| /* Return arc hyperbole sine for float value, with the imaginary part | 
 |    of the result possibly adjusted for use in computing other | 
 |    functions. | 
 |    Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <complex.h> | 
 | #include <math.h> | 
 | #include <math_private.h> | 
 | #include <float.h> | 
 |  | 
 | /* Return the complex inverse hyperbolic sine of finite nonzero Z, | 
 |    with the imaginary part of the result subtracted from pi/2 if ADJ | 
 |    is nonzero.  */ | 
 |  | 
 | __complex__ float | 
 | __kernel_casinhf (__complex__ float x, int adj) | 
 | { | 
 |   __complex__ float res; | 
 |   float rx, ix; | 
 |   __complex__ float y; | 
 |  | 
 |   /* Avoid cancellation by reducing to the first quadrant.  */ | 
 |   rx = fabsf (__real__ x); | 
 |   ix = fabsf (__imag__ x); | 
 |  | 
 |   if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) | 
 |     { | 
 |       /* For large x in the first quadrant, x + csqrt (1 + x * x) | 
 | 	 is sufficiently close to 2 * x to make no significant | 
 | 	 difference to the result; avoid possible overflow from | 
 | 	 the squaring and addition.  */ | 
 |       __real__ y = rx; | 
 |       __imag__ y = ix; | 
 |  | 
 |       if (adj) | 
 | 	{ | 
 | 	  float t = __real__ y; | 
 | 	  __real__ y = __copysignf (__imag__ y, __imag__ x); | 
 | 	  __imag__ y = t; | 
 | 	} | 
 |  | 
 |       res = __clogf (y); | 
 |       __real__ res += (float) M_LN2; | 
 |     } | 
 |   else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) | 
 |     { | 
 |       float s = __ieee754_hypotf (1.0f, rx); | 
 |  | 
 |       __real__ res = __ieee754_logf (rx + s); | 
 |       if (adj) | 
 | 	__imag__ res = __ieee754_atan2f (s, __imag__ x); | 
 |       else | 
 | 	__imag__ res = __ieee754_atan2f (ix, s); | 
 |     } | 
 |   else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) | 
 |     { | 
 |       float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); | 
 |  | 
 |       __real__ res = __ieee754_logf (ix + s); | 
 |       if (adj) | 
 | 	__imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); | 
 |       else | 
 | 	__imag__ res = __ieee754_atan2f (s, rx); | 
 |     } | 
 |   else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) | 
 |     { | 
 |       if (rx < FLT_EPSILON * FLT_EPSILON) | 
 | 	{ | 
 | 	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f); | 
 | 	  float s = __ieee754_sqrtf (ix2m1); | 
 |  | 
 | 	  __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2f (s, rx); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f); | 
 | 	  float rx2 = rx * rx; | 
 | 	  float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); | 
 | 	  float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); | 
 | 	  float dp = d + ix2m1; | 
 | 	  float dm = f / dp; | 
 | 	  float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); | 
 | 	  float r2 = rx * ix / r1; | 
 |  | 
 | 	  __real__ res | 
 | 	    = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, | 
 | 								   __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); | 
 | 	} | 
 |     } | 
 |   else if (ix == 1.0f && rx < 0.5f) | 
 |     { | 
 |       if (rx < FLT_EPSILON / 8.0f) | 
 | 	{ | 
 | 	  __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), | 
 | 					     __copysignf (1.0f, __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  float d = rx * __ieee754_sqrtf (4.0f + rx * rx); | 
 | 	  float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); | 
 | 	  float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); | 
 |  | 
 | 	  __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2f (rx + s1, | 
 | 					     __copysignf (1.0f + s2, | 
 | 							  __imag__ x)); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); | 
 | 	} | 
 |     } | 
 |   else if (ix < 1.0f && rx < 0.5f) | 
 |     { | 
 |       if (ix >= FLT_EPSILON) | 
 | 	{ | 
 | 	  if (rx < FLT_EPSILON * FLT_EPSILON) | 
 | 	    { | 
 | 	      float onemix2 = (1.0f + ix) * (1.0f - ix); | 
 | 	      float s = __ieee754_sqrtf (onemix2); | 
 |  | 
 | 	      __real__ res = __log1pf (2.0f * rx / s) / 2.0f; | 
 | 	      if (adj) | 
 | 		__imag__ res = __ieee754_atan2f (s, __imag__ x); | 
 | 	      else | 
 | 		__imag__ res = __ieee754_atan2f (ix, s); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      float onemix2 = (1.0f + ix) * (1.0f - ix); | 
 | 	      float rx2 = rx * rx; | 
 | 	      float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); | 
 | 	      float d = __ieee754_sqrtf (onemix2 * onemix2 + f); | 
 | 	      float dp = d + onemix2; | 
 | 	      float dm = f / dp; | 
 | 	      float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); | 
 | 	      float r2 = rx * ix / r1; | 
 |  | 
 | 	      __real__ res | 
 | 		= __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; | 
 | 	      if (adj) | 
 | 		__imag__ res = __ieee754_atan2f (rx + r1, | 
 | 						 __copysignf (ix + r2, | 
 | 							      __imag__ x)); | 
 | 	      else | 
 | 		__imag__ res = __ieee754_atan2f (ix + r2, rx + r1); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  float s = __ieee754_hypotf (1.0f, rx); | 
 |  | 
 | 	  __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; | 
 | 	  if (adj) | 
 | 	    __imag__ res = __ieee754_atan2f (s, __imag__ x); | 
 | 	  else | 
 | 	    __imag__ res = __ieee754_atan2f (ix, s); | 
 | 	} | 
 |       math_check_force_underflow_nonneg (__real__ res); | 
 |     } | 
 |   else | 
 |     { | 
 |       __real__ y = (rx - ix) * (rx + ix) + 1.0f; | 
 |       __imag__ y = 2.0f * rx * ix; | 
 |  | 
 |       y = __csqrtf (y); | 
 |  | 
 |       __real__ y += rx; | 
 |       __imag__ y += ix; | 
 |  | 
 |       if (adj) | 
 | 	{ | 
 | 	  float t = __real__ y; | 
 | 	  __real__ y = __copysignf (__imag__ y, __imag__ x); | 
 | 	  __imag__ y = t; | 
 | 	} | 
 |  | 
 |       res = __clogf (y); | 
 |     } | 
 |  | 
 |   /* Give results the correct sign for the original argument.  */ | 
 |   __real__ res = __copysignf (__real__ res, __real__ x); | 
 |   __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); | 
 |  | 
 |   return res; | 
 | } |