Xi[0] = Z.hi; | 
|  | Xi[1] = Z.lo; | 
|  | } | 
|  | } | 
|  |  | 
|  | # define GCM_MUL(ctx)      gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) | 
|  |  | 
|  | #elif   TABLE_BITS==4 | 
|  |  | 
|  | static void gcm_init_4bit(u128 Htable[16], u64 H[2]) | 
|  | { | 
|  | u128 V; | 
|  | # if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | int i; | 
|  | # endif | 
|  |  | 
|  | Htable[0].hi = 0; | 
|  | Htable[0].lo = 0; | 
|  | V.hi = H[0]; | 
|  | V.lo = H[1]; | 
|  |  | 
|  | # if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | for (Htable[8] = V, i = 4; i > 0; i >>= 1) { | 
|  | REDUCE1BIT(V); | 
|  | Htable[i] = V; | 
|  | } | 
|  |  | 
|  | for (i = 2; i < 16; i <<= 1) { | 
|  | u128 *Hi = Htable + i; | 
|  | int j; | 
|  | for (V = *Hi, j = 1; j < i; ++j) { | 
|  | Hi[j].hi = V.hi ^ Htable[j].hi; | 
|  | Hi[j].lo = V.lo ^ Htable[j].lo; | 
|  | } | 
|  | } | 
|  | # else | 
|  | Htable[8] = V; | 
|  | REDUCE1BIT(V); | 
|  | Htable[4] = V; | 
|  | REDUCE1BIT(V); | 
|  | Htable[2] = V; | 
|  | REDUCE1BIT(V); | 
|  | Htable[1] = V; | 
|  | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; | 
|  | V = Htable[4]; | 
|  | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; | 
|  | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; | 
|  | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; | 
|  | V = Htable[8]; | 
|  | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; | 
|  | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; | 
|  | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; | 
|  | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; | 
|  | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; | 
|  | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; | 
|  | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; | 
|  | # endif | 
|  | # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) | 
|  | /* | 
|  | * ARM assembler expects specific dword order in Htable. | 
|  | */ | 
|  | { | 
|  | int j; | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  |  | 
|  | if (is_endian.little) | 
|  | for (j = 0; j < 16; ++j) { | 
|  | V = Htable[j]; | 
|  | Htable[j].hi = V.lo; | 
|  | Htable[j].lo = V.hi; | 
|  | } else | 
|  | for (j = 0; j < 16; ++j) { | 
|  | V = Htable[j]; | 
|  | Htable[j].hi = V.lo << 32 | V.lo >> 32; | 
|  | Htable[j].lo = V.hi << 32 | V.hi >> 32; | 
|  | } | 
|  | } | 
|  | # endif | 
|  | } | 
|  |  | 
|  | # ifndef GHASH_ASM | 
|  | static const size_t rem_4bit[16] = { | 
|  | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), | 
|  | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), | 
|  | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), | 
|  | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) | 
|  | }; | 
|  |  | 
|  | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) | 
|  | { | 
|  | u128 Z; | 
|  | int cnt = 15; | 
|  | size_t rem, nlo, nhi; | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  |  | 
|  | nlo = ((const u8 *)Xi)[15]; | 
|  | nhi = nlo >> 4; | 
|  | nlo &= 0xf; | 
|  |  | 
|  | Z.hi = Htable[nlo].hi; | 
|  | Z.lo = Htable[nlo].lo; | 
|  |  | 
|  | while (1) { | 
|  | rem = (size_t)Z.lo & 0xf; | 
|  | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | Z.hi = (Z.hi >> 4); | 
|  | if (sizeof(size_t) == 8) | 
|  | Z.hi ^= rem_4bit[rem]; | 
|  | else | 
|  | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  |  | 
|  | Z.hi ^= Htable[nhi].hi; | 
|  | Z.lo ^= Htable[nhi].lo; | 
|  |  | 
|  | if (--cnt < 0) | 
|  | break; | 
|  |  | 
|  | nlo = ((const u8 *)Xi)[cnt]; | 
|  | nhi = nlo >> 4; | 
|  | nlo &= 0xf; | 
|  |  | 
|  | rem = (size_t)Z.lo & 0xf; | 
|  | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | Z.hi = (Z.hi >> 4); | 
|  | if (sizeof(size_t) == 8) | 
|  | Z.hi ^= rem_4bit[rem]; | 
|  | else | 
|  | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  |  | 
|  | Z.hi ^= Htable[nlo].hi; | 
|  | Z.lo ^= Htable[nlo].lo; | 
|  | } | 
|  |  | 
|  | if (is_endian.little) { | 
|  | #  ifdef BSWAP8 | 
|  | Xi[0] = BSWAP8(Z.hi); | 
|  | Xi[1] = BSWAP8(Z.lo); | 
|  | #  else | 
|  | u8 *p = (u8 *)Xi; | 
|  | u32 v; | 
|  | v = (u32)(Z.hi >> 32); | 
|  | PUTU32(p, v); | 
|  | v = (u32)(Z.hi); | 
|  | PUTU32(p + 4, v); | 
|  | v = (u32)(Z.lo >> 32); | 
|  | PUTU32(p + 8, v); | 
|  | v = (u32)(Z.lo); | 
|  | PUTU32(p + 12, v); | 
|  | #  endif | 
|  | } else { | 
|  | Xi[0] = Z.hi; | 
|  | Xi[1] = Z.lo; | 
|  | } | 
|  | } | 
|  |  | 
|  | #  if !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | /* | 
|  | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for | 
|  | * details... Compiler-generated code doesn't seem to give any | 
|  | * performance improvement, at least not on x86[_64]. It's here | 
|  | * mostly as reference and a placeholder for possible future | 
|  | * non-trivial optimization[s]... | 
|  | */ | 
|  | static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) | 
|  | { | 
|  | u128 Z; | 
|  | int cnt; | 
|  | size_t rem, nlo, nhi; | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  |  | 
|  | #   if 1 | 
|  | do { | 
|  | cnt = 15; | 
|  | nlo = ((const u8 *)Xi)[15]; | 
|  | nlo ^= inp[15]; | 
