| /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/string.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/falloc.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/statfs.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/slab.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "ioctl.h" | 
 | #include "print-tree.h" | 
 | #include "tree-log.h" | 
 | #include "locking.h" | 
 | #include "compat.h" | 
 |  | 
 | /* | 
 |  * when auto defrag is enabled we | 
 |  * queue up these defrag structs to remember which | 
 |  * inodes need defragging passes | 
 |  */ | 
 | struct inode_defrag { | 
 | 	struct rb_node rb_node; | 
 | 	/* objectid */ | 
 | 	u64 ino; | 
 | 	/* | 
 | 	 * transid where the defrag was added, we search for | 
 | 	 * extents newer than this | 
 | 	 */ | 
 | 	u64 transid; | 
 |  | 
 | 	/* root objectid */ | 
 | 	u64 root; | 
 |  | 
 | 	/* last offset we were able to defrag */ | 
 | 	u64 last_offset; | 
 |  | 
 | 	/* if we've wrapped around back to zero once already */ | 
 | 	int cycled; | 
 | }; | 
 |  | 
 | /* pop a record for an inode into the defrag tree.  The lock | 
 |  * must be held already | 
 |  * | 
 |  * If you're inserting a record for an older transid than an | 
 |  * existing record, the transid already in the tree is lowered | 
 |  * | 
 |  * If an existing record is found the defrag item you | 
 |  * pass in is freed | 
 |  */ | 
 | static void __btrfs_add_inode_defrag(struct inode *inode, | 
 | 				    struct inode_defrag *defrag) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct inode_defrag *entry; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 |  | 
 | 	p = &root->fs_info->defrag_inodes.rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct inode_defrag, rb_node); | 
 |  | 
 | 		if (defrag->ino < entry->ino) | 
 | 			p = &parent->rb_left; | 
 | 		else if (defrag->ino > entry->ino) | 
 | 			p = &parent->rb_right; | 
 | 		else { | 
 | 			/* if we're reinserting an entry for | 
 | 			 * an old defrag run, make sure to | 
 | 			 * lower the transid of our existing record | 
 | 			 */ | 
 | 			if (defrag->transid < entry->transid) | 
 | 				entry->transid = defrag->transid; | 
 | 			if (defrag->last_offset > entry->last_offset) | 
 | 				entry->last_offset = defrag->last_offset; | 
 | 			goto exists; | 
 | 		} | 
 | 	} | 
 | 	BTRFS_I(inode)->in_defrag = 1; | 
 | 	rb_link_node(&defrag->rb_node, parent, p); | 
 | 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); | 
 | 	return; | 
 |  | 
 | exists: | 
 | 	kfree(defrag); | 
 | 	return; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * insert a defrag record for this inode if auto defrag is | 
 |  * enabled | 
 |  */ | 
 | int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, | 
 | 			   struct inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct inode_defrag *defrag; | 
 | 	u64 transid; | 
 |  | 
 | 	if (!btrfs_test_opt(root, AUTO_DEFRAG)) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_fs_closing(root->fs_info)) | 
 | 		return 0; | 
 |  | 
 | 	if (BTRFS_I(inode)->in_defrag) | 
 | 		return 0; | 
 |  | 
 | 	if (trans) | 
 | 		transid = trans->transid; | 
 | 	else | 
 | 		transid = BTRFS_I(inode)->root->last_trans; | 
 |  | 
 | 	defrag = kzalloc(sizeof(*defrag), GFP_NOFS); | 
 | 	if (!defrag) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	defrag->ino = btrfs_ino(inode); | 
 | 	defrag->transid = transid; | 
 | 	defrag->root = root->root_key.objectid; | 
 |  | 
 | 	spin_lock(&root->fs_info->defrag_inodes_lock); | 
 | 	if (!BTRFS_I(inode)->in_defrag) | 
 | 		__btrfs_add_inode_defrag(inode, defrag); | 
 | 	else | 
 | 		kfree(defrag); | 
 | 	spin_unlock(&root->fs_info->defrag_inodes_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * must be called with the defrag_inodes lock held | 
 |  */ | 
 | struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino, | 
 | 					     struct rb_node **next) | 
 | { | 
 | 	struct inode_defrag *entry = NULL; | 
 | 	struct rb_node *p; | 
 | 	struct rb_node *parent = NULL; | 
 |  | 
 | 	p = info->defrag_inodes.rb_node; | 
 | 	while (p) { | 
 | 		parent = p; | 
 | 		entry = rb_entry(parent, struct inode_defrag, rb_node); | 
 |  | 
 | 		if (ino < entry->ino) | 
 | 			p = parent->rb_left; | 
 | 		else if (ino > entry->ino) | 
 | 			p = parent->rb_right; | 
 | 		else | 
 | 			return entry; | 
 | 	} | 
 |  | 
 | 	if (next) { | 
 | 		while (parent && ino > entry->ino) { | 
 | 			parent = rb_next(parent); | 
 | 			entry = rb_entry(parent, struct inode_defrag, rb_node); | 
 | 		} | 
 | 		*next = parent; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * run through the list of inodes in the FS that need | 
 |  * defragging | 
 |  */ | 
 | int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct inode_defrag *defrag; | 
 | 	struct btrfs_root *inode_root; | 
 | 	struct inode *inode; | 
 | 	struct rb_node *n; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_ioctl_defrag_range_args range; | 
 | 	u64 first_ino = 0; | 
 | 	int num_defrag; | 
 | 	int defrag_batch = 1024; | 
 |  | 
 | 	memset(&range, 0, sizeof(range)); | 
 | 	range.len = (u64)-1; | 
 |  | 
 | 	atomic_inc(&fs_info->defrag_running); | 
 | 	spin_lock(&fs_info->defrag_inodes_lock); | 
 | 	while(1) { | 
 | 		n = NULL; | 
 |  | 
 | 		/* find an inode to defrag */ | 
 | 		defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n); | 
 | 		if (!defrag) { | 
 | 			if (n) | 
 | 				defrag = rb_entry(n, struct inode_defrag, rb_node); | 
 | 			else if (first_ino) { | 
 | 				first_ino = 0; | 
 | 				continue; | 
 | 			} else { | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* remove it from the rbtree */ | 
 | 		first_ino = defrag->ino + 1; | 
 | 		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes); | 
 |  | 
 | 		if (btrfs_fs_closing(fs_info)) | 
 | 			goto next_free; | 
 |  | 
 | 		spin_unlock(&fs_info->defrag_inodes_lock); | 
 |  | 
 | 		/* get the inode */ | 
 | 		key.objectid = defrag->root; | 
 | 		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | 
 | 		key.offset = (u64)-1; | 
 | 		inode_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 		if (IS_ERR(inode_root)) | 
 | 			goto next; | 
 |  | 
 | 		key.objectid = defrag->ino; | 
 | 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | 
 | 		key.offset = 0; | 
 |  | 
 | 		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); | 
 | 		if (IS_ERR(inode)) | 
 | 			goto next; | 
 |  | 
 | 		/* do a chunk of defrag */ | 
 | 		BTRFS_I(inode)->in_defrag = 0; | 
 | 		range.start = defrag->last_offset; | 
 | 		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, | 
 | 					       defrag_batch); | 
 | 		/* | 
 | 		 * if we filled the whole defrag batch, there | 
 | 		 * must be more work to do.  Queue this defrag | 
 | 		 * again | 
 | 		 */ | 
 | 		if (num_defrag == defrag_batch) { | 
 | 			defrag->last_offset = range.start; | 
 | 			__btrfs_add_inode_defrag(inode, defrag); | 
 | 			/* | 
 | 			 * we don't want to kfree defrag, we added it back to | 
 | 			 * the rbtree | 
 | 			 */ | 
 | 			defrag = NULL; | 
