[Feature][ZXW-33]merge ZXW 0428 version

Change-Id: I11f167edfea428d9fab198ff00ff1364932d1b0b
diff --git a/ap/libc/glibc/glibc-2.23/math/s_clogf.c b/ap/libc/glibc/glibc-2.23/math/s_clogf.c
new file mode 100644
index 0000000..cc56539
--- /dev/null
+++ b/ap/libc/glibc/glibc-2.23/math/s_clogf.c
@@ -0,0 +1,116 @@
+/* Compute complex natural logarithm.
+   Copyright (C) 1997-2016 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+__complex__ float
+__clogf (__complex__ float x)
+{
+  __complex__ float result;
+  int rcls = fpclassify (__real__ x);
+  int icls = fpclassify (__imag__ x);
+
+  if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
+    {
+      /* Real and imaginary part are 0.0.  */
+      __imag__ result = signbit (__real__ x) ? M_PI : 0.0;
+      __imag__ result = __copysignf (__imag__ result, __imag__ x);
+      /* Yes, the following line raises an exception.  */
+      __real__ result = -1.0 / fabsf (__real__ x);
+    }
+  else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
+    {
+      /* Neither real nor imaginary part is NaN.  */
+      float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
+      int scale = 0;
+
+      if (absx < absy)
+	{
+	  float t = absx;
+	  absx = absy;
+	  absy = t;
+	}
+
+      if (absx > FLT_MAX / 2.0f)
+	{
+	  scale = -1;
+	  absx = __scalbnf (absx, scale);
+	  absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
+	}
+      else if (absx < FLT_MIN && absy < FLT_MIN)
+	{
+	  scale = FLT_MANT_DIG;
+	  absx = __scalbnf (absx, scale);
+	  absy = __scalbnf (absy, scale);
+	}
+
+      if (absx == 1.0f && scale == 0)
+	{
+	  __real__ result = __log1pf (absy * absy) / 2.0f;
+	  math_check_force_underflow_nonneg (__real__ result);
+	}
+      else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
+	{
+	  float d2m1 = (absx - 1.0f) * (absx + 1.0f);
+	  if (absy >= FLT_EPSILON)
+	    d2m1 += absy * absy;
+	  __real__ result = __log1pf (d2m1) / 2.0f;
+	}
+      else if (absx < 1.0f
+	       && absx >= 0.5f
+	       && absy < FLT_EPSILON / 2.0f
+	       && scale == 0)
+	{
+	  float d2m1 = (absx - 1.0f) * (absx + 1.0f);
+	  __real__ result = __log1pf (d2m1) / 2.0f;
+	}
+      else if (absx < 1.0f
+	       && absx >= 0.5f
+	       && scale == 0
+	       && absx * absx + absy * absy >= 0.5f)
+	{
+	  float d2m1 = __x2y2m1f (absx, absy);
+	  __real__ result = __log1pf (d2m1) / 2.0f;
+	}
+      else
+	{
+	  float d = __ieee754_hypotf (absx, absy);
+	  __real__ result = __ieee754_logf (d) - scale * (float) M_LN2;
+	}
+
+      __imag__ result = __ieee754_atan2f (__imag__ x, __real__ x);
+    }
+  else
+    {
+      __imag__ result = __nanf ("");
+      if (rcls == FP_INFINITE || icls == FP_INFINITE)
+	/* Real or imaginary part is infinite.  */
+	__real__ result = HUGE_VALF;
+      else
+	__real__ result = __nanf ("");
+    }
+
+  return result;
+}
+#ifndef __clogf
+weak_alias (__clogf, clogf)
+#endif