|  | nhi = nlo >> 4; | 
|  | nlo &= 0xf; | 
|  |  | 
|  | Z.hi = Htable[nlo].hi; | 
|  | Z.lo = Htable[nlo].lo; | 
|  |  | 
|  | while (1) { | 
|  | rem = (size_t)Z.lo & 0xf; | 
|  | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | Z.hi = (Z.hi >> 4); | 
|  | if (sizeof(size_t) == 8) | 
|  | Z.hi ^= rem_4bit[rem]; | 
|  | else | 
|  | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  |  | 
|  | Z.hi ^= Htable[nhi].hi; | 
|  | Z.lo ^= Htable[nhi].lo; | 
|  |  | 
|  | if (--cnt < 0) | 
|  | break; | 
|  |  | 
|  | nlo = ((const u8 *)Xi)[cnt]; | 
|  | nlo ^= inp[cnt]; | 
|  | nhi = nlo >> 4; | 
|  | nlo &= 0xf; | 
|  |  | 
|  | rem = (size_t)Z.lo & 0xf; | 
|  | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | Z.hi = (Z.hi >> 4); | 
|  | if (sizeof(size_t) == 8) | 
|  | Z.hi ^= rem_4bit[rem]; | 
|  | else | 
|  | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  |  | 
|  | Z.hi ^= Htable[nlo].hi; | 
|  | Z.lo ^= Htable[nlo].lo; | 
|  | } | 
|  | #   else | 
|  | /* | 
|  | * Extra 256+16 bytes per-key plus 512 bytes shared tables | 
|  | * [should] give ~50% improvement... One could have PACK()-ed | 
|  | * the rem_8bit even here, but the priority is to minimize | 
|  | * cache footprint... | 
|  | */ | 
|  | u128 Hshr4[16];             /* Htable shifted right by 4 bits */ | 
|  | u8 Hshl4[16];               /* Htable shifted left by 4 bits */ | 
|  | static const unsigned short rem_8bit[256] = { | 
|  | 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, | 
|  | 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, | 
|  | 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, | 
|  | 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, | 
|  | 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, | 
|  | 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, | 
|  | 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, | 
|  | 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, | 
|  | 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, | 
|  | 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, | 
|  | 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, | 
|  | 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, | 
|  | 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, | 
|  | 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, | 
|  | 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, | 
|  | 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, | 
|  | 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, | 
|  | 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, | 
|  | 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, | 
|  | 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, | 
|  | 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, | 
|  | 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, | 
|  | 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, | 
|  | 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, | 
|  | 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, | 
|  | 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, | 
|  | 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, | 
|  | 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, | 
|  | 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, | 
|  | 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, | 
|  | 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, | 
|  | 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE | 
|  | }; | 
|  | /* | 
|  | * This pre-processing phase slows down procedure by approximately | 
|  | * same time as it makes each loop spin faster. In other words | 
|  | * single block performance is approximately same as straightforward | 
|  | * "4-bit" implementation, and then it goes only faster... | 
|  | */ | 
|  | for (cnt = 0; cnt < 16; ++cnt) { | 
|  | Z.hi = Htable[cnt].hi; | 
|  | Z.lo = Htable[cnt].lo; | 
|  | Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | Hshr4[cnt].hi = (Z.hi >> 4); | 
|  | Hshl4[cnt] = (u8)(Z.lo << 4); | 
|  | } | 
|  |  | 
|  | do { | 
|  | for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { | 
|  | nlo = ((const u8 *)Xi)[cnt]; | 
|  | nlo ^= inp[cnt]; | 
|  | nhi = nlo >> 4; | 
|  | nlo &= 0xf; | 
|  |  | 
|  | Z.hi ^= Htable[nlo].hi; | 
|  | Z.lo ^= Htable[nlo].lo; | 
|  |  | 
|  | rem = (size_t)Z.lo & 0xff; | 
|  |  | 
|  | Z.lo = (Z.hi << 56) | (Z.lo >> 8); | 
|  | Z.hi = (Z.hi >> 8); | 
|  |  | 
|  | Z.hi ^= Hshr4[nhi].hi; | 
|  | Z.lo ^= Hshr4[nhi].lo; | 
|  | Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; | 
|  | } | 
|  |  | 
|  | nlo = ((const u8 *)Xi)[0]; | 
|  | nlo ^= inp[0]; | 
|  | nhi = nlo >> 4; | 
|  | nlo &= 0xf; | 
|  |  | 
|  | Z.hi ^= Htable[nlo].hi; | 
|  | Z.lo ^= Htable[nlo].lo; | 
|  |  | 
|  | rem = (size_t)Z.lo & 0xf; | 
|  |  | 
|  | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | Z.hi = (Z.hi >> 4); | 
|  |  | 
|  | Z.hi ^= Htable[nhi].hi; | 
|  | Z.lo ^= Htable[nhi].lo; | 
|  | Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; | 
|  | #   endif | 
|  |  | 
|  | if (is_endian.little) { | 
|  | #   ifdef BSWAP8 | 
|  | Xi[0] = BSWAP8(Z.hi); | 
|  | Xi[1] = BSWAP8(Z.lo); | 
|  | #   else | 