 | 		} else if (defrag->last_offset && !defrag->cycled) { | 
 | 			/* | 
 | 			 * we didn't fill our defrag batch, but | 
 | 			 * we didn't start at zero.  Make sure we loop | 
 | 			 * around to the start of the file. | 
 | 			 */ | 
 | 			defrag->last_offset = 0; | 
 | 			defrag->cycled = 1; | 
 | 			__btrfs_add_inode_defrag(inode, defrag); | 
 | 			defrag = NULL; | 
 | 		} | 
 |  | 
 | 		iput(inode); | 
 | next: | 
 | 		spin_lock(&fs_info->defrag_inodes_lock); | 
 | next_free: | 
 | 		kfree(defrag); | 
 | 	} | 
 | 	spin_unlock(&fs_info->defrag_inodes_lock); | 
 |  | 
 | 	atomic_dec(&fs_info->defrag_running); | 
 |  | 
 | 	/* | 
 | 	 * during unmount, we use the transaction_wait queue to | 
 | 	 * wait for the defragger to stop | 
 | 	 */ | 
 | 	wake_up(&fs_info->transaction_wait); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* simple helper to fault in pages and copy.  This should go away | 
 |  * and be replaced with calls into generic code. | 
 |  */ | 
 | static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, | 
 | 					 size_t write_bytes, | 
 | 					 struct page **prepared_pages, | 
 | 					 struct iov_iter *i) | 
 | { | 
 | 	size_t copied = 0; | 
 | 	size_t total_copied = 0; | 
 | 	int pg = 0; | 
 | 	int offset = pos & (PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 	while (write_bytes > 0) { | 
 | 		size_t count = min_t(size_t, | 
 | 				     PAGE_CACHE_SIZE - offset, write_bytes); | 
 | 		struct page *page = prepared_pages[pg]; | 
 | 		/* | 
 | 		 * Copy data from userspace to the current page | 
 | 		 * | 
 | 		 * Disable pagefault to avoid recursive lock since | 
 | 		 * the pages are already locked | 
 | 		 */ | 
 | 		pagefault_disable(); | 
 | 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count); | 
 | 		pagefault_enable(); | 
 |  | 
 | 		/* Flush processor's dcache for this page */ | 
 | 		flush_dcache_page(page); | 
 |  | 
 | 		/* | 
 | 		 * if we get a partial write, we can end up with | 
 | 		 * partially up to date pages.  These add | 
 | 		 * a lot of complexity, so make sure they don't | 
 | 		 * happen by forcing this copy to be retried. | 
 | 		 * | 
 | 		 * The rest of the btrfs_file_write code will fall | 
 | 		 * back to page at a time copies after we return 0. | 
 | 		 */ | 
 | 		if (!PageUptodate(page) && copied < count) | 
 | 			copied = 0; | 
 |  | 
 | 		iov_iter_advance(i, copied); | 
 | 		write_bytes -= copied; | 
 | 		total_copied += copied; | 
 |  | 
 | 		/* Return to btrfs_file_aio_write to fault page */ | 
 | 		if (unlikely(copied == 0)) | 
 | 			break; | 
 |  | 
 | 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { | 
 | 			offset += copied; | 
 | 		} else { | 
 | 			pg++; | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	return total_copied; | 
 | } | 
 |  | 
 | /* | 
 |  * unlocks pages after btrfs_file_write is done with them | 
 |  */ | 
 | void btrfs_drop_pages(struct page **pages, size_t num_pages) | 
 | { | 
 | 	size_t i; | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		/* page checked is some magic around finding pages that | 
 | 		 * have been modified without going through btrfs_set_page_dirty | 
 | 		 * clear it here | 
 | 		 */ | 
 | 		ClearPageChecked(pages[i]); | 
 | 		unlock_page(pages[i]); | 
 | 		mark_page_accessed(pages[i]); | 
 | 		page_cache_release(pages[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * after copy_from_user, pages need to be dirtied and we need to make | 
 |  * sure holes are created between the current EOF and the start of | 
 |  * any next extents (if required). | 
 |  * | 
 |  * this also makes the decision about creating an inline extent vs | 
 |  * doing real data extents, marking pages dirty and delalloc as required. | 
 |  */ | 
 | int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, | 
 | 		      struct page **pages, size_t num_pages, | 
 | 		      loff_t pos, size_t write_bytes, | 
 | 		      struct extent_state **cached) | 
 | { | 
 | 	int err = 0; | 
 | 	int i; | 
 | 	u64 num_bytes; | 
 | 	u64 start_pos; | 
 | 	u64 end_of_last_block; | 
 | 	u64 end_pos = pos + write_bytes; | 
 | 	loff_t isize = i_size_read(inode); | 
 |  | 
 | 	start_pos = pos & ~((u64)root->sectorsize - 1); | 
 | 	num_bytes = (write_bytes + pos - start_pos + | 
 | 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1); | 
 |  | 
 | 	end_of_last_block = start_pos + num_bytes - 1; | 
 | 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, | 
 | 					cached); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		struct page *p = pages[i]; | 
 | 		SetPageUptodate(p); | 
 | 		ClearPageChecked(p); | 
 | 		set_page_dirty(p); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we've only changed i_size in ram, and we haven't updated | 
 | 	 * the disk i_size.  There is no need to log the inode | 
 | 	 * at this time. | 
 | 	 */ | 
 | 	if (end_pos > isize) | 
 | 		i_size_write(inode, end_pos); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this drops all the extents in the cache that intersect the range | 
 |  * [start, end].  Existing extents are split as required. | 
 |  */ | 
 | int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, | 
 | 			    int skip_pinned) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct extent_map *split = NULL; | 
 | 	struct extent_map *split2 = NULL; | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	u64 len = end - start + 1; | 
 | 	int ret; | 
 | 	int testend = 1; | 
 | 	unsigned long flags; | 
 | 	int compressed = 0; | 
 |  | 
 | 	WARN_ON(end < start); | 
 | 	if (end == (u64)-1) { | 
 | 		len = (u64)-1; | 
 | 		testend = 0; | 
 | 	} | 
 | 	while (1) { | 
 | 		if (!split) | 
 | 			split = alloc_extent_map(); | 
 | 		if (!split2) | 
 | 			split2 = alloc_extent_map(); | 
 | 		BUG_ON(!split || !split2); /* -ENOMEM */ | 
 |  | 
 | 		write_lock(&em_tree->lock); | 
 | 		em = lookup_extent_mapping(em_tree, start, len); | 
 | 		if (!em) { | 
 | 			write_unlock(&em_tree->lock); | 
 | 			break; | 
 | 		} | 
 | 		flags = em->flags; | 
 | 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { | 
 | 			if (testend && em->start + em->len >= start + len) { | 
 | 				free_extent_map(em); | 
 | 				write_unlock(&em_tree->lock); | 
 | 				break; | 
 | 			} | 
 | 			start = em->start + em->len; | 
 | 			if (testend) | 
 | 				len = start + len - (em->start + em->len); | 
 | 			free_extent_map(em); | 
 | 			write_unlock(&em_tree->lock); | 
 | 			continue; | 
 | 		} | 
 | 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
 | 		clear_bit(EXTENT_FLAG_PINNED, &em->flags); | 
 | 		remove_extent_mapping(em_tree, em); | 
 |  | 
 | 		if (em->block_start < EXTENT_MAP_LAST_BYTE && | 
 | 		    em->start < start) { | 
 | 			split->start = em->start; | 
 | 			split->len = start - em->start; | 
 | 			split->orig_start = em->orig_start; | 
 | 			split->block_start = em->block_start; | 
 |  | 
 | 			if (compressed) | 
 | 				split->block_len = em->block_len; | 
 | 			else | 
 | 				split->block_len = split->len; | 
 |  | 
 | 			split->bdev = em->bdev; | 
 | 			split->flags = flags; | 
 | 			split->compress_type = em->compress_type; | 
