[Feature][ZXW-33]merge ZXW 0428 version
Change-Id: I11f167edfea428d9fab198ff00ff1364932d1b0b
diff --git a/ap/libc/glibc/glibc-2.23/math/k_casinhl.c b/ap/libc/glibc/glibc-2.23/math/k_casinhl.c
new file mode 100644
index 0000000..7c4b9c3
--- /dev/null
+++ b/ap/libc/glibc/glibc-2.23/math/k_casinhl.c
@@ -0,0 +1,219 @@
+/* Return arc hyperbole sine for long double value, with the imaginary
+ part of the result possibly adjusted for use in computing other
+ functions.
+ Copyright (C) 1997-2016 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+/* To avoid spurious overflows, use this definition to treat IBM long
+ double as approximating an IEEE-style format. */
+#if LDBL_MANT_DIG == 106
+# undef LDBL_EPSILON
+# define LDBL_EPSILON 0x1p-106L
+#endif
+
+/* Return the complex inverse hyperbolic sine of finite nonzero Z,
+ with the imaginary part of the result subtracted from pi/2 if ADJ
+ is nonzero. */
+
+__complex__ long double
+__kernel_casinhl (__complex__ long double x, int adj)
+{
+ __complex__ long double res;
+ long double rx, ix;
+ __complex__ long double y;
+
+ /* Avoid cancellation by reducing to the first quadrant. */
+ rx = fabsl (__real__ x);
+ ix = fabsl (__imag__ x);
+
+ if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON)
+ {
+ /* For large x in the first quadrant, x + csqrt (1 + x * x)
+ is sufficiently close to 2 * x to make no significant
+ difference to the result; avoid possible overflow from
+ the squaring and addition. */
+ __real__ y = rx;
+ __imag__ y = ix;
+
+ if (adj)
+ {
+ long double t = __real__ y;
+ __real__ y = __copysignl (__imag__ y, __imag__ x);
+ __imag__ y = t;
+ }
+
+ res = __clogl (y);
+ __real__ res += M_LN2l;
+ }
+ else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L)
+ {
+ long double s = __ieee754_hypotl (1.0L, rx);
+
+ __real__ res = __ieee754_logl (rx + s);
+ if (adj)
+ __imag__ res = __ieee754_atan2l (s, __imag__ x);
+ else
+ __imag__ res = __ieee754_atan2l (ix, s);
+ }
+ else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L)
+ {
+ long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L));
+
+ __real__ res = __ieee754_logl (ix + s);
+ if (adj)
+ __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
+ else
+ __imag__ res = __ieee754_atan2l (s, rx);
+ }
+ else if (ix > 1.0L && ix < 1.5L && rx < 0.5L)
+ {
+ if (rx < LDBL_EPSILON * LDBL_EPSILON)
+ {
+ long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
+ long double s = __ieee754_sqrtl (ix2m1);
+
+ __real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x));
+ else
+ __imag__ res = __ieee754_atan2l (s, rx);
+ }
+ else
+ {
+ long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
+ long double rx2 = rx * rx;
+ long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
+ long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f);
+ long double dp = d + ix2m1;
+ long double dm = f / dp;
+ long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L);
+ long double r2 = rx * ix / r1;
+
+ __real__ res
+ = __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2,
+ __imag__ x));
+ else
+ __imag__ res = __ieee754_atan2l (ix + r2, rx + r1);
+ }
+ }
+ else if (ix == 1.0L && rx < 0.5L)
+ {
+ if (rx < LDBL_EPSILON / 8.0L)
+ {
+ __real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx),
+ __copysignl (1.0L, __imag__ x));
+ else
+ __imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx));
+ }
+ else
+ {
+ long double d = rx * __ieee754_sqrtl (4.0L + rx * rx);
+ long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L);
+ long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L);
+
+ __real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (rx + s1,
+ __copysignl (1.0L + s2,
+ __imag__ x));
+ else
+ __imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1);
+ }
+ }
+ else if (ix < 1.0L && rx < 0.5L)
+ {
+ if (ix >= LDBL_EPSILON)
+ {
+ if (rx < LDBL_EPSILON * LDBL_EPSILON)
+ {
+ long double onemix2 = (1.0L + ix) * (1.0L - ix);
+ long double s = __ieee754_sqrtl (onemix2);
+
+ __real__ res = __log1pl (2.0L * rx / s) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (s, __imag__ x);
+ else
+ __imag__ res = __ieee754_atan2l (ix, s);
+ }
+ else
+ {
+ long double onemix2 = (1.0L + ix) * (1.0L - ix);
+ long double rx2 = rx * rx;
+ long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
+ long double d = __ieee754_sqrtl (onemix2 * onemix2 + f);
+ long double dp = d + onemix2;
+ long double dm = f / dp;
+ long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L);
+ long double r2 = rx * ix / r1;
+
+ __real__ res
+ = __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (rx + r1,
+ __copysignl (ix + r2,
+ __imag__ x));
+ else
+ __imag__ res = __ieee754_atan2l (ix + r2, rx + r1);
+ }
+ }
+ else
+ {
+ long double s = __ieee754_hypotl (1.0L, rx);
+
+ __real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L;
+ if (adj)
+ __imag__ res = __ieee754_atan2l (s, __imag__ x);
+ else
+ __imag__ res = __ieee754_atan2l (ix, s);
+ }
+ math_check_force_underflow_nonneg (__real__ res);
+ }
+ else
+ {
+ __real__ y = (rx - ix) * (rx + ix) + 1.0L;
+ __imag__ y = 2.0L * rx * ix;
+
+ y = __csqrtl (y);
+
+ __real__ y += rx;
+ __imag__ y += ix;
+
+ if (adj)
+ {
+ long double t = __real__ y;
+ __real__ y = __copysignl (__imag__ y, __imag__ x);
+ __imag__ y = t;
+ }
+
+ res = __clogl (y);
+ }
+
+ /* Give results the correct sign for the original argument. */
+ __real__ res = __copysignl (__real__ res, __real__ x);
+ __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x));
+
+ return res;
+}