|  | u8 *p = (u8 *)Xi; | 
|  | u32 v; | 
|  | v = (u32)(Z.hi >> 32); | 
|  | PUTU32(p, v); | 
|  | v = (u32)(Z.hi); | 
|  | PUTU32(p + 4, v); | 
|  | v = (u32)(Z.lo >> 32); | 
|  | PUTU32(p + 8, v); | 
|  | v = (u32)(Z.lo); | 
|  | PUTU32(p + 12, v); | 
|  | #   endif | 
|  | } else { | 
|  | Xi[0] = Z.hi; | 
|  | Xi[1] = Z.lo; | 
|  | } | 
|  | } while (inp += 16, len -= 16); | 
|  | } | 
|  | #  endif | 
|  | # else | 
|  | void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | # endif | 
|  |  | 
|  | # define GCM_MUL(ctx)      gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) | 
|  | # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | #  define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) | 
|  | /* | 
|  | * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing | 
|  | * effect. In other words idea is to hash data while it's still in L1 cache | 
|  | * after encryption pass... | 
|  | */ | 
|  | #  define GHASH_CHUNK       (3*1024) | 
|  | # endif | 
|  |  | 
|  | #else                           /* TABLE_BITS */ | 
|  |  | 
|  | static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) | 
|  | { | 
|  | u128 V, Z = { 0, 0 }; | 
|  | long X; | 
|  | int i, j; | 
|  | const long *xi = (const long *)Xi; | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  |  | 
|  | V.hi = H[0];                /* H is in host byte order, no byte swapping */ | 
|  | V.lo = H[1]; | 
|  |  | 
|  | for (j = 0; j < 16 / sizeof(long); ++j) { | 
|  | if (is_endian.little) { | 
|  | if (sizeof(long) == 8) { | 
|  | # ifdef BSWAP8 | 
|  | X = (long)(BSWAP8(xi[j])); | 
|  | # else | 
|  | const u8 *p = (const u8 *)(xi + j); | 
|  | X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4)); | 
|  | # endif | 
|  | } else { | 
|  | const u8 *p = (const u8 *)(xi + j); | 
|  | X = (long)GETU32(p); | 
|  | } | 
|  | } else | 
|  | X = xi[j]; | 
|  |  | 
|  | for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) { | 
|  | u64 M = (u64)(X >> (8 * sizeof(long) - 1)); | 
|  | Z.hi ^= V.hi & M; | 
|  | Z.lo ^= V.lo & M; | 
|  |  | 
|  | REDUCE1BIT(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_endian.little) { | 
|  | # ifdef BSWAP8 | 
|  | Xi[0] = BSWAP8(Z.hi); | 
|  | Xi[1] = BSWAP8(Z.lo); | 
|  | # else | 
|  | u8 *p = (u8 *)Xi; | 
|  | u32 v; | 
|  | v = (u32)(Z.hi >> 32); | 
|  | PUTU32(p, v); | 
|  | v = (u32)(Z.hi); | 
|  | PUTU32(p + 4, v); | 
|  | v = (u32)(Z.lo >> 32); | 
|  | PUTU32(p + 8, v); | 
|  | v = (u32)(Z.lo); | 
|  | PUTU32(p + 12, v); | 
|  | # endif | 
|  | } else { | 
|  | Xi[0] = Z.hi; | 
|  | Xi[1] = Z.lo; | 
|  | } | 
|  | } | 
|  |  | 
|  | # define GCM_MUL(ctx)      gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if     TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) | 
|  | # if    !defined(I386_ONLY) && \ | 
|  | (defined(__i386)        || defined(__i386__)    || \ | 
|  | defined(__x86_64)      || defined(__x86_64__)  || \ | 
|  | defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64)) | 
|  | #  define GHASH_ASM_X86_OR_64 | 
|  | #  define GCM_FUNCREF_4BIT | 
|  | extern unsigned int OPENSSL_ia32cap_P[]; | 
|  |  | 
|  | void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); | 
|  | void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  |  | 
|  | #  if defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
|  | #   define gcm_init_avx   gcm_init_clmul | 
|  | #   define gcm_gmult_avx  gcm_gmult_clmul | 
|  | #   define gcm_ghash_avx  gcm_ghash_clmul | 
|  | #  else | 
|  | void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); | 
|  | void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | #  endif | 
|  |  | 
|  | #  if   defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
|  | #   define GHASH_ASM_X86 | 
|  | void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  |  | 
|  | void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | #  endif | 
|  | # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) | 
|  | #  include "arm_arch.h" | 
|  | #  if __ARM_MAX_ARCH__>=7 | 
|  | #   define GHASH_ASM_ARM | 
|  | #   define GCM_FUNCREF_4BIT | 
|  | #   define PMULL_CAPABLE        (OPENSSL_armcap_P & ARMV8_PMULL) | 
|  | #   if defined(__arm__) || defined(__arm) | 
|  | #    define NEON_CAPABLE        (OPENSSL_armcap_P & ARMV7_NEON) | 
|  | #   endif | 
|  | void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); | 
|  | void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); | 
|  | void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | #  endif | 
|  | # elif defined(__sparc__) || defined(__sparc) | 
|  | #  include "sparc_arch.h" | 
|  | #  define GHASH_ASM_SPARC | 
|  | #  define GCM_FUNCREF_4BIT | 
|  | extern unsigned int OPENSSL_sparcv9cap_P[]; | 
|  | void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); | 
|  | void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) | 
|  | #  include "ppc_arch.h" | 
|  | #  define GHASH_ASM_PPC | 
|  | #  define GCM_FUNCREF_4BIT | 
|  | void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); | 
|  | void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); | 