 | 			ret = add_extent_mapping(em_tree, split); | 
 | 			BUG_ON(ret); /* Logic error */ | 
 | 			free_extent_map(split); | 
 | 			split = split2; | 
 | 			split2 = NULL; | 
 | 		} | 
 | 		if (em->block_start < EXTENT_MAP_LAST_BYTE && | 
 | 		    testend && em->start + em->len > start + len) { | 
 | 			u64 diff = start + len - em->start; | 
 |  | 
 | 			split->start = start + len; | 
 | 			split->len = em->start + em->len - (start + len); | 
 | 			split->bdev = em->bdev; | 
 | 			split->flags = flags; | 
 | 			split->compress_type = em->compress_type; | 
 |  | 
 | 			if (compressed) { | 
 | 				split->block_len = em->block_len; | 
 | 				split->block_start = em->block_start; | 
 | 				split->orig_start = em->orig_start; | 
 | 			} else { | 
 | 				split->block_len = split->len; | 
 | 				split->block_start = em->block_start + diff; | 
 | 				split->orig_start = split->start; | 
 | 			} | 
 |  | 
 | 			ret = add_extent_mapping(em_tree, split); | 
 | 			BUG_ON(ret); /* Logic error */ | 
 | 			free_extent_map(split); | 
 | 			split = NULL; | 
 | 		} | 
 | 		write_unlock(&em_tree->lock); | 
 |  | 
 | 		/* once for us */ | 
 | 		free_extent_map(em); | 
 | 		/* once for the tree*/ | 
 | 		free_extent_map(em); | 
 | 	} | 
 | 	if (split) | 
 | 		free_extent_map(split); | 
 | 	if (split2) | 
 | 		free_extent_map(split2); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this is very complex, but the basic idea is to drop all extents | 
 |  * in the range start - end.  hint_block is filled in with a block number | 
 |  * that would be a good hint to the block allocator for this file. | 
 |  * | 
 |  * If an extent intersects the range but is not entirely inside the range | 
 |  * it is either truncated or split.  Anything entirely inside the range | 
 |  * is deleted from the tree. | 
 |  */ | 
 | int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode, | 
 | 		       u64 start, u64 end, u64 *hint_byte, int drop_cache) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key new_key; | 
 | 	u64 ino = btrfs_ino(inode); | 
 | 	u64 search_start = start; | 
 | 	u64 disk_bytenr = 0; | 
 | 	u64 num_bytes = 0; | 
 | 	u64 extent_offset = 0; | 
 | 	u64 extent_end = 0; | 
 | 	int del_nr = 0; | 
 | 	int del_slot = 0; | 
 | 	int extent_type; | 
 | 	int recow; | 
 | 	int ret; | 
 | 	int modify_tree = -1; | 
 |  | 
 | 	if (drop_cache) | 
 | 		btrfs_drop_extent_cache(inode, start, end - 1, 0); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (start >= BTRFS_I(inode)->disk_i_size) | 
 | 		modify_tree = 0; | 
 |  | 
 | 	while (1) { | 
 | 		recow = 0; | 
 | 		ret = btrfs_lookup_file_extent(trans, root, path, ino, | 
 | 					       search_start, modify_tree); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0 && path->slots[0] > 0 && search_start == start) { | 
 | 			leaf = path->nodes[0]; | 
 | 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); | 
 | 			if (key.objectid == ino && | 
 | 			    key.type == BTRFS_EXTENT_DATA_KEY) | 
 | 				path->slots[0]--; | 
 | 		} | 
 | 		ret = 0; | 
 | next_slot: | 
 | 		leaf = path->nodes[0]; | 
 | 		if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 			BUG_ON(del_nr > 0); | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				break; | 
 | 			if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			leaf = path->nodes[0]; | 
 | 			recow = 1; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		if (key.objectid > ino || | 
 | 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) | 
 | 			break; | 
 |  | 
 | 		fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 | 		extent_type = btrfs_file_extent_type(leaf, fi); | 
 |  | 
 | 		if (extent_type == BTRFS_FILE_EXTENT_REG || | 
 | 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
 | 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
 | 			extent_offset = btrfs_file_extent_offset(leaf, fi); | 
 | 			extent_end = key.offset + | 
 | 				btrfs_file_extent_num_bytes(leaf, fi); | 
 | 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 			extent_end = key.offset + | 
 | 				btrfs_file_extent_inline_len(leaf, fi); | 
 | 		} else { | 
 | 			WARN_ON(1); | 
 | 			extent_end = search_start; | 
 | 		} | 
 |  | 
 | 		if (extent_end <= search_start) { | 
 | 			path->slots[0]++; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		search_start = max(key.offset, start); | 
 | 		if (recow || !modify_tree) { | 
 | 			modify_tree = -1; | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 *     | - range to drop - | | 
 | 		 *  | -------- extent -------- | | 
 | 		 */ | 
 | 		if (start > key.offset && end < extent_end) { | 
 | 			BUG_ON(del_nr > 0); | 
 | 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); | 
 |  | 
 | 			memcpy(&new_key, &key, sizeof(new_key)); | 
 | 			new_key.offset = start; | 
 | 			ret = btrfs_duplicate_item(trans, root, path, | 
 | 						   &new_key); | 
 | 			if (ret == -EAGAIN) { | 
 | 				btrfs_release_path(path); | 
 | 				continue; | 
 | 			} | 
 | 			if (ret < 0) | 
 | 				break; | 
 |  | 
 | 			leaf = path->nodes[0]; | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
 | 					    struct btrfs_file_extent_item); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							start - key.offset); | 
 |  | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					    struct btrfs_file_extent_item); | 
 |  | 
 | 			extent_offset += start - key.offset; | 
 | 			btrfs_set_file_extent_offset(leaf, fi, extent_offset); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							extent_end - start); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 			if (disk_bytenr > 0) { | 
 | 				ret = btrfs_inc_extent_ref(trans, root, | 
 | 						disk_bytenr, num_bytes, 0, | 
 | 						root->root_key.objectid, | 
 | 						new_key.objectid, | 
 | 						start - extent_offset, 0); | 
 | 				BUG_ON(ret); /* -ENOMEM */ | 
 | 				*hint_byte = disk_bytenr; | 
 | 			} | 
 | 			key.offset = start; | 
 | 		} | 
 | 		/* | 
 | 		 *  | ---- range to drop ----- | | 
 | 		 *      | -------- extent -------- | | 
 | 		 */ | 
 | 		if (start <= key.offset && end < extent_end) { | 
 | 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); | 
 |  | 
 | 			memcpy(&new_key, &key, sizeof(new_key)); | 
 | 			new_key.offset = end; | 
 | 			btrfs_set_item_key_safe(trans, root, path, &new_key); | 
 |  | 
 | 			extent_offset += end - key.offset; | 
 | 			btrfs_set_file_extent_offset(leaf, fi, extent_offset); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							extent_end - end); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 			if (disk_bytenr > 0) { | 
 | 				inode_sub_bytes(inode, end - key.offset); | 
 | 				*hint_byte = disk_bytenr; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		search_start = extent_end; | 
 | 		/* | 
 | 		 *       | ---- range to drop ----- | | 
 | 		 *  | -------- extent -------- | | 
 | 		 */ | 
 | 		if (start > key.offset && end >= extent_end) { | 
 | 			BUG_ON(del_nr > 0); | 
 | 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); | 