|  | void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | size_t len); | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #ifdef GCM_FUNCREF_4BIT | 
|  | # undef  GCM_MUL | 
|  | # define GCM_MUL(ctx)           (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) | 
|  | # ifdef GHASH | 
|  | #  undef  GHASH | 
|  | #  define GHASH(ctx,in,len)     (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) | 
|  | { | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  |  | 
|  | memset(ctx, 0, sizeof(*ctx)); | 
|  | ctx->block = block; | 
|  | ctx->key = key; | 
|  |  | 
|  | (*block) (ctx->H.c, ctx->H.c, key); | 
|  |  | 
|  | if (is_endian.little) { | 
|  | /* H is stored in host byte order */ | 
|  | #ifdef BSWAP8 | 
|  | ctx->H.u[0] = BSWAP8(ctx->H.u[0]); | 
|  | ctx->H.u[1] = BSWAP8(ctx->H.u[1]); | 
|  | #else | 
|  | u8 *p = ctx->H.c; | 
|  | u64 hi, lo; | 
|  | hi = (u64)GETU32(p) << 32 | GETU32(p + 4); | 
|  | lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); | 
|  | ctx->H.u[0] = hi; | 
|  | ctx->H.u[1] = lo; | 
|  | #endif | 
|  | } | 
|  | #if     TABLE_BITS==8 | 
|  | gcm_init_8bit(ctx->Htable, ctx->H.u); | 
|  | #elif   TABLE_BITS==4 | 
|  | # if    defined(GHASH) | 
|  | #  define CTX__GHASH(f) (ctx->ghash = (f)) | 
|  | # else | 
|  | #  define CTX__GHASH(f) (ctx->ghash = NULL) | 
|  | # endif | 
|  | # if    defined(GHASH_ASM_X86_OR_64) | 
|  | #  if   !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) | 
|  | if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ | 
|  | if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ | 
|  | gcm_init_avx(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_avx; | 
|  | CTX__GHASH(gcm_ghash_avx); | 
|  | } else { | 
|  | gcm_init_clmul(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_clmul; | 
|  | CTX__GHASH(gcm_ghash_clmul); | 
|  | } | 
|  | return; | 
|  | } | 
|  | #  endif | 
|  | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | #  if   defined(GHASH_ASM_X86)  /* x86 only */ | 
|  | #   if  defined(OPENSSL_IA32_SSE2) | 
|  | if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ | 
|  | #   else | 
|  | if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ | 
|  | #   endif | 
|  | ctx->gmult = gcm_gmult_4bit_mmx; | 
|  | CTX__GHASH(gcm_ghash_4bit_mmx); | 
|  | } else { | 
|  | ctx->gmult = gcm_gmult_4bit_x86; | 
|  | CTX__GHASH(gcm_ghash_4bit_x86); | 
|  | } | 
|  | #  else | 
|  | ctx->gmult = gcm_gmult_4bit; | 
|  | CTX__GHASH(gcm_ghash_4bit); | 
|  | #  endif | 
|  | # elif  defined(GHASH_ASM_ARM) | 
|  | #  ifdef PMULL_CAPABLE | 
|  | if (PMULL_CAPABLE) { | 
|  | gcm_init_v8(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_v8; | 
|  | CTX__GHASH(gcm_ghash_v8); | 
|  | } else | 
|  | #  endif | 
|  | #  ifdef NEON_CAPABLE | 
|  | if (NEON_CAPABLE) { | 
|  | gcm_init_neon(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_neon; | 
|  | CTX__GHASH(gcm_ghash_neon); | 
|  | } else | 
|  | #  endif | 
|  | { | 
|  | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_4bit; | 
|  | CTX__GHASH(gcm_ghash_4bit); | 
|  | } | 
|  | # elif  defined(GHASH_ASM_SPARC) | 
|  | if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { | 
|  | gcm_init_vis3(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_vis3; | 
|  | CTX__GHASH(gcm_ghash_vis3); | 
|  | } else { | 
|  | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_4bit; | 
|  | CTX__GHASH(gcm_ghash_4bit); | 
|  | } | 
|  | # elif  defined(GHASH_ASM_PPC) | 
|  | if (OPENSSL_ppccap_P & PPC_CRYPTO207) { | 
|  | gcm_init_p8(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_p8; | 
|  | CTX__GHASH(gcm_ghash_p8); | 
|  | } else { | 
|  | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | ctx->gmult = gcm_gmult_4bit; | 
|  | CTX__GHASH(gcm_ghash_4bit); | 
|  | } | 
|  | # else | 
|  | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | # endif | 
|  | # undef CTX__GHASH | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, | 
|  | size_t len) | 
|  | { | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | unsigned int ctr; | 
|  | #ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | #endif | 
|  |  | 
|  | ctx->len.u[0] = 0;          /* AAD length */ | 
|  | ctx->len.u[1] = 0;          /* message length */ | 
|  | ctx->ares = 0; | 
|  | ctx->mres = 0; | 
|  |  | 
|  | if (len == 12) { | 
|  | memcpy(ctx->Yi.c, iv, 12); | 
|  | ctx->Yi.c[12] = 0; | 
|  | ctx->Yi.c[13] = 0; | 
|  | ctx->Yi.c[14] = 0; | 
|  | ctx->Yi.c[15] = 1; | 
|  | ctr = 1; | 
|  | } else { | 
|  | size_t i; | 
|  | u64 len0 = len; | 
|  |  | 
|  | /* Borrow ctx->Xi to calculate initial Yi */ | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  |  | 
|  | while (len >= 16) { | 
|  | for (i = 0; i < 16; ++i) | 
|  | ctx->Xi.c[i] ^= iv[i]; | 
|  | GCM_MUL(ctx); | 
|  | iv += 16; | 
|  | len -= 16; | 
|  | } | 
|  | if (len) { | 
|  | for (i = 0; i < len; ++i) | 
|  | ctx->Xi.c[i] ^= iv[i]; | 
|  | GCM_MUL(ctx); | 
|  | } | 
|  | len0 <<= 3; | 
|  | if (is_endian.little) { | 
|  | #ifdef BSWAP8 | 
|  | ctx->Xi.u[1] ^= BSWAP8(len0); | 
|  | #else | 
|  | ctx->Xi.c[8] ^= (u8)(len0 >> 56); | 
|  | ctx->Xi.c[9] ^= (u8)(len0 >> 48); | 
|  | ctx->Xi.c[10] ^= (u8)(len0 >> 40); | 
|  | ctx->Xi.c[11] ^= (u8)(len0 >> 32); | 
|  | ctx->Xi.c[12] ^= (u8)(len0 >> 24); | 
|  | ctx->Xi.c[13] ^= (u8)(len0 >> 16); | 
|  | ctx->Xi.c[14] ^= (u8)(len0 >> 8); | 
|  | ctx->Xi.c[15] ^= (u8)(len0); | 
|  | #endif | 
|  | } else { | 
|  | ctx->Xi.u[1] ^= len0; | 
|  | } | 
|  |  | 
|  | GCM_MUL(ctx); | 
|  |  | 
|  | if (is_endian.little) | 
|  | #ifdef BSWAP4 | 
|  | ctr = BSWAP4(ctx->Xi.d[3]); | 
|  | #else | 
|  | ctr = GETU32(ctx->Xi.c + 12); | 
|  | #endif | 
|  | else | 
|  | ctr = ctx->Xi.d[3]; | 
|  |  | 
|  | /* Copy borrowed Xi to Yi */ | 
|  | ctx->Yi.u[0] = ctx->Xi.u[0]; | 
|  | ctx->Yi.u[1] = ctx->Xi.u[1]; | 
|  | } | 
|  |  | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  |  | 
|  | (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, | 
|  | size_t len) | 
|  | { | 
|  | size_t i; | 
|  | unsigned int n; | 
|  | u64 alen = ctx->len.u[0]; | 
|  | #ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | # ifdef GHASH | 
|  | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) = ctx->ghash; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | if (ctx->len.u[1]) | 
|  | return -2; | 
|  |  | 
|  | alen += len; | 
|  | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) | 
|  | return -1; | 
|  | ctx->len.u[0] = alen; | 
|  |  | 
|  | n = ctx->ares; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | ctx->Xi.c[n] ^= *(aad++); | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) | 
|  | GCM_MUL(ctx); | 
|  | else { | 
|  | ctx->ares = n; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | #ifdef GHASH | 
|  | if ((i = (len & (size_t)-16))) { | 
|  | GHASH(ctx, aad, i); | 
|  | aad += i; | 
|  | len -= i; | 
|  | } | 
|  | #else | 
|  | while (len >= 16) { | 
|  | for (i = 0; i < 16; ++i) | 
|  | ctx->Xi.c[i] ^= aad[i]; | 
|  | GCM_MUL(ctx); | 
|  | aad += 16; | 
|  | len -= 16; | 
|  | } | 
|  | #endif | 
|  | if (len) { | 
|  | n = (unsigned int)len; | 
|  | for (i = 0; i < len; ++i) | 
|  | ctx->Xi.c[i] ^= aad[i]; | 
|  | } | 
|  |  | 
|  | ctx->ares = n; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len) | 
|  | { | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | unsigned int n, ctr, mres; | 
|  | size_t i; | 
|  | u64 mlen = ctx->len.u[1]; | 
|  | block128_f block = ctx->block; | 
|  | void *key = ctx->key; | 
|  | #ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) = ctx->ghash; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | mlen += len; | 
|  | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | return -1; | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | mres = ctx->mres; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | /* First call to encrypt finalizes GHASH(AAD) */ | 
|  | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | if (len == 0) { | 
|  | GCM_MUL(ctx); | 
|  | ctx->ares = 0; | 
|  | return 0; | 
|  | } | 
|  | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  | mres = sizeof(ctx->Xi); | 
|  | #else | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | if (is_endian.little) | 
|  | #ifdef BSWAP4 | 
|  | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | #else | 
|  | ctr = GETU32(ctx->Yi.c + 12); | 
|  | #endif | 
|  | else | 
|  | ctr = ctx->Yi.d[3]; | 
|  |  | 
|  | n = mres % 16; | 
|  | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | if (16 % sizeof(size_t) == 0) { /* always true actually */ | 
|  | do { | 
|  | if (n) { | 
|  | # if defined(GHASH) | 
|  | while (n && len) { | 
|  | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } | 
|  | # else | 
|  | while (n && len) { | 
|  | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 0; | 
|  | } | 
|  | # endif | 
|  | } | 
|  | # if defined(STRICT_ALIGNMENT) | 
|  | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) | 
|  | break; | 
|  | # endif | 
|  | # if defined(GHASH) | 
|  | if (len >= 16 && mres) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } | 
|  | #  if defined(GHASH_CHUNK) | 
|  | while (len >= GHASH_CHUNK) { | 
|  | size_t j = GHASH_CHUNK; | 
|  |  | 
|  | while (j) { | 
|  | size_t_aX *out_t = (size_t_aX *)out; | 
|  | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  |  | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #   ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #   else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #   endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | out += 16; | 
|  | in += 16; | 
|  | j -= 16; | 
|  | } | 
|  | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | #  endif | 
|  | if ((i = (len & (size_t)-16))) { | 
|  | size_t j = i; | 
|  |  | 
|  | while (len >= 16) { | 
|  | size_t_aX *out_t = (size_t_aX *)out; | 
|  | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  |  | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #  ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #  else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #  endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | out += 16; | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | GHASH(ctx, out - j, j); | 
|  | } | 
|  | # else | 
|  | while (len >= 16) { | 
|  | size_t *out_t = (size_t *)out; | 
|  | const size_t *in_t = (const size_t *)in; | 