 |  | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							start - key.offset); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 			if (disk_bytenr > 0) { | 
 | 				inode_sub_bytes(inode, extent_end - start); | 
 | 				*hint_byte = disk_bytenr; | 
 | 			} | 
 | 			if (end == extent_end) | 
 | 				break; | 
 |  | 
 | 			path->slots[0]++; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 *  | ---- range to drop ----- | | 
 | 		 *    | ------ extent ------ | | 
 | 		 */ | 
 | 		if (start <= key.offset && end >= extent_end) { | 
 | 			if (del_nr == 0) { | 
 | 				del_slot = path->slots[0]; | 
 | 				del_nr = 1; | 
 | 			} else { | 
 | 				BUG_ON(del_slot + del_nr != path->slots[0]); | 
 | 				del_nr++; | 
 | 			} | 
 |  | 
 | 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 				inode_sub_bytes(inode, | 
 | 						extent_end - key.offset); | 
 | 				extent_end = ALIGN(extent_end, | 
 | 						   root->sectorsize); | 
 | 			} else if (disk_bytenr > 0) { | 
 | 				ret = btrfs_free_extent(trans, root, | 
 | 						disk_bytenr, num_bytes, 0, | 
 | 						root->root_key.objectid, | 
 | 						key.objectid, key.offset - | 
 | 						extent_offset, 0); | 
 | 				BUG_ON(ret); /* -ENOMEM */ | 
 | 				inode_sub_bytes(inode, | 
 | 						extent_end - key.offset); | 
 | 				*hint_byte = disk_bytenr; | 
 | 			} | 
 |  | 
 | 			if (end == extent_end) | 
 | 				break; | 
 |  | 
 | 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { | 
 | 				path->slots[0]++; | 
 | 				goto next_slot; | 
 | 			} | 
 |  | 
 | 			ret = btrfs_del_items(trans, root, path, del_slot, | 
 | 					      del_nr); | 
 | 			if (ret) { | 
 | 				btrfs_abort_transaction(trans, root, ret); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			del_nr = 0; | 
 | 			del_slot = 0; | 
 |  | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	if (!ret && del_nr > 0) { | 
 | 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | 
 | 		if (ret) | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int extent_mergeable(struct extent_buffer *leaf, int slot, | 
 | 			    u64 objectid, u64 bytenr, u64 orig_offset, | 
 | 			    u64 *start, u64 *end) | 
 | { | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_key key; | 
 | 	u64 extent_end; | 
 |  | 
 | 	if (slot < 0 || slot >= btrfs_header_nritems(leaf)) | 
 | 		return 0; | 
 |  | 
 | 	btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 		return 0; | 
 |  | 
 | 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
 | 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || | 
 | 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || | 
 | 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || | 
 | 	    btrfs_file_extent_compression(leaf, fi) || | 
 | 	    btrfs_file_extent_encryption(leaf, fi) || | 
 | 	    btrfs_file_extent_other_encoding(leaf, fi)) | 
 | 		return 0; | 
 |  | 
 | 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
 | 	if ((*start && *start != key.offset) || (*end && *end != extent_end)) | 
 | 		return 0; | 
 |  | 
 | 	*start = key.offset; | 
 | 	*end = extent_end; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Mark extent in the range start - end as written. | 
 |  * | 
 |  * This changes extent type from 'pre-allocated' to 'regular'. If only | 
 |  * part of extent is marked as written, the extent will be split into | 
 |  * two or three. | 
 |  */ | 
 | int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, | 
 | 			      struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key new_key; | 
 | 	u64 bytenr; | 
 | 	u64 num_bytes; | 
 | 	u64 extent_end; | 
 | 	u64 orig_offset; | 
 | 	u64 other_start; | 
 | 	u64 other_end; | 
 | 	u64 split; | 
 | 	int del_nr = 0; | 
 | 	int del_slot = 0; | 
 | 	int recow; | 
 | 	int ret; | 
 | 	u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	btrfs_drop_extent_cache(inode, start, end - 1, 0); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | again: | 
 | 	recow = 0; | 
 | 	split = start; | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = split; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0 && path->slots[0] > 0) | 
 | 		path->slots[0]--; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); | 
 | 	fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			    struct btrfs_file_extent_item); | 
 | 	BUG_ON(btrfs_file_extent_type(leaf, fi) != | 
 | 	       BTRFS_FILE_EXTENT_PREALLOC); | 
 | 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
 | 	BUG_ON(key.offset > start || extent_end < end); | 
 |  | 
 | 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
 | 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
 | 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); | 
 | 	memcpy(&new_key, &key, sizeof(new_key)); | 
 |  | 
 | 	if (start == key.offset && end < extent_end) { | 
 | 		other_start = 0; | 
 | 		other_end = start; | 
 | 		if (extent_mergeable(leaf, path->slots[0] - 1, | 
 | 				     ino, bytenr, orig_offset, | 
 | 				     &other_start, &other_end)) { | 
 | 			new_key.offset = end; | 
 | 			btrfs_set_item_key_safe(trans, root, path, &new_key); | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					    struct btrfs_file_extent_item); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							extent_end - end); | 
 | 			btrfs_set_file_extent_offset(leaf, fi, | 
 | 						     end - orig_offset); | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
 | 					    struct btrfs_file_extent_item); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							end - other_start); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (start > key.offset && end == extent_end) { | 
 | 		other_start = end; | 
 | 		other_end = 0; | 
 | 		if (extent_mergeable(leaf, path->slots[0] + 1, | 
 | 				     ino, bytenr, orig_offset, | 
 | 				     &other_start, &other_end)) { | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					    struct btrfs_file_extent_item); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							start - key.offset); | 
 | 			path->slots[0]++; | 
 | 			new_key.offset = start; | 
 | 			btrfs_set_item_key_safe(trans, root, path, &new_key); | 
 |  | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					    struct btrfs_file_extent_item); | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							other_end - start); | 
 | 			btrfs_set_file_extent_offset(leaf, fi, | 
 | 						     start - orig_offset); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (start > key.offset || end < extent_end) { | 
 | 		if (key.offset == start) | 
 | 			split = end; | 
 |  | 
 | 		new_key.offset = split; | 
 | 		ret = btrfs_duplicate_item(trans, root, path, &new_key); | 
 | 		if (ret == -EAGAIN) { | 
 | 			btrfs_release_path(path); | 
 | 			goto again; | 
 | 		} | 
 | 		if (ret < 0) { | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
 | 				    struct btrfs_file_extent_item); | 
 | 		btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 						split - key.offset); | 
 |  | 
 | 		fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 |  | 
 | 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); | 
 | 		btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 						extent_end - split); | 