|  |  | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #  ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #  else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #  endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | GCM_MUL(ctx); | 
|  | out += 16; | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | # endif | 
|  | if (len) { | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | # else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | # endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | # if defined(GHASH) | 
|  | while (len--) { | 
|  | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | # else | 
|  | while (len--) { | 
|  | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | mres = n; | 
|  | # endif | 
|  | } | 
|  |  | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } while (0); | 
|  | } | 
|  | #endif | 
|  | for (i = 0; i < len; ++i) { | 
|  | if (n == 0) { | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | } | 
|  | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; | 
|  | n = (n + 1) % 16; | 
|  | if (mres == sizeof(ctx->Xn)) { | 
|  | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); | 
|  | mres = 0; | 
|  | } | 
|  | #else | 
|  | ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; | 
|  | mres = n = (n + 1) % 16; | 
|  | if (n == 0) | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len) | 
|  | { | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | unsigned int n, ctr, mres; | 
|  | size_t i; | 
|  | u64 mlen = ctx->len.u[1]; | 
|  | block128_f block = ctx->block; | 
|  | void *key = ctx->key; | 
|  | #ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) = ctx->ghash; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | mlen += len; | 
|  | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | return -1; | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | mres = ctx->mres; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | /* First call to decrypt finalizes GHASH(AAD) */ | 
|  | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | if (len == 0) { | 
|  | GCM_MUL(ctx); | 
|  | ctx->ares = 0; | 
|  | return 0; | 
|  | } | 
|  | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  | mres = sizeof(ctx->Xi); | 
|  | #else | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | if (is_endian.little) | 
|  | #ifdef BSWAP4 | 
|  | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | #else | 
|  | ctr = GETU32(ctx->Yi.c + 12); | 
|  | #endif | 
|  | else | 
|  | ctr = ctx->Yi.d[3]; | 
|  |  | 
|  | n = mres % 16; | 
|  | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | if (16 % sizeof(size_t) == 0) { /* always true actually */ | 
|  | do { | 
|  | if (n) { | 
|  | # if defined(GHASH) | 
|  | while (n && len) { | 
|  | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } | 
|  | # else | 
|  | while (n && len) { | 
|  | u8 c = *(in++); | 
|  | *(out++) = c ^ ctx->EKi.c[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 0; | 
|  | } | 
|  | # endif | 
|  | } | 
|  | # if defined(STRICT_ALIGNMENT) | 
|  | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) | 
|  | break; | 
|  | # endif | 
|  | # if defined(GHASH) | 
|  | if (len >= 16 && mres) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } | 
|  | #  if defined(GHASH_CHUNK) | 
|  | while (len >= GHASH_CHUNK) { | 
|  | size_t j = GHASH_CHUNK; | 
|  |  | 
|  | GHASH(ctx, in, GHASH_CHUNK); | 
|  | while (j) { | 
|  | size_t_aX *out_t = (size_t_aX *)out; | 
|  | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  |  | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #   ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #   else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #   endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | out += 16; | 
|  | in += 16; | 
|  | j -= 16; | 
|  | } | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | #  endif | 
|  | if ((i = (len & (size_t)-16))) { | 
|  | GHASH(ctx, in, i); | 
|  | while (len >= 16) { | 
|  | size_t_aX *out_t = (size_t_aX *)out; | 
|  | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  |  | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #  ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #  else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #  endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | out += 16; | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | } | 
|  | # else | 
|  | while (len >= 16) { | 
|  | size_t *out_t = (size_t *)out; | 
|  | const size_t *in_t = (const size_t *)in; | 
|  |  | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #  ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #  else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #  endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | for (i = 0; i < 16 / sizeof(size_t); ++i) { | 
|  | size_t c = in_t[i]; | 
|  | out_t[i] = c ^ ctx->EKi.t[i]; | 
|  | ctx->Xi.t[i] ^= c; | 
|  | } | 
|  | GCM_MUL(ctx); | 
|  | out += 16; | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | # endif | 
|  | if (len) { | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | # else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | # endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | # if defined(GHASH) | 