 | 		btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, | 
 | 					   root->root_key.objectid, | 
 | 					   ino, orig_offset, 0); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 		if (split == start) { | 
 | 			key.offset = start; | 
 | 		} else { | 
 | 			BUG_ON(start != key.offset); | 
 | 			path->slots[0]--; | 
 | 			extent_end = end; | 
 | 		} | 
 | 		recow = 1; | 
 | 	} | 
 |  | 
 | 	other_start = end; | 
 | 	other_end = 0; | 
 | 	if (extent_mergeable(leaf, path->slots[0] + 1, | 
 | 			     ino, bytenr, orig_offset, | 
 | 			     &other_start, &other_end)) { | 
 | 		if (recow) { | 
 | 			btrfs_release_path(path); | 
 | 			goto again; | 
 | 		} | 
 | 		extent_end = other_end; | 
 | 		del_slot = path->slots[0] + 1; | 
 | 		del_nr++; | 
 | 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes, | 
 | 					0, root->root_key.objectid, | 
 | 					ino, orig_offset, 0); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 | 	other_start = 0; | 
 | 	other_end = start; | 
 | 	if (extent_mergeable(leaf, path->slots[0] - 1, | 
 | 			     ino, bytenr, orig_offset, | 
 | 			     &other_start, &other_end)) { | 
 | 		if (recow) { | 
 | 			btrfs_release_path(path); | 
 | 			goto again; | 
 | 		} | 
 | 		key.offset = other_start; | 
 | 		del_slot = path->slots[0]; | 
 | 		del_nr++; | 
 | 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes, | 
 | 					0, root->root_key.objectid, | 
 | 					ino, orig_offset, 0); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 | 	if (del_nr == 0) { | 
 | 		fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			   struct btrfs_file_extent_item); | 
 | 		btrfs_set_file_extent_type(leaf, fi, | 
 | 					   BTRFS_FILE_EXTENT_REG); | 
 | 		btrfs_mark_buffer_dirty(leaf); | 
 | 	} else { | 
 | 		fi = btrfs_item_ptr(leaf, del_slot - 1, | 
 | 			   struct btrfs_file_extent_item); | 
 | 		btrfs_set_file_extent_type(leaf, fi, | 
 | 					   BTRFS_FILE_EXTENT_REG); | 
 | 		btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 						extent_end - key.offset); | 
 | 		btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | 
 | 		if (ret < 0) { | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * on error we return an unlocked page and the error value | 
 |  * on success we return a locked page and 0 | 
 |  */ | 
 | static int prepare_uptodate_page(struct page *page, u64 pos, | 
 | 				 bool force_uptodate) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && | 
 | 	    !PageUptodate(page)) { | 
 | 		ret = btrfs_readpage(NULL, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		lock_page(page); | 
 | 		if (!PageUptodate(page)) { | 
 | 			unlock_page(page); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this gets pages into the page cache and locks them down, it also properly | 
 |  * waits for data=ordered extents to finish before allowing the pages to be | 
 |  * modified. | 
 |  */ | 
 | static noinline int prepare_pages(struct btrfs_root *root, struct file *file, | 
 | 			 struct page **pages, size_t num_pages, | 
 | 			 loff_t pos, unsigned long first_index, | 
 | 			 size_t write_bytes, bool force_uptodate) | 
 | { | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	int i; | 
 | 	unsigned long index = pos >> PAGE_CACHE_SHIFT; | 
 | 	struct inode *inode = fdentry(file)->d_inode; | 
 | 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); | 
 | 	int err = 0; | 
 | 	int faili = 0; | 
 | 	u64 start_pos; | 
 | 	u64 last_pos; | 
 |  | 
 | 	start_pos = pos & ~((u64)root->sectorsize - 1); | 
 | 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; | 
 |  | 
 | again: | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		pages[i] = find_or_create_page(inode->i_mapping, index + i, | 
 | 					       mask | __GFP_WRITE); | 
 | 		if (!pages[i]) { | 
 | 			faili = i - 1; | 
 | 			err = -ENOMEM; | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		if (i == 0) | 
 | 			err = prepare_uptodate_page(pages[i], pos, | 
 | 						    force_uptodate); | 
 | 		if (i == num_pages - 1) | 
 | 			err = prepare_uptodate_page(pages[i], | 
 | 						    pos + write_bytes, false); | 
 | 		if (err) { | 
 | 			page_cache_release(pages[i]); | 
 | 			faili = i - 1; | 
 | 			goto fail; | 
 | 		} | 
 | 		wait_on_page_writeback(pages[i]); | 
 | 	} | 
 | 	err = 0; | 
 | 	if (start_pos < inode->i_size) { | 
 | 		struct btrfs_ordered_extent *ordered; | 
 | 		lock_extent_bits(&BTRFS_I(inode)->io_tree, | 
 | 				 start_pos, last_pos - 1, 0, &cached_state); | 
 | 		ordered = btrfs_lookup_first_ordered_extent(inode, | 
 | 							    last_pos - 1); | 
 | 		if (ordered && | 
 | 		    ordered->file_offset + ordered->len > start_pos && | 
 | 		    ordered->file_offset < last_pos) { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
 | 					     start_pos, last_pos - 1, | 
 | 					     &cached_state, GFP_NOFS); | 
 | 			for (i = 0; i < num_pages; i++) { | 
 | 				unlock_page(pages[i]); | 
 | 				page_cache_release(pages[i]); | 
 | 			} | 
 | 			btrfs_wait_ordered_range(inode, start_pos, | 
 | 						 last_pos - start_pos); | 
 | 			goto again; | 
 | 		} | 
 | 		if (ordered) | 
 | 			btrfs_put_ordered_extent(ordered); | 
 |  | 
 | 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, | 
 | 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state, | 
 | 				  GFP_NOFS); | 
 | 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
 | 				     start_pos, last_pos - 1, &cached_state, | 
 | 				     GFP_NOFS); | 
 | 	} | 
 | 	for (i = 0; i < num_pages; i++) { | 
 | 		if (clear_page_dirty_for_io(pages[i])) | 
 | 			account_page_redirty(pages[i]); | 
 | 		set_page_extent_mapped(pages[i]); | 
 | 		WARN_ON(!PageLocked(pages[i])); | 
 | 	} | 
 | 	return 0; | 
 | fail: | 
 | 	while (faili >= 0) { | 
 | 		unlock_page(pages[faili]); | 
 | 		page_cache_release(pages[faili]); | 
 | 		faili--; | 
 | 	} | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | static noinline ssize_t __btrfs_buffered_write(struct file *file, | 
 | 					       struct iov_iter *i, | 
 | 					       loff_t pos) | 
 | { | 
 | 	struct inode *inode = fdentry(file)->d_inode; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct page **pages = NULL; | 
 | 	unsigned long first_index; | 
 | 	size_t num_written = 0; | 
 | 	int nrptrs; | 
 | 	int ret = 0; | 
 | 	bool force_page_uptodate = false; | 
 |  | 
 | 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / | 
 | 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / | 
 | 		     (sizeof(struct page *))); | 
 | 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); | 
 | 	nrptrs = max(nrptrs, 8); | 
 | 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); | 
 | 	if (!pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	first_index = pos >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	while (iov_iter_count(i) > 0) { | 
 | 		size_t offset = pos & (PAGE_CACHE_SIZE - 1); | 
 | 		size_t write_bytes = min(iov_iter_count(i), | 
 | 					 nrptrs * (size_t)PAGE_CACHE_SIZE - | 
 | 					 offset); | 
 | 		size_t num_pages = (write_bytes + offset + | 
 | 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 		size_t dirty_pages; | 
 | 		size_t copied; | 
 |  | 
 | 		WARN_ON(num_pages > nrptrs); | 
 |  | 
 | 		/* | 
 | 		 * Fault pages before locking them in prepare_pages | 
 | 		 * to avoid recursive lock | 
 | 		 */ | 
 | 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_delalloc_reserve_space(inode, | 
 | 					num_pages << PAGE_CACHE_SHIFT); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * This is going to setup the pages array with the number of | 
 | 		 * pages we want, so we don't really need to worry about the | 
 | 		 * contents of pages from loop to loop | 
 | 		 */ | 
 | 		ret = prepare_pages(root, file, pages, num_pages, | 
 | 				    pos, first_index, write_bytes, | 
 | 				    force_page_uptodate); | 
 | 		if (ret) { | 
 | 			btrfs_delalloc_release_space(inode, | 
 | 					num_pages << PAGE_CACHE_SHIFT); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		copied = btrfs_copy_from_user(pos, num_pages, | 
 | 					   write_bytes, pages, i); | 
 |  | 
 | 		/* | 
 | 		 * if we have trouble faulting in the pages, fall | 
 | 		 * back to one page at a time | 
 | 		 */ | 
 | 		if (copied < write_bytes) | 
 | 			nrptrs = 1; | 
 |  | 
 | 		if (copied == 0) { | 
 | 			force_page_uptodate = true; | 
 | 			dirty_pages = 0; | 
 | 		} else { | 
 | 			force_page_uptodate = false; | 
 | 			dirty_pages = (copied + offset + | 
 | 				       PAGE_CACHE_SIZE - 1) >> | 
 | 				       PAGE_CACHE_SHIFT; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we had a short copy we need to release the excess delaloc | 
 | 		 * bytes we reserved.  We need to increment outstanding_extents | 
 | 		 * because btrfs_delalloc_release_space will decrement it, but | 
 | 		 * we still have an outstanding extent for the chunk we actually | 
 | 		 * managed to copy. | 
 | 		 */ | 
 | 		if (num_pages > dirty_pages) { | 
 | 			if (copied > 0) { | 
 | 				spin_lock(&BTRFS_I(inode)->lock); | 
 | 				BTRFS_I(inode)->outstanding_extents++; | 
 | 				spin_unlock(&BTRFS_I(inode)->lock); | 
 | 			} | 
 | 			btrfs_delalloc_release_space(inode, | 
 | 					(num_pages - dirty_pages) << | 
 | 					PAGE_CACHE_SHIFT); | 
 | 		} | 
 |  | 
 | 		if (copied > 0) { | 
 | 			ret = btrfs_dirty_pages(root, inode, pages, | 
 | 						dirty_pages, pos, copied, | 
 | 						NULL); | 
 | 			if (ret) { | 
 | 				btrfs_delalloc_release_space(inode, | 
 | 					dirty_pages << PAGE_CACHE_SHIFT); | 
 | 				btrfs_drop_pages(pages, num_pages); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		btrfs_drop_pages(pages, num_pages); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, | 
 | 						   dirty_pages); | 
 | 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) | 
 | 			btrfs_btree_balance_dirty(root, 1); | 
 |  | 
 | 		pos += copied; | 
 | 		num_written += copied; | 
 | 	} | 
 |  | 
 | 	kfree(pages); | 
 |  | 
 | 	return num_written ? num_written : ret; | 
 | } | 
 |  | 
 | static ssize_t __btrfs_direct_write(struct kiocb *iocb, | 
 | 				    const struct iovec *iov, | 
 | 				    unsigned long nr_segs, loff_t pos, | 
 | 				    loff_t *ppos, size_t count, size_t ocount) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct inode *inode = fdentry(file)->d_inode; | 
 | 	struct iov_iter i; | 
 | 	ssize_t written; | 
 | 	ssize_t written_buffered; | 
 | 	loff_t endbyte; | 
 | 	int err; | 
 |  | 
 | 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, | 
 | 					    count, ocount); | 
 |  | 
 | 	/* | 
 | 	 * the generic O_DIRECT will update in-memory i_size after the | 
 | 	 * DIOs are done.  But our endio handlers that update the on | 
 | 	 * disk i_size never update past the in memory i_size.  So we | 
 | 	 * need one more update here to catch any additions to the | 
 | 	 * file | 
 | 	 */ | 
 | 	if (inode->i_size != BTRFS_I(inode)->disk_i_size) { | 
 | 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL); | 
 | 		mark_inode_dirty(inode); | 
 | 	} | 
 |  | 
 | 	if (written < 0 || written == count) | 
 | 		return written; | 
 |  | 
 | 	pos += written; | 
 | 	count -= written; | 
 | 	iov_iter_init(&i, iov, nr_segs, count, written); | 
 | 	written_buffered = __btrfs_buffered_write(file, &i, pos); | 
 | 	if (written_buffered < 0) { | 
 | 		err = written_buffered; | 
 | 		goto out; | 
 | 	} | 
 | 	endbyte = pos + written_buffered - 1; | 
 | 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	written += written_buffered; | 
 | 	*ppos = pos + written_buffered; | 
 | 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, | 
 | 				 endbyte >> PAGE_CACHE_SHIFT); | 
 | out: | 
 | 	return written ? written : err; | 
 | } | 
 |  | 
 | static ssize_t btrfs_file_aio_write(struct kiocb *iocb, | 
 | 				    const struct iovec *iov, | 
 | 				    unsigned long nr_segs, loff_t pos) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct inode *inode = fdentry(file)->d_inode; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	loff_t *ppos = &iocb->ki_pos; | 
 | 	u64 start_pos; | 
 | 	ssize_t num_written = 0; | 
 | 	ssize_t err = 0; | 
 | 	size_t count, ocount; | 
 |  | 
 | 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 |  | 
 | 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); | 
 | 	if (err) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 | 	count = ocount; | 
 |  | 
 | 	current->backing_dev_info = inode->i_mapping->backing_dev_info; | 
 | 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | 
 | 	if (err) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (count == 0) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = file_remove_suid(file); | 
 | 	if (err) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If BTRFS flips readonly due to some impossible error | 
 | 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), | 
 | 	 * although we have opened a file as writable, we have | 
 | 	 * to stop this write operation to ensure FS consistency. | 
 | 	 */ | 
 | 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		err = -EROFS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = btrfs_update_time(file); | 
 | 	if (err) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 | 	BTRFS_I(inode)->sequence++; | 
 |  | 
 | 	start_pos = round_down(pos, root->sectorsize); | 
 | 	if (start_pos > i_size_read(inode)) { | 
 | 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); | 
 | 		if (err) { | 
 | 			mutex_unlock(&inode->i_mutex); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(file->f_flags & O_DIRECT)) { | 
 | 		num_written = __btrfs_direct_write(iocb, iov, nr_segs, | 
 | 						   pos, ppos, count, ocount); | 
 | 	} else { | 
 | 		struct iov_iter i; | 
 |  | 
 | 		iov_iter_init(&i, iov, nr_segs, count, num_written); | 
 |  | 
 | 		num_written = __btrfs_buffered_write(file, &i, pos); | 
 | 		if (num_written > 0) | 
 | 			*ppos = pos + num_written; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	/* | 
 | 	 * we want to make sure fsync finds this change | 
 | 	 * but we haven't joined a transaction running right now. | 
 | 	 * | 
 | 	 * Later on, someone is sure to update the inode and get the | 