|  | while (len--) { | 
|  | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | # else | 
|  | while (len--) { | 
|  | u8 c = in[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | out[n] = c ^ ctx->EKi.c[n]; | 
|  | ++n; | 
|  | } | 
|  | mres = n; | 
|  | # endif | 
|  | } | 
|  |  | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } while (0); | 
|  | } | 
|  | #endif | 
|  | for (i = 0; i < len; ++i) { | 
|  | u8 c; | 
|  | if (n == 0) { | 
|  | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | #ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | } | 
|  | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; | 
|  | n = (n + 1) % 16; | 
|  | if (mres == sizeof(ctx->Xn)) { | 
|  | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); | 
|  | mres = 0; | 
|  | } | 
|  | #else | 
|  | c = in[i]; | 
|  | out[i] = c ^ ctx->EKi.c[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | mres = n = (n + 1) % 16; | 
|  | if (n == 0) | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len, ctr128_f stream) | 
|  | { | 
|  | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | return CRYPTO_gcm128_encrypt(ctx, in, out, len); | 
|  | #else | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | unsigned int n, ctr, mres; | 
|  | size_t i; | 
|  | u64 mlen = ctx->len.u[1]; | 
|  | void *key = ctx->key; | 
|  | # ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | #  ifdef GHASH | 
|  | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) = ctx->ghash; | 
|  | #  endif | 
|  | # endif | 
|  |  | 
|  | mlen += len; | 
|  | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | return -1; | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | mres = ctx->mres; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | /* First call to encrypt finalizes GHASH(AAD) */ | 
|  | #if defined(GHASH) | 
|  | if (len == 0) { | 
|  | GCM_MUL(ctx); | 
|  | ctx->ares = 0; | 
|  | return 0; | 
|  | } | 
|  | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  | mres = sizeof(ctx->Xi); | 
|  | #else | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | # else | 
|  | ctr = GETU32(ctx->Yi.c + 12); | 
|  | # endif | 
|  | else | 
|  | ctr = ctx->Yi.d[3]; | 
|  |  | 
|  | n = mres % 16; | 
|  | if (n) { | 
|  | # if defined(GHASH) | 
|  | while (n && len) { | 
|  | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } | 
|  | # else | 
|  | while (n && len) { | 
|  | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 0; | 
|  | } | 
|  | # endif | 
|  | } | 
|  | # if defined(GHASH) | 
|  | if (len >= 16 && mres) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } | 
|  | #  if defined(GHASH_CHUNK) | 
|  | while (len >= GHASH_CHUNK) { | 
|  | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); | 
|  | ctr += GHASH_CHUNK / 16; | 
|  | if (is_endian.little) | 
|  | #   ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #   else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #   endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | GHASH(ctx, out, GHASH_CHUNK); | 
|  | out += GHASH_CHUNK; | 
|  | in += GHASH_CHUNK; | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | #  endif | 
|  | # endif | 
|  | if ((i = (len & (size_t)-16))) { | 
|  | size_t j = i / 16; | 
|  |  | 
|  | (*stream) (in, out, j, key, ctx->Yi.c); | 
|  | ctr += (unsigned int)j; | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | # else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | # endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | in += i; | 
|  | len -= i; | 
|  | # if defined(GHASH) | 
|  | GHASH(ctx, out, i); | 
|  | out += i; | 
|  | # else | 
|  | while (j--) { | 
|  | for (i = 0; i < 16; ++i) | 
|  | ctx->Xi.c[i] ^= out[i]; | 
|  | GCM_MUL(ctx); | 
|  | out += 16; | 
|  | } | 
|  | # endif | 
|  | } | 
|  | if (len) { | 
|  | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | # else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | # endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | while (len--) { | 
|  | # if defined(GHASH) | 
|  | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | # else | 
|  | ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | # endif | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len, ctr128_f stream) | 
|  | { | 
|  | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | return CRYPTO_gcm128_decrypt(ctx, in, out, len); | 
|  | #else | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | unsigned int n, ctr, mres; | 
|  | size_t i; | 
|  | u64 mlen = ctx->len.u[1]; | 
|  | void *key = ctx->key; | 
|  | # ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | #  ifdef GHASH | 
|  | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) = ctx->ghash; | 
|  | #  endif | 
|  | # endif | 
|  |  | 
|  | mlen += len; | 
|  | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | return -1; | 
|  | ctx->len.u[1] = mlen; | 
|  |  | 
|  | mres = ctx->mres; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | /* First call to decrypt finalizes GHASH(AAD) */ | 
|  | # if defined(GHASH) | 
|  | if (len == 0) { | 
|  | GCM_MUL(ctx); | 