 | 	 * real transid recorded. | 
 | 	 * | 
 | 	 * We set last_trans now to the fs_info generation + 1, | 
 | 	 * this will either be one more than the running transaction | 
 | 	 * or the generation used for the next transaction if there isn't | 
 | 	 * one running right now. | 
 | 	 */ | 
 | 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; | 
 | 	if (num_written > 0 || num_written == -EIOCBQUEUED) { | 
 | 		err = generic_write_sync(file, pos, num_written); | 
 | 		if (err < 0 && num_written > 0) | 
 | 			num_written = err; | 
 | 	} | 
 | out: | 
 | 	current->backing_dev_info = NULL; | 
 | 	return num_written ? num_written : err; | 
 | } | 
 |  | 
 | int btrfs_release_file(struct inode *inode, struct file *filp) | 
 | { | 
 | 	/* | 
 | 	 * ordered_data_close is set by settattr when we are about to truncate | 
 | 	 * a file from a non-zero size to a zero size.  This tries to | 
 | 	 * flush down new bytes that may have been written if the | 
 | 	 * application were using truncate to replace a file in place. | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->ordered_data_close) { | 
 | 		BTRFS_I(inode)->ordered_data_close = 0; | 
 | 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode); | 
 | 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) | 
 | 			filemap_flush(inode->i_mapping); | 
 | 	} | 
 | 	if (filp->private_data) | 
 | 		btrfs_ioctl_trans_end(filp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * fsync call for both files and directories.  This logs the inode into | 
 |  * the tree log instead of forcing full commits whenever possible. | 
 |  * | 
 |  * It needs to call filemap_fdatawait so that all ordered extent updates are | 
 |  * in the metadata btree are up to date for copying to the log. | 
 |  * | 
 |  * It drops the inode mutex before doing the tree log commit.  This is an | 
 |  * important optimization for directories because holding the mutex prevents | 
 |  * new operations on the dir while we write to disk. | 
 |  */ | 
 | int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) | 
 | { | 
 | 	struct dentry *dentry = file->f_path.dentry; | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	int ret = 0; | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	trace_btrfs_sync_file(file, datasync); | 
 |  | 
 | 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	mutex_lock(&inode->i_mutex); | 
 |  | 
 | 	/* we wait first, since the writeback may change the inode */ | 
 | 	root->log_batch++; | 
 | 	btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
 | 	root->log_batch++; | 
 |  | 
 | 	/* | 
 | 	 * check the transaction that last modified this inode | 
 | 	 * and see if its already been committed | 
 | 	 */ | 
 | 	if (!BTRFS_I(inode)->last_trans) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if the last transaction that changed this file was before | 
 | 	 * the current transaction, we can bail out now without any | 
 | 	 * syncing | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (BTRFS_I(inode)->last_trans <= | 
 | 	    root->fs_info->last_trans_committed) { | 
 | 		BTRFS_I(inode)->last_trans = 0; | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * ok we haven't committed the transaction yet, lets do a commit | 
 | 	 */ | 
 | 	if (file->private_data) | 
 | 		btrfs_ioctl_trans_end(file); | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_log_dentry_safe(trans, root, dentry); | 
 | 	if (ret < 0) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* we've logged all the items and now have a consistent | 
 | 	 * version of the file in the log.  It is possible that | 
 | 	 * someone will come in and modify the file, but that's | 
 | 	 * fine because the log is consistent on disk, and we | 
 | 	 * have references to all of the file's extents | 
 | 	 * | 
 | 	 * It is possible that someone will come in and log the | 
 | 	 * file again, but that will end up using the synchronization | 
 | 	 * inside btrfs_sync_log to keep things safe. | 
 | 	 */ | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	if (ret != BTRFS_NO_LOG_SYNC) { | 
 | 		if (ret > 0) { | 
 | 			ret = btrfs_commit_transaction(trans, root); | 
 | 		} else { | 
 | 			ret = btrfs_sync_log(trans, root); | 
 | 			if (ret == 0) | 
 | 				ret = btrfs_end_transaction(trans, root); | 
 | 			else | 
 | 				ret = btrfs_commit_transaction(trans, root); | 
 | 		} | 
 | 	} else { | 
 | 		ret = btrfs_end_transaction(trans, root); | 
 | 	} | 
 | out: | 
 | 	return ret > 0 ? -EIO : ret; | 
 | } | 
 |  | 
 | static const struct vm_operations_struct btrfs_file_vm_ops = { | 
 | 	.fault		= filemap_fault, | 
 | 	.page_mkwrite	= btrfs_page_mkwrite, | 
 | }; | 
 |  | 
 | static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma) | 
 | { | 
 | 	struct address_space *mapping = filp->f_mapping; | 
 |  | 
 | 	if (!mapping->a_ops->readpage) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	file_accessed(filp); | 
 | 	vma->vm_ops = &btrfs_file_vm_ops; | 
 | 	vma->vm_flags |= VM_CAN_NONLINEAR; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long btrfs_fallocate(struct file *file, int mode, | 
 | 			    loff_t offset, loff_t len) | 
 | { | 
 | 	struct inode *inode = file->f_path.dentry->d_inode; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 cur_offset; | 
 | 	u64 last_byte; | 
 | 	u64 alloc_start; | 
 | 	u64 alloc_end; | 
 | 	u64 alloc_hint = 0; | 
 | 	u64 locked_end; | 
 | 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1; | 
 | 	struct extent_map *em; | 
 | 	int ret; | 
 |  | 
 | 	alloc_start = offset & ~mask; | 
 | 	alloc_end =  (offset + len + mask) & ~mask; | 
 |  | 
 | 	/* We only support the FALLOC_FL_KEEP_SIZE mode */ | 
 | 	if (mode & ~FALLOC_FL_KEEP_SIZE) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we have enough space before we do the | 
 | 	 * allocation. | 
 | 	 */ | 
 | 	ret = btrfs_check_data_free_space(inode, len); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * wait for ordered IO before we have any locks.  We'll loop again | 
 | 	 * below with the locks held. | 
 | 	 */ | 
 | 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	ret = inode_newsize_ok(inode, alloc_end); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (alloc_start > inode->i_size) { | 
 | 		ret = btrfs_cont_expand(inode, i_size_read(inode), | 
 | 					alloc_start); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	locked_end = alloc_end - 1; | 
 | 	while (1) { | 
 | 		struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 		/* the extent lock is ordered inside the running | 
 | 		 * transaction | 
 | 		 */ | 
 | 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, | 
 | 				 locked_end, 0, &cached_state); | 
 | 		ordered = btrfs_lookup_first_ordered_extent(inode, | 
 | 							    alloc_end - 1); | 
 | 		if (ordered && | 
 | 		    ordered->file_offset + ordered->len > alloc_start && | 
 | 		    ordered->file_offset < alloc_end) { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
 | 					     alloc_start, locked_end, | 
 | 					     &cached_state, GFP_NOFS); | 
 | 			/* | 
 | 			 * we can't wait on the range with the transaction | 
 | 			 * running or with the extent lock held | 
 | 			 */ | 
 | 			btrfs_wait_ordered_range(inode, alloc_start, | 
 | 						 alloc_end - alloc_start); | 
 | 		} else { | 
 | 			if (ordered) | 
 | 				btrfs_put_ordered_extent(ordered); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cur_offset = alloc_start; | 
 | 	while (1) { | 
 | 		u64 actual_end; | 
 |  | 
 | 		em = btrfs_get_extent(inode, NULL, 0, cur_offset, | 
 | 				      alloc_end - cur_offset, 0); | 
 | 		if (IS_ERR_OR_NULL(em)) { | 
 | 			if (!em) | 
 | 				ret = -ENOMEM; | 
 | 			else | 
 | 				ret = PTR_ERR(em); | 
 | 			break; | 
 | 		} | 
 | 		last_byte = min(extent_map_end(em), alloc_end); | 
 | 		actual_end = min_t(u64, extent_map_end(em), offset + len); | 
 | 		last_byte = (last_byte + mask) & ~mask; | 
 |  | 
 | 		if (em->block_start == EXTENT_MAP_HOLE || | 
 | 		    (cur_offset >= inode->i_size && | 
 | 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { | 
 | 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset, | 
 | 							last_byte - cur_offset, | 
 | 							1 << inode->i_blkbits, | 
 | 							offset + len, | 
 | 							&alloc_hint); | 
 |  | 
 | 			if (ret < 0) { | 
 | 				free_extent_map(em); | 
 | 				break; | 
 | 			} | 
 | 		} else if (actual_end > inode->i_size && | 
 | 			   !(mode & FALLOC_FL_KEEP_SIZE)) { | 
 | 			/* | 
 | 			 * We didn't need to allocate any more space, but we | 
 | 			 * still extended the size of the file so we need to | 
 | 			 * update i_size. | 
 | 			 */ | 
 | 			inode->i_ctime = CURRENT_TIME; | 
 | 			i_size_write(inode, actual_end); | 
 | 			btrfs_ordered_update_i_size(inode, actual_end, NULL); | 
 | 		} | 
 | 		free_extent_map(em); | 
 |  | 
 | 		cur_offset = last_byte; | 
 | 		if (cur_offset >= alloc_end) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, | 
 | 			     &cached_state, GFP_NOFS); | 
 | out: | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	/* Let go of our reservation. */ | 
 | 	btrfs_free_reserved_data_space(inode, len); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int find_desired_extent(struct inode *inode, loff_t *offset, int origin) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_map *em; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 lockstart = *offset; | 
 | 	u64 lockend = i_size_read(inode); | 
 | 	u64 start = *offset; | 
 | 	u64 orig_start = *offset; | 
 | 	u64 len = i_size_read(inode); | 
 | 	u64 last_end = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	lockend = max_t(u64, root->sectorsize, lockend); | 
 | 	if (lockend <= lockstart) | 
 | 		lockend = lockstart + root->sectorsize; | 
 |  | 
 | 	len = lockend - lockstart + 1; | 
 |  | 
 | 	len = max_t(u64, len, root->sectorsize); | 
 | 	if (inode->i_size == 0) | 
 | 		return -ENXIO; | 
 |  | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, | 
 | 			 &cached_state); | 
 |  | 
 | 	/* | 
 | 	 * Delalloc is such a pain.  If we have a hole and we have pending | 
 | 	 * delalloc for a portion of the hole we will get back a hole that | 
 | 	 * exists for the entire range since it hasn't been actually written | 
 | 	 * yet.  So to take care of this case we need to look for an extent just | 
 | 	 * before the position we want in case there is outstanding delalloc | 
 | 	 * going on here. | 
 | 	 */ | 
 | 	if (origin == SEEK_HOLE && start != 0) { | 
 | 		if (start <= root->sectorsize) | 
 | 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, | 
 | 						     root->sectorsize, 0); | 
 | 		else | 
 | 			em = btrfs_get_extent_fiemap(inode, NULL, 0, | 
 | 						     start - root->sectorsize, | 
 | 						     root->sectorsize, 0); | 
 | 		if (IS_ERR(em)) { | 
 | 			ret = PTR_ERR(em); | 
 | 			goto out; | 
 | 		} | 
 | 		last_end = em->start + em->len; | 
 | 		if (em->block_start == EXTENT_MAP_DELALLOC) | 
 | 			last_end = min_t(u64, last_end, inode->i_size); | 
 | 		free_extent_map(em); | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); | 
 | 		if (IS_ERR(em)) { | 
 | 			ret = PTR_ERR(em); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (em->block_start == EXTENT_MAP_HOLE) { | 
 | 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { | 
 | 				if (last_end <= orig_start) { | 
 | 					free_extent_map(em); | 
 | 					ret = -ENXIO; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (origin == SEEK_HOLE) { | 
 | 				*offset = start; | 
 | 				free_extent_map(em); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			if (origin == SEEK_DATA) { | 
 | 				if (em->block_start == EXTENT_MAP_DELALLOC) { | 
 | 					if (start >= inode->i_size) { | 
 | 						free_extent_map(em); | 
 | 						ret = -ENXIO; | 
 | 						break; | 
 | 					} | 
 | 				} | 
 |  | 
 | 				*offset = start; | 
 | 				free_extent_map(em); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		start = em->start + em->len; | 
 | 		last_end = em->start + em->len; | 
 |  | 
 | 		if (em->block_start == EXTENT_MAP_DELALLOC) | 
 | 			last_end = min_t(u64, last_end, inode->i_size); | 
 |  | 
 | 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { | 
 | 			free_extent_map(em); | 
 | 			ret = -ENXIO; | 
 | 			break; | 
 | 		} | 
 | 		free_extent_map(em); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!ret) | 
 | 		*offset = min(*offset, inode->i_size); | 
 | out: | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
 | 			     &cached_state, GFP_NOFS); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin) | 
 | { | 
 | 	struct inode *inode = file->f_mapping->host; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	switch (origin) { | 
 | 	case SEEK_END: | 
 | 	case SEEK_CUR: | 
 | 		offset = generic_file_llseek(file, offset, origin); | 
 | 		goto out; | 
 | 	case SEEK_DATA: | 
 | 	case SEEK_HOLE: | 
 | 		if (offset >= i_size_read(inode)) { | 
 | 			mutex_unlock(&inode->i_mutex); | 
 | 			return -ENXIO; | 
 | 		} | 
 |  | 
 | 		ret = find_desired_extent(inode, &offset, origin); | 
 | 		if (ret) { | 
 | 			mutex_unlock(&inode->i_mutex); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) { | 
 | 		offset = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	if (offset > inode->i_sb->s_maxbytes) { | 
 | 		offset = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Special lock needed here? */ | 
 | 	if (offset != file->f_pos) { | 
 | 		file->f_pos = offset; | 
 | 		file->f_version = 0; | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	return offset; | 
 | } | 
 |  | 
 | const struct file_operations btrfs_file_operations = { | 
 | 	.llseek		= btrfs_file_llseek, | 
 | 	.read		= do_sync_read, | 
 | 	.write		= do_sync_write, | 
 | 	.aio_read       = generic_file_aio_read, | 
 | 	.splice_read	= generic_file_splice_read, | 
 | 	.aio_write	= btrfs_file_aio_write, | 
 | 	.mmap		= btrfs_file_mmap, | 
 | 	.open		= generic_file_open, | 
 | 	.release	= btrfs_release_file, | 
 | 	.fsync		= btrfs_sync_file, | 
 | 	.fallocate	= btrfs_fallocate, | 
 | 	.unlocked_ioctl	= btrfs_ioctl, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl	= btrfs_ioctl, | 
 | #endif | 
 | }; |