|  | ctx->ares = 0; | 
|  | return 0; | 
|  | } | 
|  | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | ctx->Xi.u[0] = 0; | 
|  | ctx->Xi.u[1] = 0; | 
|  | mres = sizeof(ctx->Xi); | 
|  | # else | 
|  | GCM_MUL(ctx); | 
|  | # endif | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | # else | 
|  | ctr = GETU32(ctx->Yi.c + 12); | 
|  | # endif | 
|  | else | 
|  | ctr = ctx->Yi.d[3]; | 
|  |  | 
|  | n = mres % 16; | 
|  | if (n) { | 
|  | # if defined(GHASH) | 
|  | while (n && len) { | 
|  | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | } | 
|  | # else | 
|  | while (n && len) { | 
|  | u8 c = *(in++); | 
|  | *(out++) = c ^ ctx->EKi.c[n]; | 
|  | ctx->Xi.c[n] ^= c; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(ctx); | 
|  | mres = 0; | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 0; | 
|  | } | 
|  | # endif | 
|  | } | 
|  | # if defined(GHASH) | 
|  | if (len >= 16 && mres) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } | 
|  | #  if defined(GHASH_CHUNK) | 
|  | while (len >= GHASH_CHUNK) { | 
|  | GHASH(ctx, in, GHASH_CHUNK); | 
|  | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); | 
|  | ctr += GHASH_CHUNK / 16; | 
|  | if (is_endian.little) | 
|  | #   ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | #   else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | #   endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | out += GHASH_CHUNK; | 
|  | in += GHASH_CHUNK; | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  | #  endif | 
|  | # endif | 
|  | if ((i = (len & (size_t)-16))) { | 
|  | size_t j = i / 16; | 
|  |  | 
|  | # if defined(GHASH) | 
|  | GHASH(ctx, in, i); | 
|  | # else | 
|  | while (j--) { | 
|  | size_t k; | 
|  | for (k = 0; k < 16; ++k) | 
|  | ctx->Xi.c[k] ^= in[k]; | 
|  | GCM_MUL(ctx); | 
|  | in += 16; | 
|  | } | 
|  | j = i / 16; | 
|  | in -= i; | 
|  | # endif | 
|  | (*stream) (in, out, j, key, ctx->Yi.c); | 
|  | ctr += (unsigned int)j; | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | # else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | # endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | out += i; | 
|  | in += i; | 
|  | len -= i; | 
|  | } | 
|  | if (len) { | 
|  | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | ++ctr; | 
|  | if (is_endian.little) | 
|  | # ifdef BSWAP4 | 
|  | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | # else | 
|  | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | # endif | 
|  | else | 
|  | ctx->Yi.d[3] = ctr; | 
|  | while (len--) { | 
|  | # if defined(GHASH) | 
|  | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; | 
|  | # else | 
|  | u8 c = in[n]; | 
|  | ctx->Xi.c[mres++] ^= c; | 
|  | out[n] = c ^ ctx->EKi.c[n]; | 
|  | # endif | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = mres; | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, | 
|  | size_t len) | 
|  | { | 
|  | const union { | 
|  | long one; | 
|  | char little; | 
|  | } is_endian = { 1 }; | 
|  | u64 alen = ctx->len.u[0] << 3; | 
|  | u64 clen = ctx->len.u[1] << 3; | 
|  | #ifdef GCM_FUNCREF_4BIT | 
|  | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | const u8 *inp, size_t len) = ctx->ghash; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | u128 bitlen; | 
|  | unsigned int mres = ctx->mres; | 
|  |  | 
|  | if (mres) { | 
|  | unsigned blocks = (mres + 15) & -16; | 
|  |  | 
|  | memset(ctx->Xn + mres, 0, blocks - mres); | 
|  | mres = blocks; | 
|  | if (mres == sizeof(ctx->Xn)) { | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | mres = 0; | 
|  | } | 
|  | } else if (ctx->ares) { | 
|  | GCM_MUL(ctx); | 
|  | } | 
|  | #else | 
|  | if (ctx->mres || ctx->ares) | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  |  | 
|  | if (is_endian.little) { | 
|  | #ifdef BSWAP8 | 
|  | alen = BSWAP8(alen); | 
|  | clen = BSWAP8(clen); | 
|  | #else | 
|  | u8 *p = ctx->len.c; | 
|  |  | 
|  | ctx->len.u[0] = alen; | 
|  | ctx->len.u[1] = clen; | 
|  |  | 
|  | alen = (u64)GETU32(p) << 32 | GETU32(p + 4); | 
|  | clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | bitlen.hi = alen; | 
|  | bitlen.lo = clen; | 
|  | memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); | 
|  | mres += sizeof(bitlen); | 
|  | GHASH(ctx, ctx->Xn, mres); | 
|  | #else | 
|  | ctx->Xi.u[0] ^= alen; | 
|  | ctx->Xi.u[1] ^= clen; | 
|  | GCM_MUL(ctx); | 
|  | #endif | 
|  |  | 
|  | ctx->Xi.u[0] ^= ctx->EK0.u[0]; | 
|  | ctx->Xi.u[1] ^= ctx->EK0.u[1]; | 
|  |  | 
|  | if (tag && len <= sizeof(ctx->Xi)) | 
|  | return CRYPTO_memcmp(ctx->Xi.c, tag, len); | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) | 
|  | { | 
|  | CRYPTO_gcm128_finish(ctx, NULL, 0); | 
|  | memcpy(tag, ctx->Xi.c, | 
|  | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); | 
|  | } | 
|  |  | 
|  | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) | 
|  | { | 
|  | GCM128_CONTEXT *ret; | 
|  |  | 
|  | if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) | 
|  | CRYPTO_gcm128_init(ret, key, block); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) | 
|  | { | 
|  | OPENSSL_clear_free(ctx, sizeof(*ctx)); | 
|  | } |